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ABSTRACT

Deep Transformers are composed of uniformly stacked residual blocks, yet their
deepest layers often add little value. Prevailing explanations attribute this to small
gradients, treating a symptom rather than the cause. We identify Gradient Fan-
in Asymmetry as the structural driver of redundancy. In Pre-LayerNorm residual
stacks, the gradient at a layer is the sum of an identity path and all downstream
functional paths, producing a gradient fan-in that decays linearly with depth (and
quadratically under deep supervision), yielding rich signals early and sparse for
later layers. Across Transformers and ResNets, accumulated training gradients
follow the theoretical fan-in and predict post hoc layer importance. Two causal in-
terventions isolate structure as the bottleneck: equalizing per-layer gradient norms
does not restore late-layer value, whereas increasing downstream path counts via
parameter-shared repetition restores and elevates their impact. Building on this
mechanism, we propose CascadeFlow Pruning, which removes layers using accu-
mulated training gradients and outperforms standard heuristics without expensive
post hoc analysis. We also introduce CascadeFormer, which tapers width with
depth to match the natural information flow, achieving comparable perplexity to a
uniform baseline at the same training budget while reducing latency by 8.6% and
increasing throughput by 9.4%.

1 INTRODUCTION

The uniform scaling of transformer blocks Vaswani et al. (2017), simply repeating identical lay-
ers to create deeper models, has been the driving principle behind the success of Large Language
Models (Radford et al.; Brown et al., 2020; Touvron et al., 2023). However, this architectural ho-
mogeneity masks a significant functional asymmetry. For instance, evaluating a pretrained LLaMA
model on WikiText, deeper layers exhibit high representational similarity, a key indicator for redun-
dancy (Gromov et al., 2024) (Figure 1a). This asymmetry is even more pronounced in architectures
like LayerSkip (Elhoushi et al., 2024), which skips later layers by exiting the network early, reveal-
ing their sharply declining functional contribution (Figure 1b).

The conventional explanation for this phenomenon points to attenuated gradients in deeper layers
Li et al. (2025). This observation, while correct, mistakes a symptom for the cause. We argue the
root issue is not the gradient’s magnitude, but its compositional diversity, a structural bottleneck
we term Gradient Fan-in Asymmetry (GFA). The residual connections (He et al., 2016b) that enable
deep training transform the network into an implicit ensemble of many paths of varying lengths (Veit
et al., 2016), which creates a fundamental imbalance during backpropagation.

In this work, we argue that layer redundancy is a direct consequence of a training dynamic we term
Gradient Fan-in Asymmetry (GFA). This is not an attenuation of mere magnitude, but rather of
compositional diversity. Due to the path ensemble structure, shallow layers receive gradient from all
subsequent functional blocks. This creates a cascade where their updates are compositionally rich,
while the deepest layers, aggregating from few blocks, receive a structurally simple and information-
poor gradient.

We validate the GFA hypothesis and demonstrate its utility through a sequence of empirical ar-
guments. First, we establish a strong correlation between per-layer gradient norms ḡi and even-
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tual functional importance ∆Mi. We then move beyond correlation with two causal interventions:
one ablative, showing that artificially amplifying late-layer gradient magnitude fails to restore their
importance, and one constructive, showing that structurally increasing their path counts via layer
repetition does restore it. These interventions confirm the bottleneck is structural. Finally, we trans-
late this causal insight into two practical applications: CascadeFlow Pruning (CFP), an efficient
method leveraging accumulated training gradients to outperform standard pruning heuristics, and
the CascadeFormer, an architecture that tapers width with depth to align model capacity with the
natural flow of compositional gradient diversity, improving inference efficiency at fixed training
FLOPs.

This work reframes gradient magnitude not as a cause to be fixed, but as a proxy for a structural
information imbalance. Our contributions are:

• We identify and validate Gradient Fan-in Asymmetry as the causal mechanism for
layer redundancy. We provide strong causal evidence through two complementary inter-
ventions: an ablative test (artificially equalizing gradient norms fails to restore importance)
and a constructive one (structurally increasing path counts via layer repetition succeeds).
This isolates the bottleneck to the gradient’s compositional complexity, not its raw magni-
tude.

• We introduce CascadeFlow Pruning (CFP), an efficient method that leverages accumu-
lated training gradients as a high-fidelity proxy for structural importance to prune layers,
outperforming standard heuristics without requiring expensive post-hoc analysis.

• We design the CascadeFormer, an architecture that internalizes the GFA principle. By
tapering network width with depth to match the natural flow of compositional gradient
diversity, it reduces latency and increases throughput over a uniform baseline with equal
training FLOPs and comparable perplexity.
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Figure 1: Deeper Transformer layers show diminishing contributions. (a) In a LLaMA 13B
model, representational similarity across layers increases with depth, signaling growing redundancy.
(b) A LayerSkip LLaMA 8B makes the consequence explicit: layer importance, measured by Func-
tional Importance (∆M) upon its removal, is concentrated in the initial layers while the functional
value of later layers collapses.

