
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOSI: IMPROVING MULTI-AGENT REINFORCEMENT
LEARNING VIA LATENT OPPONENT STRATEGY IDENTI-
FICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In collaborative Multi-Agent Reinforcement Learning (MARL), agents must con-
tend with non-stationarity introduced not only by teammates’ concurrent decisions
but also by partially observable and diverse opponent strategies. Although recent
MARL algorithms have achieved strong performance in complex decision-making
tasks, they often overfit to specific opponent behaviors, resulting in sharp per-
formance drops when encountering previously unseen strategies. To overcome
this limitation, we propose Latent Opponent Strategy Identification (LOSI), an
unsupervised framework that identifies and adapts to opponent strategies in real
time without requiring explicit supervision. LOSI employs a trajectory encoder
trained with a contrastive learning objective (InfoNCE) to map opponent behaviors
into compact and discriminative embeddings. These embeddings are then used to
condition both the MARL policy and the mixing network, thereby enabling adap-
tive and robust decision-making. Experimental results on challenging SMAC-Hard
scenarios with mixed opponent strategies demonstrate that LOSI substantially im-
proves generalization and achieves competitive or outperforming results compared
to strong MARL baselines. Further analysis of the learned embedding space reveals
meaningful clustering of trajectories by opponent strategy, even in the absence of
ground-truth labels.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has achieved remarkable success across complex do-
mains, ranging from video games such as StarCraft II to real-world applications including autonomous
driving and multi-robot coordination. To tackle the challenges of coordination and scalability, numer-
ous MARL methods have been developed, focusing either on value decomposition (Sunehag et al.,
2017; Rashid et al., 2018; 2020; Wang et al., 2020a) or on cooperative exploration (Yang et al., 2020;
Mahajan et al., 2019; Wang et al., 2020b). Among them, value-based methods (Sunehag et al., 2017;
Son et al., 2019) have demonstrated particularly strong performance in benchmark tasks such as the
StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019).

A fundamental challenge in collaborative MARL, however, lies in the ability of agents to generalize
to diverse opponent behaviors. While state-of-the-art algorithms such as QMIX (Rashid et al., 2018),
MADDPG (Lowe et al., 2017), and MAPPO (Yu et al., 2022a) can achieve superhuman performance
against a fixed opponent, their performance degrades substantially when confronted with a mixture of
opponent strategies (Ellis et al., 2023). This lack of robustness significantly limits their applicability
in realistic settings, where opponent strategies are often unknown, dynamic, and highly variable.

The problem is particularly pronounced in real-time strategy games such as StarCraft II. Within the
SMAC benchmark, agents must coordinate to defeat scripted enemy teams, and the SMAC-Hard
scenarios (Deng et al., 2024) introduce additional difficulty by incorporating diverse and adaptive
opponent strategies. A key observation is that many MARL policies tend to overfit, exploiting the
weaknesses of a single opponent rather than learning general and robust tactics. This highlights the
need for mechanisms that enable agents to recognize the opponent’s strategy and adapt their behavior
accordingly.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The left side depicts that a policy learns to interact with a static opponent policy, πopp.
The agent observes the state s and takes an action a from a distribution defined byπ(a|s), leading
to an observed distribution of actions represented by the historical trajectory histogram. The right
side illustrates training with "mixed trajectories." The policy learns from a diverse set of experiences
generated by multiple opponent policies, π1 to πN . The mixed trajectories result in a more varied
and complex set of observed states and actions, represented by the scattered points, which can lead to
a more robust and generalized policy.

As illustrated in Figure 1, the agent’s experience distribution depends heavily on the opponent’s
policy. Against a fixed opponent (left), the agent can infer the strategy by aggregating statistics
over observed trajectories. However, in the mixed-strategy setting (right), trajectories from different
opponents are interleaved, requiring the agent to infer the opponent’s latent policy in real time to
guide decision-making. Recent research directions, including opponent modeling (Yu et al., 2022b;
Plaehn et al., 2023; Liang et al., 2023), sub-task assignment (Yang et al., 2022; You et al., 2025), and
prototype-based contrastive learning (Li et al., 2020; Chen et al., 2021), have begun addressing this
challenge. Nevertheless, these approaches remain limited, partly due to the lack of environments
explicitly designed for training with mixed adversary strategies.

