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Abstract

Conventional frequentist learning is known to yield poorly calibrated models that
fail to reliably quantify the uncertainty of their decisions. Bayesian learning can
improve calibration, but formal guarantees apply only under restrictive assumptions
about correct model specification. Conformal prediction (CP) offers a general
framework for the design of set predictors with calibration guarantees that hold
regardless of the underlying data generation mechanism. However, when training
data are limited, CP tends to produce large, and hence uninformative, predicted
sets. This paper introduces a novel meta-learning solution that aims at reducing
the set prediction size. Unlike prior work, the proposed meta-learning scheme,
referred to as meta-XB, (i) builds on cross-validation-based CP, rather than the
less efficient validation-based CP; and (ii) preserves formal per-task calibration
guarantees, rather than less stringent task-marginal guarantees.

1 Introduction

1.1 Context and Motivation

Recent work on calibration for AI has focused on Bayesian learning, or related ensembling methods,
as means to quantify epistemic uncertainty [Finn et al., 2018, Yoon et al., 2018, Ravi and Beatson,
2018, Jose et al., 2022]. However, recent studies have shown the limitations of Bayesian learning when
the assumed model likelihood or prior distribution are misspecified [Masegosa, 2020]. Furthermore,
exact Bayesian learning is computationally infeasible, calling for approximations such as Monte Carlo
(MC) sampling [Robert et al., 1999] and variational inference (VI) [Blundell et al., 2015]. Overall,
under practical conditions, Bayesian learning does not provide formal guarantees of calibration.

Conformal prediction (CP) [Vovk et al., 2005] provides a general framework for the calibration of
(frequentist or Bayesian) probabilistic models. The formal calibration guarantees provided by CP
hold irrespective of the (unknown) data distribution, as long as the available data samples and the test
samples are exchangeable – a weaker requirement than the standard i.i.d. assumption. As illustrated
in Fig. 1, CP produces set predictors that output a subset of the output space Y for each input x, with
the property that the set contains the true output value with probability no smaller than a desired
value 1 � ↵ for ↵ 2 [0, 1].

Mathematically, for a given learning task ⌧ , assume that we are given a data set D⌧ with N⌧ samples,
i.e., D⌧ = {z⌧ [i]}N⌧

i=1, where the ith sample z⌧ [i] = (x⌧ [i], y⌧ [i]) contains input x⌧ [i] 2 X⌧ and
target y⌧ [i] 2 Y⌧ . CP provides a set predictor �(·|D⌧ , ⇠) : X⌧ ! 2Y⌧ , specified by a hyperparameter
vector ⇠, that maps an input x⌧ 2 X⌧ to a subset of the output domain Y⌧ based on a data set D⌧ .
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with abbreviation of p(y|x, D̃, ⇠) := E����p(�|D̃,⇠)p(y|x,���) and for any monotonically strictly increas-263

ing function f : R ! R. We now propose a differentiable adaptive NC score N̂C
ada

(z|D̃, ⇠) by264

replacing the indicator function 1(·) with the sigmoid function �c(·)265

N̂C
ada

(z|D̃, ⇠) =
X

y02Y
�c

�
f(p(y0|x, D̃, ⇠)) � f(p(y|x, D̃, ⇠))

�
p(y0|x, D̃, ⇠). (25)

For the function f , we choose soft ranking operator R : RN ! RN defined in [Cuturi et al., 2019] as266

we found that adopting soft ranking empirically shows better input conditional coverage compared to267

identity mapping f(p) = p.268

Meta-XB optimize hyperparameter vector ⇠ by addressing the problem269

⇠⇤ = argmin
⇠

1

T
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MtX

j=1

���̂K-XB
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t |D
j
t , ⇠)

��, (26)

with
���̂K-XB

↵ (xj
t |D

j
t , ⇠)

�� in (22).270

Theorem 3 For any fixed meta-testing task ⌧ , fixed T meta-training tasks ⌧1, . . . , ⌧T , and fixed271

meta-training data set D⌧1:⌧T , meta-XB satisfies the per-task marginal validity condition in (1).272

[Proof sketch] Since the optimization of ⇠ in (26) does not depend on meta-test task ⌧ , it does not273

affect exchangeability condition of the joint distribution p(D⌧ , z⌧ ). Full proof can be found in274

supplementary material.275

As mentioned in Sec. 1, both [Fisch et al., 2021] and [Park et al., 2022] cannot achieve the per-task276

validity condition in (1) to require additional marginalization [Fisch et al., 2021] or achieving looser277

PAC-bounds [Park et al., 2022].278

The optimization of (26) is handled via iterative gradient-based updates as279

⇠ � ⇠ � ��⇠
1

T
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1

Mt
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j=1

���̂K-XB
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j
t , ⇠)

��, (27)

assuming gradient descent (GD). In practice, batch of tasks and corresponding examples are sampled280

to speed up the training. Moreover, in practice, as the meta-training data set for each task t is281

generally given as a single large data set Dt := {z[i]}Nmtr

i=1 with Nmtr � N i.i.d. examples, we282

randomly sample N + 1 examples from the set Dt to form a single realization of the pair (Dj
t , z

j
t ).283

Lastly, to further speed up the training process, we replace single realization of the empirical284

inefficiency |�̂K-XB
↵ (xj

t |D
j
t , ⇠)| with averaged empirical inefficiency 1

L

�L
l=1 |�̂K-XB

↵ (xj,l
t |Dj

t , ⇠)| over285

L test inputs xj,1:L
t := {xj,1

t , . . . , xj,L
t } sampled in i.i.d. fashion from the total data set Dt. Details286

can be found in Algorithm 1.287
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1.2 Main Contributions47

In this paper, we introduce a novel meta-learning approach that builds on XB-CP, targeting a lower48

inefficiency (2) with respect to meta-VB [Fisch et al., 2021]; while preserving the strict per-task49

validity condition (1) for every task ⌧ .50

Furthermore, we incorporate in the design of the proposed meta-XB algorithm the adaptive non-51

conformity (NC) scores introduced in [Romano et al., 2020]. As argued in [Romano et al., 2020]52

for conventional CP, adaptive NC scores are empirically known to improve the per-task conditional53

validity condition54

P(y⌧ 2 �(x⌧ |D⌧ , ⇠)|x⌧ = x⌧ ) � 1 � ↵. (3)
This condition is significantly stronger than (1) as it holds for any test input x⌧ .55

D⌧ �(x1
⌧ |D⌧ , ⇠) �(x2

⌧ |D⌧ , ⇠) �(x3
⌧ |D⌧ , ⇠)56

The contribution of this work can be summarized as follows:57

• We introduce a meta-learning algorithm for XB-CP, referred to as meta-XB, that can reduce58

the average prediction set size (2) as compared to existing solutions, while satisfying the59

per-task validity condition (1), unlike existing meta-learning algorithms for CP;60

• We incorporate adaptive NC scores [Romano et al., 2020] in the design of meta-XB, de.. via61

experiments that adaptive NC scores can enhance conditional validity as per condition(3).62

1.3 Related Work63

Model misspecification. When the model is misspecificed, i.e., assumed model likelihood cannot64

express the ground-truth data generating distribution [Masegosa, 2020], Bayesian learning may yield65

poor generalization performance [Masegosa, 2020, Morningstar et al., 2022]. This degradation66

becomes more severe when the prior is also misspecified [Wenzel et al., 2020] which brings the67

concept of cold posterior [Wenzel et al., 2020, Noci et al., 2021] that downweights the effect of68

prior distribution. In terms of mitigating the model likelihood misspecification, Masegosa [2020]69

considered second-order PAC-Bayes bound; while Morningstar et al. [2022] proposed multi-sample70

ensembling loss for training the model. In terms of misspecification in prior distribution, Bayesian71

meta-learning, which learns the prior from the available data, has been considered [Simchowitz et al.,72

2021].73

Bayesian meta-learning While frequentist meta-learning has shown remarkable success in few-shot74

learning tasks [Finn et al., 2017, Snell et al., 2017], attempts to quantify uncertainty from few training75

samples have been raised extensively in terms of Bayesian meta-learning [Amit and Meir, 2018, Finn76

et al., 2018, Yoon et al., 2018, Ravi and Beatson, 2018, Nguyen et al., 2020, Jose et al., 2022]. While77

Bayesian meta-learning learns a prior distribution by finding hyper-posterior from multiple tasks78

Amit and Meir [2018], Rothfuss et al. [2020], Jose et al. [2022], misspecificatin in hyper-prior is79

inevitable, though Rothfuss et al. [2021] mitigated this problem via treating hyper-prior as stochastic80

processes.81

CP-aware loss. As introduced in Sec. 1, CP provides a formal calibration guarantee regardless82

of any misspecification reside in the assumed model. Since validity (1) holds regardless of any83

choice of fitting algorithm, Stutz et al. [2021], Einbinder et al. [2022] proposed a particularly design84

loss function that aids VB-CP. While CP-aware losses improve the performance either with better85

efficiency [Stutz et al., 2021] or enhanced per-input validity (3) [Einbinder et al., 2022], they assumed86

sufficient number of data samples, i.e., N � 1. Meta-learning on CP. Unlike the works in CP-aware87

loss that reduces the average prediction set size by addressing a new loss function [Stutz et al., 2021],88

Fisch et al. [2021], Park et al. [2022] modified the structure of VB-CP to lose strict validity condition89

(1) while to improve the efficiency of the set predictors in the presence of limited data samples.90

Instead of condition (1), Fisch et al. [2021] achieved looser validity condition that requires averaging91

over the task distribution [Fisch et al., 2021]; while [Park et al., 2022] showed that validity condition92