2 RELATED WORK

Layer Redundancy for Model Efficiency. Deep networks exhibit layer redundancy that can be
exploited for compression and faster inference (Gromov et al., 2024; Sun et al., 2025; Chen et al.,
2025). Structured pruning removes entire blocks with minor loss (Chen et al., 2023; Frantar & Alis-
tarh, 2023; Ma et al., 2023; Xia et al., 2024; Kim et al., 2024; He et al., 2024; Sun et al., 2024), while
training-time methods like LayerDrop (Fan et al., 2020) and early-exit/skip mechanisms (Elhoushi
et al., 2024; Xin et al., 2020; Liu et al., 2020; Zhao et al., 2025; Men et al., 2025) allow dynamic
redundancy management.These works document that redundancy exists and how to use it; they do
not explain why it arises.
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The Architectural Roots of Redundancy. Residual networks (He et al., 2016b;a) can be viewed
as implicit ensembles of shorter paths Veit et al. (2016), a property inherited by Transformers with
Pre-LayerNorm architectures (Xiong et al., 2020; Touvron et al., 2023). This structure often causes
deeper layers to contribute minimally, leading to redundancy (Takase et al., 2023; Sun et al., 2025; Li
et al., 2025). A complementary line of work shows how architectural and normalization choices reg-
ulate gradient propagation across depth (Wang et al., 2022; Shleifer et al., 2021; Li et al., 2024). Our
method is instead applicable to the Pre-LN setting, and building on these results, we argue and test
that depth-wise allocation of gradient signal is structurally induced and exploiting this phenomenon
to optimize for more efficient architecture depth wise and width wise.

Quantifying Layer Importance. Identifying redundant layers requires a reliable importance met-
ric. Magnitude and first/second-order criteria provide strong baselines (Han et al., 2015; 2016;
Molchanov et al., 2017; Lee et al., 2019; Frantar & Alistarh, 2023). Other methods rely on mea-
suring the effects of redundancy: output-similarity (e.g, cosine between adjacent layers), correlates
high similarity with low importance (Gromov et al., 2024; Yang et al., 2024; Jiang et al., 2025;
Chen et al., 2025; Song et al.), while perturbation-based metrics such as (∆PPL) upon single layer
removal directly quantify its functional contribution (Kim et al., 2024). Gradient-based signals have
been used as local surrogates for importance, but typically in heuristic form (e.g., saliency Smilkov
et al. (2017); Selvaraju et al. (2020), Taylor criteria (Yang et al., 2023; Ma et al., 2023)). We in-
stead posit and test a causal mechanism: gradient dynamics are not just a proxy; they drive the final
functional hierarchy via a compositional gradient asymmetry.

3 GRADIENT FAN-IN ASYMMETRY

The Phenomenon. We identify Gradient Fan-in Asymmetry (GFA), a structural imbalance in the
composition of gradient signals within deep residual architectures. This asymmetry arises because
shallow layers receive gradients aggregated across numerous downstream computational paths,
while deep layers receive them from a progressively smaller set. This disparity in fan-in directly
governs the compositional diversity of the resulting gradient. Consequently, deep-layer gradients
are compositionally simple and thus information-poor, leading to less effective weight updates. Cru-
cially, this is a structural limitation, not a magnitude problem; optimizers that only rescale gradients
cannot correct this underlying informational deficit.

GFA in Residual Networks. We define a Pre-LN Transformer as xl+1 = xl + Fl(xl), where Fl

represents the blocks complete transformation, including LayerNorm and sublayers. The gradient at
its input, gl ≡ ∂L/∂xl, unrolls into a cumulative sum over all downstream blocks:

gl = gN +

N−1∑
k=l

JT
k gk+1, (1)

where Jk is the Jacobian of the k-th block’s transformation. This structure means the gradient at
layer l aggregates signals from an identity path and all subsequent functional paths. We term the
number of these aggregated signals the gradient fan-in, ϕl, which decreases linearly with depth
(visualized by the solid paths in Fig. 2. A formal counting rule is provided in Appx. B.1.

Amplification via Deep Supervision. Architectures employing deep supervision, such as Lay-
erSkip, amplify GFA. By introducing auxiliary loss heads at intermediate layers, they create new
gradient hierarchies that backpropagate to shallower layers. This transforms the linear fan-in dispar-
ity into a quadratic one (illustrated by the additional dotted paths in Fig. 2), severely concentrating
gradient information in the shallowest layers. The full derivation in Appx. B.1 shows this formally.
This exacerbates, rather than solves, the structural imbalance.

Analysis and Prediction. It is crucial to distinguish our fan-in proxy from the 2N−l combinatorial
paths that arise from a full expansion. Our proxy measures the number of distinct signal channels
aggregated at a layer, not their information quality (e.g., orthogonality), which remains an empirical
question. This leads to our central thesis: gradient norm is a symptom, not the cause. A small
gradient norm in a deep layer reflects its limited access to compositional information. An optimizer
like AdamW Loshchilov & Hutter (2018) can rescale this gradient, but it cannot invent the rich,
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Figure 2: Gradient Fan-in Asymmetry arises from a structural imbalance in gradient paths.
The unwrapped view shows that the gradient at any layer l is a sum over signals from an identity
path and all subsequent functional paths (Eq. 1). The number of contributing functional paths (solid
lines) decreases linearly with depth, creating a compositional asymmetry. Deep supervision (dotted
lines) exacerbates this imbalance by introducing new gradient hierarchies from auxiliary losses,
which transforms the fan-in disparity from linear to quadratic.

compositional information that is structurally absent. From this principle, we derive a testable pre-
diction: any architectural change that structurally increases a layer’s downstream gradient fan-in
will increase its functional importance. We test this directly with virtual depth and use the principle
to design our methods.

