
DREAM: Differentiable Real-to-Sim-to-Real Engine
for Learning Robotic Manipulation

Haozhe Lou*,1, Mingtong Zhang*,1, Haoran Geng2, Hanyang Zhou1, Sicheng He1, Zhiyuan Gao1, Siheng Zhao1,
Jiageng Mao1, Pieter Abbeel2, Jitendra Malik2, Daniel Seita1, Yue Wang1

1University of Southern California 2University of California, Berkeley
*equal contribution

Abstract—Simulation provides a cost-effective and flexible plat-
form for data generation and policy learning to develop robotic
systems. However, bridging the gap between simulation and real-
world dynamics remains a significant challenge, especially in
physical parameter identification. In this work, we introduce
a real-to-sim-to-real framework that leverages the Gaussian
Splat representations to build a differentiable engine, enabling
object mass identification from real-world visual observations
and robot control signals, while enabling manipulation policy
learning simultaneously. Through optimizing the mass of the
manipulated object, our method automatically builds high-fidelity
and physically plausible digital twins. Additionally, we propose
a novel approach to train the force-aware grasping policies from
limited data by transferring feasible human demonstrations into
simulated robot demonstrations. Through comprehensive exper-
iments, we demonstrate that our proposed framework achieves
accurate and robust performance on mass identification across
various object geometries and mass values. Those optimized mass
values facilitate force-aware policy learning, achieving superior
and high performance on object grasping, reducing the sim-to-
real gap effectively.

I. INTRODUCTION

Simulation has become an essential platform for robotics,
providing a cost-effective and scalable platform that reduces
the reliance on extensive robotics expertise. Through reusable
and controlled data generation, simulation has driven signifi-
cant advancements in accelerating policy learning [2, 18, 10,
1, 19, 35]. However, despite these benefits, replicating the
visual realism and complex physical dynamics of the real
world remains a significant challenge. High-fidelity physical
simulations often demand specialized knowledge and com-
plex modeling, which limits the scalability and robustness of
simulation-based approaches for real-world deployment.

A long line of research has focused on bridging the sim-
to-real gap, which arises when transferring models trained in
simulation to real-world configurations. This gap remains a
fundamental challenge in robotics. Simulation-based policies
typically assume accurate knowledge and modeling of real-
world configurations, including underlying physical param-
eters. However, differences between the estimated geometry
and mass from visual observations and their real-world values
increase the sim-to-real gap. Existing strategies to mitigate
this gap include domain randomization [57, 49, 45], which
enhances robustness by varying simulation parameters, and
system identification [25, 55, 31], which refines simulation
dynamics by calibrating with real-world observations. Ad-
vances in simulation fidelity [20, 38] and domain adapta-

tion [6, 48, 11] have further facilitated the transfer of models
from simulation to reality in robotics applications. Com-
plementary to these efforts, real-to-sim frameworks attempt
to construct digital twins that replicate real-world geometry
and dynamics with high precision [12, 59, 29]. Nonetheless,
building accurate digital twins typically requires integrating
multiple approaches, such as geometric reconstruction and
parameter identification. Despite these advances, achieving
precise modeling from visual observations remains challenging
for current real-to-sim methods.

This challenge is fundamentally tied to the problem of
system identification—inferring physical parameters from vi-
sual observations to ensure simulated environments faithfully
reflect real-world dynamics. Estimating object attributes and
system dynamics from images is difficult, even with full
system state access. While robust forward simulators [36]
exist, their non-differentiability limits applicability to inverse
problems. Surrogate gradient methods such as finite differ-
ences are commonly used [14, 47, 65], but scale poorly
in high-dimensional settings. Recent progress in differen-
tiable simulation improves learning efficiency. In particular,
GradSim [27] enables end-to-end differentiation from visual
observations to object-level physical parameters. Inspired by
this, our work optimizes object mass directly from video,
enabling force-aware grasping policy learning conditioned on
mass and substantially improving performance.

To address these challenges, we introduce DREAM in
this paper, a differentiable real-to-sim-to-real framework that
builds our simulation engine upon differentiable simula-
tion [27, 16, 40, 37] and Gaussian Splat representations [30].
This differentiable engine enables object mass identification
through visual observations and robot control signals in robot-
object interactions. Additionally, we propose a novel learning-
based method for dexterous manipulation, where we trans-
fer human demonstrations into simulation-executable robot
demonstrations, then utilize the proposed method to optimize
the grasp position and force simultaneously.

II. PROBLEM STATEMENT

We focus on the real-to-sim-to-real task, which aims to
construct a simulation environment that closely mirrors real-
world geometry, physics, and appearance. We assume access
to several types of RGB videos: scene-centric video sequences,
denoted as Is, which capture the static environment; object-



Force-Aware Optimization Policy Learning 
<latexit sha1_base64="PL4vN2uVc0n2AYBfurG3YPbvIoQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh14i+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVa/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBTT43Y</latexit>ω

Gaussian Splats

Collision Mesh

Created by DinosoftLabs
from the Noun Project

MJCF

Real-to-Sim Initialization

Policy Learning with Transferred Demonstrations

<latexit sha1_base64="1kqAbIOSh3zGHJN4G08aQzXGjp8=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgqiQi1WXRjcsK9gFNDJPppB06eTBzI5YhGzf+ihsXirj1H9z5N07aLrT1wMDhnHuYe0+QcibBtr+N0tLyyupaeb2ysbm1vWPu7rVlkglCWyThiegGWFLOYtoCBpx2U0FxFHDaCUZXhd+5p0KyJL6FcUq9CA9iFjKCQUu+eehGGIZBqGR+p1ygD6B0nOe5ryD3zapdsyewFokzI1U0Q9M3v9x+QrKIxkA4lrLn2Cl4CgtghNO84maSppiM8ID2NI1xRKWnJlfk1rFW+laYCP1isCbq74TCkZTjKNCTxc5y3ivE/7xeBuGFp1icZkBjMv0ozLgFiVVUYvWZoAT4WBNMBNO7WmSIBSagi6voEpz5kxdJ+7Tm1Gv1m7Nq43JWRxkdoCN0ghx0jhroGjVRCxH0iJ7RK3oznowX4934mI6WjFlmH/2B8fkDh9yZ5Q==</latexit>

sreal
t

<latexit sha1_base64="93aujGb4MpGVgGFhayUGVK96yYE=">AAACC3icbVBNS8NAEN3Ur1q/oh69hBahXkoiUj0WvXisYD+gjWWz3bRLd5OwOxHLkrsX/4oXD4p49Q9489+YtDlo64OBx3szzMzzIs4U2Pa3UVhZXVvfKG6WtrZ3dvfM/YO2CmNJaIuEPJRdDyvKWUBbwIDTbiQpFh6nHW9ylfmdeyoVC4NbmEbUFXgUMJ8RDKk0MMsl3RcYxp6vVXKn+0AfQCsmkmSgIamKk6Q0MCt2zZ7BWiZOTiooR3NgfvWHIYkFDYBwrFTPsSNwNZbACKdJqR8rGmEywSPaS2mABVWunv2SWMepMrT8UKYVgDVTf09oLJSaCi/tzO5Wi14m/uf1YvAvXM2CKAYakPkiP+YWhFYWjDVkkhLg05RgIll6q0XGWGICaXxZCM7iy8ukfVpz6rX6zVmlcZnHUURHqIyqyEHnqIGuURO1EEGP6Bm9ojfjyXgx3o2PeWvByGcO0R8Ynz/Ww5uQ</latexit>

ssim
t (m)

Objective
Differentiable 

Engine

Mass

Geometry Reconstruction

Visual Reconstruction

VLM Initial Physical Parameter

Mass Identification through Differentiable Engine

Human Demonstrations to Robot Demonstrations

Simulation Environment

Gradient Flow

1 2

3 4

Grasping Position

Fig. 1: Overview of our method. Our approach consists of
four components: (1) Real-to-Sim, (2) Learning from Human
Demonstrations, (3) Mass Identification, and (4) Policy Learn-
ing. We begin by capturing videos of the scene and human
demonstrations. Robotic actions are then executed in both
simulation and the real world to identify object mass via our
differentiable physics engine. Lastly, a manipulation policy is
trained using the demonstrations and identified mass.

centric videos, denoted as Io, which provide multiple views
of the manipulated object to support accurate visual and
geometric reconstruction; and human demonstration videos
{It}Tt=1, which illustrate task execution. We also extract
object trajectories from real-world robot rollouts, denoted as
{sreal

t }Tt=1, and simulate corresponding trajectories {ssim
t }Tt=1

within our framework.The scene and object videos (Is, Io) are
used to initialize the real-to-sim process via visual and geomet-
ric reconstruction. Trajectories from both real and simulated
rollouts enable mass identification through a differentiable
engine, producing an optimized object mass m that is incor-
porated as a physical parameter in the simulator. Meanwhile,
human demonstration videos {It}Tt=1 are translated into robot-
executable trajectories {At}Tt=1 using our proposed method
and are used to train a force-aware manipulation policy π.

III. METHOD

We propose a real-to-sim-to-real framework that constructs
accurate simulation environments and identifies object mass
via system identification using a differentiable engine from
visual observations and robot control signals, enabling robust
policy learning and sim-to-real transfer. The framework is
built on MuJoCo [58], a general-purpose physics simulator,
the differentiable engine Brax [16], and Gradsim [27]. It
operates in four steps shown in Figure 1: Real-to-Sim (Sec-
tion III-A), Mass Identification (Section III-B), Learning from
Human Demonstrations (Section III-C), and Policy Learning
(Section III-D). First, the scene and object are reconstructed
from RGB videos Is and Io, capturing static environments
and target objects. The output simulation is formalized as
S = {K,θ} in MJCF format, where K denotes collision
meshes and θ the physical parameters. Next, the framework
executes consistent robotic actions in simulation and the real
world, collecting {sreal

t }Tt=1 and {ssim
t }Tt=1 to identify object

mass m. Third, human demonstrations {It}Tt=1 are translated
into robot-executable trajectories {At}Tt=1. Finally, these tra-
jectories are used to train a policy in simulation, which is then
deployed in the real world directly.