(1) holds with high probability over random tasks and random data sets.93
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• We incorporate adaptive NC scores [Romano et al., 2020] in the design of meta-XB, demon-62

strating via experiments that adaptive NC scores can enhance conditional validity as defined63

by condition (3).64
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2 Preliminaries and Definitions69

2.1 Nonconformity (NC) scores70

Roughly speaking, CP provides a set prediction for input x⌧ by selecting outputs y 2 Y⌧ only71

if the corresponding candidate pair (x⌧ , y) conforms well with the examples in the available data72

set that are exchangeable with the (unknown) ground-truth test point (x⌧ , y⌧ ). More precisely,73

a set (a[1], . . . , a[M ]) of random variables is said to be exchangeable if the joint distribution74

p(a[1], . . . , a[M ]) is invariant to the ordering of the M samples, i.e.,75

p
�
a[1], . . . , a[M ]

�
= p

�
a[⇡(1)], . . . , a[⇡(M)]

�
(4)

for any permutation operator ⇡(·).76

Assumption 1 We assume that the data set D⌧ and a test data point z⌧ are exchangeable random77

variables. Accordingly, the joint distribution p(D⌧ , z⌧ ) can be written as [De Finetti, 1929, Hewitt78

and Savage, 1955]79

p(D⌧ , z⌧ ) =

� �
N�

i=1

p(y⌧ [i]|x⌧ [i], �)p(x⌧ [i]|�)

�
p(y⌧ |x⌧ , �)p(x⌧ |�)p(�)d�, (5)

where p(y⌧ |x⌧ , �) is the likelihood of random variable y⌧ given model parameter vector � and input80

x⌧ ; p(x⌧ |�) being the likelihood of random variable x⌧ given parameter vector �; and p(�) is a81

prior distribution over the random vector ���.82

CP measures the conformity via NC score, generally defined as follows.83

Definition 1 Given data set D̃⌧ = {z̃⌧ [i] = (x̃⌧ [i], ỹ⌧ [i])}Ñ
i=1 ✓ D⌧ with Ñ � N samples z̃[i] 284

D⌧ , a nonconformity (NC) score is a function NC(z|D̃⌧ , ⇠) that maps the data set D̃⌧ and any85

input-output pair z = (x⌧ , y) to a real number. The NC score generally depends on a vector ⇠ of86

hyperparameters, and it must satisfy the permutation-invariance property87

NC(z|{z̃⌧ [1], . . . , z̃⌧ [Ñ ]}, ⇠) = NC(z|{z̃⌧ [⇡(1)], . . . , z̃⌧ [⇡(Ñ)]}, ⇠) (6)

for any permutation operator ⇡(·).88

A good NC score should express how poorly the point (x⌧ , y) “conforms” to the data set D̃⌧ . The89

most common way to obtain an NC score is via a parametric two-step approach.90

Definition 2 Let �(z|�) represent the loss of a machine learning model parametrized by vector �91

and the input-output pair z = (x⌧ , y). We will specifically consider the standard log-loss �(z|�) =92

� log p(y|x⌧ , �). Let p(�|D̃⌧ , ⇠) be the probability distribution of the model parameter vector ���93

obtained using data set D̃⌧ via some training algorithm determined by hyperparameter vector ⇠. A94

conventional NC score function is defined as95

NC(z|D̃⌧ , ⇠) := E����p(�|D̃⌧ ,⇠)

�
�(z|���)

�
. (7)
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1.2 Main Contributions47

In this paper, we introduce a novel meta-learning approach that builds on XB-CP, targeting a lower48

inefficiency (2) with respect to meta-VB [Fisch et al., 2021]; while preserving the strict per-task49

validity condition (1) for every task ⌧ .50

Furthermore, we incorporate in the design of the proposed meta-XB algorithm the adaptive non-51
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prior distribution. In terms of mitigating the model likelihood misspecification, Masegosa [2020]69

considered second-order PAC-Bayes bound; while Morningstar et al. [2022] proposed multi-sample70

ensembling loss for training the model. In terms of misspecification in prior distribution, Bayesian71

meta-learning, which learns the prior from the available data, has been considered [Simchowitz et al.,72

2021].73

Bayesian meta-learning While frequentist meta-learning has shown remarkable success in few-shot74
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inevitable, though Rothfuss et al. [2021] mitigated this problem via treating hyper-prior as stochastic80

processes.81

CP-aware loss. As introduced in Sec. 1, CP provides a formal calibration guarantee regardless82

of any misspecification reside in the assumed model. Since validity (1) holds regardless of any83

choice of fitting algorithm, Stutz et al. [2021], Einbinder et al. [2022] proposed a particularly design84

loss function that aids VB-CP. While CP-aware losses improve the performance either with better85
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sufficient number of data samples, i.e., N � 1. Meta-learning on CP. Unlike the works in CP-aware87

loss that reduces the average prediction set size by addressing a new loss function [Stutz et al., 2021],88

Fisch et al. [2021], Park et al. [2022] modified the structure of VB-CP to lose strict validity condition89

(1) while to improve the efficiency of the set predictors in the presence of limited data samples.90
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(1) holds with high probability over random tasks and random data sets.93

3

task
vs.

…

…

…

…

Figure 1: Illustration of proposed meta-learned cross-validation-based CP (XB-CP) scheme, referred
to as meta-XB. The example refers to the problem of classifying received radio signals depending on
the modulation scheme used to generate it, e.g., QPSK or FM [O’Shea et al., 2016, 2018]. Based on
data from multiple tasks, meta-XB optimizes a hyperparameter vector ⇠⇤ by minimizing the average
set prediction size. As compared to conventional XB, shown on the top-right part of the figure,
which uses a fixed hyperparameter vector ⇠, meta-XB can achieve reduced set prediction size, while
maintaining the per-task validity property (1).

Calibration amounts to the per-task validity condition

P(y⌧ 2 �(x⌧ |D⌧ , ⇠)) � 1 � ↵, (1)

which indicates that the set predictor �(x⌧ |D⌧ , ⇠) contains the true target y⌧ with probability at least
1 � ↵. In (1), the probability P(·) is taken over the ground-truth, exchangeable, joint distribution
p(D⌧ , z⌧ ), and bold letters represent random variables.

The most common form of CP, referred to as validation-based CP (VB-CP), splits the data set into
training and validation subsets [Vovk et al., 2005]. The validation subset is used to calibrate the set
prediction �VB

↵ (x⌧ |D⌧ , ⇠) on a test example x⌧ for a given desired miscoverage level ↵ in (1). The
drawback of this approach is that validation data is not used for training, resulting in inefficient set
predictors �VB

↵ (x⌧ |D⌧ , ⇠) in the presence of a limited number N⌧ of data samples. The average size
of a set predictor �(x⌧ |D⌧ , ⇠), referred to as inefficiency, is defined as

L⌧ (⇠) = E
���(x⌧ |D⌧ , ⇠)

��, (2)

where the average is taken with respect to the ground-truth joint distribution p(D⌧ , z⌧ ).

A more efficient CP set predictor was introduced by Barber et al. [2021] based on cross-validation.
The cross-validation-based CP (XB-CP) set predictor �K-XB

↵ (x⌧ |D⌧ , ⇠) splits the data set D⌧ into K
folds to effectively use the available data for both training and calibration. XB-CP can also satisfy the
per-task validity condition (1)1.

Further improvements in efficiency can be obtained via meta-learning [Thrun, 1998]. Meta-learning
jointly processes data from multiple learning tasks, say ⌧1, . . . , ⌧T , which are assumed to be drawn
i.i.d. from a task distribution p(⌧). These data are used to optimize the hyperparameter ⇠ of the set
predictor �(x⌧ |D⌧ , ⇠) to be used on a new task ⌧ ⇠ p(⌧). Specifically, reference [Fisch et al., 2021]
introduced a meta-learning-based method that modifies VB-CP. The resulting meta-VB algorithm
satisfies a looser validity condition with respect to the per-task inequality (1), in which the probability
in (1) is no smaller than 1 � ↵ only on average with respect to the task distribution p(⌧).

In this paper, we introduce a novel meta-learning approach, termed meta-XB, with the aim of reducing
the inefficiency (2) of XB-CP, while preserving, unlike [Fisch et al., 2021], the per-task validity
condition (1) for every task ⌧ .

2 Meta-Learning Algorithm for XB-CP (Meta-XB)

In this section, we briefly introduce the proposed meta-XB algorithm. We start by describing the
meta-learning framework.

1We refer here in particular to the jackknife-mm scheme presented in Section 2.2 of [Barber et al., 2021].
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2.1 Meta-Learning

Meta-learning utilizes data from multiple tasks to enhance the efficiency of the learning procedure
for new tasks. Following the standard meta-learning formulation [Baxter, 2000, Amit and Meir,
2018], as anticipated in Section 1, the learning environment is characterized by a task distribution
p(⌧) over the task identifier ⌧⌧⌧ . Given T meta-training tasks realizations ⌧⌧⌧1 = ⌧1, . . . ,⌧⌧⌧T = ⌧T

drawn i.i.d. from the task distribution p(⌧), the meta-training data set D⌧1:T := {{Dj
t , z

j
t }

Mt
j=1}T

t=1

consists of Mt realizations {Dj
t , z

j
t }

Mt
j=1 of data sets Dj

⌧t
= Dj

t with N⌧t = Nt examples and test
sample zj

⌧t
= zj

t for each task ⌧t. Pairs {Dj
t , z

j
t }

Mt
j=1 are generated i.i.d. from the joint distribution

p(D⌧t , z⌧t), satisfying exchangeability assumption for all tasks t.