4 EMPIRICAL VALIDATION AND APPLICATIONS

We test Gradient Fan-in Asymmetry in three stages. We first show that gradient flow is structurally
skewed toward early layers and that this training signal predicts the final functional hierarchy. We
then perform two interventions that separate magnitude from information content and isolate struc-
ture as the cause. Finally, we translate the mechanism into two applications, CascadeFlow Pruning
and CascadeFormer, that improve efficiency at fixed training cost.

4.1 SETUP

Models and architectures We evaluate three residual families. For language modeling we train a
sixteen layer, approximately 1.2B parameter, Llama base Transformer (Touvron et al., 2023) referred
to as Vanilla and a LayerSkip variant (Elhoushi et al., 2024). For vision we train a ResNet-50 (He
et al., 2016b). To encode the GFA prior we modify the Vanilla architecture to create CascadeFormer
which tapers width with depth to align capacity with the decay in compositional gradient diversity.
All models are trained from scratch.

Datasets and tasks Language models are trained on a seven billion token subset of Dolma (Sol-
daini et al., 2024) for next token prediction. ResNet-50 is trained on ImageNet-1K (Deng et al.,
2009). Training hyperparameters and optimizer settings are in Appendix A. For our primary ar-
chitectural comparison, we train the proposed CascadeFormerA2 , the full baseline, and a 15-layer
Baseline, using three different random seeds. In contrast, all other models mentioned in our analysis
(16-layer Vanilla, LayerSkip, ResNet-50) were initialized with a single seeds.

4.2 QUANTIFYING GRADIENT FLOW AND FUNCTIONAL IMPORTANCE

To empirically test our hypothesis, we require metrics that can directly link training dynamics with
the final functional hierarchy of the model.

4
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Figure 3: Gradient flow is inherently front loaded in deep residual architectures. The average
L2 gradient norm per layer in a Vanilla Transformer follows a linear decay, closely tracking its
theoretical fan-in (black, dashed). In contrast, LayerSkip’s deep supervision mechanism induces a
quadratic decay, a behavior accurately modeled by its own theoretical curve (gray, dotted). ResNet-
50 also exhibits a characteristic front-loaded decay, confirming that gradient distribution is a direct.

Accumulated Gradient Share (ḡi). To capture a layer’s overall contribution during training, we
accumulate the L2 norm of the gradients with respect to its parameters, θi, over T training steps.
This accumulated value is then normalized by the total sum from all N layers to yield the relative
gradient share, ḡi:

ḡi =

∑T
t=1∥∇θiLt∥2∑N

j=1

∑T
t=1∥∇θjLt∥2

. (2)

This metric serves as a direct, data-driven proxy for the structural information flow predicted by
GFA.

Functional Importance (∆Mi). We quantify a layer’s functional importance by measuring the
performance degradation when its contribution is removed. This is achieved by ablating layer i,
bypassing its computational block while preserving the residual path to the subsequent layer. The
functional importance, ∆Mi is the absolute degradation in the task metric M resulting from this
ablation. For language models, this is the increase in perplexity (∆PPL), and for vision models, the
change in top-1 accuracy (∆Acc). A larger ∆Mi signifies greater functional importance.

4.3 CORRELATIONAL EVIDENCE ACROSS ARCHITECTURES

Structural fan in aligns with gradient flow GFA predicts that the downstream gradient fan in
decreases with depth, inducing a front loaded gradient distribution. Figure 3 illustrates this empirical
pattern across three architectures alongside their theoretical fan in decay. For the vanilla network,
this decay is linear, while for LayerSkip it is quadratic. We observe that the theoretical fan in and
the empirical gradient norm ḡi share the same monotonic ordering. Complete derivations and path
counts are provided in Appendix B.1.

Gradient flow forecasts the functional hierarchy We correlate each layer’s ḡi with its ablation
based importance ∆Mi. Figure 4 shows a strong positive Spearman correlation for the Vanilla
Transformer with ρ = 0.62 and p = 0.02 and for ResNet-50 with ρ = 0.83 and p < 0.01. The
relationship tightens in LayerSkip with ρ = 0.99 and p < 0.01 where supervision accentuates early
layer fan in. This links the structural gradient skew during training to the final functional hierarchy,
establishing gradient as a reliable proxy for functional importance.
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Figure 4: Training gradient flow predicts final layer importance. The accumulated gradient
share ḡi during training shows a strong Spearman correlation with post-hoc functional importance
∆Mi. The correlation is significant in the Vanilla Transformer with ρ = 0.62 and in ResNet-50
with ρ = 0.83, and is near perfect in LayerSkip with ρ = 0.99.

4.4 CAUSAL INTERVENTIONS ISOLATE STRUCTURE AS THE BOTTLENECK

Correlation does not imply causation. To disentangle the roles of gradient magnitude and structure,
we conduct two interventions designed to directly test the GFA hypothesis.