A. Visual and Geometric Reconstruction
Our framework starts with reconstructing high-fidelity vi-

sual and geometric models of key elements in the manipulation
environment with Is, including objects, robotic arms, dexter-
ous hands and workspaces. This reconstruction ensures repre-
sentations of both collision geometry and visual appearance.
To integrate these models into differentiable simulation, we
adopt a particle-based Gaussian Splat representation [30, 23],
which enables photorealistic rendering and high-quality mesh
generation for collision detection following [33]. Specifically,
we process videos collected from mobile devices to train two
ensembles of Gaussian primitives: one for collision geometry
and another for visual appearance. Specifically, 2D Gaussian
Splats with surface normal estimation [67] provide accurate
geometry for simulation, while 3D Gaussian Splats ensure
high-fidelity rendering. This process yields two complemen-
tary outputs: a collision mesh K and Gaussian particles P .
B. Physical Identification from Robot-Object Interactions

Accurate identification of physical parameters θ is essential
for constructing physically plausible simulations. We begin
by using a Vision-Language Model (VLM) [24] to generate
an initial MJCF representation S from environment images
and prompts, inspired by [71]. While this approach provides
a reasonable structural prior, parameters inferred solely from
visual input often deviate from real-world values due to the
lack of observable physical cues [3, 53].

To address this, we focus on identifying the object mass,
which is a key parameter in dynamics that can be reliably
measured. Accurate mass identification improves simulation
fidelity and enables robust policy learning. We choose a planar
pushing task with a virtual fulcrum assumption to reduce
frictional effects, and optimize mass m to minimize the dis-
crepancy between simulated and real-world trajectories [27]:

min
m>0

Ltraj(m) :=

T∑
t=1

∥∥ssim
t (m)− sreal

t

∥∥2
2
, (1)

where s = [p,q]⊤ ∈ R7 denotes the object’s 6-DoF pose,
consisting of position p ∈ R3 and orientation represented
as a unit quaternion q ∈ R4. Specifically, sreal

t is obtained
by FoundationPose [63] in the real world while ssim

t (m) is
obtained by executing the same actions in the simulation.

a) Dynamics Modeling: To simulate object motion, we
adopt a standard rigid-body formulation of the Newton-Euler
mechanism. Let ut = [vt,ωt]

⊤ denote the object’s velocity at
timestep t, where vt and ωt are the linear and angular velocity
components, respectively. We express the governing equation
as the second order differential equation(ODE) [9]:

M(st,ut,m,θ) u̇t = f(st,ut,θ), (2)

where M is the mass-inertia matrix [4] and f collects external
and contact forces (3), gravity and torques. We adopt a com-
pliant penalty-based contact model, parameterized by stiffness
and damping (ke, kd) ∈ θ, which applies normal forces
proportional to penetration depth and contact velocity [58, 15]:

fn(s,ut,θ) = −n
(
ke C(s) + kd Ċ(u)

)
, (3)



where fn is the contact force, n is the contact normal, C(s)
the penetration depth, and Ċ(u) is the derivative of C(s). This
contact model is differentiable and readily integrated into our
simulation framework. In practice, we implement the dynamics
using a discrete-time update [15]:

ssim
t+1 = G

(
ssim
t ,ut, m, ft

)
, t = 0, . . . , T − 1. (4)

Here, ft denotes the external forces at timestep t, including
actuator impulses, gravity, and object-ground contacts.

b) Differentiable Physics: To optimize (1), we compute
gradients of the simulated trajectory with respect to the object
mass m. Following the discrete adjoint method from [27],
we adopt a semi-implicit Euler integration scheme for sta-
bility under contact dynamics. We couple kinematics from
MjX/Brax [16] with rigid-body dynamics (2) and the contact
model (3), forming a differentiable computation graph [21].

c) Semi-Implicit Euler Modeling: The update function
G(·) in (4) is implemented using a semi-implicit Euler inte-
gration scheme:

G
([

st, ut

]
,m, θ

)
=

[
st + ∆tut+1

ut+1

]

=

[
st + ∆t

(
ut +∆tM−1(st,ut,m,θ) f

(
st, ut

))
ut +∆tM−1(st,ut,m,θ) f

(
st, ut

)
] (5)

where ∆t is the integration timestep, and f(·) encapsulates
both external and contact forces.

d) Differentiable Real-to-Sim-to-Real Optimization: We
simulate the system starting from the initial condition ssim

0 , and
iteratively update the state via (4). To quantify the discrepancy
between simulated and real-world trajectories, we define the
trajectory loss between the simulated state ssim

t and the corre-
sponding real-world state sreal

t as:

Ltraj(m) =

T∑
t=0

∥∥ssim
t − sreal

t

∥∥2
2
. (6)

This objective encourages the simulated trajectory, parame-
terized by mass m, to closely match the observed real-world
dynamics over time. The gradient ∇mLtraj(m) is computed
via automatic differentiation, using backpropagation as imple-
mented in PyTorch [42], as follows:

∂Ltraj

∂m
=

T∑
t=1

∂Ltraj

∂ssim
t

· ∂s
sim
t

∂Mt
· ∂Mt

∂m
. (7)

Unlike system identification methods such as GradSim [27],
which rely on manually specified external forces, our approach
supports end-to-end optimization by directly leveraging con-
sistent robotic control signals in both simulation and the real
world to model the external forces applied to the object. This
creates a tight coupling between real-world and simulated
trajectories, enabling us to capture contact dynamics through
robot-object interactions.

Importantly, our method does not require ground-truth ob-
ject mass or contact points. Object geometry and poses are
obtained via Section III-A, while actuator signals and robot-
object interactions are derived from the MJCF kinematic
model. These serve as inputs to our differentiable framework
for accurate mass optimization.

C. Transferring Human Demonstrations to Robot

After accurately modeling the scene and object, the next
step is to collect real-world human demonstrations and transfer
them into robot demonstrations for policy learning. Although
learning directly from human demonstrations is intuitive, sub-
stantial differences between human and robotic hands compli-
cate grasp interaction transfer, particularly due to varied object
geometries and masses.

Our approach aims to transform human demonstrations
captured from RGB video sequences {It}Tt=1 into executable
robotic demonstrations within the simulation. Each video
frame It is processed using HaMeR [44] and MCC-HO [64]
to reconstruct detailed articulated models of the human hand
and the manipulated object. At each timestep t, these methods
output:

ht ∈ SE(3)× RJh , ot ∈ SE(3), (8)

where ht encodes the 6-DoF wrist pose and finger joint angles
(Jh), and ot describes the object’s 6-DoF pose. Subsequently,
we employ Dex-Retargeting [46] to map these human hand-
object poses ht,ot to the robotic hand with Jr degrees of
freedom. This produces preliminary robot actions:

At = R(ht,ot) ∈ RJr , (9)

where At represents target joint angles for robotic actuators.
Given our assumption that the object geometry remains consis-
tent between human demonstration and robotic manipulation,
the resulting action set At directly serves as a data source for
our policy learning.
D. Policy Learning with Transferred Robot Demonstrations

We initialize policy learning using robot demonstrations
{At}Tt=1 described in Section III-C. Each demonstration maps
the reconstructed object’s collision mesh vertices K as inputs
to the corresponding robotic grasp pose. These observation-
action pairs directly supervise training of the manipulation
policy πϕ, which maps object-centric observations to dexterous
grasp configurations.

a) Grasping Position Learning.: To capture an object’s
geometry and pose, we encode the vertices of its collision
mesh K using positional encoding [56], forming the input to
our policy. This policy conditions the observation o on the
reconstructed collision mesh K and the identified mass m.
Concretely, πϕ is a multi-head neural network that predicts
dexterous hand joint positions Â, contact-related rewards r̂,
and a mass-related control force f̂ .

πϕ(o) =

Âr̂
f̂

 ∈ R19, f̂ =
m · g
nactive

. (10)



where Â ∈ R16 denotes the predicted joint positions,
r̂ ∈ R2 represents the contact constraint, and f̂ ∈ R denotes
the grasping force constraint. The variable nactive indicates the
number of active contacts between the robotic hand and the
object. The network uses fully connected layers with ReLU
activations, followed by a pooling layer.

b) Force-Aware Optimization Design: At training onset,
we define a two-dimensional contact constraint r̂: one term
encourages sustained contact during the rollout, the other
ensures object retention at the end. The policy dynamically
influences this constraint based on hand–object interactions
through our simulation engine and the simulation asset S from
Section III-A and III-B. It remains high when active contact
points exceed a threshold Nmin over the time horizon H:

∀t ∈ [t0, t0 +H] : nactive(t) ≥ Nmin,

Iin hand(t) =

{
1, if nactive(t) ≥ 1,

0, otherwise.

(11)

We subsequently retrain the manipulation policy with the
force-based constraint in 10, enabling adaptive force control
that responds to object mass variations [60, 69]. This enhances
the robustness of grasp poses learned from demonstrations,
ensuring stability under diverse dynamics.

Traditional position-based policies replicate grasp poses
from human demonstrations [43, 34, 7, 61, 62, 51] but over-
look unobserved forces, particularly those countering gravity.
Applying uniform forces across varying object masses often
leads to instability. To address this, we propose a hybrid
control framework that combines position and force control,
using a prediction module conditioned on the optimized mass
m. This jointly optimizes the policy parameters ϕ and grasping
force, enabling more robust and physically grounded manipu-
lation.

IV. EXPERIMENT

A. Mass identification

We evaluate our mass identification method through object
pushing experiments by applying identical actions in both
the real world and simulation. The resulting trajectories are
used to optimize object mass via our differentiable engine,
as detailed in Section III-B. We assess the performance in
two settings: (1) across objects with varying geometries,
and (2) across replicas with identical geometry but different
internal densities. Our method accurately recovers mass in
both cases, demonstrating generalization to diverse shapes and
sensitivity to subtle physical differences. As shown in Table II,
mass is accurately identified with deviations under 13 grams,
confirming the effectiveness of estimating physical parameters
independent of geometry.
B. Tabletop Object Grasping Experiments

We compare our grasping policy against two base-
lines across various objects: (1) DexGraspNet2.0 [70],
trained on large-scale simulation datasets, and (2) Hu-
man2Sim2Robot [34], a recent real-to-sim-to-real method that
learns dexterous manipulation policies from RGBD videos of

Object Letter U Letter A Lego Domino Cookie Ketchup

Inferred Mass (g) 500 500 300 800 500 1000
Identified Mass (g) 110 145 53 117 200 667

Ground Truth Mass (g) 125 134 59 106 210 726

Percentile Error (%) 12.0 9.0 8.6 9.3 4.8 8.1

TABLE I: Mass identification across
diverse objects with varying shapes,
sizes, and mass scales. The inferred
mass is obtained from VLM as de-
scribed in Section III-B.