The goal of meta-learning for CP is to optimize the vector of hyperparameter ⇠ based on the meta-
training data D⌧1:T , so as to obtain a more efficient set predictor �(x⌧ |D⌧ , ⇠). While reference [Fisch
et al., 2021] proposed a meta-learning solution for VB-CP [Vovk et al., 2005], here we introduce a
meta-learning method for XB-CP.

2.2 Cross-Validation-Based Conformal Prediction (XB-CP)

XB-CP leverages K-fold cross-validation [Barber et al., 2021]. K-fold cross-validation partitions the
per-task data set D⌧ = {z⌧ [i]}N⌧

i=1 into K � 2 disjoint subsets D⌧,1, . . . , D⌧,K such that the conditionSK
k=1 D⌧,k = D⌧ is satisfied. We define the leave-one-out data set D⌧,¬k =

SK
k0=1,k0 6=kD⌧,k0 that

excludes the subset D⌧,k. We also introduce a mapping function k : {1, . . . , N⌧} ! {1, . . . , K} to
identify the subset D⌧,k(i) that includes the sample z⌧ [i], i.e., z⌧ [i] 2 D⌧,k(i).

A nonconformity (NC) score is a function NC(z|D̃⌧ , ⇠) that maps a data set D̃⌧ and any input-output
pair z = (x, y) with x 2 X⌧ and y 2 Y⌧ to a real number while satisfying the permutation-invariance
property NC(z|{z̃⌧ [1], . . . , z̃⌧ [Ñ ]}, ⇠) = NC(z|{z̃⌧ [⇡(1)], . . . , z̃⌧ [⇡(Ñ)]}, ⇠) for any permutation
operator ⇡(·). A good NC score should express how poorly the point (x⌧ , y) “conforms” to the data
set D̃⌧ . The most common way to obtain an NC score is via a parametric two-step approach. This
involves a training algorithm defined by a conditional distribution p(�|D̃⌧ , ⇠), which describes the
output ��� of the algorithm as a function of training data set D̃⌧ ✓ D⌧ and hyperparameter vector ⇠.

Given a test input x⌧ , XB-CP computes the NC score for a candidate pair z = (x⌧ , y) with y 2 Y⌧

by taking the minimum NC score NC(z|D⌧,¬k, ⇠) over all possible subsets k 2 {1, . . . , K}, i.e.,
as mink2{1,...,K} NC(z|D⌧,¬k, ⇠). Furthermore, for each data point z⌧ [i] 2 D⌧ , the NC score is
evaluated by excluding the subset D⌧,k(i) as NC(z⌧ [i]|D⌧,¬k(i), ⇠). Note that evaluating the resulting
N⌧ + 1 NC scores requires running the training algorithm p(�|D⌧,¬k, ⇠) K times, once for each
subset D⌧,¬k. Finally, a candidate y 2 Y⌧ is included in the prediction set �K-XB

↵ (x⌧ |D⌧ , ⇠) if the
NC score for z = (x⌧ , y) is smaller (or equal) than for a fraction (at least) b↵0(N⌧ + 1)c/N⌧ of the
validation data points with ↵0 = ↵ � 1�K/N⌧

K+1 . We refer to supplementary material for details.

2.3 Meta-XB

Meta-XB aims at finding a hyperparameter vector ⇠ that minimizes the average size of the prediction
set �K-XB

↵ (x⌧ |D⌧ , ⇠) for tasks ⌧ that follow the distribution p(⌧). To this end, it addresses the problem
of minimizing the empirical average of the sizes of the prediction sets �K-XB

↵ (x⌧t |D⌧t , ⇠) across the
meta-training tasks ⌧1, . . . , ⌧T over the hyperparameter vector ⇠. This amounts to the optimization

⇠⇤ = arg min
⇠

1

T

TX

t=1

1

Mt

MtX

j=1

���K-XB
↵ (xj

t |D
j
t , ⇠)

��, (3)

where the first sum is over the meta-training tasks and the second is over the available data for
each task. Since it involves hard comparisons among NC scores, the size |�K-XB

↵ (x|D, ⇠)| is not
a differentiable function of the hyperparameter vector ⇠. Therefore, in order to address (3) via
gradient descent, we introduce a differentiable soft inefficiency criterion by replacing the indicator
function with the sigmoid �(u) = (1 + exp(�u/c�))�1 for some c� > 0; the quantile Q1�↵(·)
with a differentiable soft empirical quantile Q̂1�↵(·) constructed via the pinball loss [Koenker and

3



Figure 2: Per-task inefficiency and coverage for VB-CP, XB-CP, meta-VB, and meta-XB for the
synthetic-data example in [Romano et al., 2020]. Each data set D⌧ contains N⌧ = 9 examples, while
the meta-training data set D⌧1:T consists of 500 examples per task from Mt = 50 realizations. The
shaded areas correspond to confidence intervals covering 95% of the realized values.

Bassett Jr, 1978]; and the minimum operator with the softmin function [Goodfellow et al., 2016,
Cuturi et al., 2019]. Details can be found in the supplementary material.

3 Experiments2

In this section, we provide experimental results to validate the performance of meta-XB in terms
of (i) per-task coverage P(y⌧ 2 �(x⌧ |D⌧ , ⇠)); and (ii) per-task inefficiency (2). As benchmark
schemes, we consider (i) VB-CP, (ii) XB-CP, and (iii) meta-VB [Fisch et al., 2021]. We refer to
the supplementary material for other details and additional experiments including miniImagenet
classification [Vinyals et al., 2016] and modulation classification [O’Shea et al., 2018].

3.1 Multinomial Model and Inhomogeneous Features

We consider here the synthetic-data experiment introduced in [Romano et al., 2020]. In Fig. 2, we
demonstrate the performance of the considered set predictors as a function of number of tasks T .
Both meta-VB and meta-XB achieve lower inefficiency (2) as compared to the conventional set
predictors VB-CP and XB-CP, as soon as the number of meta-training tasks is sufficiently large
to ensure successful generalization across tasks [Yin et al., 2019, Jose and Simeone, 2020]. For
example, meta-XB with T = 100 tasks obtain an average prediction set size of 3, while XB-CP has
an inefficiency larger than 4. Furthermore, all schemes satisfy the validity condition (1), except for
meta-VB for T & 104, confirming the analytical results.

4 Conclusion

This paper has introduced meta-XB, a meta-learning solution for cross-validation-based conformal
prediction that aims at reducing the average prediction set size, while formally guaranteeing per-task
calibration. The approach is based on the use of soft quantiles. Through experimental results,
meta-XB was shown to outperform both conventional conformal prediction-based solutions and meta-
learning conformal prediction schemes. Future work may integrate meta-learning with CP-aware
training criteria [Stutz et al., 2021, Einbinder et al., 2022], or with stochastic set predictors.
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Few-Shot Calibration of Set Predictors via
Meta-Learned Cross-Validation-Based

Conformal Prediction: Supplementary Material

1 Main Contributions1

As summarized in the main document, this work introduces a novel meta-learning approach, termed2

meta-XB, with the aim of reducing the inefficiency (2) of XB-CP, while preserving the per-task3

validity condition (1) for every task ⌧ unlike [Fisch et al., 2021]. In this supplementary material, we4

provide full details, and we also incorporate in the design of meta-XB the adaptive nonconformity5

(NC) scores introduced in [Romano et al., 2020]. As argued in [Romano et al., 2020] for conventional6

CP, adaptive NC scores are empirically known to improve the per-task conditional validity condition7

P(y⌧ 2 �(x⌧ |D⌧ , ⇠)|x⌧ = x⌧ ) � 1� ↵. (4)

This condition is significantly stronger than (1) as it holds for any test input x⌧ . A summary of the8

considered CP schemes can be found in Fig. 3.9

Overall, the contribution of this work, including also the supplementary material can be summarized10

as follows:11

• We introduce meta-XB, a meta-learning algorithm for XB-CP, that can reduce the average12

prediction set size (2) as compared to XB-CP, while satisfying the per-task validity condition13

(1), unlike existing meta-learning algorithms for CP;14

• We incorporate adaptive NC scores [Romano et al., 2020] in the design of meta-XB, demon-15

strating via experiments that adaptive NC scores can enhance conditional validity as defined16

by condition (4).17

2 Definitions and Preliminaries18

In this section, we describe necessary background material on CP [Vovk et al., 2005, Balasubramanian19

et al., 2014], VB-CP [Vovk et al., 2005], XB-CP [Barber et al., 2021], and adaptive NC scores20

[Romano et al., 2020].21

2.1 Nonconformity (NC) Scores22

At a high level, given an input x⌧ for some learning task ⌧ , CP outputs a prediction set �(x⌧ |D⌧ , ⇠)23

that includes all outputs y 2 Y⌧ such that the pair (x⌧ , y) conforms well with the examples in the24

available data set D⌧ = {z⌧ [i] = (x⌧ [i], y⌧ [i])}N⌧
i=1. We recall from Section 1 that ⇠ represents a25

vector of hyperparameter. The key underlying assumption is that data set D⌧ and test pair z⌧ =26

(x⌧ , y⌧ ) are realizations of exchangeable random variables D⌧ and z⌧ .27

Assumption 1 For any learning task ⌧ , data set D⌧ and a test data point z⌧ are exchangeable28

random variables, i.e., the joint distribution p(D⌧ , z⌧ ) = p(z⌧ [1], . . . , z⌧ [N⌧ ], z⌧ ) is invariant to29

any permutation of the variables {z⌧ [1], . . . , z⌧ [N⌧ ], z⌧}. Mathematically, we have the equality30

p(z⌧ [1], . . . , z⌧ [N⌧ + 1]) = p(z⌧ [⇡(1)], . . . , z⌧ [⇡(N⌧ + 1)]) with z⌧ = z⌧ [N⌧ + 1], for any per-31

mutation operator ⇡(·). Note that the standard assumption of i.i.d. random variables satisfies32

exchangeability.33



Figure 3: Conformal prediction (CP)-based set predictors in the presence of limited data samples:
Validation-based CP (VB-CP) [Vovk et al., 2005] and the more efficient cross-validation-based CP
(XB-CP) [Barber et al., 2021] provide set predictors that satisfy the per-task validity condition (1);
while previous works on meta-learning for VB-CP [Fisch et al., 2021, Park et al., 2022], which aims at
improving efficiency, do not offer validity guarantees when conditioning on a given task ⌧ . In contrast,
the proposed meta-XB algorithm outputs efficient set predictors with guaranteed per-task validity.
By incorporating adaptive NC scores [Romano et al., 2020], meta-XB can also empirically improve
per-input conditional validity (see (4)). The last column illustrates efficiency, per-task validity, and
per-task conditional validity for a simple example with possible outputs y given by black dots, where
the ground-truth outputs are given by the colored crosses and the corresponding set predictions by
circles. Per-task validity (see (1)) holds if the set prediction includes the ground-truth output with
high probability for each task ⌧ ; while per-task conditional validity (see (4)) holds when the set
predictor is valid for each input. Conditional validity typically results in prediction sets of different
sizes depending on the input [Romano et al., 2019, Lin et al., 2021, LeRoy and Zhao, 2021, Izbicki
et al., 2020]. Inefficiency (see (2)) measures the average size of the prediction set.

