
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRADIENT FAN-IN ASYMMETRY: THE STRUCTURAL
CAUSE OF LAYER REDUNDANCY IN DEEP TRANS-
FORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Transformers are composed of uniformly stacked residual blocks, yet their
deepest layers often add little value. Prevailing explanations attribute this to small
gradients, treating a symptom rather than the cause. We identify Gradient Fan-
in Asymmetry as the structural driver of redundancy. In Pre-LayerNorm residual
stacks, the gradient at a layer is the sum of an identity path and all downstream
functional paths, producing a gradient fan-in that decays linearly with depth (and
quadratically under deep supervision), yielding rich signals early and sparse for
later layers. Across Transformers and ResNets, accumulated training gradients
follow the theoretical fan-in and predict post hoc layer importance. Two causal in-
terventions isolate structure as the bottleneck: equalizing per-layer gradient norms
does not restore late-layer value, whereas increasing downstream path counts via
parameter-shared repetition restores and elevates their impact. Building on this
mechanism, we propose CascadeFlow Pruning, which removes layers using accu-
mulated training gradients and outperforms standard heuristics without expensive
post hoc analysis. We also introduce CascadeFormer, which tapers width with
depth to match the natural information flow, achieving comparable perplexity to a
uniform baseline at the same training budget while reducing latency by 8.6% and
increasing throughput by 9.4%.

1 INTRODUCTION

The uniform scaling of transformer blocks Vaswani et al. (2017), simply repeating identical lay-
ers to create deeper models, has been the driving principle behind the success of Large Language
Models (Radford et al.; Brown et al., 2020; Touvron et al., 2023). However, this architectural ho-
mogeneity masks a significant functional asymmetry. For instance, evaluating a pretrained LLaMA
model on WikiText, deeper layers exhibit high representational similarity, a key indicator for redun-
dancy (Gromov et al., 2024) (Figure 1a). This asymmetry is even more pronounced in architectures
like LayerSkip (Elhoushi et al., 2024), which skips later layers by exiting the network early, reveal-
ing their sharply declining functional contribution (Figure 1b).

The conventional explanation for this phenomenon points to attenuated gradients in deeper layers
Li et al. (2025). This observation, while correct, mistakes a symptom for the cause. We argue the
root issue is not the gradient’s magnitude, but its compositional diversity, a structural bottleneck
we term Gradient Fan-in Asymmetry (GFA). The residual connections (He et al., 2016b) that enable
deep training transform the network into an implicit ensemble of many paths of varying lengths (Veit
et al., 2016), which creates a fundamental imbalance during backpropagation.

In this work, we argue that layer redundancy is a direct consequence of a training dynamic we term
Gradient Fan-in Asymmetry (GFA). This is not an attenuation of mere magnitude, but rather of
compositional diversity. Due to the path ensemble structure, shallow layers receive gradient from all
subsequent functional blocks. This creates a cascade where their updates are compositionally rich,
while the deepest layers, aggregating from few blocks, receive a structurally simple and information-
poor gradient.

We validate the GFA hypothesis and demonstrate its utility through a sequence of empirical ar-
guments. First, we establish a strong correlation between per-layer gradient norms ḡi and even-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tual functional importance ∆Mi. We then move beyond correlation with two causal interventions:
one ablative, showing that artificially amplifying late-layer gradient magnitude fails to restore their
importance, and one constructive, showing that structurally increasing their path counts via layer
repetition does restore it. These interventions confirm the bottleneck is structural. Finally, we trans-
late this causal insight into two practical applications: CascadeFlow Pruning (CFP), an efficient
method leveraging accumulated training gradients to outperform standard pruning heuristics, and
the CascadeFormer, an architecture that tapers width with depth to align model capacity with the
natural flow of compositional gradient diversity, improving inference efficiency at fixed training
FLOPs.

This work reframes gradient magnitude not as a cause to be fixed, but as a proxy for a structural
information imbalance. Our contributions are:

• We identify and validate Gradient Fan-in Asymmetry as the causal mechanism for
layer redundancy. We provide strong causal evidence through two complementary inter-
ventions: an ablative test (artificially equalizing gradient norms fails to restore importance)
and a constructive one (structurally increasing path counts via layer repetition succeeds).
This isolates the bottleneck to the gradient’s compositional complexity, not its raw magni-
tude.

• We introduce CascadeFlow Pruning (CFP), an efficient method that leverages accumu-
lated training gradients as a high-fidelity proxy for structural importance to prune layers,
outperforming standard heuristics without requiring expensive post-hoc analysis.

• We design the CascadeFormer, an architecture that internalizes the GFA principle. By
tapering network width with depth to match the natural flow of compositional gradient
diversity, it reduces latency and increases throughput over a uniform baseline with equal
training FLOPs and comparable perplexity.

0 3 6 9 12 15 18 21 24 27 30 33 36

Layer Index (l)

1

4

7

10

13

16

19

22

25

28

31

34

37

B
lo

ck
S

iz
e

(n
)

(a) Representation Angular Distance

0 4 8 12 16 20 24 28

Early Exit Layer Index

0

100

200

300

400

500

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

)

High Importance
(Early Layers)

Low Importance
(Late Layers)

(b) Layer Importance via Early Exit

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Deeper Transformer layers show diminishing contributions. (a) In a LLaMA 13B
model, representational similarity across layers increases with depth, signaling growing redundancy.
(b) A LayerSkip LLaMA 8B makes the consequence explicit: layer importance, measured by Func-
tional Importance (∆M) upon its removal, is concentrated in the initial layers while the functional
value of later layers collapses.

2 RELATED WORK

Layer Redundancy for Model Efficiency. Deep networks exhibit layer redundancy that can be
exploited for compression and faster inference (Gromov et al., 2024; Sun et al., 2025; Chen et al.,
2025). Structured pruning removes entire blocks with minor loss (Chen et al., 2023; Frantar & Alis-
tarh, 2023; Ma et al., 2023; Xia et al., 2024; Kim et al., 2024; He et al., 2024; Sun et al., 2024), while
training-time methods like LayerDrop (Fan et al., 2020) and early-exit/skip mechanisms (Elhoushi
et al., 2024; Xin et al., 2020; Liu et al., 2020; Zhao et al., 2025; Men et al., 2025) allow dynamic
redundancy management.These works document that redundancy exists and how to use it; they do
not explain why it arises.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The Architectural Roots of Redundancy. Residual networks (He et al., 2016b;a) can be viewed
as implicit ensembles of shorter paths Veit et al. (2016), a property inherited by Transformers with
Pre-LayerNorm architectures (Xiong et al., 2020; Touvron et al., 2023). This structure often causes
deeper layers to contribute minimally, leading to redundancy (Takase et al., 2023; Sun et al., 2025; Li
et al., 2025). A complementary line of work shows how architectural and normalization choices reg-
ulate gradient propagation across depth (Wang et al., 2022; Shleifer et al., 2021; Li et al., 2024). Our
method is instead applicable to the Pre-LN setting, and building on these results, we argue and test
that depth-wise allocation of gradient signal is structurally induced and exploiting this phenomenon
to optimize for more efficient architecture depth wise and width wise.