Equalizing magnitude does not restore importance We first test the alternative hypothesis: that
small gradient magnitude is the direct cause of redundancy. During training, we insert a hook that
rescales per-layer gradients to have an equal L2 norm. To accommodate this artificial amplification,
we proportionally scaled the gradient clip norm, deriving the factor from the ratio of maximum
observed norms between the hooked and standard models, details shown in Appendix A.2.2. If
magnitude were the causal factor, this should rescue the importance of later layers. The result,
shown in Figure 5 (top), is the opposite. This logarithmic comparison against a vanilla model, with
an inset detailing the validation gradient distribution not only fails to restore importance but actively
harms the contribution of deep layers. Amplifying an information-poor signal does not make it
complex; it merely makes the simple signal louder, potentially destabilizing learning.

Increasing path counts restores importance Next, we directly test the structural component of
GFA against a vanilla 8 layer reference. We engineer an increase in the downstream gradient paths
for deep layers by repeating the final four layers of an 8-layer model with shared parameters, which
increases a layer’s virtual depth and its gradient fan-in without adding parameters. Specifically, we
repeat the last four layers with a pattern of two, three, three, and four repeats respectively, a pattern
designed to increase the fan-in with depth. This modification dramatically alters the structural fan-in
for the deepest layers (detailed in Appx. B.1), for instance changing the counts for layers 5 through
8 from [5, 4, 3, 2] to [27, 33, 24, 20]. GFA predicts these layers should become more functionally
important.

Figure 5 (bottom) validates this prediction. The inset shows that gradients in the repeated deep
layers increase substantially, even exceeding those of early layers. Consequently, their functional
importance rises, diminishing the relative contribution of the initial four layers. These modified
deep layers, now recipients of a more compositionally complex gradient, become more critical than
the untouched shallow layers. Together, these interventions provide strong causal evidence that
functional hierarchy is governed by the structural flow of information, for which gradient magnitude
is a correlated proxy

4.5 APPLICATIONS INFORMED BY GFA

Having validated GFA as the causal mechanism, we now demonstrate its practical utility for model
efficiency through a superior pruning method and a novel, GFA-aware architecture.

CascadeFlow Pruning uses training dynamics We prune layers using the accumulated gradient
share, ḡi, gathered directly during training. Our method, CascadeFlow Pruning (CFP), uses the L2

6
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Figure 5: Causal tests confirm that gradient structure dictates importance. Top equalizing L2
gradient norms across layers does not rescue and reduces deep layer importance. Bottom increasing
downstream path counts by parameter shared repetition restores and elevates late layer importance.
The logarithmic y-axis is necessary to visualize the wide dynamic range. The crucial observation is
how each layer’s importance changes relative to itso baseline.

norm of these gradients (Equation 2) as a proxy for a layer’s functional importance, ranking them
accordingly. This approach eliminates the need for expensive post hoc computation required by
alternative heuristics like hidden state similarity Gromov et al. (2025), Taylor based methods Ma
et al. (2023), or parameter magnitude pruning Han et al. (2015). CFP then removes the lowest
ranked layers, irrespective of their original consecutive block structure.

EVALUATION We evaluated pruning strategies on the Dolma 2.6M token holdout set and evalua-
tion set of HellaSwag benchmark. We report perplexity (PPL) on Dolma. On HellaSwag, we adopt
the zero-shot protocol from OLMo OLMo et al. (2024), ranking candidates by their relative condi-
tional log-probability. While this zero-shot approach does not measure post-fine-tuning adaptability,
it provides a direct and efficient benchmark for quantifying performance degradation as a function
of pruning.

Table 1 summarizes the results. Similarity method becomes be competitive only under the most
aggressive pruning, but typically at a higher perplexity cost. In contrast, Taylor and Magnitude
methods are unstable. Their reliance on a per-layer forward pass yields importance rankings that
fluctuate across seeds, leading to misrankings and sharp performance degradation. Our CFP avoids
this sensitivity, producing stable rankings and a more graceful degradation profile

IMPLEMENTATION VIA LAYER PASSTHROUGH Pruning a Transformer layer in our framework
requires no architectural modification: we implement it by a simple passthrough in the forward pass
since skipped layers are simply treated as identity functions. Specifically, during inference the model
iterates over the stack of decoder layers. For each index i, if i belongs to the pruned set Iprune, we
skip the forward call to the corresponding block and directly forward the input hidden state to the
next layer:

hi+1 = hi, if i ∈ Iprune,

This design choice allows CFP to be integrated into existing Transformer codebases (e.g., LLaMA-
style decoders) with only a few lines of modification.