CP measures conformity via NC scores, which are generally functions of the hyperparameter vector34

⇠, and are defined as follows.35

Definition 1 (NC score) For a given learning task ⌧ , given a data set D̃⌧ = {z̃⌧ [i] =36

(x̃⌧ [i], ỹ⌧ [i])}Ñ⌧
i=1 ✓ D⌧ with Ñ⌧  N⌧ samples, a nonconformity (NC) score is a function37

NC(z|D̃⌧ , ⇠) that maps the data set D̃⌧ and any input-output pair z = (x, y) with x 2 X⌧ and y 2 Y⌧38

to a real number while satisfying the permutation-invariance property NC(z|{z̃⌧ [1], . . . , z̃⌧ [Ñ ]}, ⇠) =39

NC(z|{z̃⌧ [⇡(1)], . . . , z̃⌧ [⇡(Ñ)]}, ⇠) for any permutation operator ⇡(·).40

A good NC score should express how poorly the point (x⌧ , y) “conforms” to the data set D̃⌧ . The41

most common way to obtain an NC score is via a parametric two-step approach. This involves a42

training algorithm defined by a conditional distribution p(�|D̃⌧ , ⇠), which describes the output ���43

of the algorithm as a function of training data set D̃⌧ ✓ D⌧ and hyperparameter vector ⇠. This44

distribution may describe the output of a stochastic optimization algorithm, such as stochastic gradient45

descent (SGD), for frequentist learning, or of a Monte Carlo method for Bayesian learning [Guedj,46

2019, Angelino et al., 2016, Simeone, 2022]. The hyperparameter vector ⇠ may determine, e.g.,47

learning rate schedule or initialization.48

Definition 2 (Conventional two-step NC score) For a learning task ⌧ , let `⌧ (z|�) represent the loss49

of a machine learning model parametrized by vector � on an input-output pair z = (x, y) with50

x 2 X⌧ and y 2 Y⌧ . Given a training algorithm p(�|D̃⌧ , ⇠) that is invariant to permutation of the51

training set D̃⌧ , a conventional two-step NC score for input-output pair z given data set D̃⌧ is defined52
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as53

NC(z|D̃⌧ , ⇠) := E���⇠p(�|D̃⌧ ,⇠)

⇥
`⌧ (z|���)

⇤
. (5)

Due to the permutation-invariance of the training algorithm, it can be readily checked that (5) is a54

valid NC score as per Definition 1.55

2.2 Validation-Based Conformal Prediction (VB-CP)56

VB-CP [Vovk et al., 2005] divides the data set D⌧ into a training data set Dtr
⌧ of N tr

⌧ samples and a57

validation data set Dval
⌧ of N val

⌧ samples with N tr
⌧ + N val

⌧ = N⌧ . It uses the training data set Dtr
⌧ to58

evaluate the NC scores NC(z|Dtr
⌧ , ⇠), while the validation data set Dval

⌧ is leveraged to construct the59

set predictor �VB
↵ (x⌧ |D⌧ , ⇠) as detailed next.60

Given an input x⌧ , the prediction set �VB
↵ (x⌧ |D⌧ , ⇠) of VB-CP includes all output values y 2 Y⌧61

whose NC score NC(z = (x⌧ , y)|Dtr
⌧ , ⇠) is smaller than (or equal to) a fraction (at least) b↵(N val

⌧ +62

1)c/N val
⌧ of the NC scores {NC(z⌧ [i]|Dtr

⌧ , ⇠)}N val
⌧

i=1 for validation data points z⌧ [i] 2 Dval
⌧ .63

Definition 3 The (1� ↵)-empirical quantile Q1�↵({a[i]}M
i=1) of M real numbers a[1], . . . , a[M ],64

with a[i] 2 R, is defined as the
⌃
(1� ↵)(M + 1)

⌥
th smallest value in the set {a[1], . . . , a[M ],1}.65

With this definition, the set predictor for VB-CP can be thus expressed as66

�VB
↵ (x⌧ |D⌧ , ⇠) =

n
y 2 Y⌧ : NC(z|Dtr

⌧ , ⇠)  Q1�↵

��
NC(z⌧ [i]|Dtr

⌧ , ⇠)
 N val

⌧

i=1

�
with z = (x⌧ , y)

o
.

(6)

Intuitively, by the exchangeability condition, the empirical ordering condition among the NC scores67

used to define set (6) ensures the validity condition (1) [Vovk et al., 2005].68

Theorem 1 [Vovk et al., 2005] Under Assumption 1, for any miscoverage level ↵ 2 [1/(N val
⌧ +1), 1),69

given any NC score as per Definition 1, the VB-CP set predictor (6) satisfies the validity condition70

(1).71

2.3 Cross-Validation-Based Conformal Prediction (XB-CP)72

In VB-CP, the validation data set is only used to compute the empirical quantile in (6), and is73

hence not leveraged by the training algorithm p(�|Dtr
⌧ , ⇠). This generally causes the inefficiency74

(2) of VB-CP to be large if number of data points, N⌧ , is small. XB-CP addresses this problem75

via K-fold cross-validation [Barber et al., 2021]. K-fold cross-validation partitions the per-task76

data set D⌧ = {z⌧ [i]}N⌧
i=1 into K � 2 disjoint subsets D⌧,1, . . . , D⌧,K such that the condition77 SK

k=1 D⌧,k = D⌧ is satisfied. We define the leave-one-out data set D⌧,¬k =
SK

k0=1,k0 6=kD⌧,k0 that78

excludes the subset D⌧,k. We also introduce a mapping function k : {1, . . . , N⌧}! {1, . . . , K} to79

identify the subset D⌧,k(i) that includes the sample z⌧ [i], i.e., z⌧ [i] 2 D⌧,k(i).80

We focus here on a variant of XB-CP that is referred to as min-max jacknife+ in [Barber et al.,81

2021]. This variant has stronger validity guarantees than the jacknife+ scheme also studied in [Barber82

et al., 2021]. Accordingly, given a test input x⌧ , XB-CP computes the NC score for a candidate83

pair z = (x⌧ , y) with y 2 Y⌧ by taking the minimum NC score NC(z|D⌧,¬k, ⇠) over all possible84

subsets k 2 {1, . . . , K}, i.e., as mink2{1,...,K} NC(z|D⌧,¬k, ⇠). Furthermore, for each data point85

z⌧ [i] 2 D⌧ , the NC score is evaluated by excluding the subset D⌧,k(i) as NC(z⌧ [i]|D⌧,¬k(i), ⇠). Note86

that evaluating the resulting N⌧ + 1 NC scores requires running the training algorithm p(�|D⌧,¬k, ⇠)87

K times, once for each subset D⌧,¬k. Finally, a candidate y 2 Y⌧ is included in the prediction set if88

the NC score for z = (x⌧ , y) is smaller (or equal) than for a fraction (at least) b↵0(N⌧ + 1)c/N⌧ of89

the validation data points with ↵0 = ↵� 1�K/N⌧

K+1 .90
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Overall, given data set D⌧ = {z⌧ [i] = (x⌧ [i], y⌧ [i])}N⌧
i=1 and test input x⌧ 2 X⌧ , K-fold XB-CP91

produces the set predictor92

�K-XB
↵ (x⌧ |D⌧ , ⇠) =

n
y 2 Y⌧ :

N⌧X

i=1

1
⇣

min
k2{1,...,K}

NC(z|D⌧,¬k, ⇠) (7)

 NC(z⌧ [i]|D⌧,¬k(i), ⇠)
⌘
� b↵0(N⌧ + 1)c with z = (x⌧ , y)

o
,

where 1(·) is the indicator function (1(true) = 1 and 1(false) = 0).93

Theorem 2 [Barber et al., 2021] Under Assumption 1, for any miscoverage level ↵ 2
⇥

1
N⌧+1 +94

1�K/N⌧

K+1 , 1
�
, given any NC score as per Definition 1, the XB-CP set predictor (7) satisfies the validity95

condition (1).96

While a proof of Theorem 2 for K = N⌧ can be found in [Barber et al., 2021], the general case97

for K < N⌧ follows from the same proof techniques in [Barber et al., 2021] and is included for98

completeness in Appendix A.1.99

2.4 Adaptive Parametric NC Score100

The CP methods reviewed so far achieve the per-task validity condition (1). In contrast, the per-input101

conditional validity (4) is only attainable with strong additional assumptions on the joint distribution102

p(D⌧ , x⌧ ) [Vovk, 2012, Lei and Wasserman, 2014]. However, the adaptive NC score introduced by103