Density ρ1 ρ2 ρ3

Identified Mass (g) 95 129 207
Ground Truth Mass (g) 82 125 218

TABLE II: Mass iden-
tification across objects
with identical geometry
but varying densities.

human demonstrations. All use the collision mesh K generated
by our real-to-sim framework as input.

As shown in Figure 2, our method consistently outperforms
baselines across eight objects with diverse geometries and
mass properties, demonstrating the robustness of our approach.
While baseline performance tends to degrade on heavier
objects, our method maintains high success rates with lower
variance across all cases. These results show the effectiveness
of our force-aware optimization in enabling stable and reliable
grasping across a wide range of object characteristics.

Lightbulb
37g

Cube
120g

A
134g

Cookie
210g

Spam
365g

Nutella
414g

Spray
548g

Ketchup
726g

Average
0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

) 95 90 90
80

15

80
90

65
7680

45

80

10 10
20

55 60
45

100 100

75
85

70
85

100

75
86

DexGraspNet 2.0 Human2Sim2Robot DREAM

Fig. 2: Quantitative Results of Grasping Policies. Grasp
success rates across eight objects with varying geometries and
mass values, with the average and standard deviation of each
method.

Figure 3 presents qualitative results of our force-aware
grasping policy across a range of objects. The top row captures
the motion leading to the pre-grasp pose, while the bottom row
displays the resulting post-grasp configurations. These exam-
ples demonstrate the policy’s ability to consistently achieve
stable and secure grasps under varying object geometries and
mass values.

Fig. 3: Qualitative Results of Our Policy. We evaluate our
force-aware grasping policy across various objects. The first
row illustrates the approach to the pre-grasp pose, while the
second row shows two post-grasp positions, demonstrating that
the policy achieves stable, secure grasps.

V. CONCLUSION

DREAM is a differentiable real-to-sim-to-real framework
that leverages differentiable physics simulation to create vi-
sually realistic and physically accurate digital twins from
visual observations and robot control signals, enabling robust
dexterous manipulation policies.



VI. APPENDICES

A. Additional Results

1) Mass Identification: Our method accurately recovers
mass in both cases, demonstrating generalization to diverse
shapes and sensitivity to subtle physical differences. The
objects we used for mass identification are shown in Figure 4.

726g 210g 134g 106g 59g 82g 125g 218g

Fig. 4: Objects for Mass Identification. We conduct experi-
ments on mass identification across diverse object geometries
and identical geometries with varying densities. Our method
accurately estimates mass in both settings, demonstrating
robustness to shape and density variations.

As shown in Figure 5, simulations using the optimized
mass closely match real-world object dynamics, while those
using an incorrect lighter mass deviate significantly. This
demonstrates that accurate mass identification improves both
the physical realism and visual quality of simulated rollouts.

Fig. 5: Quantitative Results of Mass Identification. We
show the real-world object pushing (top) and render object
trajectories using Gaussian Splats: simulated with optimized
mass (middle), and simulated with a lighter mass (bottom),
all using the same robot actions. The optimized mass closely
reproduces real-world dynamics, reducing the sim-and-real
gap with high visual fidelity.

2) Effectiveness of Force-Based Control through Grasping:
In our grasping experiments, we evaluate how incorporating
force-based constraints conditioned on object mass influences
sim-to-real performance. This setup highlights the need for
mass-aware force control and demonstrates the impact of
accurate mass identification on policy success.

We first evaluate our grasping policy on three objects that
share identical geometry and demonstrations but differ in
mass. Each policy is trained with a specific object mass to
assess the impact of mass-aware force control. As shown
in Figure 8, policies perform well only when training and
evaluation masses matched: the medium-mass policy succeeds
on the medium object but fails on the heavier and lighter
ones due to under- and over-applied force, respectively. Mass
mismatches likewise lead to unstable grasps for the other
two policies. Table 6 confirms this trend, with the highest
success rate (80%) on the training mass, while performance
drops to 40% and 30% on mismatched cases. These results

Train \ Eval ρ1 ρ2 ρ3

ρ1 75% 30% 15%
ρ2 40% 80% 30%
ρ3 15% 40% 95%

Fig. 6: Cross-evaluation of grasping policies trained on differ-
ent object densities and evaluated across varying masses. Each
cell shows the grasp success rates. Policies perform well only
when the training and evaluation masses match.

50 134 200 500 667 726 800 1000
Mass (g)

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

134g
210g 726g

50g

145g

500g

1000g

50g

200g

800g

1000g

50g

214g
667g

1000g

Success Rate vs. Object Mass

Letter A
Cookie
Ketchup
Letter A GT mass
Cookie GT mass
Ketchup GT mass

Fig. 7: Grasping success rates across three objects with dif-
ferent mass values.

highlight the importance of accurate mass conditioning for
robust, reliable grasping.

Fig. 8: Qualitative Results. Left to right: policies trained on
medium, light, and heavy objects. Only the mass-matched
policy achieves stable grasps, while mismatched ones fail
due to excessive or insufficient force, causing bounce-off for
lighter objects or slippage for heavier ones.

Second, we evaluate whether policies conditioned on auto-
matically identified mass can match the performance of those
trained with object mass. As shown in Figure 7, success rates
consistently peak at either the ground-truth or identified mass.
Notably, policies using identified mass often match or even
exceed those using ground-truth values, while substantially
outperforming policies conditioned on arbitrary masses. These
results underscore the effectiveness of our mass identification
approach in enabling robust, force-aware grasping without
requiring access to true mass values.

These experiments demonstrate that accurate mass is es-
sential for effective force-aware grasping. Policies trained
with object mass consistently outperform those trained on
mismatched masses, and policies conditioned on automatically
identified mass achieve comparable performance to those using
ground-truth values. Together, these results validate our mass
identification framework as a practical and reliable solution
for enabling robust grasping without prior knowledge of object
mass.



B. Preliminaries

This paper aims to accurately reconstruct the physical
process of human hand grasping using only visual observations
and robot control signals, without requiring access to ground-
truth physical parameters. Our approach is grounded in two
key components. The first is a differentiable, particle-based
physics simulation framework [16], which enables gradient-
based optimization of physical properties such as object mass.
The second is a Real-to-Sim reconstruction pipeline based on
Gaussian Splatting [33], which allows us to build photore-
alistic and spatially consistent 3D scenes from video input.
By combining these two components, we construct a fully
differentiable pipeline that bridges real-world perception and
physical simulation, supporting accurate modeling of dynamic
hand-object interactions and enabling robust policy learning in
simulation.

Robotic simulation engines such as MuJoCo [58], Isaac
Sim [38], and GradSim [26, 17] are fundamentally built upon
the Lagrangian formulation of mechanics [32], which models
the evolution of physical systems by tracking a fixed set of
particles or reference points through space and time. This
approach assumes a consistent and predefined structure in
the simulation environment, typically described using formats
such as MJCF or URDF. These configurations specify the
number and arrangement of system components, such as
joints, links, and actuated elements, which remain constant
throughout the simulation. At each discrete timestep, the state
of every object is updated based on dynamic and kinematic
equations that reflect the physical principles embedded in
the simulation engine. As a result, the evolution of object
poses, velocities, and contact interactions is governed by the
engine’s internal numerical solvers and integration schemes.
This structured and physics-informed representation is crucial
for accurately modeling force transmission, contact behavior,
and motion in robotic manipulation scenarios.

a) Differentiable Physics.: A foundational assumption of
our framework is that once the static scene reconstruction
is completed, the physical configuration of the environment
remains unchanged throughout the system identification and
policy training stages. That is, no additional objects or robots
are introduced to, nor are existing components removed from,
either the simulation environment or the real-world scene.
Consequently, the states of all entities captured during the
observation phase remain consistent and are used directly for
deploying control signals in both simulation and real-world
execution. This guarantees the fidelity of simulation rollouts
and the alignment of dynamics between domains.

Our system architecture is governed by two fundamental
categories of equations. The first involves kinematic equa-
tions [13], which model the articulated motion of the robotic
arm and hand, accounting for joint angles, velocities, and end-
effector trajectories. These equations underpin the robot’s abil-
ity to reach and manipulate objects in a controlled fashion. The
second set comprises dynamic equations [26], which govern
the interactions between the object, the robotic hand, and the

supporting surface (e.g., table). These dynamics describe the
forces and torques that arise during contact, enabling accurate
simulation of object responses.

To simulate and optimize object behavior, we employ a
dual-engine architecture consisting of MJX (the JAX-based
backend of Brax) and GradSim. For spatial representation
within the differentiable physics engine, we use the object’s
mesh vertices as the fundamental particles. These vertices
serve as geometric and physical descriptors that enable fine-
grained modeling of object-hand and object-environment in-
teractions.

MJX is used to model robot kinematics and extract detailed
contact information during simulation rollouts. It provides
precise contact points, surface normals, and force vectors aris-
ing from interactions with the robotic hand. This information
is crucial for establishing accurate boundary conditions for
system identification and subsequent policy learning.

In parallel, GradSim [26] offers a PyTorch-based framework
for gradient-based simulation of object dynamics. It models
the effects of gravity, inertial forces, and external perturbations
(such as pushes from the robot or collisions with the ground),
enabling smooth gradient flow through time. This setup fa-
cilitates efficient mass parameter optimization and supports
end-to-end training pipelines involving both perception and
control.

A key assumption in our setup is that the relative poses
between the object, the ground, and the robotic hand within
the simulation closely approximate those in the real world.
This alignment is critical to ensure that simulated contact
events reflect real-world conditions, enabling high-fidelity
modeling of physical interactions. To this end, we align
object placement using estimated poses obtained from visual
tracking pipelines such as FoundationPose, ensuring consistent
coordinate frames.

