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ABSTRACT

This work presents a novel means for understanding learning dynamics and scal-
ing relations in neural networks. We show that certain measures on the spectrum
of the empirical neural tangent kernel, specifically entropy and trace, yield in-
sight into the representations learned by a neural network and how these can be
improved through architecture scaling. These results are demonstrated first on
test cases before being shown on more complex networks, including transformers,
auto-encoders, graph neural networks, and reinforcement learning studies. In test-
ing on a wide range of architectures, we highlight the universal nature of training
dynamics and further discuss how it can be used to understand the mechanisms
behind learning in neural networks. We identify two such dominant mechanisms
present throughout machine learning training. The first, information compression,
is seen through a reduction in the entropy of the NTK spectrum during training,
and occurs predominantly in small neural networks. The second, coined structure
formation, is seen through an increasing entropy and thus, the creation of structure
in the neural network representations beyond the prior established by the network
at initialization. Due to the ubiquity of the latter in deep neural network archi-
tectures and its flexibility in the creation of feature-rich representations, we argue
that this form of evolution of the network’s entropy be considered the onset of a
deep learning regime.

1 INTRODUCTION

Scaling behaviour in neural networks has become a pivotal area of investigation in modern deep-
learning research. Traditional scaling laws, which correlate the number of network parameters with
performance metrics, provide a foundational understanding but often fall short when comparing
different architectures or capturing the intricacies of neural network dynamics arising from the ar-
chitecture of the network itself. To bridge this gap, our research leverages the neural tangent kernel
(NTK) to elucidate neural networks’ learning dynamics and scaling laws, offering a more com-
prehensive framework for understanding how network representations evolve and how architecture
scaling impacts these processes. Specifically, this investigation utilizes a set of collective variables,
the entropy and trace of the empirical NTK, to identify and explain learning regimes during the
training process. The NTK, introduced by Jacot et al.[(2018)), provides a powerful tool for analyzing
the infinite-width limits of neural networks. By focusing on the empirical NTK and its evolution
during training, we can gain insights into the internal representations learned by finite-size neural
networks and their dependence on architecture. Our approach is validated across various tasks and
network types, including transformers, auto-encoders, graph neural networks, and reinforcement
learning models, demonstrating its broad applicability and robustness.

1.1 STATE OF THE ART

Previous work has established various scaling laws for neural networks, often relating to the number
of parameters and the expected performance (Bahri et al., 2024). However, these descriptions are
predominantly phenomenological and do not fully capture the dynamics of different architectures
or the nuances of the learning process. In|Bahri et al. (2024), neural scaling laws are studied in a
so-called resolution-limited and variance-limited regime, highlighting changes in the network per-
formance within each. While this work highlights a useful relationship between the data manifold
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and neural scaling, it does not address the fundamental question of whether learning mechanisms
within each regime change at all. |Leclerc & Madry| (2020) identify regimes during training and
relate them to a learning-rate dependent mechanism, namely, large-step and small-step regimes.
They highlight that the process by which the network learns information differs between these two
regimes and can be leveraged more effectively when considered as two separate training phases. In
their 2021 paper, |Geiger et al.| (2021)) explored the role of initialization in over-parameterized neu-
ral networks and how it changes the training process of the neural network. The problem has also
been explored with more practical uses in finding, for example, in Mirzadeh et al.| (2020) learning
regimes, as impacted by batch size, learning rate, and regularization, is explored in relation to catas-
trophic forgetting, or the seminal work of [Kaplan et al.|(2020) where scaling laws are introduced as
a means to optimize a cost-performance tradeoff in large language models.

The NTK has emerged as a key concept for understanding these dynamics, particularly in the context
of wide neural networks where it facilitates a tractable analysis of gradient descent dynamics. Often,
this work studies alignment effects in the NTK and what role these play in the learning taking
place (Atanasov et al.,[2021)), or in identifying dynamics regimes (Lewkowycz et al.|[2020). Indeed,
a landmark result utilizing theoretical scaling laws studies came in the form of p-transfer (Yang &
Hu, [2022; |Yang et al., |2022)), that can be used to initialize width-scaled networks without losing
accuracy.