Romano et al. [2020] is known to empirically improve the per-input conditional validity of VB-CP104

(6) and XB-CP (7).105

In this subsection, we assume that a model class of probabilistic predictors p(y|x, �) is available, e.g.,106

a neural network with a softmax activation in the last layer. To gain insight on the definition of adaptive107

NC scores, let us assume for the sake of argument that the ground-truth conditional distribution108

p(y⌧ |x⌧ ) is known. The most efficient (deterministic) set predictor satisfying the conditional coverage109

condition (4) would then be obtained as the smallest-cardinality subset of target values in Y⌧ that110

satisfies the conditional coverage condition (4), i.e.,111

�⇤
↵(x⌧ ) = argmin

�✓Y⌧

|�| s.t.
X

y2�

p(y|x⌧ ) � 1� ↵. (8)

Note that set (8) can be obtained by adding values y 2 Y⌧ to set predictor �⇤
↵(x⌧ ) in order from112

largest to smallest value of p(y|x⌧ ) until the constraint in (8) is satisfied.113

In practice, the conditional distribution p(y⌧ |x⌧ ) is estimated via the model p(y⌧ |x⌧ , �) where the114

parameter vector � is produced by a training algorithm p(�|D̃⌧ , ⇠) applied to some training data set115

D̃⌧ . This yields the naïve set predictor116

�naïve
↵naïve(x⌧ |D̃⌧ , ⇠) = argmin

�✓Y⌧

|�| s.t.
X

y2�

E���⇠p(�|D̃⌧ ,⇠)p(y|x⌧ ,���) � 1� ↵naïve, (9)

where we have used for generality the ensemble predictor obtained by averaging over the output117

��� ⇠ p(�|D̃⌧ , ⇠) of the training algorithm. Unless the likelihood model is perfectly calibrated, i.e.,118

unless the equality p(y⌧ |x⌧ ) = E���⇠p(�|D̃⌧ ,⇠)[p(y⌧ |x⌧ , �)] holds, there is no guarantee that the set119

predictor in (9) satisfies the conditional coverage condition (4) or the marginal coverage condition (1)120

with ↵ = ↵naïve.121

To tackle this problem, Romano et al. [2020] proposed to apply VB-CP or XB-CP with a modified122

NC score inspired by the naïve prediction (9).123

Definition 4 (Adaptive NC score) For a learning task ⌧ , given a training algorithm p(�|D̃⌧ , ⇠)124

that is invariant to permutation of the training set D̃⌧ , the adaptive NC score for input-output pair125

z = (x, y) with x 2 X⌧ and y 2 Y⌧ given data set D̃⌧ , is defined as126

NCada(z|D̃⌧ , ⇠) = max
↵naïve2[0,1]

↵naïve s.t. y 2 �naïve
↵naïve(x⌧ |D̃⌧ , ⇠). (10)
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Intuitively, if the adaptive NC score is large, the pair z does not conform well with the probabilistic127

model E���⇠p(�|D̃⌧ ,⇠)p(y|x,���) obtained by training on set D̃⌧ . The adaptive NC score satisfies the128

condition in Definition 1, and hence by Theorems 1 and 2, the set predictors (6) and (7) for VB-CP129

and XB-CP, respectively, are both valid when the adaptive NC score is used. Furthermore, Romano130

et al. [2020] demonstrated improved conditional empirical coverage performance as compared to the131

conventional two-step NC score in Definition 2. This may be seen as a consequence of the conditional132

validity of the naïve predictor (9) under the assumption of a well-calibrated model.133

The adaptive NC score (10) can be equivalently expressed as134

NCada(z|D̃⌧ , ⇠) =
X

y02Y⌧

1
�
p(y0|x, D̃⌧ , ⇠) � p(y|x, D̃⌧ , ⇠)

�
p(y0|x, D̃⌧ , ⇠), (11)

where we have used the notation p(y|x, D̃⌧ , ⇠) := E���⇠p(�|D̃⌧ ,⇠)p(y|x,���).135

3 Meta-Learning Algorithm for XB-CP (Meta-XB)136

In this section, we introduce the proposed meta-XB algorithm. We start by describing the meta-137

learning framework.138

3.1 Meta-Learning139

Up to now, we have focused on a single task ⌧ . Meta-learning utilizes data from multiple tasks140

to enhance the efficiency of the learning procedure for new tasks. Following the standard meta-141

learning formulation [Baxter, 2000, Amit and Meir, 2018], as anticipated in Section 1, the learning142

environment is characterized by a task distribution p(⌧) over the task identifier ⌧⌧⌧ . Given T meta-143

training tasks realizations ⌧⌧⌧1 = ⌧1, . . . ,⌧⌧⌧T = ⌧T drawn i.i.d. from the task distribution p(⌧), the144

meta-training data set D⌧1:T := {{Dj
t , z

j
t }

Mt
j=1}T

t=1 consists of Mt realizations {Dj
t , z

j
t }

Mt
j=1 of data145

sets Dj
⌧t

= Dj
t with N⌧t = Nt examples and test sample zj

⌧t
= zj

t for each task ⌧t. Pairs {Dj
t , z

j
t }

Mt
j=1146

are generated i.i.d. from the joint distribution p(D⌧t , z⌧t), satisfying Assumption 1 for all tasks t.147

The goal of meta-learning for CP is to optimize the vector of hyperparameter ⇠ based on the meta-148

training data D⌧1:T , so as to obtain a more efficient set predictor �(x⌧ |D⌧ , ⇠). While reference [Fisch149

et al., 2021] proposed a meta-learning solution for VB-CP [Vovk et al., 2005], here we introduce a150

meta-learning method for XB-CP.151

3.2 Meta-XB152

Meta-XB aims at finding a hyperparameter vector ⇠ that minimizes the average size of the prediction153

set �K-XB
↵ (x⌧ |D⌧ , ⇠) in (7) for tasks ⌧ that follow the distribution p(⌧). To this end, it addresses the154

problem of minimizing the empirical average of the sizes of the prediction sets �K-XB
↵ (x⌧t |D⌧t , ⇠)155

across the meta-training tasks ⌧1, . . . , ⌧T over the hyperparameter vector ⇠. This amounts to the156

optimization157

⇠⇤ = arg min
⇠

1

T

TX

t=1

1

Mt

MtX

j=1

���K-XB
↵ (xj

t |D
j
t , ⇠)

��, (12)

where the first sum is over the meta-training tasks and the second is over the available data for each158

task. By (7), the size of the prediction set |�K-XB
↵ (x|D, ⇠)| is not a differentiable function of the159

hyperparameter vector ⇠. Therefore, in order to address (12) via gradient descent, we introduce a160

differentiable soft inefficiency criterion by replacing the indicator function with the sigmoid �(u) =161

(1 + exp(�u/c�))�1 for some c� > 0; the quantile Q1�↵(·) with a differentiable soft empirical162

quantile Q̂1�↵(·); and the minimum operator with the softmin function [Goodfellow et al., 2016,163

Cuturi et al., 2019].164
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For an input set {a[j]}M
j=1, the softmin function is defined as [Goodfellow et al., 2016, Section 6.2.2.3]165

softmin
�
{a[j]}M

j=1

�
=

MX

j=1

a[j]
exp(�a[j]/cS)

PM
i=1 exp(�a[i]/cS)

, (13)

for some cS > 0. Finally, given an input set {a[1], . . . , a[M ]}, the soft empirical quantile Q̂1�↵(·) is166

defined as167

Q̂1�↵

�
{a[j]}M

j=1

�
=

M+1X

j=1

a[j]
exp(�⇢1�↵(a[j]|{a[j]}M+1

j=1 )/cQ)
PM+1

i=1 exp(�⇢1�↵(a[i]|{a[j]}M+1
j=1 )/cQ)

, (14)

Figure 4: Trade-off between
smoothness and accuracy of soft
quantile. Dots represent the M in-
put values, the blue line is the true
empirical quantile Q1�↵(·), and
the green line is the mean of the
M input values.

for some cQ > 0 and a[M + 1] = max({a[j]}M
j=1) + �168

for some � > 0, where we have used the pinball loss169

⇢1�↵(a|{a[1], . . . , a[M ]}) [Koenker and Bassett Jr, 1978]170

⇢1�↵(a|{a[j]}M
j=1)

= ↵
MX

j=1

ReLU(a� a[j]) + (1� ↵)
MX

j=1

ReLU(a[j]� a),

(15)

with ReLU(a) = max(0, a). With these definitions, the soft171

inefficiency metric is derived from (7) as follows (see details in172

Appendix A.2).173

Definition 5 Given a data set D⌧ and a test input x⌧ , the soft inefficiency for the K-fold XB-CP174

predictor (7) is defined as175

|�̂K-XB
↵ (x⌧ |D⌧ , ⇠)|

=
X

y2Y
�
⇣
Q̂1�↵0

⇣n
NC(z⌧ [i]|D⌧,¬k(i), ⇠)� softmin

�
{NC((x⌧ , y)|D⌧,¬k, ⇠)}K

k=1

�oN

i=1

⌘⌘
, (16)

where ↵0 = ↵� 1�K/N⌧

K+1 and c�, cS , cQ > 0.176

The parameters c�, cS , and cQ dictate the trade-off between smoothness and accuracy of the177

approximation |�̂K-XB
↵ (x⌧ |D⌧ , ⇠)| with respect to the true inefficiency |�K-XB