Quantifying Layer Importance. Identifying redundant layers requires a reliable importance met-
ric. Magnitude and first/second-order criteria provide strong baselines (Han et al., 2015; 2016;
Molchanov et al., 2017; Lee et al., 2019; Frantar & Alistarh, 2023). Other methods rely on mea-
suring the effects of redundancy: output-similarity (e.g, cosine between adjacent layers), correlates
high similarity with low importance (Gromov et al., 2024; Yang et al., 2024; Jiang et al., 2025;
Chen et al., 2025; Song et al.), while perturbation-based metrics such as (∆PPL) upon single layer
removal directly quantify its functional contribution (Kim et al., 2024). Gradient-based signals have
been used as local surrogates for importance, but typically in heuristic form (e.g., saliency Smilkov
et al. (2017); Selvaraju et al. (2020), Taylor criteria (Yang et al., 2023; Ma et al., 2023)). We in-
stead posit and test a causal mechanism: gradient dynamics are not just a proxy; they drive the final
functional hierarchy via a compositional gradient asymmetry.

3 GRADIENT FAN-IN ASYMMETRY

The Phenomenon. We identify Gradient Fan-in Asymmetry (GFA), a structural imbalance in the
composition of gradient signals within deep residual architectures. This asymmetry arises because
shallow layers receive gradients aggregated across numerous downstream computational paths,
while deep layers receive them from a progressively smaller set. This disparity in fan-in directly
governs the compositional diversity of the resulting gradient. Consequently, deep-layer gradients
are compositionally simple and thus information-poor, leading to less effective weight updates. Cru-
cially, this is a structural limitation, not a magnitude problem; optimizers that only rescale gradients
cannot correct this underlying informational deficit.

GFA in Residual Networks. We define a Pre-LN Transformer as xl+1 = xl + Fl(xl), where Fl

represents the blocks complete transformation, including LayerNorm and sublayers. The gradient at
its input, gl ≡ ∂L/∂xl, unrolls into a cumulative sum over all downstream blocks:

gl = gN +

N−1∑
k=l

JT
k gk+1, (1)

where Jk is the Jacobian of the k-th block’s transformation. This structure means the gradient at
layer l aggregates signals from an identity path and all subsequent functional paths. We term the
number of these aggregated signals the gradient fan-in, ϕl, which decreases linearly with depth
(visualized by the solid paths in Fig. 2. A formal counting rule is provided in Appx. B.1.

Amplification via Deep Supervision. Architectures employing deep supervision, such as Lay-
erSkip, amplify GFA. By introducing auxiliary loss heads at intermediate layers, they create new
gradient hierarchies that backpropagate to shallower layers. This transforms the linear fan-in dispar-
ity into a quadratic one (illustrated by the additional dotted paths in Fig. 2), severely concentrating
gradient information in the shallowest layers. The full derivation in Appx. B.1 shows this formally.
This exacerbates, rather than solves, the structural imbalance.

Analysis and Prediction. It is crucial to distinguish our fan-in proxy from the 2N−l combinatorial
paths that arise from a full expansion. Our proxy measures the number of distinct signal channels
aggregated at a layer, not their information quality (e.g., orthogonality), which remains an empirical
question. This leads to our central thesis: gradient norm is a symptom, not the cause. A small
gradient norm in a deep layer reflects its limited access to compositional information. An optimizer
like AdamW Loshchilov & Hutter (2018) can rescale this gradient, but it cannot invent the rich,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Embed Layer 1

Layer 2

Layer 3

 LM Head

 LM Head

 LM Head

Loss

Embed Layer 1

Layer 2

Layer 3

Figure 2: Gradient Fan-in Asymmetry arises from a structural imbalance in gradient paths.
The unwrapped view shows that the gradient at any layer l is a sum over signals from an identity
path and all subsequent functional paths (Eq. 1). The number of contributing functional paths (solid
lines) decreases linearly with depth, creating a compositional asymmetry. Deep supervision (dotted
lines) exacerbates this imbalance by introducing new gradient hierarchies from auxiliary losses,
which transforms the fan-in disparity from linear to quadratic.

compositional information that is structurally absent. From this principle, we derive a testable pre-
diction: any architectural change that structurally increases a layer’s downstream gradient fan-in
will increase its functional importance. We test this directly with virtual depth and use the principle
to design our methods.

4 EMPIRICAL VALIDATION AND APPLICATIONS

We test Gradient Fan-in Asymmetry in three stages. We first show that gradient flow is structurally
skewed toward early layers and that this training signal predicts the final functional hierarchy. We
then perform two interventions that separate magnitude from information content and isolate struc-
ture as the cause. Finally, we translate the mechanism into two applications, CascadeFlow Pruning
and CascadeFormer, that improve efficiency at fixed training cost.

4.1 SETUP

Models and architectures We evaluate three residual families. For language modeling we train a
sixteen layer, approximately 1.2B parameter, Llama base Transformer (Touvron et al., 2023) referred
to as Vanilla and a LayerSkip variant (Elhoushi et al., 2024). For vision we train a ResNet-50 (He
et al., 2016b). To encode the GFA prior we modify the Vanilla architecture to create CascadeFormer
which tapers width with depth to align capacity with the decay in compositional gradient diversity.
All models are trained from scratch.

Datasets and tasks Language models are trained on a seven billion token subset of Dolma (Sol-
daini et al., 2024) for next token prediction. ResNet-50 is trained on ImageNet-1K (Deng et al.,
2009). Training hyperparameters and optimizer settings are in Appendix A. For our primary ar-
chitectural comparison, we train the proposed CascadeFormerA2 , the full baseline, and a 15-layer
Baseline, using three different random seeds. In contrast, all other models mentioned in our analysis
(16-layer Vanilla, LayerSkip, ResNet-50) were initialized with a single seeds.

4.2 QUANTIFYING GRADIENT FLOW AND FUNCTIONAL IMPORTANCE

To empirically test our hypothesis, we require metrics that can directly link training dynamics with
the final functional hierarchy of the model.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layer Index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

R
el

at
iv

e
L

2
G

ra
d

ie
n
t

N
or

m

Theoretical (Vanilla)

Theoretical (Deep Supervision)

Vanilla Transformer

LayerSkip Transformer

ResNet-50

Figure 3: Gradient flow is inherently front loaded in deep residual architectures. The average
L2 gradient norm per layer in a Vanilla Transformer follows a linear decay, closely tracking its
theoretical fan-in (black, dashed). In contrast, LayerSkip’s deep supervision mechanism induces a
quadratic decay, a behavior accurately modeled by its own theoretical curve (gray, dotted). ResNet-
50 also exhibits a characteristic front-loaded decay, confirming that gradient distribution is a direct.