Each of these studies highlights the importance of scaling laws and network dynamics in the field’s
current state. However, in each case, they do so by studying raw loss metrics as a function of chang-
ing network size and identifying steady changes in their performance, which are characterized by a
scaling law. In this work, we explore an alternative means of representing training dynamics, namely,
the collective variables of the NTK. In doing so, we isolate fundamental learning mechanisms such
as information compression and structure formation and highlight their role and evolution during
training.

1.2 CONTRIBUTION STATEMENT
We identify several relevant contributions in this work:

* We provide a detailed empirical analysis of NTK evolution across various neural network
architectures and tasks, highlighting universal patterns and architecture-specific behaviors.

* We introduce collective variables derived from the NTK, such as entropy and trace, to
quantify the diversity and effective learning rates of neural network updates.

* We demonstrate the applicability of our methods to modern machine learning models, in-
cluding transformers, graph neural networks, and reinforcement learning agents, showcas-
ing the utility of NTK-based analysis for understanding complex learning dynamics.

* We find that large models universally show an increase in entropy, in contrast to small
models. This allows us to quantitatively define a deep learning regime.

* We relate existing scaling parameters of width and depth with our entropy and trace collec-
tive variables.

By extending the analysis of NTK to encompass a wide range of network architectures and tasks,
we offer new tools and perspectives for scaling and comparing neural networks at an information-
theoretic level. This work enhances our theoretical understanding of neural network dynamics and
provides practical insights for optimizing architecture design and training protocols.

2 THEORY AND METHODS

2.1 NEURAL TANGENT KERNEL FOR NETWORK DYNAMICS

The neural tangent kernel was first introduced to the machine-learning community by [Jacot et al.
(2018) to investigate the infinite-width limits of neural networks. In this work, we explore the
evolution of neural networks and how this can be better understood by studying measures on this
matrix. However, to understand why this is possible, consider a neural network, f[z;, 8] acting on
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a single input data point, ; and parametrized by 6. During training, each element of parameter, 0y,
will be updated via some variant of stochastic gradient descent

OL(f[xi, 04, y:

where 7 is the learning rate, £ is the chosen loss function used in the minimization, and y; is the
target value associated with the input data, x;. When performing gradient descent, the size of the step
forward is determined by the learning rate, which is set under the assumption that the loss surface
will not change drastically over the course of the update. However, to perform a more rigorous
analysis, we take this further and move into continuous time by defining

o Ok — Ok OL(f[xi, 0], v:)
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where the dot denotes a time derivative. The problem with this formalism is that the network archi-
tecture itself is not expressed in the evolution, only the parameters of this architecture. To understand
how the neural network representations evolve, we compute the time derivative of the function itself,
f[:, 6] by the chain rule

Flep, 0] = Z%}:B]ék. 3)
k

Substituting Equation [2] into Equation [3] and expanding the loss derivative into a parameter and
function component, we find
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where the matrix ©; is referred to as the neural tangent kernel or NTK. In the evolution of the neu-
ral network representations, the loss derivative term plays the role of the minimization constraint,
guiding the network parameters into an optimum. The NTK, however, also plays a role in how the
network evolves during training, specifically, how the architecture impacts this evolution. Unfortu-
nately, the NTK is often very large, and therefore, alternative tools are required to study it and its
evolution.

2.2 COLLECTIVE VARIABLES

The NTK matrix is built from the inner products of the gradient vectors of a neural network evaluated
at different data points. It provides information on the degree of correlation in these gradient vectors,
i.e., whether the representations of these points will evolve similarly or not. To see the role this plays
in the evolution, consider the eigendecomposition of the NTK

G)pz = Z DpnAnn (Dil)ni ) (6)

where D, is the matrix of eigenvectors and A;; is the diagonal matrix of eigenvalues. Substituting
Equation [6]into Equation 3] yields (see also |Krippendorf & Spannowsky| (2022))

flzp, 0 _ZZDWAM D™ 05L. (7)

Evaluating Equation [7] from right to left, we can see that during an update of the network, the
loss derivative of the i data-point is projected along the eigenvectors of the NTK and scaled by
its eigenvalues, thus introducing effective learning rates and direction changes due solely to the
architecture and its instantaneous prior over the data. This description can be simplified into

flap, 6 Z Dypnpn, 8)
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Name Task Architecture Citation