Although our framework incorporates Position-Based Dy-
namics (PBD) [39] for stability and efficiency, we intro-
duce tailored modifications to enhance collision detection and
contact resolution. Specifically, we refine the broad-phase
collision detection algorithm to better handle high-resolution
meshes and non-convex geometries. This is essential for
accurately modeling complex objects with fine surface detail
and for ensuring robust gradient propagation during contact-
rich interactions.

By combining MJX’s strengths in kinematic modeling and
contact extraction with GradSim’s gradient-based physical
simulation, our framework enables end-to-end mass identifica-
tion and force-aware policy training. These capabilities lay the
foundation for accurate and generalizable robotic manipulation
in real-world settings, bridging the sim-to-real gap through
physically grounded learning.

1) Particle-Based Physics Simulation: Particle-based
physics simulation is extensively used in computational
physics and graphics for modeling dynamic behaviors
of objects [28]. Unlike traditional methods that rely on
continuous volumes or polygonal meshes, particle-based
methods discretize objects into numerous discrete particles,



each endowed with physical attributes such as mass mi,
position xi, and velocity vi, as well as material properties
including elasticity, friction, and damping. This discrete
representation allows the efficient and realistic simulation
of complex behaviors, especially beneficial in scenarios
involving deformable or fragmented objects, fluids, and
granular materials.

The center of mass COM for a particle-based system can
be computed by:

COM =

∑
i mixi∑
i mi

. (12)

The inertia tensor I, which describes an object’s resistance
to rotational acceleration, is computed relative to the center of
mass as:

I =
∑
i

mi

[
∥ri∥2E− rir

⊤
i

]
, where ri = xi −C (13)

with E denoting the identity matrix.
a) Position-Based Dynamics (PBD).: Position-Based

Dynamics (PBD) is a widely adopted paradigm in real-
time and interactive physics simulation due to its stabil-
ity, simplicity, and efficiency in handling constraint-driven
dynamics [5]. Unlike traditional force-based methods that
compute motion by integrating forces and torques explicitly,
PBD enforces physical consistency by iteratively projecting
particle positions to satisfy a set of predefined geometric
and physical constraints. This projection-based formulation
naturally accommodates large simulation time steps, making
it particularly suitable for high-speed applications such as
robotic manipulation and interactive environments.

Prediction Step (Implicit Integration). The simulation
begins by predicting particle states using semi-implicit Eu-
ler integration, which offers numerical stability and reduces
oscillations during stiff interactions. For each particle i, the
translational motion is computed as:

vt+∆t
i = vt

i +∆t
f ti
mi

, (14)

xt+∆t
i = xt

i +∆tvt+∆t
i , (15)

where f ti is the external force (e.g., gravity or contact im-
pulses), mi is the particle mass, and ∆t is the simulation
timestep. For rigid-body components, angular motion is pre-
dicted using:

ωt+∆t
i = ωt

i +∆t I−1
i

(
τ t
i − ωt

i × (Iiω
t
i)
)
, (16)

qt+∆t
i = qt

i +
∆t

2
ω̃t+∆t

i qt
i, (17)

where Ii is the inertia tensor, τ t
i is the external torque, and

qt
i is the orientation represented as a unit quaternion. Here,

ω̃i = [0,ω⊤
i ]

⊤ embeds angular velocity into the quaternion
algebra.

Constraint Projection Step. Once predicted states are
available, positional constraints are enforced through itera-
tive corrections. Each constraint C(xi,qi) ≥ 0 represents a
physical requirement (e.g., no interpenetration, fixed distances,

volume preservation) and is resolved using a gradient-based
position correction scheme. For constraint satisfaction, the
positional update is computed as:

∆xi = −λ
1

mi
∇xiC(xi), with λ =

C(xi)∑
j

1
mj
∥∇xjC(xj)∥2

,

(18)
where the Lagrange multiplier λ ensures physically consis-
tent constraint enforcement. Iterative Gauss-Seidel or Jacobi
solvers are used to converge the system to a valid constraint-
satisfying configuration.

Velocity Update Step. After the constraints are enforced,
particle velocities are updated to reflect the corrected positions:

vt+∆t
i ← xt+∆t

i − xt
i

∆t
. (19)

This ensures consistency between position corrections and
subsequent dynamics, maintaining momentum while preserv-
ing the stability advantages of PBD.

Discussion. The particle-based formulation enables fine-
grained spatial resolution and direct manipulation of geometric
attributes, which is particularly beneficial for simulating high-
DOF robotic hands interacting with rigid, deformable or
complex-shaped objects. Furthermore, the implicit treatment
of constraints circumvents many of the numerical instabilities
associated with stiff force-based models, making PBD highly
suitable for differentiable simulation settings where robustness
and gradient flow are important.

2) Gaussian Splatting: Gaussian Splatting has emerged
as a powerful technique in robotic real-to-sim pipelines for
capturing scenes, objects, and backgrounds with high geomet-
ric fidelity and photorealistic detail. It enables flexible and
efficient modeling of complex environments from monocular
video input, facilitating accurate spatial reconstruction and
rendering. In our framework, we adopt the real-to-sim pipeline
proposed in [33], which transforms real-world scanned videos
into simulation-ready assets. By leveraging Gaussian Splatting,
we efficiently align the reconstructed object meshes with the
simulation environment, enabling seamless integration.

To further enhance geometric consistency, we incorporate
the stable normal constraint introduced in [66, 67], which en-
forces consistent surface normals across reconstructed points.
This constraint is particularly important for preserving fine
surface details and mitigating noise, especially in scenes with
complex geometry or intricate textures.

Together, this process allows us to recover two critical
components for our differentiable physics modeling: (1) the
object’s 3D geometry and (2) its relative pose with respect
to the robotic arm, both of which are essential for accurate
system identification and simulation alignment.

C. Implementation Details

1) Implementation of Real-to-Sim Reconstruction: We be-
gin by constructing a visually and geometrically precise digital
twin of the target environment, leveraging a particle-based
Gaussian splatting approach [30, 22]. From environment-
centric (Is) video streams captured by a mobile device, we



obtain calibrated camera trajectories via structure-from-motion
(SfM) [41, 50]. The pipeline then trains two disjoint ensembles
of Gaussian primitives, each pursuing a separate objective.

1) Volumetric rendering set. We maintain a set of 3D
Gaussians

P rend =
{
(xi, yi, zi, ri, gi, bi, oi, si,Σi)

}Nrend

i=1
,

where (xi, yi, zi) ∈ R3 is the center of the i-th Gaussian,
(ri, gi, bi) ∈ [0, 1]3 its RGB color, oi ∈ [0, 1] the opacity co-
efficient for alpha blending, Σi ∈ R3×3 a symmetric positive-
definite covariance specifying anisotropic extent, si represent
the semantic and instance id of the gaussian, and Nrend the
total count of such primitives. These particles are optimized
exclusively for photometric fidelity, enabling differentiable
volume splatting and achieving real-time novel-view synthesis.

2) Surface reconstruction set. Geometry is approximated
with a separate set of 2D surface-aligned Gaussians

P surf =
{
(xj , yj , zj , tu,j , tv,j , su,j , sv,j)

}Nsurf

j=1
,

where (xj , yj , zj) ∈ R3 represents the disk center, tu,j , tv,j ∈
R3 are orthonormal tangent vectors, and su,j , sv,j > 0 set
the standard deviations along those directions. The outward
surface normal is

nj = tu,j × tv,j .

This ensemble is trained with depth distortion and normal con-
sistency terms for geometric accuracy, remaining untouched by
photometric loss.

After training, the surface Gaussians in P surf are rasterized
into multi-view depth maps, fused into a truncated signed-
distance field, and converted via marching cubes into a tri-
angle mesh. Surface normals are estimated [67], giving the
final collision mesh M. Since P rend and P surf do not share
parameters and employ disjoint loss functions, improvements
in appearance do not degrade geometric fidelity.

2) Constructing MJCF Models Using Reconstructed Gaus-
sian and Mesh Representations: The MuJoCo XML Control
Format (MJCF) encodes key simulation components, including
an object’s kinematic structure, PID control gains, stiffness
parameters, collision geometries K along with the surface
point cloud P surf [68], and specifications of actuated joints.
To construct a complete MJCF model from our reconstructed
Gaussian splats and mesh representations, we first embed the
static environment as an unmovable background and define the
reconstructed object as a free joint body within the simulation
environment.

We then align the reconstructed Gaussian coordinate frame
and chirality with MuJoCo’s convention, following the trans-
formation procedure described in [33]. To ensure simulation
realism, we extract the relative pose between the object and
the robotic arm in the real-world scene and apply this trans-
formation as the initial configuration of the free joint object in
simulation. After integrating all relevant positional and control
information, we use Vision-Language Models (VLMs) to infer
initial estimates of physical parameters, including object mass,
which are critical for downstream simulation fidelity.

The resulting MJCF model, with accurately aligned coordi-
nates, initial pose, and geometry, provides a strong foundation
for subsequent system identification and physics-based policy
learning. It also enables high-fidelity rendering and precise
real-to-sim transitions.

3) Implementation of Mass Identification: This section ad-
dresses two key aspects of our mass identification framework:
(1) the strategy for mass-inertia modeling, and (2) the set
of adaptive parameters necessary to support mass learning
across objects with diverse physical properties and geometric
variations.

a) Mass-Inertia Modeling.: In conventional settings, an
object’s ground-truth mass is typically distributed uniformly
across its constituent particles, as defined in Equation 12.
However, this strategy often leads to numerical instability
and gradient explosion within real-to-sim-to-real optimization
frameworks, particularly when dealing with high-resolution
objects that contain over 50,000 vertices but possess relatively
low mass [8]. Under such conditions, the resulting average
particle mass can fall below 10−6 kg, introducing significant
numerical errors.

To mitigate this issue, we assign the full object mass to
each particle. Gravitational forces are uniformly applied to
all particles, and external forces are scaled proportionally to
the number of sampled vertices. This formulation preserves
numerical stability by avoiding exceedingly small per-particle
mass values.

Additionally, because the number of vertices varies across
reconstructed objects, we adaptively select a subset of active
vertices that lie on contact surfaces between the object and the
robotic fingers. This further improves simulation fidelity and
ensures relevant physical interactions are emphasized.