Accumulated Gradient Share (ḡi). To capture a layer’s overall contribution during training, we
accumulate the L2 norm of the gradients with respect to its parameters, θi, over T training steps.
This accumulated value is then normalized by the total sum from all N layers to yield the relative
gradient share, ḡi:

ḡi =

∑T
t=1∥∇θiLt∥2∑N

j=1

∑T
t=1∥∇θjLt∥2

. (2)

This metric serves as a direct, data-driven proxy for the structural information flow predicted by
GFA.

Functional Importance (∆Mi). We quantify a layer’s functional importance by measuring the
performance degradation when its contribution is removed. This is achieved by ablating layer i,
bypassing its computational block while preserving the residual path to the subsequent layer. The
functional importance, ∆Mi is the absolute degradation in the task metric M resulting from this
ablation. For language models, this is the increase in perplexity (∆PPL), and for vision models, the
change in top-1 accuracy (∆Acc). A larger ∆Mi signifies greater functional importance.

4.3 CORRELATIONAL EVIDENCE ACROSS ARCHITECTURES

Structural fan in aligns with gradient flow GFA predicts that the downstream gradient fan in
decreases with depth, inducing a front loaded gradient distribution. Figure 3 illustrates this empirical
pattern across three architectures alongside their theoretical fan in decay. For the vanilla network,
this decay is linear, while for LayerSkip it is quadratic. We observe that the theoretical fan in and
the empirical gradient norm ḡi share the same monotonic ordering. Complete derivations and path
counts are provided in Appendix B.1.

Gradient flow forecasts the functional hierarchy We correlate each layer’s ḡi with its ablation
based importance ∆Mi. Figure 4 shows a strong positive Spearman correlation for the Vanilla
Transformer with ρ = 0.62 and p = 0.02 and for ResNet-50 with ρ = 0.83 and p < 0.01. The
relationship tightens in LayerSkip with ρ = 0.99 and p < 0.01 where supervision accentuates early
layer fan in. This links the structural gradient skew during training to the final functional hierarchy,
establishing gradient as a reliable proxy for functional importance.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.04 0.05 0.06 0.07 0.08

Avg. Relative Gradient Norm

0

2

4

6

8

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

)

ρ = 0.62
p = 0.02

(a) Vanilla Transformer

0.00 0.05 0.10 0.15 0.20

Avg. Relative Gradient Norm

0

25

50

75

100

125

150

175

200

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

)

ρ = 0.99
p < 0.01

(b) LayerSkip Transformer

0.05 0.06 0.07 0.08

Avg. Relative Gradient Norm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

)

ρ = 0.83
p < 0.01

(c) ResNet-50

Figure 4: Training gradient flow predicts final layer importance. The accumulated gradient
share ḡi during training shows a strong Spearman correlation with post-hoc functional importance
∆Mi. The correlation is significant in the Vanilla Transformer with ρ = 0.62 and in ResNet-50
with ρ = 0.83, and is near perfect in LayerSkip with ρ = 0.99.

4.4 CAUSAL INTERVENTIONS ISOLATE STRUCTURE AS THE BOTTLENECK

Correlation does not imply causation. To disentangle the roles of gradient magnitude and structure,
we conduct two interventions designed to directly test the GFA hypothesis.

Equalizing magnitude does not restore importance We first test the alternative hypothesis: that
small gradient magnitude is the direct cause of redundancy. During training, we insert a hook that
rescales per-layer gradients to have an equal L2 norm. To accommodate this artificial amplification,
we proportionally scaled the gradient clip norm, deriving the factor from the ratio of maximum
observed norms between the hooked and standard models, details shown in Appendix A.2.2. If
magnitude were the causal factor, this should rescue the importance of later layers. The result,
shown in Figure 5 (top), is the opposite. This logarithmic comparison against a vanilla model, with
an inset detailing the validation gradient distribution not only fails to restore importance but actively
harms the contribution of deep layers. Amplifying an information-poor signal does not make it
complex; it merely makes the simple signal louder, potentially destabilizing learning.

Increasing path counts restores importance Next, we directly test the structural component of
GFA against a vanilla 8 layer reference. We engineer an increase in the downstream gradient paths
for deep layers by repeating the final four layers of an 8-layer model with shared parameters, which
increases a layer’s virtual depth and its gradient fan-in without adding parameters. Specifically, we
repeat the last four layers with a pattern of two, three, three, and four repeats respectively, a pattern
designed to increase the fan-in with depth. This modification dramatically alters the structural fan-in
for the deepest layers (detailed in Appx. B.1), for instance changing the counts for layers 5 through
8 from [5, 4, 3, 2] to [27, 33, 24, 20]. GFA predicts these layers should become more functionally
important.

Figure 5 (bottom) validates this prediction. The inset shows that gradients in the repeated deep
layers increase substantially, even exceeding those of early layers. Consequently, their functional
importance rises, diminishing the relative contribution of the initial four layers. These modified
deep layers, now recipients of a more compositionally complex gradient, become more critical than
the untouched shallow layers. Together, these interventions provide strong causal evidence that
functional hierarchy is governed by the structural flow of information, for which gradient magnitude
is a correlated proxy

4.5 APPLICATIONS INFORMED BY GFA

Having validated GFA as the causal mechanism, we now demonstrate its practical utility for model
efficiency through a superior pruning method and a novel, GFA-aware architecture.

CascadeFlow Pruning uses training dynamics We prune layers using the accumulated gradient
share, ḡi, gathered directly during training. Our method, CascadeFlow Pruning (CFP), uses the L2

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Layer Index

10−1

100

101

102

103

104

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

) Forcing Gradient Magnitude Fails to Increase Layer Importance

0 10
Layer

0.0

0.1

R
el

.
N

or
m

Training Gradient Norms Vanilla

With Gradient Hooks

0 1 2 3 4 5 6 7

Layer Index

101

102

103

104

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

) Promoting Informative Gradient Flow Increases Layer Importance

0 5
Layer

0.0

0.2

R
el

.
N

o
rm

Training Gradient Norms Vanilla

With Repeated Layers

Figure 5: Causal tests confirm that gradient structure dictates importance. Top equalizing L2
gradient norms across layers does not rescue and reduces deep layer importance. Bottom increasing
downstream path counts by parameter shared repetition restores and elevates late layer importance.
The logarithmic y-axis is necessary to visualize the wide dynamic range. The crucial observation is
how each layer’s importance changes relative to itso baseline.

norm of these gradients (Equation 2) as a proxy for a layer’s functional importance, ranking them
accordingly. This approach eliminates the need for expensive post hoc computation required by
alternative heuristics like hidden state similarity Gromov et al. (2025), Taylor based methods Ma
et al. (2023), or parameter magnitude pruning Han et al. (2015). CFP then removes the lowest
ranked layers, irrespective of their original consecutive block structure.