UD Treebank Ancient Greek NLP Transformer (Eckhoff et al.,[2018; Bamman & Cranel 2011)
OGBG MolPCBA Classification GNN (Hu et al.[[2021])

Atari RL CNN (Bellemare et al.,[2013)),

CIFAR10 Classification ResNet18 (Krizhevsky & Hinton, [2009)

Fuel Efficiency Regression FFNN (Quinlan} [1993)

MNIST Generative FFNN /CNN (Lecun et al., [1998)

Table 1: Data-sets along with the model architecture, task, and citation of the different experiments
used throughout the study.

where p, = A\, D;il 0y, L, referred to here as the A-scaled projection factor, acts as a scaling factor

on the update to the representation of data point z,. Regarding learning, this formalism argues
that a neural network starts with a prior of the data, indicated by the spectrum of the NTK matrix,
which correlates and scales modes based on its architecture. During an update, the fundamental
modes present in the neural tangent kernel are tuned based on the loss function. This can occur
either via scaling from the magnitude of the loss gradients, strengthening or weakening the degree
of correlation between modes. Alternatively, reorientation via the dot product of the gradient vector
can force a change in the direction of the eigenvectors. Thus, two data points that the network
considered correlated before training, highlighted by high similarity in the NTK matrix, can either
be separated via an orthogonal gradient vector or strengthened via an aligned gradient with a large
eigenvalue. The question remains: how can we discuss this mechanism taking place inside the neural
network? In their 2023 paper, [Tovey et al|(2023) introduced measures on the NTK to describe its
current state and used this description to describe the role of data selection in neural network training.
By measuring the collective variables of their networks before training, they showed that it could
provide insight into the quality of the prior data distribution and, thus, the expected performance of
the training. Specifically, they introduced the entropy of the NTK, computed from the normalized
eigenvalues as

S=-=Y Xlogh )

providing a measure of the diversity of the matrix, i.e., how many independent degrees of freedom
exist in the update, and the trace of the NTK,

> 6, (10)

describing the magnitude of the scaling factor on the learning rate. This work extends their analysis
to the evolution of the neural network during training to understand what processes it undergoes.

2.3 DATASETS AND ARCHITECTURES

Several datasets have been studied to demonstrate the use of the collective variables for model inter-
pretation and to better highlight the dynamics’ universality. Table|l|outlines each dataset, including
their citations, the type of problem being learned, and the network architecture used in the training.
Training for each network required unique optimizers, learning rates, and batch sizes and was per-
formed over different data sets. The training was distributed on several compute clusters utilizing
NVIDIA 4090, 3090, and L4 GPUs.

2.4 ZNNL

Most network training and evaluation are performed using the ZnNL Python library throughout this
work. ZnNL utilizes the neural-tangents library (Bradbury et al 2018) for NTK calculations and
the Flax library (Heek et al.,|2023) for neural network definition and training. The novelty methods
were trained using the Flax library using customized scripts outside the ZnNL framework.
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3 COLLECTIVE VARIABLE EVOLUTION

This work aims to understand the learning dynamics of neural networks and identify any universal
properties of this evolution. To this end, networks of different architectures are trained on different
datasets and their properties, entropy, trace and loss, are measured at each epoch. This has been
performed on standard classification and regression problems in simple networks but also scaled
to more modern architectures and data structures, including generative models, language problems
with transformers, graph neural networks, and reinforcement learning. First, we discuss the most
comprehensive results of the MNIST data scan; afterwards, we introduce the additional architectures
in more detail.

3.1 ARCHITECTURE SCANS

In the first study, the MNIST dataset is used to train dense and convolutional neural networks, along
with the Fuel Efficieny dataset used to train a dense network, the architectures of which are outlined
in Table [1] Figure [I| displays the evolution of the collective variables for certain combinations of
widths, depths, and activation functions for the convolution model. Further results for dense MNIST
and the Fuel Efficiency task are shown in Appendix figures@and[5|respectively, but are qualitatively
similar. Each plot shows the variables computed on the test and the train data, differentiated by
colors. Furthermore, each row corresponds to the network’s varying architecture property while
the other properties are held fixed, similar to performing measurements in a specific ensemble in
statistical physics. In addition to the evolution diagram, a more comprehensive scaling study was
performed on the dense network architecture. This was done by training dense neural networks of
varying depths and widths and computing the loss, entropy, and trace evolution. The results of this
study at the start of training and after 100 epochs are displayed in Figure 2| To fully digest these
results, we will discuss each variable individually, beginning with the loss.