↵ (x⌧ |D⌧ , ⇠)|: As178

c�, cS , cQ ! 0, the approximation becomes increasingly accurate for any � > 0, as long as we have179

↵ 2
⇥

1
N⌧+1 + 1�K/N⌧

K+1 , 1
�
, but the function |�̂K-XB

↵ (x⌧ |D⌧ , ⇠)| is increasingly less smooth (see Fig. 4180

for an illustration of the accuracy of the soft quantile).181

Replacing the soft inefficiency (16) into problem (12) yields a differentiable program when con-182

ventional two-step NC scores (Definition 2) are used. We address the corresponding problem via183

stochastic gradient descent (SGD), whereby at each iteration a batch of tasks and examples per task184

are sampled. The overall meta-learning procedure is summarized in Algorithm 1.185

3.3 Meta-XB with Adaptive NC Scores186

Adaptive NC scores are not differentiable. Therefore, in order to enable the optimization of problem187

(12) with the soft inefficiency (16), we propose to replace the indicator function 1(·) in (11) with188

the sigmoid function �(·). We also have found that approximating the number of outputs y0 2 Y⌧189

that satisfy (11) rather than direct application of sigmoid function empirically improves per-input190

coverage performance. This yields the soft adaptive NC score N̂C
ada

(z|D̃⌧ , ⇠), which is detailed in191

Appendix B. With the soft adaptive NC score, meta-XB is then applied as in Algorithm 1.192

6



3.4 Per-Task Validity of Meta-XB193

As mentioned in Section 1, existing meta-learning schemes for CP cannot achieve the per-task validity194

condition in (1), requiring an additional marginalization over distribution p(⌧) [Fisch et al., 2021] or195

achieving looser validity guarantees formulated as probably approximately correct (PAC)-bounds196

[Park et al., 2022]. In contrast, meta-XB has the following property.197

Theorem 3 Under Assumption 1, for any miscoverage level ↵ 2
⇥

1
N⌧+1 + 1�K/N⌧

K+1 , 1
�
, given any198

NC score (Definition 1), the XB-CP set predictor (7) with ⇠ = ⇠⇤ in (12) satisfies the validity condition199

(1).200

Theorem 3 is a direct consequence of Theorem 2, since meta-XB maintains the permutation-invariance201

of the training algorithm p(�|D̃⌧ , ⇠⇤) as required by Definition 2.202

Algorithm 1: Meta-XB

Input: meta-training set D1:T = {Dt}T
t=1; number of examples {Nt}T

t=1 to be used for set
prediction; step size hyperparameter ; approximation parameter cS for softmin, cQ for
soft quantile, and c� for sigmoid; minibatch size for tasks T̃ and minibatch size for
realization pairs M̃t

Output: meta-learned hyperparameter vector ⇠⇤

initialize hyperparameter vector ⇠
while convergence criterion not met do

choose T̃ tasks randomly from set {1, . . . , T} and denote the corresponding task set as T̃
for each sampled task t 2 T̃ do

randomly sample M̃t pairs from the data set D⌧t , i.e., {Dj
t , z

j
t }j2J̃t

denoting the
corresponding index set as J̃t, and compute the soft inefficiency

L̂t(⇠) =
1

M̃t

X

j2J̃t

|�̂K-XB
↵ (xj

t |D
j
t , ⇠)|. (17)

end
update hyperparameter vector ⇠  ⇠ � 

P
t2T̃ r⇠L̂t(⇠)

end
return the optimized hyperparameter vector ⇠

4 Related Work203

Bayesian learning and model misspecification. When the model is misspecified, i.e., when the204

assumed model likelihood or prior distribution cannot express the ground-truth data generating distri-205

bution [Masegosa, 2020], Bayesian learning may yield poor generalization performance [Masegosa,206

2020, Morningstar et al., 2022, Wenzel et al., 2020]. Downweighting the prior distribution and/or the207

likelihood, as done in generalized Bayesian learning [Knoblauch et al., 2019, Simeone, 2022] or in208

“cold” posteriors [Wenzel et al., 2020], improve the generalization performance. In order to mitigate209

the model likelihood misspecification, alternative variational free energy metrics were introduced210

by Masegosa [2020] via second-order PAC-Bayes bounds, and by Morningstar et al. [2022] via211

multi-sample PAC-Bayes bounds. Misspecification of the prior distribution can be also addressed via212

Bayesian meta-learning, which optimizes the prior from data in a manner similar to empirical Bayes213

[MacKay, 2003].214

Bayesian meta-learning While frequentist meta-learning has shown remarkable success in few-shot215

learning tasks in terms of accuracy [Finn et al., 2017, Snell et al., 2017], improvements in terms216

of calibration can be obtained by Bayesian meta-learning that optimizes over a hyper-posterior217

distribution from multiple tasks [Amit and Meir, 2018, Finn et al., 2018, Yoon et al., 2018, Ravi and218

7



Figure 5: Per-task inefficiency and coverage (left) and per-task conditional inefficiency and coverage
(right) for VB-CP, XB-CP, meta-VB, and meta-XB for the synthetic-data example in [Romano et al.,
2020]. Each data set D⌧ contains N⌧ = 9 examples, while the meta-training data set D⌧1:T consists
of 500 examples per task from Mt = 50 realizations.

Beatson, 2018, Nguyen et al., 2020, Jose et al., 2022]. The hyper-prior can also be modelled as a219

stochastic process to avoid the bias caused by parametric models [Rothfuss et al., 2021].220

CP-aware loss. Stutz et al. [2021] and Einbinder et al. [2022] proposed CP-aware loss functions to221

enhance the efficiency or per-input validity (4) of VB-CP. The drawback of these solutions is that they222

require a large amount of data samples, i.e., N⌧ � 1, unlike the meta-learning methods studied here.223

Per-input validity and local validity. As discussed in Section 2.4, the per-input validity condition224

(4) cannot be satisfied without strong assumptions on the joint distribution p(D⌧ , z⌧ ) [Vovk, 2012,225

Lei and Wasserman, 2014]. Given the importance of adapting the prediction set size to the input to226

capture heteroscedasticity [Romano et al., 2019, Izbicki et al., 2020], a looser local validity condition,227

which conditions on a subset of the input data space Ax⌧ ⇢ X⌧ containing the input x⌧ of interest, i.e.,228

x⌧ 2 Ax⌧ , has been considered in [Lei and Wasserman, 2014, Foygel Barber et al., 2021]. Choosing229

a proper subset Ax⌧ becomes problematic especially in high-dimensional input space [Izbicki et al.,230

2020, LeRoy and Zhao, 2021], and Tibshirani et al. [2019], Lin et al. [2021] proposed to reweight the231

samples outside the subset Ax⌧ by treating the problem as distribution-shift between the data set D⌧232

and the test input x⌧ .233

5 Experiments234

In this section, we provide experimental results to validate the performance of meta-XB in terms235

of (i) per-task coverage P(y⌧ 2 �(x⌧ |D⌧ , ⇠)); (ii) per-task inefficiency (2); (iii) per-task con-236

ditional coverage P(y⌧ 2 �(x⌧ |D⌧ , ⇠)|x⌧ = x⌧ ); and (iv) per-task conditional inefficiency237

E[|�(x⌧ |D⌧ , ⇠)||x⌧ = x⌧ ]. To evaluate input-conditional quantities, we follow the approach in238

[Romano et al., 2020, Section S1.2]. As benchmark schemes, we consider (i) VB-CP, (ii) XB-CP, and239

(iii) meta-VB [Fisch et al., 2021], with either the conventional NC score (Definition 2 with log-loss240

`⌧ (z|�)) or adaptive NC score with Definition 4). Note that meta-VB was described in [Fisch et al.,241

2021] only for the conventional NC score, but the application of the adaptive NC score is direct. For242

all the experiments, unless specified otherwise, we consider a number of examples N⌧ = 9 for the243

8



Figure 6: Per-task inefficiency and coverage (left) and per-task conditional inefficiency and coverage
(right) for VB-CP, XB-CP, meta-VB, and meta-XB for the synthetic-data example in [Romano
et al., 2020] using adaptive NC scores. Different numbers of examples N⌧ for each data set D⌧ is
considered here, while T = 1000 tasks are used to generate the meta-training data set D⌧1:T consists
of (N⌧ + 1)Mt examples per task from Mt = 50 realizations. The shaded areas correspond to
confidence intervals covering 95% of the realized values.

data set D⌧ and the desired miscoverage level ↵ = 0.1. For the cross-validation-based set predictors244

XB-CP and meta-XB, we set number of folds to K = N⌧ . The aforementioned performance measures245

are estimated by averaging over 1000 realizations of data set D⌧ and over 500 realizations for the246

test sample z⌧ of each task ⌧ . We report in this section the 100 different per-task quantities which247

are computed from 100 different tasks. During meta-training, for T different tasks, we assume248

availability of Mt(N⌧ + 1) i.i.d. examples, from which we sample M̃t pairs {Dj
t , z

j
t }j2J̃t

when249

computing inefficiency (17), with which we use Adam optimizer [Kingma and Ba, 2014] to update250

the hyperparameter vector ⇠ via SGD. Lastly, we set the value of the approximation parameters251

c�, cS , and cQ to be one.252

Following [Romano et al., 2020], for VB-CP and XB-CP, we adopt a support vector classifier as253

training algorithm p(�|D̃⌧ , ⇠) as it does not require any tuning of the hyperparameter vector ⇠. In254

contrast, for meta-VB and meta-XB, we adopt a neural network classifier [Romano et al., 2019], and255

set the training algorithm p(�|D̃⌧ , ⇠) to output the last iterate of a pre-defined number of steps of GD256

(1, unless specified otherwise) with initialization given by the hyperparameter vector ⇠ [Finn et al.,257