EVALUATION We evaluated pruning strategies on the Dolma 2.6M token holdout set and evalua-
tion set of HellaSwag benchmark. We report perplexity (PPL) on Dolma. On HellaSwag, we adopt
the zero-shot protocol from OLMo OLMo et al. (2024), ranking candidates by their relative condi-
tional log-probability. While this zero-shot approach does not measure post-fine-tuning adaptability,
it provides a direct and efficient benchmark for quantifying performance degradation as a function
of pruning.

Table 1 summarizes the results. Similarity method becomes be competitive only under the most
aggressive pruning, but typically at a higher perplexity cost. In contrast, Taylor and Magnitude
methods are unstable. Their reliance on a per-layer forward pass yields importance rankings that
fluctuate across seeds, leading to misrankings and sharp performance degradation. Our CFP avoids
this sensitivity, producing stable rankings and a more graceful degradation profile

IMPLEMENTATION VIA LAYER PASSTHROUGH Pruning a Transformer layer in our framework
requires no architectural modification: we implement it by a simple passthrough in the forward pass
since skipped layers are simply treated as identity functions. Specifically, during inference the model
iterates over the stack of decoder layers. For each index i, if i belongs to the pruned set Iprune, we
skip the forward call to the corresponding block and directly forward the input hidden state to the
next layer:

hi+1 = hi, if i ∈ Iprune,

This design choice allows CFP to be integrated into existing Transformer codebases (e.g., LLaMA-
style decoders) with only a few lines of modification.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

k Metric CFP (Ours) Sim Taylor Magnitude

Baseline (k=0) PPL=17.94 ± 0.00, Acc.=0.39 ± 0.00

1 PPL ↓ 19.848 ± 0.082 21.945 ± 0.462 24.700 ± 0.559 24.361 ± 2.357
Acc. ↑ 0.381 ± 0.002 0.381 ± 0.002 0.384 ± 0.001 0.362 ± 0.013

2 PPL ↓ 23.226 ± 0.106 28.480 ± 0.331 127.744 ± 15.148 41.875 ± 4.822
Acc. ↑ 0.372 ± 0.001 0.366 ± 0.001 0.369 ± 0.003 0.325 ± 0.006

4 PPL ↓ 59.790 ± 1.840 59.790 ± 1.840 4715.072 ± 4166.454 332.174 ± 216.582
Acc. ↑ 0.334 ± 0.004 0.334 ± 0.004 0.336 ± 0.002 0.285 ± 0.010

6 PPL ↓ 167.006 ± 9.205 180.862 ± 27.304 1193.159 ± 547.709 3099.530 ± 1708.037
Acc. ↑ 0.299 ± 0.004 0.304 ± 0.003 0.305 ± 0.002 0.269 ± 0.002

8 PPL ↓ 911.748 ± 55.001 911.748 ± 55.001 1403.434 ± 434.894 1237.212 ± 132.241
Acc. ↑ 0.285 ± 0.001 0.285 ± 0.001 0.278 ± 0.006 0.264 ± 0.001

Table 1: CFP demonstrates superior performance and stability under aggressive layer pruning.
We evaluate CFP (Ours) against standard pruning heuristics by removing an increasing number
of layers (k). CFP consistently achieves the lowest perplexity (PPL) and maintains competitive
downstream accuracy (Acc), particularly at higher sparsities.

CascadeFormer. Our second application internalizes the GFA principle directly into the model’s
architecture. Because compositional gradient diversity decays with depth, uniform capacity alloca-
tion is inherently inefficient. We therefore designed the CascadeFormer, an architecture that tapers
model width to align its capacity with this information flow. For a model with N layers, indexed
l ∈ {0, . . . , N − 1}, we apply tapering rules to either the attention, FFN sublayers or both.

ATTENTION TAPERING. We reduce the number of attention heads, and thus the attention dimen-
sion dattn(l), in discrete steps governed by, dattn(l) = dattn,0 − Sd · ⌊l/Fd⌋, where dattn,0 is the initial
dimension, Sd is the dimensional reduction per step, and Fd controls the frequency of the reduction.

FFN TAPERING. We reduce the FFN’s inner dimension dffn(l) linearly with depth according to
the rule, dffn(l) = dffn,0 − Sf · l, where dffn,0 is the initial dimension and Sf controls the steepness
of the linear taper.

VARIANT CONFIGURATIONS. We define six CascadeFormer variants based on these rules, cate-
gorized by low (subscript 1) and high (subscript 2) tapering intensity. The specific hyperparameters
for each variant are detailed in Table 4. The combined variants (C) apply both attention and FFN
tapering schemes simultaneously. To ensure a fair comparison, we also trained six baseline models
whose computational cost was scaled linearly by reducing their layer count.

Table 2 quantifies the performance and efficiency of our GFA-informed architectures. Our
CascadeFormer-A2 was designed with a training FLOP budget equivalent to the Vanilla-15L base-
line. It achieves comparable perplexity to the baseline (17.84±0.02 vs 17.84±0.03) while reducing
inference latency by 8.6% and increasing throughput by 9.4%.

To further understand the design space, we explored additional variants applying the tapering prin-
ciple to FFN layers (F1, F2) and in combination (C1, C2). While all GFA-informed models are
competitive, the superior performance of the attention-tapered variants (A1, A2) suggests that the
primary structural bottleneck identified by GFA resides within the self-attention mechanism, mak-
ing it the most effective target for tapering.