Loss: In the case of both test and training loss, we see drastic improvements with changes to the
architecture. Namely, using deeper networks, TanH over ReLU activation functions, and training
wider networks results in lower test and train losses. This trend is broken in the depth scaling as we
see the test loss, and therefore, generalization improves with increasing depth despite a larger train
loss, in line with previously reported scaling behaviour (Yang & Hu,[2022;|Bahri et al.,[2024)). These
results are further strengthened in Figure [2]b) in the case of a dense network, as we see the deeper
networks achieving significantly improved losses compared with their shallower counterparts.

Entropy: Entropy evolution highlights two distinct learning dynamics that relate to different learn-
ing regimes arising directly from the information content in the neural network. In general, entropy
undergoes one of two evolutions: information compression and structure formation. Information
compression is signified by a reduction in the NTK’s entropy, which indicates that gradient vectors
are beginning to align and the network is relating many data points to one another. An increasing
entropy indicates structure formation, suggesting that the network separates data to identify better
representations. What we observe in Figure[T|and in the dense network counterpart in Figure[]is that
depending on the size of the network, a different mechanism will become dominant. In most cases,
we see the entropy drop at the beginning of training, coinciding with the sharp drop in the loss early
in the optimization procedure. For smaller networks that are limited in dimension and, therefore,
have limited flexibility to construct complex representations, the entropy remains low throughout
the rest of the training. These networks also typically attain a worse train and test loss than their
larger counterparts, although they can still train. After the compression phase of training, the larger
networks undergo structure formation, indicated by increasing entropy. This relationship, however,
becomes complex when depths vs width are considered. It is clear from the results that increas-
ing the network dimension via width increases the entropy of the models. However, adding layers
appears to reduce this entropy. Intuitively, this makes sense as adding layers does not increase the
projected dimension but applies additional non-linearities to the representations. However, we also
see that deeper networks can achieve higher entropies than their shallower counterparts when scaled
further in width and after training. Thus, while adding layers to a network of one width can reduce
its entropy, scaling it to a higher width increases its capacity for a higher entropy. To explore this
mechanism further, the higher resolution architecture scans of the dense neural network architecture
are presented in Figure[2]a) at the start of training and Figure 2]b) at the end. In these plots, increas-
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Figure 1: Time evolution diagrams for the convolutional MNIST study. The top row shows the
evolution difference due to a changing activation function. The second row is width scaling, and
the third is depth scaling. The tuple over the plots highlights the architecture being studied. It is
structured as (Width, Depth, Activation), where an z indicates that this property is being changed
during the study.
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Figure 2: Architecture scaling sweep of a dense neural network trained on the MNIST dataset. The
top row a) shows the entropy, trace and loss as a function of network width and depth at initialization.
The bottom row, b), shows the same data after training the model.

ing the network depth reduces entropy at initialization. However, the deeper networks form a region
of high entropy after training, corresponding with a better test loss. This trend is not reproduced
in the TanH case, indicating that these mechanisms are sensitive to the activation function. Further
work could explore how the scaling behavior for each activation can be used to perform targeted
architecture selection.