To guarantee consistency between the real-world observa-
tions and simulation environment, we explicitly synchronize
frame rates, temporal bounds (start and end times), and spatial
centering between the FoundationPose tracking system and the
MuJoCo simulation defined in MJCF format.

b) Contact Modeling, Explicit Gradient Representation,
Adaptive Learning Parameters.: We extract contact points and
corresponding forces from robotic action rollouts conducted in
both simulated and real-world environments. In the simulation,
following the real-to-sim reconstruction, objects are placed in
relative positions consistent with their real-world configura-
tions. To ensure stable contact modeling within a Position-
Based Dynamics (PBD) framework, objects are initialized
slightly above the ground (e.g., [0.05, 0.05, Height

2 + 0.01]),
preventing premature ground contact and maintaining simula-
tion stability.

Precise temporal synchronization across real-world object
trajectories, robot control signals, and simulation rollouts is
essential for reliable mass identification. We leverage Foun-
dationPose [63] to obtain accurate object pose estimates, and
align simulation timelines accordingly to ensure consistency
between observed and simulated motion.

For explicit gradient computation, we implement a semi-
implicit integration scheme following the formulation intro-



duced in [27], enabling differentiable backpropagation through
contact events and object dynamics.

c) Adaptive Learning Strategy: To accommodate objects
with varying mass scales, we employ an adaptive learning
strategy. Initially, particle masses are uniformly set to ap-
proximately 0.002 kg per vertex, but this baseline must be
adjusted according to the object’s overall mass to ensure stable
convergence. For heavier objects, such as a ketchup bottle
(0.8 kg), training requires higher learning rates and longer
schedules, often up to 2000 epochs, to achieve convergence.
In contrast, medium-mass objects (0.1 kg) typically converge
efficiently within 100 epochs using a moderate learning rate.
Lightweight objects (0.05 kg) benefit from learning rate decay
and similarly converge within 100 epochs.

Successful mass learning also depends on several key fac-
tors. The duration of the applied impulse, determined by the
active contact interval between the robotic fingers and the
object, directly influences the estimated dynamics. We select
the active tracking frame from FoundationPose to mark the
critical transition from motion onset to rest. Additionally, we
apply a canonical re-centering vector to align object positions
in simulation space, reducing variation introduced by camera
viewpoint differences. Finally, the estimated contact area is
adjusted proportionally to the object’s vertex count and active
contact regions, allowing accurate modeling of the hand-object
interaction.

4) Computation detail and Timing: For mass identification,
each training epoch takes approximately 0.4 to 0.8 seconds,
with convergence typically achieved within 200 epochs.

D. Implementation of DREAM’s Grasping Policy

Table III details the neural network architecture used in
our GraspMLP, while Algorithm 1 and Algorithm 2 describe
the training pipeline. For standard objects, the grasping policy
is trained with approximately 200 demonstrations per object.
For objects with higher geometric or dynamic complexity,
we scale the dataset to include up to 5000 demonstrations,
ensuring sufficient coverage of the variance necessary for
robust policy learning. Empirically, we find that the integra-
tion of a lightweight policy network, accurate modeling of
human hand-object interactions, and precise physics-informed
constraints enables reliable and high-performance grasping
behavior tailored to each object.

1) Computational Details and Timings: Our grasping pol-
icy is trained on datasets containing 200 to 300 demonstration
poses per object by default, which results in a training duration
of approximately 2 minutes per object on one NVIDIA RTX
4090 GPU. For more complex or high-variance objects that
require additional data coverage, we scale the training dataset
to include up to 5000 demonstrations. In such cases, the
training time increases to approximately 20 minutes per object,
due to the additional dataset batch size.

Inference is highly efficient. Once the policy is trained and
deployed, it requires only a reconstructed URDF or MJCF
representation as input, capturing the object’s geometry, pose,
and physical properties. Given such input, the policy predicts

Algorithm 1 Force-Aware Policy Training
Input: Set of object meshes and masses: {(Ki,Mi)}Ni=1

Output: Learned actions and forces: {(Actioni,Forcei)}Ni=1

1: for each demonstration (Ki,Mi) do
2: Extract human hand poses and object poses using

HaMeR [44] and MCC-HO [64].
3: Retarget human hand poses and corresponding end-

effector poses onto the robotic hand.
4: Positional Encoding: Encode vertices using positional

encoding to obtain feature representations.
5: Dataset Construction: Prepare training batches com-

prising encoded vertices, object mass Mi, and ground-
truth actions. Load corresponding MJCF files generated
by Real2Sim.

6: Stage One Training (Supervised): Train the policy
network by setting force and contact head ground-truth
labels to 1, optimizing initial grasp prediction.

7: Stage Two Training (Simulation-based Refine-
ment): Roll out predicted actions within the MuJoCo sim-
ulator using the Real2Sim-generated MJCF files. Compute
force and contact rewards from simulation outcomes and
perform backpropagation to refine the model.

8: Real-world Deployment: Deploy the grasping policy
onto the real robotic system using the reconstructed object
mesh, executing predicted actions with force control.

9: end for

a stable grasp configuration in approximately 0.5 seconds per
object pose. This low-latency inference time makes the system
practical for real-time and on-robot applications, particularly
in scenarios that demand quick adaptation to dynamic object
placements or orientations.

Overall, our framework demonstrates a favorable trade-off
between training cost and deployment efficiency, with scalable
training capabilities and low runtime overhead for inference.

Component Operation Output Dim. Details

Input Vertex Features N × 3 Vertices (XYZ)
Linear 1 FC + ReLU 256 3 → 256
Linear 2 FC + ReLU 256 256 → 256
Linear 3 FC + ReLU 256 256 → 256

Action Head Linear 16 Joint actions
Reward Head Linear + Sigmoid 2 Contact constraint
Force Head Linear + Sigmoid 1 Grasping force

TABLE III: Architecture of the proposed GraspMLP network.
The input consists of per-vertex 3D coordinates. The shared
backbone maps the input into a latent feature space, which is
subsequently decoded into separate heads for predicting joint
actions, contact-based reward signals, and grasping force.

E. Implementation of Baselines on Object Grasping

a) Human2Sim2Robot Baseline.: In the
Human2Sim2Robot framework [34], we operate under the



Algorithm 2 Two-phase Training Procedure

1: Initialize: model parameters θ, optimizer, dataloader
D, environment E , loss functions: MSELoss (LMSE),
BCELoss (LBCE).

2: Phase 1: Supervised Pre-training
3: for epoch = 1, . . . , E1 do
4: for batch (x, a, r, f) ∼ D do
5: Compute predictions: (â, r̂, f̂)← model(x; θ)
6: Compute losses:
7: La ← LMSE(â, a)
8: Lr ← LBCE(r̂, r)
9: Lf ← LMSE(f̂ , f)

10: Backpropagate total loss: L = La + Lr + Lf

11: Update parameters θ
12: end for
13: end for
14: Phase 2: Environment Interaction
15: for epoch = 1, . . . , E2 do
16: for batch x ∼ D do
17: Predict actions and rewards: (â, r̂, f̂) ←

model(x; θ)
18: Execute â in environment E and observe rewards

renv and contact-based forces fenv
19: Compute scaled ground-truth force: fenv =

clip(m·g·num contacts
fmax

, 0, 1)
20: Compute losses:
21: Lr ← LBCE(r̂, renv)
22: Lf ← LMSE(f̂ , fenv)
23: Backpropagate weighted loss: L = 0.8Lr +0.3Lf

24: Update parameters θ
25: end for
26: end for

assumption that the grasping end-effector pose extracted from
human demonstration videos is both accurate and physically
feasible for robot execution. These grasp poses—typically
obtained from hand-object interaction sequences—are directly
retargeted to the Leap Hand using the official retargeting
implementation provided by the Leap Hand repository,
preserving the spatial fidelity of the original grasp intent.

For a fair and consistent baseline comparison, we replace
the original demonstration assets and object meshes used in
Human2Sim2Robot with our own Real-to-Sim reconstructed
meshes, which incorporate photogeometric fidelity and phys-
ical realism as described in Section Real2sim. Using these
assets, grasping policies are trained until convergence, which
generally requires approximately 20,000 training epochs to
stabilize reward signals and behavior.

At deployment, we assume that the relative end-effector
pose remains feasible under the Franka arm and CuRobo
motion planning stack. That is, we expect the grasp pose
transferred from human demonstrations to be executable with-
out requiring additional replanning or corrections during real-
world trials. While this assumption aligns with the original

baseline setting, it introduces potential limitations in robust-
ness, particularly under challenging object configurations.

It is important to note that the original controller, fab-
ric, used in Human2Sim2Robot—including closed-loop visual
servoing and grasp adjustment mechanisms—is not publicly
available. Consequently, our reimplementation focuses solely
on static inference: given a fixed RGBD frame and known
object pose, the system predicts a single-step grasp action
without online feedback or corrective replanning. This con-
straint is taken into account in our evaluations to ensure fair
comparison.

b) DexGraspNet 2.0 Baseline.: We adopt the two-stage
grasping pipeline proposed in DexGraspNet 2.0 [70], which
separates grasp pose generation from execution via motion
planning. However, rather than directly regressing relative
translations and rotations from synthetic training data, our
method infers these grasp parameters through MCC-HO, a
pretrained model that extracts meaningful grasp features from
real human hand-object interactions captured in video. These
interactions are grounded in geometry reconstructed through
our Real-to-Sim pipeline, where object vertices derived from
point clouds are directly used to estimate feasible grasp poses
in 3D space.

Once grasp poses are generated, we utilize CuRobo for
trajectory planning and execution. The planned trajectories
are constrained by the robotic arm’s kinematic and dynamic
limits, ensuring safe and feasible real-world deployment of the
inferred grasp poses.

To ensure fair comparison with DexGraspNet 2.0, which
assumes a fixed object mass of approximately 0.1 kg across
all test scenarios. We limit our evaluation to objects of similar
mass to match the conditions under which their policy was
trained. However, in contrast to this fixed-mass assumption,
our approach explicitly optimizes grasp strategies using the
mass identified through our differentiable real-to-sim-to-real
pipeline. This enables force-aware grasping, as the identified
mass is used to refine force predictions and enhance grasp
stability.