Latency Measurement Protocol. All inference metrics were measured on a single A100 GPU.
To ensure fair comparison, we used a consistent batch size, context length, and generation
length for all models. We leveraged torch.compile with the mode=’max-autotune’ and
fullgraph=True options to minimizing implementation-specific overhead and accurately re-
flecting the inherent hardware-friendliness of each architecture. We report the median of 100 timed
runs after a warmup phase of 10 steps to measure accurate execution time.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Core Metrics Hardware Efficiency

Model PPL
↓

Params
(B)

Util.
(TFLOP/s) ↑

Cost
(TFLOPs)

Latency
(ms) ↓

Throughput
(tok/s) ↑

Uniform Baselines
Vanilla-16L 17.69 1.28 53.87 ± 0.30 4.82 89.47 ± 0.50 22,890 ± 129
Vanilla-15L 17.84 1.21 54.23 ± 0.34 4.54 83.81 ± 0.53 24,439 ± 153
Vanilla-14L 18.00 1.15 54.68 ± 0.38 4.27 78.09 ± 0.54 26,227 ± 181
Vanilla-13L 18.17 1.08 55.18 ± 0.39 4.00 72.40 ± 0.52 28,287 ± 201
Vanilla-12L 18.82 1.01 55.74 ± 0.34 3.72 66.75 ± 0.40 30,683 ± 186

CascadeFormer (Ours)
CascadeFormer-A1 17.79 1.25 55.39 ± 0.37 4.72 85.17 ± 0.57 24,048 ± 161
CascadeFormer-A2 17.84 1.22 59.77 ± 0.38 4.58 76.62 ± 0.48 26,731 ± 169

CascadeFormer-F1 17.88 1.19 51.16 ± 0.27 4.43 86.65 ± 0.47 23,635 ± 127
CascadeFormer-F2 18.10 1.09 49.92 ± 0.24 4.05 81.06 ± 0.39 25,266 ± 123

CascadeFormer-C1 17.94 1.16 53.00 ± 0.35 4.33 81.71 ± 0.54 25,066 ± 164
CascadeFormer-C2 18.30 1.03 53.88 ± 0.49 3.81 70.65 ± 0.66 28,990 ± 266

Table 2: CascadeFormer produce a superior balance of performance and hardware efficiency.
Our CascadeFormer-A2 model, which tapers its attention mechanism according to GFA principles,
outperforms its Vanilla-15L baseline that was trained with an equivalent computational budget. It
achieves similar perplexity to baseline but is substantially faster, reducing inference latency by 8.6%
while increasing throughput by 9.4%.

5 DISCUSSION AND CONCLUSION

This work reframes layer redundancy in residual networks not as a failure of optimization, but
as a predictable outcome of their structure. We identified and causally validated Gradient Fan-in
Asymmetry as the root mechanism. This insight is not merely diagnostic; it is generative. It led
directly to CascadeFlow Pruning, a more effective pruning method, and CascadeFormer, an efficient
architecture that aligns its capacity with the asymmetric flow of information.

Design Tension and Future Directions. Our findings present a fundamental design tension. One
path is to embrace the asymmetry, as CascadeFormer does, leading to intentionally heterogeneous
architectures that allocate resources where learning dynamics can best use them. A second path is to
counteract GFA, aiming to force uniform functional contribution. This second path is complicated
by evidence from architectures like LayerSkip. By imposing deep supervision, these models cre-
ate an extreme gradient hierarchy that forces shallow layers to become functionally self-sufficient.
This serves as an unintentional proof of concept: shallow layers possess a vast latent capacity that
standard end-to-end training, governed by a gentler GFA decay, fails to fully exploit. This suggests
the true limitation may not be layer capacity but the training dynamic itself. Such a pursuit would
require new architectural components or training schemes that can inject compositional diversity
into deep layer gradients, perhaps through novel long range information pathways or regulariza-
tion techniques. Whether a uniform contribution is achievable, or even desirable, is a critical open
question.

LIMITATIONS.

Our analysis frames Gradient Fan-in Asymmetry in terms of path quantity, using fan-in as a proxy for
compositional diversity. A crucial next step is to analyze the quality of these gradient signals, their
effective rank, orthogonality, and information content, which may provide a more complete picture.
Our empirical validation is conducted on models up to 1.2B parameters; while the GFA principle is
architectural, its precise dynamics at the 100B+ parameter scale remain an open empirical question.
Finally, our proposed pruning method, CFP, requires access to training-time gradients, making it
inapplicable for post-hoc pruning of pre-trained, closed-source models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide comprehensive details on our methodol-
ogy, data, and computational environment. Code: The complete codebase to reproduce all experi-
ments, including model training, evaluation, and figure generation, will be made publicly available
on GitHub upon publication. Environment: The hardware and software stacks for training (TPU
v4) and evaluation (NVIDIA A100/A6000), including all library versions, are documented in Ap-
pendix A.1. Data: All experiments utilize public datasets. Language models were trained on the
publicly available pre-tokenized Dolma dataset from on Huggingface. Vision models were trained
on the standard ILSVRC 2012 ImageNet-1k dataset. Methodology: Full architectural specifica-
tions for all models, including our novel CascadeFormer, are in Appendix A.2 and A.2.1. The
precise methodology for our causal intervention experiment, which demonstrates that amplifying
late-layer gradients is insufficient for improving their importance, is detailed in Appendix A.2.2.
Hyperparameters: All training and evaluation hyperparameters are enumerated in Appendix A.3.
All experiments can be reproduced with fixed random seed of 324709 for model initialization and
data loading.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learn-
ers. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020. URL https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. LoRAShear: Effi-
cient Large Language Model Structured Pruning and Knowledge Recovery, October 2023. URL
http://arxiv.org/abs/2310.18356. arXiv:2310.18356 [cs].

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
Redundant Layers to Compress Large Language Models, January 2025. URL http://arxiv.
org/abs/2403.19135. arXiv:2403.19135 [cs].

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 248–255, June 2009. doi: 10.1109/CVPR.2009.5206848. URL https:
//ieeexplore.ieee.org/document/5206848. ISSN: 1063-6919.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, and
Carole-Jean Wu. LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12622–12642,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.681. URL https://aclanthology.org/2024.acl-long.681/.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SylO2yStDr.

Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can Be Accu-
rately Pruned in One-Shot, March 2023. URL http://arxiv.org/abs/2301.00774.
arXiv:2301.00774 [cs].

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The
Unreasonable Ineffectiveness of the Deeper Layers. October 2024. URL https://
openreview.net/forum.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
Unreasonable Ineffectiveness of the Deeper Layers, March 2025. URL http://arxiv.org/
abs/2403.17887. arXiv:2403.17887 [cs].

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights and Connections for
Efficient Neural Networks, October 2015. URL http://arxiv.org/abs/1506.02626.
arXiv:1506.02626 [cs].

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neu-
ral Networks with Pruning, Trained Quantization and Huffman Coding, February 2016. URL
http://arxiv.org/abs/1510.00149. arXiv:1510.00149 [cs].

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks, 2016a. URL https://arxiv.org/abs/1603.05027.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, Las Vegas, NV, USA, June 2016b. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/
CVPR.2016.90. URL http://ieeexplore.ieee.org/document/7780459/.

11

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2310.18356
http://arxiv.org/abs/2403.19135
http://arxiv.org/abs/2403.19135
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://aclanthology.org/2024.acl-long.681/
https://openreview.net/forum?id=SylO2yStDr
http://arxiv.org/abs/2301.00774
https://openreview.net/forum
https://openreview.net/forum
http://arxiv.org/abs/2403.17887
http://arxiv.org/abs/2403.17887
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1603.05027
http://ieeexplore.ieee.org/document/7780459/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What Matters in Transformers? Not
All Attention is Needed, October 2024. URL http://arxiv.org/abs/2406.15786.
arXiv:2406.15786 [cs].