Trace: The final property to study is the trace of the networks. Recall the trace corresponds to an
effective learning rate, e.g., how far we will be pushed along a specific direction due to the network
architecture. In each study, trace increases with training time to a very large value, often in step with
the loss evolution. From a learning perspective, this indicates that the network continually increases
its effective steps along specific directions as training goes on, similar in concept to the network’s
confidence that the solution it is forming is correct. From a physical perspective, this is very similar
to the evolution of kinetic energy asymmetrically to the decrease in a potential. Indeed, if one were
to consider the kinetic energy of a network representation f(z;), as E¥ = ﬁ| f(z;)]?, a simple
expansion of variables would show

k_i B OL(xp) ?
E" = Qmi@” . o0, ) (11)

where m; is some point mass and ©,; is indeed the trace of the NTK plotted here. Representation
of this value as kinetic energy is a convenient metaphor for a real effect within a neural network
during training. Namely, as one minimizes the loss, the network appears to become very sensitive
to changes in these losses, as evidenced by this effective scaling parameter becoming large. This
indicates that if fictitious data were added to the data set late in training, driving the loss term up,
the network would train on this data point with a significant degree of confidence as opposed to at
the start of training, where it could possibly be ignored or saturated out by the other data points.
The conclusion here is that adding malicious data or even very new data to a data set at the end
of training will result in a larger change in parameters than it would at the start of training, even if
the loss computed on this value were the same at both times, simply due to the state of the neural
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network. This result has significant ramifications for adversarial attacks on trained models and may
help explain why small additions of noise to a model can lead to a drastic change in its outputs.
Further investigation of this property may lead to a reduction in model sensitivity and could also be
applied to more effective continual learning strategies. In the architecture sweeps shown in Figure[2]
we see a similar trend in the trace at initialization and, after training, only shifted. Specifically,
increasing depth and width results in a larger trace value further exasperated by the training process.
Thus, supporting the work of [Yang & Schoenholz] (2017), deeper and larger networks are more
sensitive than their shallower counterparts, not just at initialization but also after training.

4 NOVELTY MODELS

While exploring the evolution of collective variables on test problems provides deep insight into
scaling relations and dynamics, it does not directly relate to the current state of machine learning.
To extend our analysis and argue that these dynamics are, in fact, a universal phenomenon, we apply
this analysis to several so-called novelty models taken from various fields of machine learning. The
results of these evolution studies are outlined in Figure [3] and discussed below. It should be noted
throughout this discussion that due to the size of these architectures and data sets, the collective
variables have not been computed at each epoch but rather at steps of between 10 and 1000 epochs.
Further, the NTK matrix was often subsampled during the calculations using 200 samples of 20
data points to construct a measurement. Before discussing the individual models and the unique
features emerging in the dynamics, their measurements’ global properties appear consistent with the
test cases presented above. In all cases, the entropy of the models increases throughout training,
indicating that we are always within a structure formation regime. This is not unusual, as each
network is far larger than those required to induce constrained, compressive learning. A notable
difference is entropy’s complete lack of a compression phase. This is likely because the dataset size
is such that after even a single batch, so much back-propagation has been performed that the network
moves directly to a structure formation phase. Such a process indicates that the parameters of the
network are free to perform sophisticated structure formation, thus learning fundamental features of
the data. Given the dominance of the entropy increase in the latter portion of the training, it is an
open question whether the initial decrease is a required process or simply an artifact of non-ideal
initialization. One explanation would be that those models that perform only compression are not
performing what the community would call deep learning. Only those models that can perform
this structure formation should be considered to be performing deep learning. Further, the trace in
the later time consistently increases, in line with previous measurements. Below, we examine four
models more closely and interpret some emergent features.

4.1 NLP

In the NLP problem, a transformer was trained to perform part-of-speech tagging for ancient Greek
text from [Eckhoff et al.[(2018)); Bamman & Crane| (2011). We see a story similar to the test cases
discussed in the entropy and trace evolution. The trace increases steadily as the loss decreases. The
difference in magnitudes is interesting compared with the previous examples. While the accuracy
of the transformer reached 99 %, the loss, due to the specific one chosen, does not get too small,
resulting in a more reasonable trace value and, thus, less "confidence” during the updates.