2017]. Note that using full-batch GD ensures the permutation-invariance of the training algorithm as258

required by Definition 2.259

All the experiments are implemented by PyTorch [Paszke et al., 2019] and ran over a GPU server260

with single NVIDIA A100 card.261

5.1 Multinomial Model and Inhomogeneous Features262

We start with the synthetic-data experiment introduced in [Romano et al., 2020] in which the input263

x 2 R10 is such that the first element equals x1 = 1 with probability 1/5 and x1 = �8 otherwise,264

while the other elements x2, . . . , x10 are i.i.d. standard Gaussian variables. For each task ⌧ , matrix265

⌧ 2 R10⇥|Y⌧ | is sampled with i.i.d. standard Gaussian entries and the ground-truth conditional266
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distribution p(y⌧ |x⌧ ) is defined as the categorical distribution267

p(y⌧ = y|x⌧ ) =
exp(x>

⌧ ⌧y)
P|Y⌧ |

y0=1 exp(x>
⌧ ⌧y0)

, (18)

for y 2 {1, . . . , |Y⌧ |}, where ⌧y 2 R|Y⌧ | is the yth column of the task information matrix ⌧ . The268

number of classes is |Y⌧ | = 5 and neural network classifier consists of two hidden layers with269

Exponential Linear Unit (ELU) activation [Clevert et al., 2015] in the hidden layers and a softmax270

activation in the last layer.271

In Fig. 5, we demonstrate the performance of the considered set predictors as a function of number of272

tasks T . Both meta-VB and meta-XB achieve lower inefficiency (2) as compared to the conventional273

set predictors VB-CP and XB-CP, as soon as the number of meta-training tasks is sufficiently large274

to ensure successful generalization across tasks [Yin et al., 2019, Jose and Simeone, 2020]. For275

example, meta-XB with T = 100 tasks obtain an average prediction set size of 3, while XB-CP276

has an inefficiency larger than 4. Furthermore, all schemes satisfy the validity condition (1), except277

for meta-VB for T & 104, confirming the analytical results. Adaptive NC scores are seen to be278

instrumental in improving the conditional validity (4) when used with meta-XB, although this comes279

at the cost of a larger inefficiency.280

Next, we investigate the impact of number of per-task examples N⌧ in data set D⌧ using adaptive NC281

scores. As shown in Fig. 6, the average size of the set predictors decreases as N⌧ grows larger. In the282

few-examples regime, i.e., with N⌧  40, the meta-learned set predictors meta-VB and meta-XB283

outperform the conventional set predictors VB-CP and XB-CP in terms of inefficiency. However,284

when N⌧ is large enough, i.e., when N⌧ � 80, conventional set predictors are preferable, as transfer285

of knowledge across tasks becomes unnecessary, and possibly deleterious [Amit and Meir, 2018] (see286

also [Park et al., 2020] for related discussions). In terms of conditional coverage, Fig. 6 shows that287

cross-validation-based CP methods are preferable as compared to validation-based CP approaches.288

5.2 Modulation Classification289

per-task coverage

Few-Shot Calibration of Set Predictors via
Meta-Learned Cross-Validation-Based

Conformal Prediction

Anonymous Author(s)
Affiliation
Address
email

Abstract

...1

1 Introduction check Q1��, N� !!

1.1 Context and Motivation2

In modern application of artificial intelligence (AI), calibration is often deemed as important as the3

standard criteria of (average) accuracy. A well-calibrated model is one that can reliably quantify the4

uncertainty of its decisions [Guo et al., 2017, Hermans et al., 2021]. Information about uncertainty5

is critical when access to data is limited and AI decisions are to be acted on by human operators,6

machines, or other algorithms. The majority of existing papers on calibration for AI focuses on7

Bayesian learning as a means to quantify epistemic uncertainty [Finn et al., 2018, Yoon et al., 2018,8

Ravi and Beatson, 2018, Jose et al., 2022]. However, recent studies have shown the limitations of9

Bayesian learning when the assumed model likelihood and, or prior distribution, is misspecified10

[Masegosa, 2020]. Furthermore, exact Bayesian learning is computationally infeasible, calling for11

approximations such as Monte Carlo (MC) sampling [Robert et al., 1999] and variational inference12

(VI) [Blundell et al., 2015]. Overall, under practical conditions, Bayesian learning does not provide13

formal guarantees of calibration.14

Conformal prediction (CP) [Vovk et al., 2005] provides a general framework for the calibration of15

(frequentist or Bayesian) probabilistic models. The formal calibration guarantees provided by CP16

hold irrespective of the (unknown) data distribution, as long as the available data samples and the test17

samples are exchangeable – a weaker requirement than the standard i.i.d. assumption. As illustrated18

in Fig. 1, CP produces set predictors that output a subset of the output space Y for each input x, with19

the property that the set contains the true label with probability no smaller than a desired value 1 � ↵.20

Mathematically, for a given learning task ⌧ , assume that we are given a data set D⌧ with N⌧ samples,21

i.e., D⌧ = {z⌧ [i]}N⌧
i=1, where the ith sample z⌧ [i] = (x⌧ [i], y⌧ [i]) contains input x⌧ [i] 2 X⌧ and22

target y⌧ [i] 2 Y⌧ . The input data space X⌧ and the target data space Y⌧ may depend on the task ⌧ .23

CP provides a set predictor �(·|D⌧ , ⇠) : X⌧ ! 2Y⌧ , specified by a hyperparameter vector ⇠, that24

maps an input x⌧ 2 X⌧ to a subset of the output domain Y⌧ based on a data set D⌧ . Calibration25

amounts to the per-task validity condition26

P(y⌧ 2 �(x⌧ |D⌧ , ⇠)) � 1 � ↵, (1)
which indicates that the set predictor �(x⌧ |D⌧ , ⇠) contains the true target y⌧ with probability at least27

1 � ↵. Here, the probability P(·) is taken over the ground-truth, exchangeable, joint distribution28

p(D⌧ , z⌧ ), and bold letters represent random variables.29
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Figure 7: Per-task coverage and in-
efficiency of VB-CP, XB-CP, meta-
VB, and meta-XB for modulation
classification [O’Shea et al., 2018].
We consider N⌧ = 9 examples for
each data set D⌧ . The boxes rep-
resent the 25% (lower edge), 50%
(line within the box), and 75% (up-
per edge) percentiles of the per-task
performance metrics evaluated over
100 different meta-test tasks.

We now consider the real-world modulation classification exam-290

ple illustrated in Fig. 1, in which the goal is classifying received291

radio signals depending on the modulation scheme used to gen-292

erate it [O’Shea et al., 2016, 2018]. The RadioML 2018.01A293

data set consists 98, 304 inputs with dimension 2 ⇥ 1024, ac-294

counting for complex baseband signals sampled over 1024 time295

instants, generated from 24 different modulation types [O’Shea296

et al., 2018]. Each task ⌧ amounts to the binary classification of297

signals from two randomly selected modulation types. Specif-298

ically, we divide the 24 modulations types into 16 classes used299

to generate meta-training tasks, and 8 classes used to produce300

meta-testing tasks, following the standard data generation ap-301

proach in few-shot classifications [Lake et al., 2011, Ravi and302

Larochelle, 2016]. We adopt VGG16 [Simonyan and Zisser-303

man, 2014] as the neural network classifier as in [O’Shea et al.,304

2018]. Furthermore, for meta-VB and meta-XB, we apply a305

single GD step during meta-training and five GD steps during306

meta-testing [Finn et al., 2017, Ravi and Beatson, 2018].307

Fig. 7 shows per-task coverage and inefficiency for all schemes308

assuming conventional NC scores. While the conventional set309

predictors VB-CP and XB-CP produce large, uninformative set310

predictors that encompass the entire target data space Y⌧ of dimension |Y⌧ | = 2, the meta-learned311

set predictors meta-VB and meta-XB can significantly improve the prediction efficiency. However,312

meta-VB fails to achieve per-task validity condition (1), while the proposed meta-XB is valid as313

proved by Theorem 3.314
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5.3 Image Classification315

Lastly, we consider image classification problem with the miniImagenet dataset [Vinyals et al., 2016]316

considering N⌧ = 4 data points per task with desired miscoverage level ↵ = 0.2. We consider317

binary classification with tasks being defined by randomly selecting two classes of images, and318

drawing training data sets by choosing among all examples belonging to the two chosen classes.319

Figure 8: Per-task coverage and in-
efficiency of VB-CP, XB-CP, meta-
VB, and meta-XB for miniImagenet
[Vinyals et al., 2016]. We consider
N⌧ = 4 examples for each data set
D⌧ . The boxes represent the 25%
(lower edge), 50% (line within the
box), and 75% (upper edge) per-
centiles of the per-task performance
metrics evaluated over 100 differ-
ent meta-test tasks.