Jiachen Jiang, Jinxin Zhou, and Zhihui Zhu. Tracing representation progression: Analyzing and
enhancing layer-wise similarity. In The Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/forum?id=vVxeFSR4fU.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened LLaMA: Depth Pruning for Large Language Models with Com-
parison of Retraining Methods, June 2024. URL http://arxiv.org/abs/2402.02834.
arXiv:2402.02834 [cs].

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot Network Pruning
based on Connection Sensitivity, February 2019. URL http://arxiv.org/abs/1810.
02340. arXiv:1810.02340 [cs].

Pengxiang Li, Lu Yin, and Shiwei Liu. Mix-LN: Unleashing the Power of Deeper Layers by Com-
bining Pre-LN and Post-LN. October 2024. URL https://openreview.net/forum?
id=BChpQU64RG.

Pengxiang Li, Lu Yin, and Shiwei Liu. Mix-LN: Unleashing the Power of Deeper Layers by Com-
bining Pre-LN and Post-LN, August 2025. URL http://arxiv.org/abs/2412.13795.
arXiv:2412.13795 [cs].

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-distilling
bert with adaptive inference time, 2020. URL https://arxiv.org/abs/2004.02178.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. September 2018. URL
https://openreview.net/forum?id=Bkg6RiCqY7.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the Structural Pruning of
Large Language Models, September 2023. URL http://arxiv.org/abs/2305.11627.
arXiv:2305.11627 [cs].

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
weipeng chen. ShortGPT: Layers in large language models are more redundant than you expect,
2025. URL https://openreview.net/forum?id=JMNht3SmcG.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference, June 2017. URL http://arxiv.org/
abs/1611.06440. arXiv:1611.06440 [cs].

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.00656.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Lo-
calization. International Journal of Computer Vision, 128(2):336–359, February 2020. ISSN
0920-5691, 1573-1405. doi: 10.1007/s11263-019-01228-7. URL http://arxiv.org/
abs/1610.02391. arXiv:1610.02391 [cs].

Sam Shleifer, Jason Weston, and Myle Ott. NormFormer: Improved Transformer Pretraining
with Extra Normalization, November 2021. URL http://arxiv.org/abs/2110.09456.
arXiv:2110.09456 [cs].

12

http://arxiv.org/abs/2406.15786
https://openreview.net/forum?id=vVxeFSR4fU
http://arxiv.org/abs/2402.02834
http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1810.02340
https://openreview.net/forum?id=BChpQU64RG
https://openreview.net/forum?id=BChpQU64RG
http://arxiv.org/abs/2412.13795
https://arxiv.org/abs/2004.02178
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2305.11627
https://openreview.net/forum?id=JMNht3SmcG
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440
https://arxiv.org/abs/2501.00656
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/2110.09456


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. SmoothGrad:
removing noise by adding noise, June 2017. URL http://arxiv.org/abs/1706.03825.
arXiv:1706.03825 [cs].

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretrain-
ing Research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.840. URL https://aclanthology.org/2024.
acl-long.840/.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. SLEB:
Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A Simple and Effective Pruning Approach
for Large Language Models, May 2024. URL http://arxiv.org/abs/2306.11695.
arXiv:2306.11695 [cs].

Wenfang Sun, Xinyuan Song, Pengxiang Li, Lu Yin, Yefeng Zheng, and Shiwei Liu. The Curse of
Depth in Large Language Models, February 2025. URL http://arxiv.org/abs/2502.
05795. arXiv:2502.05795 [cs].

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. B2T Connection: Serving Stability
and Performance in Deep Transformers, May 2023. URL http://arxiv.org/abs/2206.
00330. arXiv:2206.00330 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Founda-
tion Language Models, February 2023. URL http://arxiv.org/abs/2302.13971.
arXiv:2302.13971 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Andreas Veit, Michael Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks, 2016. URL https://arxiv.org/abs/1605.06431.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. DeepNet:
Scaling Transformers to 1,000 Layers, March 2022. URL http://arxiv.org/abs/2203.
00555. arXiv:2203.00555 [cs].

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating Lan-
guage Model Pre-training via Structured Pruning, April 2024. URL http://arxiv.org/
abs/2310.06694. arXiv:2310.06694 [cs].

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference, 2020. URL https://arxiv.org/abs/2004.12993.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On Layer Normalization in the Transformer
Architecture. In Proceedings of the 37th International Conference on Machine Learning,
pp. 10524–10533. PMLR, November 2020. URL https://proceedings.mlr.press/
v119/xiong20b.html. ISSN: 2640-3498.

13

http://arxiv.org/abs/1706.03825
https://aclanthology.org/2024.acl-long.840/
https://aclanthology.org/2024.acl-long.840/
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2502.05795
http://arxiv.org/abs/2502.05795
http://arxiv.org/abs/2206.00330
http://arxiv.org/abs/2206.00330
http://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1605.06431
http://arxiv.org/abs/2203.00555
http://arxiv.org/abs/2203.00555
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2004.12993
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang, Rahul Joshi,
Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruoming Pang, Noam Shazeer,
Shibo Wang, Tao Wang, Yonghui Wu, and Zhifeng Chen. GSPMD: General and Scalable Par-
allelization for ML Computation Graphs, December 2021. URL http://arxiv.org/abs/
2105.04663. arXiv:2105.04663 [cs].

Yifei Yang, Zouying Cao, and Hai Zhao. LaCo: Large Language Model Pruning via Layer Collapse,
October 2024. URL http://arxiv.org/abs/2402.11187. arXiv:2402.11187 [cs].

Ziqing Yang, Yiming Cui, Xin Yao, and Shijin Wang. Gradient-based intra-attention pruning on
pre-trained language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 2775–2790, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.156. URL https://aclanthology.org/
2023.acl-long.156/.

Anhao Zhao, Fanghua Ye, Yingqi Fan, Junlong Tong, Zhiwei Fei, Hui Su, and Xiaoyu Shen.
SkipGPT: Dynamic Layer Pruning Reinvented with Token Awareness and Module Decoupling,
June 2025. URL http://arxiv.org/abs/2506.04179. arXiv:2506.04179 [cs].

14

http://arxiv.org/abs/2105.04663
http://arxiv.org/abs/2105.04663
http://arxiv.org/abs/2402.11187
https://aclanthology.org/2023.acl-long.156/
https://aclanthology.org/2023.acl-long.156/
http://arxiv.org/abs/2506.04179


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

In adherence to ICLR guidelines, we disclose the use of Large Language Models (LLMs) as as-
sistive tools in the preparation of this manuscript. Our use was focused on two areas: manuscript
preparation and literature discovery.