4.2 REINFORCEMENT LEARNING

The next novelty model study looked at how the entropy and the trace of an agent trained via deep
actor-critic reinforcement learning evolved. To compute the NTK, a dataset of environments was
constructed by letting the agent play the game hundreds of times at three stages of learning: un-
trained, occasionally successful, and end of training. In this way, the dataset on which the NTK is
computed covers the full range of possible configurations the agent could see. The entropy, trace,
and reward curves in Figure [3] are all plotted using a log-x scale to highlight exactly where cer-
tain transitions in this evolution occur. The reason for this is the sharp increase in the entropy and
trace after approximately 1000 training episodes. What is interesting about this transition is that the
entropy and trace, particularly of the actor, increase in the episode before the reward of the agent
follows suit. Upon finer examination, we see that this jump occurs in the episode directly before the
agent begins to be able to perform the task successfully and achieve positive rewards. This indicates
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Figure 3: Collective variable evolution for the novelty architectures. In each case, the raw value,
along with a running average, is shown. (a) A resnetl8 trained on the CIFARI10 data set. (b) A
transformer trained on part-of-speech tagging of ancient Greek. (c) A CNN-based reinforcement
learner trained on the arcade game Pong. Note the use of reward instead of loss on the y-axis. (d)
A graph neural network trained on molecular property prediction. (e) A simple variational auto-
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that the entropy, and to a lesser extent, the trace, indicated that the agent could perform its task bet-
ter given its current set of parameters. This is a very natural interpretation of structure learning in a
neural network, as seen through the eyes of an agent playing a game. At some stage during training,
the neural network begins to identify structure in the data and can use this structure to make better
moves in the game. The training then continues very quickly, partly due to the onset of structure
formation but perhaps aided by the new scaling from the trace, which increases more significantly
in the actor model. In the case of RL, the concept of confidence also becomes quite interpretable as
the agent begins to trust more that the structure it is beginning to learn will be successful. Therefore,
it can make larger steps in its updates, arising from the larger trace.

4.3 GRAPH PREDICTION AND GENERATIVE MODELLING

In graph prediction and generative models, similar dynamics are realized during training. Interest-
ingly, in both cases, due to the small loss range, the trace evolution can be observed with a greater
resolution, resulting in a large dip at the beginning of training. This dip occurs over a small range
compared with the fluctuations and values observed in other models, but it is by no means a sim-
ple fluctuation. However, under the kinetic energy framework introduced above, where these dips
arise could be accounted for by a missing term in the energy equation, perhaps related to repulsion
between data points.

5 CONCLUSION

We have motivated the use of entropy and trace of the empirical neural tangent kernel as suitable
measures of a neural network’s state. These variables were then applied to understand architecture
scaling and evolution on test problems in image classification and regression using dense and convo-
lutional networks of various widths and depths. We identify two dominant regimes in entropy during
learning: compression, where entropy decreases and latent space representations begin to collapse,
and a structure formation regime, where the entropy increases again later in training, and the network
better differentiates the data. We further identified that the compression regimes sometimes domi-
nated the learning process in smaller architectures, albeit with degraded performance compared to
the structure-forming networks. This quantitative handle to distinguish between the small and deep
networks provides us with a classification of what it means to be in the deep learning regime. Fur-
ther, we highlighted the trend of increasing trace during training, particularly in late time evolution.
As shown, this trace can be associated with an effective learning rate during model updates, thus in-
dicating that adding data with a large loss to the network late in training could result in a very sharp
change in parameters despite the model being otherwise well-trained. To demonstrate the further use
of these variables, we study the collective variable evolution on a set of so-called novelty models,
which are more closely aligned with the current state of the art. In each case, we see a similar trend
in the entropy and trace, with a notable, short-time difference in the trace of the autoencoder and
graph neural network studies. Overall, the dynamics observed appear universal among architectures
and shed light on how neural networks collect data in their latent space. Further, we indicate avenues
for improved stability by exploring the reduction of trace late in training.

6 ETHICS STATEMENT

The authors declare no conflicts of interest or other ethical concerns.

REFERENCES

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect, 2021. URL https://arxiv.org/abs/2111.00034,

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jachoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):¢2311878121, 2024. doi:
10.1073/pnas.2311878121. URL https://www.pnas.org/doi/abs/10.1073/pnas.
2311878121l

10


https://arxiv.org/abs/2111.00034
https://www.pnas.org/doi/abs/10.1073/pnas.2311878121
https://www.pnas.org/doi/abs/10.1073/pnas.2311878121

Under review as a conference paper at ICLR 2025

David Bamman and Gregory Crane. The ancient Greek and Latin dependency treebanks. In Lan-
guage technology for cultural heritage, pp. 79-98. Springer, 2011.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An eval-
uation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, June
2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/
Jair.3912.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jaxk

Hanne Eckhoff, Kristin Bech, Gerlof Bouma, Kristine Eide, Dag Haug, Odd Einar Haugen, and
Marius Jghndal. The PROIEL treebank family: a standard for early attestations of Indo-European
languages. Language Resources and Evaluation, 52(1):29-65, 2018.