By leveraging human demonstrations and accurate physical
modeling, our approach generalizes more robustly across vary-
ing object shapes and dynamic properties, offering improved
realism and adaptability compared to methods relying solely
on simulated training data and heuristic mass assumptions.

c) Object Tracking and Motion Planning.: We employ
FoundationPose [63] for real-time 6-DoF object pose estima-
tion during manipulation. This robust visual tracking system
provides temporally consistent pose predictions that enable
dynamic, collision-aware trajectory planning for the robotic
end-effector. These object pose estimates serve as a foundation
for constructing grasping trajectories in cluttered or dynamic
environments.

Once the object pose is reliably tracked, we incorporate
wrist pose predictions generated by MCC-HO [64], a pre-
trained model designed to reconstruct hand-object interaction
trajectories from human demonstration videos. The wrist poses
extracted from these interactions represent feasible, human-



derived grasping configurations. Together with the Real-to-Sim
object pose, they define the target end-effector pose required
for grasp execution.

To generate collision-free motion plans, we formulate a con-
strained inverse kinematics (IK) optimization problem using
CuRobo [54]. Specifically, we seek the robot joint config-
uration A∗ that minimizes the distance between the robot’s
forward kinematics (FK) output and the desired end-effector
pose Xdes

ee , while remaining within the robot’s collision-free
configuration space Qfree:

A∗ = arg min
A∈Qfree

∥∥FK(A)−Xdes
ee

∥∥
p
. (20)

Here, Xdes
ee is derived from aligning the object pose (recon-

structed via Gaussian Splatting and photogrammetry) with the
wrist pose from human demonstration, forming a grounded and
physically meaningful grasp target. The norm ∥ · ∥p (typically
L2) measures the spatial error in SE(3) between the planned
and desired poses.

This enables physically plausible and task-relevant grasp
execution that leverages real-world perception, human demon-
stration priors, and differentiable simulation to close the sim-
to-real loop.

F. Real-World Experiments

In our experimental setup, the scene is composed of five
primary components: a static table, a fixed background, a target
object, a robotic arm, and a robotic hand. Both the table and
background remain stationary and unchanging throughout the
duration of each experiment, providing a consistent spatial
context. The robotic arm and hand are fully actuated and pre-
cisely controlled, with all joint movements accurately tracked
to ensure reproducibility and reliable system behavior.

The target object is entirely passive, which is not actuated
or directly controlled. Its motion arises solely from physical
interactions with the robotic hand, such as contact-induced
forces during grasping or pushing. This object-centric dynamic
behavior forms the basis for our system identification and
policy learning tasks.

For visual tracking, we employ a third-person Intel Re-
alSense D435i RGB-D camera positioned to capture the entire
manipulation workspace. To estimate the 6-DoF object pose
over time, we use FoundationPose [63], a real-time object pose
estimation framework that ensures robust, frame-consistent
predictions even under occlusion or clutter.

To reconstruct the geometric details of the experimental
scene—including the table, object, and robot—we supplement
the depth camera data with smartphone-based photogramme-
try. Capturing a short monocular video using a mobile phone,
we apply multi-view stereo techniques to generate dense 3D
reconstructions of the environment. This process enables us to
build high-resolution object meshes and spatially aligned scene
representations, which are later used for initializing simulation
environments and real-to-sim transfers.

Together, this combination of accurate tracking and high-
fidelity geometric reconstruction provides the foundation for

grounded simulation, physical parameter identification, and
robust real-world policy deployment.

1) Hardware Setup: We employ two distinct robotic hands
in our experimental framework to accommodate the varying
requirements of system identification and dexterous manipu-
lation: the Allegro Hand and the LEAP Hand, each equipped
with 16 independently actuated degrees of freedom (DoF).
These platforms are selected to balance mechanical precision
and torque capabilities across the experimental tasks.

The Allegro Hand is a widely used 16-DoF anthropomor-
phic robotic hand developed specifically for research in dexter-
ous manipulation. It features internalized wiring and a compact
mechanical structure, minimizing external interference during
physical interactions. Its low-profile design and clean joint
layout simplify kinematic and dynamic modeling, making it
well-suited for physical parameter identification tasks such
as object mass estimation. The reduced presence of external
cabling allows for more stable contact modeling and cleaner
gradient flow during differentiable physics-based optimization.

The LEAP Hand [52] is a high-torque, cost-efficient robotic
hand designed with modularity and real-world applicability
in mind. It is constructed from a combination of 3D-printed
components and off-the-shelf actuators, enabling easy cus-
tomization, repair, and experimentation. Critical mechanical
attributes—including finger length, joint stiffness, and inter-
finger spacing—can be modified to suit specific manipulation
scenarios or object geometries. The LEAP Hand features a
novel tendon-driven kinematic structure that enables highly
dexterous and human-like articulation. Each joint is capable of
exerting torques that exceed those of the human hand, while
maintaining realistic velocities up to approximately 8 radians
per second.

A core design principle of the LEAP Hand is to maximize
the proportion of mass allocated to actuators relative to the
hand’s total weight, thereby enhancing grip strength while pre-
serving a compact form factor. This focus enables it to handle
heavy or irregularly shaped objects that require strong and
adaptive force control. Importantly, the LEAP Hand includes
integrated current- and torque-limiting mechanisms, allowing
for both powerful and delicate manipulation. These features
make it especially suitable for executing real-world grasping
tasks, where force control must be both robust and compliant.

In our experiments, we regulate the grasping force exerted
by the LEAP Hand by tuning its actuator current limits, which
are linearly correlated with the applied joint torques. This con-
trol scheme enables precise modulation of contact force based
on object mass and surface properties, a critical requirement
for sim-to-real generalization in force-aware policy learning.

By leveraging the complementary strengths of the Allegro
and LEAP Hands, our framework supports both accurate
physical modeling and high-performance real-world manipu-
lation, facilitating end-to-end real-to-sim-to-real learning and
deployment.

a) Rationale for Using Different Hands: We employ the
Allegro Hand for mass identification experiments due to its
compact, self-contained mechanical design, which minimizes



external interference. Its internalized wiring and low-torque
actuation contribute to stable and noise-free contact dynamics,
making it ideal for tasks that require accurate gradient prop-
agation and precise system identification. These attributes are
particularly advantageous when using differentiable physics
to estimate object mass from robot-object interactions, where
mechanical noise or inconsistent contact can significantly
degrade optimization performance. The consistent kinematics
and low-inertia structure of the Allegro Hand further improve
the fidelity of object dynamics modeling during the real-to-sim
identification stage.

We utilize the LEAP Hand [52] for grasping and manipu-
lation tasks due to its high-torque capabilities and modular,
human-like kinematic structure. The LEAP Hand features
tendon-driven actuation with robust motors that can generate
significantly higher forces than the Allegro Hand, enabling
it to perform reliable grasps on objects with varying shapes,
weights, and compliance. This is particularly important when
evaluating real-world policy deployment, where robustness and
grasp stability are critical. Its design prioritizes strength and
dexterity, making it suitable for executing force-aware poli-
cies under physically realistic conditions. The hand’s current-
controlled actuation also enables precise regulation of grasping
force, which we leverage in our policy to adapt to different
object masses.

However, the LEAP Hand includes exposed wiring and ten-
don routing, which introduce mechanical noise and modeling
complexity, especially during sensitive parameter estimation
stages such as mass identification. These structural factors can
interfere with accurate contact modeling and introduce incon-
sistencies in force feedback during differentiable simulation.

Through decoupling the roles of the two hands—using the
Allegro Hand for precise physical parameter estimation and
the LEAP Hand for robust manipulation—we are able to
optimize each stage of our real-to-sim-to-real framework. This
separation of concerns allows our framework to balance ac-
curacy and practicality, supporting both high-fidelity modeling
and real-world deployment across a diverse set of manipulation
scenarios.

2) Dataset Collection and Experiment Deployment: To sup-
port accurate real-to-sim modeling, we collect approximately
300 RGB images per scene using a third-person RGB-D cam-
era (Intel RealSense D435i) or scanning device like Iphone.
These images are used for high-fidelity 3D reconstruction,
which captures both the object geometry and environmental
context. The full reconstruction process typically takes around
30 minutes per scene and produces a Gaussian Splats repre-
sentation.

Then we convert the reconstructed visual assets into
simulation-ready MJCF. This conversion encodes the object
geometry as collision meshes, specifies object kinematics, and
initializes physical parameters for use in simulation environ-
ments such as MuJoCo. We also extract the relative pose
between the object and the robotic base, which is crucial for
alignment during simulation deployment.

Our experimental environment comprises a 7-DoF robotic

arm (Franka Emika Panda), a dexterous robotic hand (Allegro
or LEAP, depending on the task), and a static table on which
the object is placed. During data collection and evaluation,
the robotic system executes predefined control trajectories or
learned policies while interacting with the object. Simultane-
ously, FoundationPose [63] provides real-time 6-DoF object
pose tracking using third-view RGB-D video input. This
ensures precise alignment between real-world motion and the
corresponding simulated trajectories.

All collected sensor data—including RGB frames, depth
maps, robot joint states, and object poses—are synchronized
and logged for later use in simulation, policy training, and
evaluation. This structured dataset serves as the basis for mass
identification and grasping policy learning, enabling consistent
real-to-sim-to-real transfer across experiments.

G. Broader Impact

Our work advances the integration of learning from human
demonstrations into robotic systems, significantly enhancing
the capability of robots to interpret, replicate, and interact
with the physical world in a meaningful and robust manner.
By combining accurate, physics-grounded system identifica-
tion with imitation learning, we enable precise and reliable
grasping and manipulation, even in dynamically challenging
and unstructured environments. This progress has far-reaching
implications for the safe and effective deployment of robots in
real-world settings such as assistive healthcare, collaborative
manufacturing, household automation, and logistics.

Furthermore, by narrowing the gap between human in-
tent and robotic execution, our framework accelerates the
acquisition of complex manipulation skills without requiring
extensive task-specific programming or dense instrumentation.
This has the potential to lower the barrier to entry for robotics
adoption, making advanced robotic systems more accessible
to researchers, developers, and end-users across domains.
Ultimately, our approach contributes toward democratizing
robotic learning by leveraging intuitive human demonstrations
and scalable, data-driven simulation.