7
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k Metric CFP (Ours) Sim Taylor Magnitude

Baseline (k=0) PPL=17.94 ± 0.00, Acc.=0.39 ± 0.00

1 PPL ↓ 19.848 ± 0.082 21.945 ± 0.462 24.700 ± 0.559 24.361 ± 2.357
Acc. ↑ 0.381 ± 0.002 0.381 ± 0.002 0.384 ± 0.001 0.362 ± 0.013

2 PPL ↓ 23.226 ± 0.106 28.480 ± 0.331 127.744 ± 15.148 41.875 ± 4.822
Acc. ↑ 0.372 ± 0.001 0.366 ± 0.001 0.369 ± 0.003 0.325 ± 0.006

4 PPL ↓ 59.790 ± 1.840 59.790 ± 1.840 4715.072 ± 4166.454 332.174 ± 216.582
Acc. ↑ 0.334 ± 0.004 0.334 ± 0.004 0.336 ± 0.002 0.285 ± 0.010

6 PPL ↓ 167.006 ± 9.205 180.862 ± 27.304 1193.159 ± 547.709 3099.530 ± 1708.037
Acc. ↑ 0.299 ± 0.004 0.304 ± 0.003 0.305 ± 0.002 0.269 ± 0.002

8 PPL ↓ 911.748 ± 55.001 911.748 ± 55.001 1403.434 ± 434.894 1237.212 ± 132.241
Acc. ↑ 0.285 ± 0.001 0.285 ± 0.001 0.278 ± 0.006 0.264 ± 0.001

Table 1: CFP demonstrates superior performance and stability under aggressive layer pruning.
We evaluate CFP (Ours) against standard pruning heuristics by removing an increasing number
of layers (k). CFP consistently achieves the lowest perplexity (PPL) and maintains competitive
downstream accuracy (Acc), particularly at higher sparsities.

CascadeFormer. Our second application internalizes the GFA principle directly into the model’s
architecture. Because compositional gradient diversity decays with depth, uniform capacity alloca-
tion is inherently inefficient. We therefore designed the CascadeFormer, an architecture that tapers
model width to align its capacity with this information flow. For a model with N layers, indexed
l ∈ {0, . . . , N − 1}, we apply tapering rules to either the attention, FFN sublayers or both.

ATTENTION TAPERING. We reduce the number of attention heads, and thus the attention dimen-
sion dattn(l), in discrete steps governed by, dattn(l) = dattn,0 − Sd · ⌊l/Fd⌋, where dattn,0 is the initial
dimension, Sd is the dimensional reduction per step, and Fd controls the frequency of the reduction.

FFN TAPERING. We reduce the FFN’s inner dimension dffn(l) linearly with depth according to
the rule, dffn(l) = dffn,0 − Sf · l, where dffn,0 is the initial dimension and Sf controls the steepness
of the linear taper.

VARIANT CONFIGURATIONS. We define six CascadeFormer variants based on these rules, cate-
gorized by low (subscript 1) and high (subscript 2) tapering intensity. The specific hyperparameters
for each variant are detailed in Table 4. The combined variants (C) apply both attention and FFN
tapering schemes simultaneously. To ensure a fair comparison, we also trained six baseline models
whose computational cost was scaled linearly by reducing their layer count.

Table 2 quantifies the performance and efficiency of our GFA-informed architectures. Our
CascadeFormer-A2 was designed with a training FLOP budget equivalent to the Vanilla-15L base-
line. It achieves comparable perplexity to the baseline (17.84±0.02 vs 17.84±0.03) while reducing
inference latency by 8.6% and increasing throughput by 9.4%.

To further understand the design space, we explored additional variants applying the tapering prin-
ciple to FFN layers (F1, F2) and in combination (C1, C2). While all GFA-informed models are
competitive, the superior performance of the attention-tapered variants (A1, A2) suggests that the
primary structural bottleneck identified by GFA resides within the self-attention mechanism, mak-
ing it the most effective target for tapering.

Latency Measurement Protocol. All inference metrics were measured on a single A100 GPU.
To ensure fair comparison, we used a consistent batch size, context length, and generation
length for all models. We leveraged torch.compile with the mode=’max-autotune’ and
fullgraph=True options to minimizing implementation-specific overhead and accurately re-
flecting the inherent hardware-friendliness of each architecture. We report the median of 100 timed
runs after a warmup phase of 10 steps to measure accurate execution time.
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Core Metrics Hardware Efficiency

Model PPL
↓

Params
(B)

Util.
(TFLOP/s) ↑

Cost
(TFLOPs)

Latency
(ms) ↓

Throughput
(tok/s) ↑

Uniform Baselines
Vanilla-16L 17.69 1.28 53.87 ± 0.30 4.82 89.47 ± 0.50 22,890 ± 129
Vanilla-15L 17.84 1.21 54.23 ± 0.34 4.54 83.81 ± 0.53 24,439 ± 153
Vanilla-14L 18.00 1.15 54.68 ± 0.38 4.27 78.09 ± 0.54 26,227 ± 181
Vanilla-13L 18.17 1.08 55.18 ± 0.39 4.00 72.40 ± 0.52 28,287 ± 201
Vanilla-12L 18.82 1.01 55.74 ± 0.34 3.72 66.75 ± 0.40 30,683 ± 186

CascadeFormer (Ours)
CascadeFormer-A1 17.79 1.25 55.39 ± 0.37 4.72 85.17 ± 0.57 24,048 ± 161
CascadeFormer-A2 17.84 1.22 59.77 ± 0.38 4.58 76.62 ± 0.48 26,731 ± 169

CascadeFormer-F1 17.88 1.19 51.16 ± 0.27 4.43 86.65 ± 0.47 23,635 ± 127
CascadeFormer-F2 18.10 1.09 49.92 ± 0.24 4.05 81.06 ± 0.39 25,266 ± 123

CascadeFormer-C1 17.94 1.16 53.00 ± 0.35 4.33 81.71 ± 0.54 25,066 ± 164
CascadeFormer-C2 18.30 1.03 53.88 ± 0.49 3.81 70.65 ± 0.66 28,990 ± 266

Table 2: CascadeFormer produce a superior balance of performance and hardware efficiency.
Our CascadeFormer-A2 model, which tapers its attention mechanism according to GFA principles,
outperforms its Vanilla-15L baseline that was trained with an equivalent computational budget. It
achieves similar perplexity to baseline but is substantially faster, reducing inference latency by 8.6%
while increasing throughput by 9.4%.