Manuscript Preparation We utilized an LLM for copy-editing tasks, including correcting gram-
mar, refining prose for clarity, and ensuring stylistic consistency. The core intellectual contributions,
including the research questions, methodology, analysis, and conclusions, were conceived and for-
mulated exclusively by the authors.

Literature Discovery An LLM was employed as a preliminary tool to broaden our literature
search. Its function was to identify potentially relevant papers and suggest alternative search key-
words based on our initial research scope. Every paper cited in this work was subsequently read,
critically evaluated, and integrated into our analysis by the authors to confirm its relevance and
correctness.

A EXPERIMENT DETAILS

This section provides comprehensive details on our experimental setup to ensure full reproducibility.
We detail the model architectures, training hyperparameters, and the specific implementation of our
proposed CascadeFormer variants as well as layer-wise pruning heuristic details.

A.1 COMPUTATIONAL RESOURCES AND SOFTWARE

A.1.1 TRAINING ENVIRONMENT

All model training was conducted on Google Cloud Platform (GCP) using a 128-core TPU v4 Pod
slice. Our training stack utilized PyTorch 2.7.0 with the corresponding torch xla==2.7.0
library.

To distribute training, we employed the GSPMD (Xu et al. (2021)) partitioner. We utilized a 1D
sharding strategy where model parameters, gradients, and optimizer states were fully sharded across
the data-parallel dimension. This approach efficiently managed memory while scaling computation
across all 128 TPU cores. All training was performed using a float32 data type.

A.1.2 EVALUATION ENVIRONMENT

All evaluations were performed on a single GPU, using either an NVIDIA A100-80GB or an
NVIDIA A6000-48GB. The evaluation framework was PyTorch 2.7.0. All experiments were
conducted in float32 precision to mititgate any possibility of precision error.

A.1.3 IMPLEMENTATION DETAILS

Our model architecture is a modification of the Llama implementation from the Hugging Face
transformers==4.51.3 library. This same codebase served as the basis for our layer-dropping
ablation studies. All experimental results were logged using the Weights & Biases (wandb) plat-
form, and figures included in this paper were generated with matplotlib.

A.2 MODEL CONFIGURATIONS

The core of our investigation involves three distinct architectures to test the generalizability of our
claims. Their primary configurations are summarized in Table 3.

A.2.1 CASCADEFORMER ARCHITECTURE DETAILS

The CascadeFormer internalizes the GFA principle into its structure. While standard Transformers
allocate uniform capacity to all layers, our architecture recognizes that compositional information

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Parameter Vanilla Transformer LayerSkip Transformer ResNet-50
Base Architecture Llama-3.2-1B Llama-3.2-1B ResNet family
Number of Layers/Blocks 16 16 16 (Blocks)
Hidden Dimension (dmodel) 2048 2048 —
FFN Inner Dimension (dffn) 8192 8192 —
Number of Attention Heads 32 32 —
Vocabulary Size 50,280 50,280 —
Block Size 2048 2048 —
Classes — — 1000

Table 3: Architectural details of the primary models used in our experiments. This table outlines
the core parameters for the three main architectures analyzed to demonstrate the generality of the
Gradient Fan-in Asymmetry phenomenon.

flows in a cascade, reducing with depth. The CascadeFormer is designed in harmony with this flow,
tapering its width to match computational capacity to the signal’s richness. This is achieved by
progressively reducing the dimensions of the attention and feed-forward network (FFN) sub-layers.
Based on a 16-layer Transformer baseline (l ∈ {0, 1, . . . , 15}), we define a set of variants with
modulated tapering intensity to explore this new design space.

Variant Name Tapering Target(s) Intensity Governing Parameters
CascadeFormer-A1 Attention Dimension Low Fd = 4
CascadeFormer-A2 Attention Dimension High Fd = 2

CascadeFormer-F1 FFN Dimension Low Sf = 128
CascadeFormer-F2 FFN Dimension High Sf = 256

CascadeFormer-C1 Attention & FFN Low Fd = 4, Sf = 128
CascadeFormer-C2 Attention & FFN High Fd = 2, Sf = 256

Table 4: Hyperparameter configurations for the CascadeFormer variants. The parameters Fd

and Sf control the tapering intensity for the attention and FFN dimensions, respectively. Lower Fd

and higher Sf values correspond to more aggressive capacity reduction.

A.2.2 DYNAMIC GRADIENT SCALING AS A CAUSAL INTERVENTION

Our intervention mechanism operates by dynamically rescaling gradients on a layer-wise basis dur-
ing training. This ensures that the gradient magnitudes are harmonized across all layers before the
optimizer step. The procedure is executed as follows:

1. Layer-wise Norm Computation: For each layer i in the network, we aggregate all pa-
rameter gradients associated with it. We then compute the Euclidean (L2) norm of these
concatenated gradients, denoted as ni.

2. Target Norm Identification: We identify the maximum gradient norm across all layers,
ntarget = maxi(ni). This value serves as the reference magnitude for scaling.

3. Scaling Factor Derivation: A scaling factor λi is calculated for each layer by dividing the
target norm by the layer’s individual norm: λi = ntarget/ni. To handle layers with zero
gradients and prevent division-by-zero, λi is set to 1.0 if ni = 0.

4. In-place Gradient Application: Finally, every parameter gradient within a given layer i
is multiplied in-place by its corresponding scaling factor λi. This operation normalizes the
influence of each layer’s gradient relative to the layer with the strongest signal.

A.3 TRAINING HYPERPARAMETERS

All models were trained using the hyperparameters detailed in Table 5, tailored to their respective
domains to ensure robust and competitive baseline performance.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hyperparameter Transformer models ResNet-50
Dataset pretokenized-dolma ImageNet-1k
AdamW β1, β2 (0.9, 0.95) (0.9, 0.999)
Weight Decay 0.1 0.05
Learning Rate Schedule Cosine w/ Warmup Cosine w/ Warmup
Peak Learning Rate 2e-4 5e-4
Warmup Steps 2000 5 Epochs
Batch Size 64 512
Epochs 1 30
Gradient Clipping Norm 1.0 -

Table 5: Training hyperparameters for all experiments. This table provides the complete set of
hyperparameters used for training the language and vision models, ensuring full reproducibility of
our results.

A.4 PRUNING HEURISTIC DETAILS

To provide full transparency for the pruning comparison presented in Table 1.