H. Limitation:

The DREAM framework currently only supports rigid-body
dynamics and relies solely on mass as the primary learnable
parameter. Additionally, the current policy is specifically con-
ditioned on the same object demonstrated by humans, making
it an object-specific policy rather than a generalized solution.
Lastly, once the real-to-sim stage concludes, our simulation
engine requires the absence of human interaction with the
real-world operation scene to maintain consistency under the
assumed Lagrangian dynamics framework.



VII. LIST OF NOTATIONS

Symbol Description

Is Scene-centric RGB video sequences
Io Object-centric RGB video sequences
{It}Tt=1 Human demonstration RGB video sequences
{sreal

t }Tt=1 Real-world object trajectories
{ssim

t }Tt=1 Simulated object trajectories
m Optimized object mass
π Force-aware manipulation policy
S Simulation environment representation (MJCF)
K Collision mesh for object geometry
θ Physical simulation parameters
P Gaussian splatting particles for visual appearance
st Object’s state at timestep t (position and orientation)
ut Object’s velocity at timestep t
vt Linear velocity component at timestep t
ωt Angular velocity component at timestep t
M Mass-inertia matrix
f External and contact forces
fn Contact force vector
ke, kd Contact stiffness and damping parameters
G(·) Discrete-time update function
∆t Simulation timestep
Ltraj Trajectory loss function
ht Human hand pose at timestep t
ot Object pose at timestep t
At Robot action at timestep t
πϕ Learned grasping policy (parameterized by ϕ)
Â Predicted robot joint positions
r̂ Predicted contact constraint
f̂ Predicted grasping force constraint
nactive Number of active contacts between robot and object
ρ Object density parameter

TABLE IV: List of Notations



REFERENCES

[1] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and
Deepak Pathak. Legged locomotion in challenging ter-
rains using egocentric vision. In Conference on robot
learning, pages 403–415. PMLR, 2023.

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej,
Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas,
et al. Solving rubik’s cube with a robot hand. arXiv
preprint arXiv:1910.07113, 2019.

[3] Martin Asenov, Michael Burke, Daniel Angelov, Todor
Davchev, Kartic Subr, and Subramanian Ramamoorthy.
Vid2param: Modelling of dynamics parameters from
video, 2020. URL https://arxiv.org/abs/1907.06422.

[4] David Baraff. Rigid body simulation. SIGGRAPH
Course Notes 1992, 19, 1992.

[5] Jan Bender, Matthias Müller, and Miles Macklin. A
survey on position based dynamics, 2017. In Proceedings
of the European Association for Computer Graphics:
Tutorials, EG ’17, Goslar, DEU, 2017. Eurographics
Association. doi: 10.2312/egt.20171034. URL https:
//doi.org/10.2312/egt.20171034.

[6] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart,
Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura
Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al.
Using simulation and domain adaptation to improve
efficiency of deep robotic grasping. In 2018 IEEE inter-
national conference on robotics and automation (ICRA),
pages 4243–4250. IEEE, 2018.

[7] Hongyi Chen, Yunchao Yao, Yufei Ye, Zhixuan Xu,
Homanga Bharadhwaj, Jiashun Wang, Shubham Tulsiani,
Zackory Erickson, and Jeffrey Ichnowski. Web2grasp:
Learning functional grasps from web images of hand-
object interactions, 2025. URL https://arxiv.org/abs/2505.
05517.

[8] Peter Yichen Chen, Chao Liu, Pingchuan Ma, John
Eastman, Daniela Rus, Dylan Randle, Yuri Ivanov, and
Wojciech Matusik. Learning object properties using robot
proprioception via differentiable robot-object interaction,
2025. URL https://arxiv.org/abs/2410.03920.

[9] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt,
and David Duvenaud. Neural ordinary differential equa-
tions, 2019. URL https://arxiv.org/abs/1806.07366.

[10] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for
general in-hand object re-orientation, 2021. URL https:
//arxiv.org/abs/2111.03043.

[11] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar,
Edward Adelson, and Pulkit Agrawal. Visual dexterity:
In-hand dexterous manipulation from depth. In Icml
workshop on new frontiers in learning, control, and
dynamical systems, 2023.

[12] Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun
Mo, Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter
Fox, and Abhishek Gupta. Urdformer: A pipeline for
constructing articulated simulation environments from

real-world images. arXiv preprint arXiv:2405.11656,
2024.

[13] Peter I Corke. A simple and systematic approach to
assigning denavit–hartenberg parameters. IEEE trans-
actions on robotics, 23(3):590–594, 2007.

[14] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The
frontier of simulation-based inference. Proceedings of the
National Academy of Sciences, 117(48):30055–30062,
2020.

[15] Tom Erez, Yuval Tassa, and Emanuel Todorov. Sim-
ulation tools for model-based robotics: Comparison of
bullet, havok, mujoco, ode and physx. In 2015 IEEE
International Conference on Robotics and Automation
(ICRA), pages 4397–4404, 2015. doi: 10.1109/ICRA.
2015.7139807.

[16] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan
Girgin, Igor Mordatch, and Olivier Bachem. Brax - a
differentiable physics engine for large scale rigid body
simulation. 2021. URL http://github.com/google/brax.

[17] Clement Fuji-Tsang, Masha Shugrina, Jean-Francois
Lafleche, Charles Loop, Towaki Takikawa, Jiehan Wang,
Wenzheng Chen, Sanja Fidler, Jason Gorski, Rev Lebare-
dian, Jianing Li, Michael Li, Krishna Murthy Jataval-
labhula, Artem Rozantsev, Frank Shen, Edward Smith,
Gavriel State, and Tommy Xiang. Kaolin: A pytorch
library for accelerating 3d deep learning research. https:
//github.com/NVIDIAGameWorks/kaolin, 2019.

[18] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timo-
thy Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[19] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He,
Changliu Liu, and Guanya Shi. Agile but safe: Learning
collision-free high-speed legged locomotion. In Robotics:
Science and Systems (RSS), 2024.

[20] Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi
Khansari, and Yunfei Bai. Retinagan: An object-aware
approach to sim-to-real transfer, 2020. URL https://arxiv.
org/abs/2011.03148.

[21] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun,
Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand.
Difftaichi: Differentiable programming for physical sim-
ulation, 2020. URL https://arxiv.org/abs/1910.00935.

[22] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger,
and Shenghua Gao. 2d gaussian splatting for geometri-
cally accurate radiance fields. In ACM SIGGRAPH 2024
conference papers, pages 1–11, 2024.

[23] Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou,
Hao Su, Joshua B Tenenbaum, and Chuang Gan. Plas-
ticinelab: A soft-body manipulation benchmark with dif-
ferentiable physics. arXiv preprint arXiv:2104.03311,
2021.

[24] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-
4o system card. arXiv preprint arXiv:2410.21276, 2024.

[25] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario

https://arxiv.org/abs/1907.06422
https://doi.org/10.2312/egt.20171034
https://doi.org/10.2312/egt.20171034
https://arxiv.org/abs/2505.05517
https://arxiv.org/abs/2505.05517
https://arxiv.org/abs/2410.03920
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2111.03043
https://arxiv.org/abs/2111.03043
http://github.com/google/brax
https://github.com/NVIDIAGameWorks/kaolin
https://github.com/NVIDIAGameWorks/kaolin
https://arxiv.org/abs/2011.03148
https://arxiv.org/abs/2011.03148
https://arxiv.org/abs/1910.00935


Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.

[26] Krishna Murthy Jatavallabhula, Miles Macklin, Florian
Golemo, Vikram Voleti, Linda Petrini, Martin Weiss,
Breandan Considine, Jerome Parent-Levesque, Kevin
Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek
Nowrouzezahrai, and Sanja Fidler. gradsim: Differen-
tiable simulation for system identification and visuo-
motor control. International Conference on Learning
Representations (ICLR), 2021. URL https://openreview.
net/forum?id=c E8kFWfhp0.

[27] Krishna Murthy Jatavallabhula, Miles Macklin, Florian
Golemo, Vikram Voleti, Linda Petrini, Martin Weiss,
Breandan Considine, Jerome Parent-Levesque, Kevin
Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek
Nowrouzezahrai, and Sanja Fidler. gradsim: Differen-
tiable simulation for system identification and visuomo-
tor control, 2021. URL https://arxiv.org/abs/2104.02646.

[28] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey
Stomakhin, and Andrew Selle. The material point method
for simulating continuum materials. In ACM SIGGRAPH
2016 Courses, SIGGRAPH ’16, New York, NY, USA,
2016. Association for Computing Machinery. ISBN
9781450342896. doi: 10.1145/2897826.2927348. URL
https://doi.org/10.1145/2897826.2927348.

[29] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:
Building digital twins of articulated objects from inter-
action. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[30] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–
1, 2023.

[31] Wisama Khalil, Maxime Gautier, and Philippe Lemoine.
Identification of the payload inertial parameters of in-
dustrial manipulators. In Proceedings 2007 IEEE Inter-
national Conference on Robotics and Automation, pages
4943–4948, 2007. doi: 10.1109/ROBOT.2007.364241.

[32] Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Kr-
ishna Murthy Jatavallabhula, Ming Lin, Chenfanfu Jiang,
and Chuang Gan. Pac-nerf: Physics augmented contin-
uum neural radiance fields for geometry-agnostic sys-
tem identification, 2023. URL https://arxiv.org/abs/2303.
05512.

[33] Haozhe Lou, Yurong Liu, Yike Pan, Yiran Geng, Jianteng
Chen, Wenlong Ma, Chenglong Li, Lin Wang, Hengzhen
Feng, Lu Shi, Liyi Luo, and Yongliang Shi. Robo-gs: A
physics consistent spatial-temporal model for robotic arm
with hybrid representation, 2024. URL https://arxiv.org/
abs/2408.14873.

[34] Tyler Ga Wei Lum, Olivia Y Lee, C Karen Liu, and
Jeannette Bohg. Crossing the human-robot embodiment
gap with sim-to-real rl using one human demonstration.
arXiv preprint arXiv:2504.12609, 2025.

[35] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-

An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. Eureka: Human-
level reward design via coding large language models.
arXiv preprint arXiv: Arxiv-2310.12931, 2023.