5 DISCUSSION AND CONCLUSION

This work reframes layer redundancy in residual networks not as a failure of optimization, but
as a predictable outcome of their structure. We identified and causally validated Gradient Fan-in
Asymmetry as the root mechanism. This insight is not merely diagnostic; it is generative. It led
directly to CascadeFlow Pruning, a more effective pruning method, and CascadeFormer, an efficient
architecture that aligns its capacity with the asymmetric flow of information.

Design Tension and Future Directions. Our findings present a fundamental design tension. One
path is to embrace the asymmetry, as CascadeFormer does, leading to intentionally heterogeneous
architectures that allocate resources where learning dynamics can best use them. A second path is to
counteract GFA, aiming to force uniform functional contribution. This second path is complicated
by evidence from architectures like LayerSkip. By imposing deep supervision, these models cre-
ate an extreme gradient hierarchy that forces shallow layers to become functionally self-sufficient.
This serves as an unintentional proof of concept: shallow layers possess a vast latent capacity that
standard end-to-end training, governed by a gentler GFA decay, fails to fully exploit. This suggests
the true limitation may not be layer capacity but the training dynamic itself. Such a pursuit would
require new architectural components or training schemes that can inject compositional diversity
into deep layer gradients, perhaps through novel long range information pathways or regulariza-
tion techniques. Whether a uniform contribution is achievable, or even desirable, is a critical open
question.

LIMITATIONS.

Our analysis frames Gradient Fan-in Asymmetry in terms of path quantity, using fan-in as a proxy for
compositional diversity. A crucial next step is to analyze the quality of these gradient signals, their
effective rank, orthogonality, and information content, which may provide a more complete picture.
Our empirical validation is conducted on models up to 1.2B parameters; while the GFA principle is
architectural, its precise dynamics at the 100B+ parameter scale remain an open empirical question.
Finally, our proposed pruning method, CFP, requires access to training-time gradients, making it
inapplicable for post-hoc pruning of pre-trained, closed-source models.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide comprehensive details on our methodol-
ogy, data, and computational environment. Code: The complete codebase to reproduce all experi-
ments, including model training, evaluation, and figure generation, will be made publicly available
on GitHub upon publication. Environment: The hardware and software stacks for training (TPU
v4) and evaluation (NVIDIA A100/A6000), including all library versions, are documented in Ap-
pendix A.1. Data: All experiments utilize public datasets. Language models were trained on the
publicly available pre-tokenized Dolma dataset from on Huggingface. Vision models were trained
on the standard ILSVRC 2012 ImageNet-1k dataset. Methodology: Full architectural specifica-
tions for all models, including our novel CascadeFormer, are in Appendix A.2 and A.2.1. The
precise methodology for our causal intervention experiment, which demonstrates that amplifying
late-layer gradients is insufficient for improving their importance, is detailed in Appendix A.2.2.
Hyperparameters: All training and evaluation hyperparameters are enumerated in Appendix A.3.
All experiments can be reproduced with fixed random seed of 324709 for model initialization and
data loading.
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USE OF LARGE LANGUAGE MODELS

In adherence to ICLR guidelines, we disclose the use of Large Language Models (LLMs) as as-
sistive tools in the preparation of this manuscript. Our use was focused on two areas: manuscript
preparation and literature discovery.

Manuscript Preparation We utilized an LLM for copy-editing tasks, including correcting gram-
mar, refining prose for clarity, and ensuring stylistic consistency. The core intellectual contributions,
including the research questions, methodology, analysis, and conclusions, were conceived and for-
mulated exclusively by the authors.

Literature Discovery An LLM was employed as a preliminary tool to broaden our literature
search. Its function was to identify potentially relevant papers and suggest alternative search key-
words based on our initial research scope. Every paper cited in this work was subsequently read,
critically evaluated, and integrated into our analysis by the authors to confirm its relevance and
correctness.

A EXPERIMENT DETAILS

This section provides comprehensive details on our experimental setup to ensure full reproducibility.
We detail the model architectures, training hyperparameters, and the specific implementation of our
proposed CascadeFormer variants as well as layer-wise pruning heuristic details.

A.1 COMPUTATIONAL RESOURCES AND SOFTWARE

A.1.1 TRAINING ENVIRONMENT

All model training was conducted on Google Cloud Platform (GCP) using a 128-core TPU v4 Pod
slice. Our training stack utilized PyTorch 2.7.0 with the corresponding torch xla==2.7.0
library.

To distribute training, we employed the GSPMD (Xu et al. (2021)) partitioner. We utilized a 1D
sharding strategy where model parameters, gradients, and optimizer states were fully sharded across
the data-parallel dimension. This approach efficiently managed memory while scaling computation
across all 128 TPU cores. All training was performed using a float32 data type.