Mario Geiger, Leonardo Petrini, and Matthieu Wyart. Landscape and training regimes in deep
learning. Physics Reports, 924:1-18, 2021. ISSN 0370-1573. doi: https://doi.org/10.1016/j.
physrep.2021.04.001. URL https://www.sciencedirect.com/science/article/
pii/S0370157321001290. Landscape and training regimes in deep learning.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021. URL
https://arxiv.org/abs/2005.00687.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Sven Krippendorf and Michael Spannowsky. A duality connecting neural network and cosmological
dynamics. Mach. Learn. Sci. Tech., 3(3):035011, 2022. doi: 10.1088/2632-2153/ac87¢9.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training, 2020. URL
https://arxiv.org/abs/2002.10376.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism, 2020. URL https://arxiv.
org/abs/2003.02218.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning, 2020. URL https://arxiv.
org/abs/2006.06958.

J. Ross Quinlan. Combining instance-based and model-based learning. In Proceedings of the

Tenth International Conference on International Conference on Machine Learning, ICML’93, pp.
236-243, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1558603077.

11


http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://github.com/google/jax
http://github.com/google/jax
https://www.sciencedirect.com/science/article/pii/S0370157321001290
https://www.sciencedirect.com/science/article/pii/S0370157321001290
http://github.com/google/flax
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2001.08361
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/2002.10376
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/2006.06958
https://arxiv.org/abs/2006.06958

Under review as a conference paper at ICLR 2025

Samuel Tovey, Sven Krippendorf, Konstantin Nikolaou, and Christian Holm. Towards a phenomeno-
logical understanding of neural networks: data. Machine Learning: Science and Technology, 4
(3):035040, sep 2023. doi: 10.1088/2632-2153/acf099. URL https://dx.doi.org/10.
1088/2632-2153/acf099.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks, 2022. URL
https://arxiv.org/abs/2011.14522.

Greg Yang and Samuel S. Schoenholz. Mean field residual networks: On the edge of chaos, 2017.
URLhttps://arxiv.org/abs/1712.089609.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer, 2022. URL https://arxiv.org/abs/
2203.03466.

7 APPENDIX

12


https://dx.doi.org/10.1088/2632-2153/acf099
https://dx.doi.org/10.1088/2632-2153/acf099
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/1712.08969
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466

Under review as a conference paper at ICLR 2025

Activation Scaling (32, 2, x)

100 N
-
6
1071 4 10
A . ) 3 Activation
o 1072 4 ] ©
- g = EEl Train RelLU
10-3 31 105 4 Train Tanh
N Test ReLU
1074 3 ) Test Tanh
100 10t 102 10° 10t 102 10° 10t 102
Width Scaling (x, 3, RelLU)
100 \/ 107 4
4
1072 A > 106 4
2 S 34 S Width
| - .. — .
10~4 4 S = 105 | | Tra!n 12
Train 1000
0-6 21 B Test 12
1071 10 - Test 1000
100 10! 102 10° 10! 102 10° 10! 102
Depth Scaling (100, x, ReLU)
\ 108 4
—
1071 4 4 107 4
0 2 @ 106 4 —_—
2 1073 o 3. o Depth
- = = Hl Train 2
i 10% .
s / Train 10
107> 1 2 4 / 10° B Test 2
Test 10
100 10t 102 10° 10t 107 10° 10t 102
Epochs Epochs Epochs

Figure 4: Time evolution diagrams for the dense MNIST study. The top row shows the evolution
difference due to a changing activation function. The second row is width scaling, and the third is

depth scaling.
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Figure 5: Time evolution diagrams for the dense MPG regression dataset study. The top row shows
the evolution difference due to a changing activation function. The second row is width scaling, and
the third is depth scaling.
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