[36] Miles Macklin, Matthias Müller, Nuttapong Chentanez,
and Tae-Yong Kim. Unified particle physics for real-
time applications. ACM Trans. Graph., 33(4), July 2014.
ISSN 0730-0301. doi: 10.1145/2601097.2601152. URL
https://doi.org/10.1145/2601097.2601152.

[37] Miles Macklin, Matthias Müller, and Nuttapong Chen-
tanez. Xpbd: position-based simulation of compliant
constrained dynamics. In Proceedings of the 9th In-
ternational Conference on Motion in Games, MIG ’16,
page 49–54, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450345927. doi:
10.1145/2994258.2994272. URL https://doi.org/10.1145/
2994258.2994272.

[38] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu,
Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh,
Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck
Babich, Gavriel State, Marco Hutter, and Animesh Garg.
Orbit: A unified simulation framework for interactive
robot learning environments. IEEE Robotics and Au-
tomation Letters, 8(6):3740–3747, 2023. doi: 10.1109/
LRA.2023.3270034.

[39] Matthias Müller, Bruno Heidelberger, Marcus Hennix,
and John Ratcliff. Position based dynamics. Journal of
Visual Communication and Image Representation, 18(2):
109–118, 2007.

[40] Matthias Müller, Bruno Heidelberger, Marcus Hen-
nix, and John Ratcliff. Position based dynam-
ics. Journal of Visual Communication and Im-
age Representation, 18(2):109–118, 2007. ISSN
1047-3203. doi: https://doi.org/10.1016/j.jvcir.2007.01.
005. URL https://www.sciencedirect.com/science/article/
pii/S1047320307000065.

[41] Linfei Pan, Dániel Baráth, Marc Pollefeys, and Jo-
hannes L. Schönberger. Global structure-from-motion
revisited, 2024. URL https://arxiv.org/abs/2407.20219.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learn-
ing library, 2019. URL https://arxiv.org/abs/1912.01703.

[43] Austin Patel, Andrew Wang, Ilija Radosavovic, and Jiten-
dra Malik. Learning to imitate object interactions from
internet videos. arXiv:2211.13225, 2022.

[44] Georgios Pavlakos, Dandan Shan, Ilija Radosavovic,
Angjoo Kanazawa, David Fouhey, and Jitendra Malik.
Reconstructing hands in 3D with transformers. In CVPR,
2024.

[45] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of

https://openreview.net/forum?id=c_E8kFWfhp0
https://openreview.net/forum?id=c_E8kFWfhp0
https://arxiv.org/abs/2104.02646
https://doi.org/10.1145/2897826.2927348
https://arxiv.org/abs/2303.05512
https://arxiv.org/abs/2303.05512
https://arxiv.org/abs/2408.14873
https://arxiv.org/abs/2408.14873
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://www.sciencedirect.com/science/article/pii/S1047320307000065
https://www.sciencedirect.com/science/article/pii/S1047320307000065
https://arxiv.org/abs/2407.20219
https://arxiv.org/abs/1912.01703


robotic control with dynamics randomization. In 2018
IEEE international conference on robotics and automa-
tion (ICRA), pages 3803–3810. IEEE, 2018.

[46] Yuzhe Qin, Wei Yang, Binghao Huang, Karl Van Wyk,
Hao Su, Xiaolong Wang, Yu-Wei Chao, and Dieter Fox.
Anyteleop: A general vision-based dexterous robot arm-
hand teleoperation system. In Robotics: Science and
Systems, 2023.

[47] Fabio Ramos, Rafael Carvalhaes Possas, and Dieter Fox.
Bayessim: adaptive domain randomization via probabilis-
tic inference for robotics simulators. arXiv preprint
arXiv:1906.01728, 2019.

[48] Allen Z Ren, Hongkai Dai, Benjamin Burchfiel, and
Anirudha Majumdar. Adaptsim: Task-driven simula-
tion adaptation for sim-to-real transfer. arXiv preprint
arXiv:2302.04903, 2023.

[49] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real
single-image flight without a single real image. arXiv
preprint arXiv:1611.04201, 2016.

[50] Johannes L. Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 4104–4113, 2016. doi: 10.1109/CVPR.
2016.445.

[51] Kenneth Shaw, Shikhar Bahl, and Deepak Pathak.
Videodex: Learning dexterity from internet videos, 2022.
URL https://arxiv.org/abs/2212.04498.

[52] Kenneth Shaw, Ananye Agarwal, and Deepak Pathak.
Leap hand: Low-cost, efficient, and anthropomorphic
hand for robot learning. Robotics: Science and Systems
(RSS), 2023.

[53] Trevor Standley, Ozan Sener, Dawn Chen, and Silvio
Savarese. image2mass: Estimating the mass of an object
from its image. In Sergey Levine, Vincent Vanhoucke,
and Ken Goldberg, editors, Proceedings of the 1st Annual
Conference on Robot Learning, volume 78 of Proceed-
ings of Machine Learning Research, pages 324–333.
PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.
press/v78/standley17a.html.

[54] Balakumar Sundaralingam, Siva Kumar Sastry Hari,
Adam Fishman, Caelan Garrett, Karl Van Wyk, Valts
Blukis, Alexander Millane, Helen Oleynikova, Ankur
Handa, Fabio Ramos, et al. curobo: Parallelized collision-
free minimum-jerk robot motion generation. arXiv
preprint arXiv:2310.17274, 2023.

[55] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,
Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent
Vanhoucke. Sim-to-real: Learning agile locomotion for
quadruped robots. arXiv preprint arXiv:1804.10332,
2018.

[56] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall,
Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
Fourier features let networks learn high frequency func-
tions in low dimensional domains. NeurIPS, 2020.

[57] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,

Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ in-
ternational conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

[58] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

[59] Marcel Torne, Anthony Simeonov, Zechu Li, April Chan,
Tao Chen, Abhishek Gupta, and Pulkit Agrawal. Rec-
onciling reality through simulation: A real-to-sim-to-
real approach for robust manipulation. arXiv preprint
arXiv:2403.03949, 2024.

[60] Pierre Vassiliadis, Gerard Derosiere, Cecile Dubuc, Ae-
gryan Lete, Frederic Crevecoeur, Friedhelm C. Hummel,
and Julie Duque. Reward boosts reinforcement-based
motor learning. iScience, 24(7):102821, Jul 2021. doi:
10.1016/j.isci.2021.102821.

[61] Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan,
Yaodong Yang, Li Yi, and He Wang. Unidexgrasp++: Im-
proving dexterous grasping policy learning via geometry-
aware curriculum and iterative generalist-specialist learn-
ing, 2023. URL https://arxiv.org/abs/2304.00464.

[62] Zhenyu Wei, Zhixuan Xu, Jingxiang Guo, Yiwen Hou,
Chongkai Gao, Zhehao Cai, Jiayu Luo, and Lin Shao.
D(R,O) grasp: A unified representation of robot and
object interaction for cross-embodiment dexterous grasp-
ing, 2025. URL https://arxiv.org/abs/2410.01702.

[63] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield.
FoundationPose: Unified 6d pose estimation and tracking
of novel objects. In CVPR, 2024.

[64] Jane Wu, Georgios Pavlakos, Georgia Gkioxari, and
Jitendra Malik. Reconstructing hand-held objects in 3d.
arXiv preprint arXiv:2404.06507, 2024.

[65] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli.
Neural Scene De-rendering. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[66] Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen,
Yihao Zhi, and Xiaoguang Han. Gaustudio: A modular
framework for 3d gaussian splatting and beyond. arXiv
preprint arXiv:2403.19632, 2024.

[67] Chongjie Ye, Lingteng Qiu, Xiaodong Gu, Qi Zuo,
Yushuang Wu, Zilong Dong, Liefeng Bo, Yuliang Xiu,
and Xiaoguang Han. Stablenormal: Reducing diffusion
variance for stable and sharp normal. ACM Transactions
on Graphics (TOG), 2024.

[68] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser.
3dmatch: Learning local geometric descriptors from rgb-
d reconstructions. In CVPR, 2017.

[69] Hui Zhang, Zijian Wu, Linyi Huang, Sammy Christen,
and Jie Song. Robustdexgrasp: Robust dexterous grasp-
ing of general objects, 2025. URL https://arxiv.org/abs/
2504.05287.

https://arxiv.org/abs/2212.04498
https://proceedings.mlr.press/v78/standley17a.html
https://proceedings.mlr.press/v78/standley17a.html
https://arxiv.org/abs/2304.00464
https://arxiv.org/abs/2410.01702
https://arxiv.org/abs/2504.05287
https://arxiv.org/abs/2504.05287


[70] Jialiang Zhang, Haoran Liu, Danshi Li, Xinqiang Yu,
Haoran Geng, Yufei Ding, Jiayi Chen, and He Wang.
Dexgraspnet 2.0: Learning generative dexterous grasping
in large-scale synthetic cluttered scenes, 2024. URL
https://arxiv.org/abs/2410.23004.

[71] Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y.
Feng, Changxi Zheng, Noah Snavely, Jiajun Wu, and
William T. Freeman. PhysDreamer: Physics-based inter-
action with 3d objects via video generation. In European
Conference on Computer Vision. Springer, 2024.

https://arxiv.org/abs/2410.23004

	Introduction
	Problem Statement
	Method
	Visual and Geometric Reconstruction
	Physical Identification from Robot-Object Interactions
	Transferring Human Demonstrations to Robot
	Policy Learning with Transferred Robot Demonstrations

	Experiment
	Mass identification
	Tabletop Object Grasping Experiments

	Conclusion
	Appendices
	Additional Results
	Mass Identification
	Effectiveness of Force-Based Control through Grasping

	Preliminaries
	Particle-Based Physics Simulation
	Gaussian Splatting

	Implementation Details
	Implementation of Real-to-Sim Reconstruction
	Constructing MJCF Models Using Reconstructed Gaussian and Mesh Representations
	Implementation of Mass Identification
	Computation detail and Timing

	Implementation of DREAM's Grasping Policy
	Computational Details and Timings

	Implementation of Baselines on Object Grasping
	Real-World Experiments
	Hardware Setup
	Dataset Collection and Experiment Deployment

	Broader Impact
	Limitation:

	List of Notations