A.1.2 EVALUATION ENVIRONMENT

All evaluations were performed on a single GPU, using either an NVIDIA A100-80GB or an
NVIDIA A6000-48GB. The evaluation framework was PyTorch 2.7.0. All experiments were
conducted in float32 precision to mititgate any possibility of precision error.

A.1.3 IMPLEMENTATION DETAILS

Our model architecture is a modification of the Llama implementation from the Hugging Face
transformers==4.51.3 library. This same codebase served as the basis for our layer-dropping
ablation studies. All experimental results were logged using the Weights & Biases (wandb) plat-
form, and figures included in this paper were generated with matplotlib.

A.2 MODEL CONFIGURATIONS

The core of our investigation involves three distinct architectures to test the generalizability of our
claims. Their primary configurations are summarized in Table 3.

A.2.1 CASCADEFORMER ARCHITECTURE DETAILS

The CascadeFormer internalizes the GFA principle into its structure. While standard Transformers
allocate uniform capacity to all layers, our architecture recognizes that compositional information
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Parameter Vanilla Transformer LayerSkip Transformer ResNet-50
Base Architecture Llama-3.2-1B Llama-3.2-1B ResNet family
Number of Layers/Blocks 16 16 16 (Blocks)
Hidden Dimension (dmodel) 2048 2048 —
FFN Inner Dimension (dffn) 8192 8192 —
Number of Attention Heads 32 32 —
Vocabulary Size 50,280 50,280 —
Block Size 2048 2048 —
Classes — — 1000

Table 3: Architectural details of the primary models used in our experiments. This table outlines
the core parameters for the three main architectures analyzed to demonstrate the generality of the
Gradient Fan-in Asymmetry phenomenon.

flows in a cascade, reducing with depth. The CascadeFormer is designed in harmony with this flow,
tapering its width to match computational capacity to the signal’s richness. This is achieved by
progressively reducing the dimensions of the attention and feed-forward network (FFN) sub-layers.
Based on a 16-layer Transformer baseline (l ∈ {0, 1, . . . , 15}), we define a set of variants with
modulated tapering intensity to explore this new design space.

Variant Name Tapering Target(s) Intensity Governing Parameters
CascadeFormer-A1 Attention Dimension Low Fd = 4
CascadeFormer-A2 Attention Dimension High Fd = 2

CascadeFormer-F1 FFN Dimension Low Sf = 128
CascadeFormer-F2 FFN Dimension High Sf = 256

CascadeFormer-C1 Attention & FFN Low Fd = 4, Sf = 128
CascadeFormer-C2 Attention & FFN High Fd = 2, Sf = 256

Table 4: Hyperparameter configurations for the CascadeFormer variants. The parameters Fd

and Sf control the tapering intensity for the attention and FFN dimensions, respectively. Lower Fd

and higher Sf values correspond to more aggressive capacity reduction.

A.2.2 DYNAMIC GRADIENT SCALING AS A CAUSAL INTERVENTION

Our intervention mechanism operates by dynamically rescaling gradients on a layer-wise basis dur-
ing training. This ensures that the gradient magnitudes are harmonized across all layers before the
optimizer step. The procedure is executed as follows:

1. Layer-wise Norm Computation: For each layer i in the network, we aggregate all pa-
rameter gradients associated with it. We then compute the Euclidean (L2) norm of these
concatenated gradients, denoted as ni.

2. Target Norm Identification: We identify the maximum gradient norm across all layers,
ntarget = maxi(ni). This value serves as the reference magnitude for scaling.

3. Scaling Factor Derivation: A scaling factor λi is calculated for each layer by dividing the
target norm by the layer’s individual norm: λi = ntarget/ni. To handle layers with zero
gradients and prevent division-by-zero, λi is set to 1.0 if ni = 0.

4. In-place Gradient Application: Finally, every parameter gradient within a given layer i
is multiplied in-place by its corresponding scaling factor λi. This operation normalizes the
influence of each layer’s gradient relative to the layer with the strongest signal.

A.3 TRAINING HYPERPARAMETERS

All models were trained using the hyperparameters detailed in Table 5, tailored to their respective
domains to ensure robust and competitive baseline performance.
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Hyperparameter Transformer models ResNet-50
Dataset pretokenized-dolma ImageNet-1k
AdamW β1, β2 (0.9, 0.95) (0.9, 0.999)
Weight Decay 0.1 0.05
Learning Rate Schedule Cosine w/ Warmup Cosine w/ Warmup
Peak Learning Rate 2e-4 5e-4
Warmup Steps 2000 5 Epochs
Batch Size 64 512
Epochs 1 30
Gradient Clipping Norm 1.0 -

Table 5: Training hyperparameters for all experiments. This table provides the complete set of
hyperparameters used for training the language and vision models, ensuring full reproducibility of
our results.

A.4 PRUNING HEURISTIC DETAILS

To provide full transparency for the pruning comparison presented in Table 1.

Magnitude-based Heuristic Han et al. (2015) Classical magnitude pruning removes small-
magnitude weights and is a strong baseline for sparsification. In the block-level variant used here,
a block’s score is the aggregate of absolute parameter values across its trainable weights; for pro-
jection matrices, values are first reduced along the input dimension to obtain per-output scores, then
aggregated within the block. Token embeddings and the LM head are excluded, and the final nor-
malization is protected. Blocks are ranked by increasing score, and the k lowest are pruned.