Conventional NC scores are used, and the neural network clas-320

sifier consists of the convolutional neural network (CNN) used321

in [Finn et al., 2017]. For meta-VB and meta-XB, a single step322

GD update is used during meta-training, while five GD update323

steps are applied during meta-testing. Fig. 8 shows that meta-324

learning-based set predictors outperform conventional schemes.325

Furthermore, meta-VB fails to meet per-task coverage in con-326

trast to the proposed meta-XB.327

6 Conclusion328

This paper has introduced meta-XB, a meta-learning solution329

for cross-validation-based conformal prediction that aims at330

reducing the average prediction set size, while formally guar-331

anteeing per-task calibration. The approach is based on the332

use of soft quantiles, and it integrates adaptive nonconformity333

scores for improved input-conditional calibration. Through334

experimental results, including for modulation classification335

[O’Shea et al., 2016, 2018], meta-XB was shown to outper-336

form both conventional conformal prediction-based solutions337

and meta-learning conformal prediction schemes. Future work338

may integrate meta-learning with CP-aware training criteria339

[Stutz et al., 2021, Einbinder et al., 2022], or with stochastic340

set predictors.341
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Appendix456

A Proofs457

A.1 Proof of Theorem 2458

The proof mainly follows [Barber et al., 2021, Section B.1] and [Barber et al., 2021, Section B.2.2]459

with the following changes.460

We first extend the result for regression problems in [Barber et al., 2021] to classification, starting461

with the case K = N⌧ , for which the mapping function k(·) is the identity k(i) = i. Unlike462

[Barber et al., 2021], which defined “comparison matrix” of residuals for the regression problem, we463

consider a more general comparison matrix defined in terms of NC scores that can be applied for both464

classification and regression problems in a manner similar to [Romano et al., 2020]. Accordingly, we465

define the comparison matrix A 2 {0, 1}(N⌧+1)⇥(N⌧+1)466

A(i, j) =

8
>>><

>>>:

1
⇣

mink2{1,...,K+1} NC(z⌧ [i]|D⌧,¬(k(i),k), ⇠) > NC(z⌧ [j]|D⌧,¬(k(i),k(j)), ⇠)
⌘

for k(i) 6= k(j)
0

for k(i) = k(j)

9
>>>=

>>>;
,

(19)
for a fixed vector of hyperparameter ⇠. The cardinality of the set S(A) of “strange” points467

S(A) =

⇢
i 2 {1, 2, . . . , N⌧ + 1} :

N⌧+1X

j0=1

A(i, j0) � (1� ↵0)(N⌧ + 1)

�
(20)

can be bounded as |S(A)|  N⌧ + 1� (1� ↵0)(N⌧ + 1) [Barber et al., 2021, Romano et al., 2020].468

Therefore, theorem 2 holds for K = N⌧ , since any N⌧ + 1 points can be “strange points” with equal469

probability thanks to Assumption 1.470

To address the case K < N⌧ , we follow [Barber et al., 2021, Section B.2.2] by drawing N⌧/K � 1471

additional test examples that are all assigned to the (K + 1)th fold. This way, the actual (N⌧ + 1)th472

test point is equally likely to be in any of the K + 1 folds. Now, taking the augmented data set D̄ that473

contains all the N⌧ + N⌧/K examples in lieu of D in (19), we can bound the number of “strange474

points” in set (20) as475

|S(A)|  N⌧ + N⌧/K � (1� ↵0)(N⌧ + 1). (21)
Finally, by using the same proof technique in [Barber et al., 2021, Section B.2.2], we have the476

inequality477

P
�
y⌧ 2 �K-XB

↵ (x⌧ |D⌧ , ⇠)
�
� 1� ↵0 � 1�K/N⌧

K + 1
. (22)

In Theorem 2, we choose ↵0 = 1�K/N⌧

K+1 , which satisfies per-task validity condition (1) from (22).478

A.2 Proof for Definition 5479

From the definition of the XB-CP set predictor (7), the inefficiency can be obtained as480

|�K-XB
↵ (x⌧ |D⌧ , ⇠)|

=
X

y2Y⌧

1

✓ N⌧X

i=1

1
⇣

min
k2{1,...,K}

NC((x⌧ , y)|D⌧,¬k, ⇠)  NC(z⌧ [i]|D⌧,¬k(i), ⇠)
⌘
� b↵0(N⌧ + 1)c

◆

=
X

y2Y⌧

1
⇣
Q�

1�↵0

⇣n
min

k2{1,...,K}
NC((x⌧ , y)|D⌧,¬k, ⇠)� NC(z⌧ [i]|D⌧,¬k(i), ⇠)

oN⌧

i=1

⌘
 0

⌘
(23)

=
X

y2Y⌧

1
⇣
Q1�↵0

⇣n
NC(z⌧ [i]|D⌧,¬k(i), ⇠)� min

k2{1,...,K}
NC((x⌧ , y)|D⌧,¬k, ⇠)

oN⌧

i=1

⌘
� 0

⌘
, (24)
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with Q�
1�↵({a[i]}M

i=1) := �Q1�↵({�a[i]}M
i=1) being the b↵(M + 1)cth smallest value in481

the set {a[1], . . . , a[M ],1}. The equality in (23) is proved as follows. Defining g(z⌧ ) :=482

mink2{1,...,K} NC((x⌧ , y)|D⌧,¬k, ⇠) with z⌧ = (x⌧ , y) and f(z⌧ [i]) := NC(z⌧ [i]|D⌧,¬k(i), ⇠),483

we show that the inequality
PN⌧

i=1 1
�
g(z⌧ )  f(z⌧ [i])

�
� b↵0(N⌧ + 1)c is equivalent to484

Q�
1�↵0

�
{g(z⌧ )� f(z⌧ [i])}N⌧

i=1

�
 0. This is a consequence of the following equivalence relations:485

N⌧X

i=1

1
�
g(z⌧ )  f(z⌧ [i])

�
� b↵0(N⌧ + 1)c

,
N⌧X

i=1

1
�
g(z⌧ )� f(z⌧ [i])  0

�
� b↵0(N⌧ + 1)c

, at least b↵0(N⌧ + 1)c values of g(z⌧ )� f(z⌧ [i]) are smaller than or equal to 0

,b↵0(N⌧ + 1)cth smallest value of g(z⌧ )� f(z⌧ [i]) is smaller than or equal to 0

,Q�
1�↵0

�
{g(z⌧ )� f(z⌧ [i])}N⌧

i=1

�
 0

,Q1�↵0
�
{f(z⌧ [i])� g(z⌧ )}N⌧

i=1

�
� 0. (25)

By replacing 1(·) with the sigmoid �(·), min(·) with softmin(·) (13), and the quantile Q1�↵0(·) with486

Q̂1�↵0(·) (14), we finally obtain the soft inefficiency of K-fold XB-CP predictor in (16) from (24).487

B Details on Soft Adaptive NC Scores488

Recalling (11), while denoting py0 := p(y0|x, D̃⌧ , ⇠) and py := p(y|x, D̃⌧ , ⇠), the adaptive NC score489

for input-output pair z = (x, y) with x 2 X⌧ and y 2 Y⌧ can be computed as490

NCada(z|D̃⌧ , ⇠) =
X

y02Y⌧

1
�
py0 � py

�
py0

=
X

y02Y⌧

ReLU(py0 � py) + py

X

y02Y⌧

1(py0 � py)

= 1 +
X

y02Y⌧

ReLU(py � py0)� py

X

y02Y⌧

1(py0 < py). (26)

We define the soft adaptive NC score by approximating the indicator function 1(·) with the sigmoid491

�(·) as492

NCada(z|D̃⌧ , ⇠) = 1 +
X

y02Y⌧

ReLU(py � py0)� py

X

y02Y⌧

�(py0 < py). (27)

Note that, we have found that the preprocessing (26) yields better empirical per-input coverage as493

compared to the direct approximation of (11) that replaces the indicator function 1(·) with sigmoid494

�(·), i.e.,
P

y02Y⌧
�
�
py0 � py

�
py0 .495

C Additional Experiments496

C.1 Demodulation497

To elaborate further on the last column in Fig. 3, here we present a toy example that allows us to498

visualize the set predictors obtained by XB-CP and meta-XB, both with conventional and adaptive499

NC. To this end, we implement XB-CP with the same neural network used for meta-XB but with the500

hyperparameter vector ⇠ defining the initialization of GD set to a random vector [He et al., 2015].501

Given a learning task ⌧ , the input and output space X⌧ and Y⌧ are given by the set of complex points,502

i.e., by the two-dimensional real vectors [Larsson, 2017]503

X⌧ = Y⌧ =

(r
2z

M + 1
ej2⇡

�
1�

p
5�1
2

�
zej�⌧ for z = 1, 2, . . . , M

)
, (28)
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Figure 9: Illustration of set predictions for the demodulation problem described in Appendix C.1.
Colored crosses represent ground-truth outputs and the correspondingly colored circles depict the
predicted sets. For visualization purpose, the figure is generated based on a single realization of task
⌧ , data set D⌧ , and test input x⌧ . T = 1000 different tasks are used for meta-training.

for some task-specific phase shift �⌧ 2 [0, 2⇡]. Denoting as N⌧ (x) = {y 2 Y⌧ : |x�y|  r and y 6=504

x} the set of neighboring points within some radius r, the ground-truth distribution p(y⌧ |x⌧ ) is such505

that y⌧ equals x⌧ with probability 1 � p, and it equals any neighboring point y 2 N⌧ (x) with506

probability p/|N⌧ (x)|. We set M = 6, r = 1.3, and p = 0.2. We design neural network classifier to507

consist of two hidden layers with Exponential Linear Unit (ELU) activation [Clevert et al., 2015] in508

the hidden layers and a softmax activation in the last layer.509

Fig. 9 visualizes the set predictors for XB-CP, i.e., with a random hyperparameter vector ⇠, and for510

meta-XB, after meta-training with 1000 tasks, by focusing on a specific realizations of phase shift that511

follows the distribution �⌧ ⇠ Unif[0, 2⇡). By transferring knowledge from multiple tasks, meta-XB512

is seen to yield more efficient set predictors. Furthermore, by using adaptive NC scores, meta-XB513

can adjust the prediction set size depending on the “difficulty” of classifying the given input, while514

a conventional NC score tends to produce set predictors of similar sizes across all inputs. Note, in515

fact, that inputs close to the center of the set, as the green example in Fig. 9, have more neighbors as516

compared to points at the edge, as the red points in Fig. 9, making it harder to identify the true value517

of y given x.518
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