Magnitude-based Heuristic Han et al. (2015) Classical magnitude pruning removes small-
magnitude weights and is a strong baseline for sparsification. In the block-level variant used here,
a block’s score is the aggregate of absolute parameter values across its trainable weights; for pro-
jection matrices, values are first reduced along the input dimension to obtain per-output scores, then
aggregated within the block. Token embeddings and the LM head are excluded, and the final nor-
malization is protected. Blocks are ranked by increasing score, and the k lowest are pruned.

Taylor-based Heuristic Ma et al. (2023) The first-order criterion estimates loss increase from
removing a block by accumulating, on a small calibration set, the absolute elementwise product of
each parameter and its gradient. Scores are summed across batches; for projection matrices, per-
output reduction precedes block-level aggregation. Token embeddings are excluded and the final
normalization is protected. Blocks are ranked by increasing score, and the k lowest are pruned.

Similarity-based Heuristic. Gromov et al. (2025) This heuristic, based on the representational
similarity analysis which computes the angular distance between adjacent layer representations.
Block of k layers whose removal yield the smallest change are considered less critical and are
pruned.

CFP (CascadeFlow Pruning) Heuristic. In contrast, our proposed CFP method prunes layers
with the lowest accumulated L2 gradient norms from training.

B ADDITIONAL RESULTS AND ANALYSES

This section provides supplementary results that further validate and expand upon the findings pre-
sented in the main paper. We include additional layer importance profiles, detailed layer-wise trend
plots, and a representational similarity analysis.

B.1 GRADIENT FAN-IN DERIVATIONS

Definition and Counting Rule. We define gradient fan-in as the number of downstream transfor-
mation edges aggregated at a layer’s input, xl. This first-order proxy, counting the identity path, each
downstream block’s Jacobian branch, and the final head, captures the structural asymmetry driving
GFA. It is a count of contributing channels, not a combinatorial path enumeration. For a standard
N -block stack with one head, the fan-in at layer l is:

ϕl = (N − l) + 1, (functional blocks + identity path) (3)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Fan-In Under Deep Supervision. Architectures with deep supervision introduce an auxiliary loss
head Lk at the output of each block k, with the total loss being Ltotal = LN +

∑N−1
k=0 αkLk. The

gradient at the input to block l, g′l, now aggregates signals from all downstream loss functions:

g′l =
∂Ltotal

∂xl
=

∂LN

∂xl︸ ︷︷ ︸
Original Hierarchy

+

N−1∑
k=l

αk
∂Lk

∂xl︸︷︷︸
Auxiliary Hierarchies

. (4)

Each auxiliary loss Lk (sourced at xk+1) effectively creates a new residual sub-network for its
gradient to traverse back to xl. The fan-in from a single auxiliary loss at layer k to layer l is
analogous to a standard network of length (k + 1 − l) and is thus (k − l) + 1 + 1 = (k − l + 2).
Let’s assume for simplicity it is attached at xk The fan-in is therefore (k − l) + 1. The total fan-in
ϕ′
l is the sum of the fan-in from the original path and all new auxiliary paths originating from layers

l through N − 1:

ϕ′
l = ϕl +

N−1∑
k=l

((k − l) + 1), (5)

where ϕl = (N − l) + 1 is the fan-in from the original network head. Substituting ϕl and letting
j = k − l, the summation becomes:

ϕ′
l = ((N − l) + 1) +

N−1−l∑
j=0

(j + 1). (6)

Solving this arithmetic series and combining terms yields:

ϕ′
l = ((N − l) + 1) +

(N − l)(N − l + 1)

2
=

((N − l) + 1)((N − l) + 2)

2
. (7)

The result is the (N − l+1)-th triangular number. The presence of the (N − l)2 term demonstrates
that deep supervision transforms the linear fan-in disparity into a quadratic one, amplifying GFA.

Fan-In with Virtual Depth. Consider 8 physical blocks unrolled into Nvirt=16 virtual positions
with shared parameters: L1–L4 (1×), L5 (2×), L6 (3×), L7 (3×), L8 (5×). Let Vi be the block at
virtual position i (i=1, . . . , 16). The fan-in for a physical layer Lp sums over its virtual instances:

Consider 8 physical blocks unrolled into Nvirt=16 virtual positions with shared parameters

FanIn(Lp) =
∑

i:Vi=Lp

(
Nvirt − i+ 2

)
. (8)

This yields the following Standard → Virtual counts: L1: 9→18, L2: 8→17, L3: 7→16, L4: 6→15,
L5: 5→27, L6: 4→33, L7: 3→24, L8: 2→20.

B.2 LAYER-WISE GRADIENT AND IMPORTANCE TRENDS

The following figures provide a detailed visualization of the data from Figure 4.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12

Layer Index

0

2

4

6

8
F

u
n

ct
io

n
al

Im
p

or
ta

n
ce

(∆
M

)

Functional Importance (∆M) Gradient Norm

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
el

at
iv

e
L

2
G

ra
d

ie
n
t

N
or

m

Figure 6: Layer-wise comparison for the Vanilla Transformer. This figure details the relation-
ship between relative L2 gradient norm (red, dashed) and functional importance (blue, solid). The
correspondence visually reinforces the correlation (ρ = 0.62) from Figure 4a.

0 2 4 6 8 10 12 14

Layer Index

0

25

50

75

100

125

150

175

200

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

)

Functional Importance (∆M) Gradient Norm

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
R

el
at

iv
e

L
2

G
ra

d
ie

n
t

N
or

m

Figure 7: Layer-wise comparison for the LayerSkip Transformer. This figure details the rela-
tionship between relative L2 gradient norm (red, dashed) and functional importance (blue, solid).
The curves track with remarkable precision, illustrating the near perfect correlation (ρ = 0.99) from
Figure 4b.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14

Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
u

n
ct

io
n

al
Im

p
or

ta
n

ce
(∆
M

)

Functional Importance (∆M) Gradient Norm

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
el

at
iv

e
L

2
G

ra
d

ie
n
t

N
or

m

Figure 8: Layer-wise comparison for ResNet-50. This figure details the relationship between
relative L2 gradient norm (red, dashed) and functional importance (blue, solid). A clear positive
relationship is evident, corroborating the correlation (ρ = 0.83) from Figure 4c.

20


	Introduction
	Related Work
	Gradient Fan-in Asymmetry
	Empirical Validation and Applications
	Setup
	Quantifying Gradient Flow and Functional Importance
	Correlational evidence across architectures
	Causal interventions isolate structure as the bottleneck
	Applications informed by GFA

	Discussion and Conclusion
	Experiment Details
	Computational Resources and Software
	Training Environment
	Evaluation Environment
	Implementation Details

	Model Configurations
	CascadeFormer Architecture Details
	Dynamic Gradient Scaling as a Causal Intervention

	Training Hyperparameters
	Pruning Heuristic Details

	Additional Results and Analyses
	Gradient Fan-In Derivations
	Layer-wise Gradient and Importance Trends