Taylor-based Heuristic Ma et al. (2023) The first-order criterion estimates loss increase from
removing a block by accumulating, on a small calibration set, the absolute elementwise product of
each parameter and its gradient. Scores are summed across batches; for projection matrices, per-
output reduction precedes block-level aggregation. Token embeddings are excluded and the final
normalization is protected. Blocks are ranked by increasing score, and the k lowest are pruned.

Similarity-based Heuristic. Gromov et al. (2025) This heuristic, based on the representational
similarity analysis which computes the angular distance between adjacent layer representations.
Block of k layers whose removal yield the smallest change are considered less critical and are
pruned.

CFP (CascadeFlow Pruning) Heuristic. In contrast, our proposed CFP method prunes layers
with the lowest accumulated L2 gradient norms from training.

B ADDITIONAL RESULTS AND ANALYSES

This section provides supplementary results that further validate and expand upon the findings pre-
sented in the main paper. We include additional layer importance profiles, detailed layer-wise trend
plots, and a representational similarity analysis.

B.1 GRADIENT FAN-IN DERIVATIONS

Definition and Counting Rule. We define gradient fan-in as the number of downstream transfor-
mation edges aggregated at a layer’s input, xl. This first-order proxy, counting the identity path, each
downstream block’s Jacobian branch, and the final head, captures the structural asymmetry driving
GFA. It is a count of contributing channels, not a combinatorial path enumeration. For a standard
N -block stack with one head, the fan-in at layer l is:

ϕl = (N − l) + 1, (functional blocks + identity path) (3)
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Fan-In Under Deep Supervision. Architectures with deep supervision introduce an auxiliary loss
head Lk at the output of each block k, with the total loss being Ltotal = LN +

∑N−1
k=0 αkLk. The

gradient at the input to block l, g′l, now aggregates signals from all downstream loss functions:

g′l =
∂Ltotal

∂xl
=

∂LN

∂xl︸ ︷︷ ︸
Original Hierarchy

+

N−1∑
k=l

αk
∂Lk

∂xl︸︷︷︸
Auxiliary Hierarchies

. (4)

Each auxiliary loss Lk (sourced at xk+1) effectively creates a new residual sub-network for its
gradient to traverse back to xl. The fan-in from a single auxiliary loss at layer k to layer l is
analogous to a standard network of length (k + 1 − l) and is thus (k − l) + 1 + 1 = (k − l + 2).
Let’s assume for simplicity it is attached at xk The fan-in is therefore (k − l) + 1. The total fan-in
ϕ′
l is the sum of the fan-in from the original path and all new auxiliary paths originating from layers

l through N − 1:

ϕ′
l = ϕl +

N−1∑
k=l

((k − l) + 1), (5)

where ϕl = (N − l) + 1 is the fan-in from the original network head. Substituting ϕl and letting
j = k − l, the summation becomes:

ϕ′
l = ((N − l) + 1) +

N−1−l∑
j=0

(j + 1). (6)

Solving this arithmetic series and combining terms yields:

ϕ′
l = ((N − l) + 1) +

(N − l)(N − l + 1)

2
=

((N − l) + 1)((N − l) + 2)

2
. (7)

The result is the (N − l+1)-th triangular number. The presence of the (N − l)2 term demonstrates
that deep supervision transforms the linear fan-in disparity into a quadratic one, amplifying GFA.

Fan-In with Virtual Depth. Consider 8 physical blocks unrolled into Nvirt=16 virtual positions
with shared parameters: L1–L4 (1×), L5 (2×), L6 (3×), L7 (3×), L8 (5×). Let Vi be the block at
virtual position i (i=1, . . . , 16). The fan-in for a physical layer Lp sums over its virtual instances:

Consider 8 physical blocks unrolled into Nvirt=16 virtual positions with shared parameters

FanIn(Lp) =
∑

i:Vi=Lp

(
Nvirt − i+ 2

)
. (8)

This yields the following Standard → Virtual counts: L1: 9→18, L2: 8→17, L3: 7→16, L4: 6→15,
L5: 5→27, L6: 4→33, L7: 3→24, L8: 2→20.

B.2 LAYER-WISE GRADIENT AND IMPORTANCE TRENDS

The following figures provide a detailed visualization of the data from Figure 4.
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Figure 6: Layer-wise comparison for the Vanilla Transformer. This figure details the relation-
ship between relative L2 gradient norm (red, dashed) and functional importance (blue, solid). The
correspondence visually reinforces the correlation (ρ = 0.62) from Figure 4a.
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Figure 7: Layer-wise comparison for the LayerSkip Transformer. This figure details the rela-
tionship between relative L2 gradient norm (red, dashed) and functional importance (blue, solid).
The curves track with remarkable precision, illustrating the near perfect correlation (ρ = 0.99) from
Figure 4b.
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Figure 8: Layer-wise comparison for ResNet-50. This figure details the relationship between
relative L2 gradient norm (red, dashed) and functional importance (blue, solid). A clear positive
relationship is evident, corroborating the correlation (ρ = 0.83) from Figure 4c.
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