To address the opponent strategy identification issue and inspired by recent advances in representation
learning and meta-reinforcement learning (Beck et al., 2023) where a latent context variable is learned
to capture the core dynamics of a task, our method, Latent Opponent Strategy Identification (LOSI),
consists of two core components: (1) an encoder that maps short observed opponent trajectories into
low-dimensional embeddings, and (2) a conditioned MARL policy that adapts its decisions based on
these embeddings. The encoder is trained using a contrastive learning objective (InfoNCE) (Gutmann
& Hyvärinen, 2010), which does not require explicit strategy labels. The InfoNCE loss encourages
embeddings from the same episode (thus the same opponent strategy) to cluster together, while
pushing apart embeddings from different episodes. This allows the model to acquire discriminative
representations of opponent strategies in an entirely unsupervised manner. The learned embeddings
then condition both the MARL controller and the mixing network, enabling adaptive and robust
decision-making against diverse opponents.

Therefore, our contributions are threefold: 1) We propose a novel unsupervised approach for opponent
strategy identification in MARL using contrastive learning, enabling discriminative representation
learning without explicit labels. 2) We demonstrate the effectiveness of LOSI by integrating it with
standard MARL algorithms and evaluating it on challenging SMAC-Hard scenarios with mixed
opponent strategies. 3) We provide detailed analyses of the learned embedding space, showing that
InfoNCE promotes clustering trajectories by strategy, even in the absence of ground-truth identifiers.

2 RELATED WORK

Multi-agent Reinforcement Learning In multi-agent value-based algorithms, the centralized
value function, usually a joint Q-function, is decomposed into local utility functions. Many methods
have been proposed to meet the Individual-Global-Maximum (IGM) (Son et al., 2019) assumption,
which indicates the consistency between the local optimal actions and the optimal global joint action.
VDN (Lowe et al., 2017) and QMIX (Rashid et al., 2018) introduce additivity and monotonicity
to Q-functions. QTRAN (Son et al., 2019) transforms IGM into optimization constraints. QPLEX
(Wang et al., 2020a) uses duplex dueling network architecture to guarantee IGM assumption. Instead

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of focusing on value decomposition, multi-agent policy gradient algorithms provide a centralized
value function to evaluate current joint policy and guide the update of each local utility network. Most
policy-based MARL methods extend RL ideas, including MADDPG (Lowe et al., 2017), MATRPO
(Kuba et al., 2021), MAPPO (Yu et al., 2022a). FOP (Zhang et al., 2021) algorithm factorizes optimal
joint policy by maximum entropy and MACPF (Wang et al., 2023) is the latest algorithm that mixes
critic values of each agent.

Opponent Modeling and Policy Inference Opponent modeling is a core area of research for
non-stationary multi-agent settings. Classic works by (He et al., 2016) introduced early neural
network-based approaches to encode opponents’ features and condition the agent’s policy or Q-
network on them. The Deep Policy Inference Q-Network (DPIQN) by (Hong et al., 2018) further
formalized this idea by learning a feature representation of the opponent’s policy from observations.
More recently, works such as Model-Based Opponent Modeling (Yu et al., 2022b) have explored
using learned environment models to anticipate opponent behavior and improve adaptation. These
methods often require access to opponent observations, actions, or explicitly modeling the opponent’s
policies.

Latent-Context and Task-Inference Methods Our work is also deeply connected to meta-
reinforcement learning, which aims to learn a fast-adapting policy from a distribution of tasks.
Probabilistic Embeddings for RL (PEARL) (Rakelly et al., 2019) is a prominent example, which
learns a latent context variable to enable rapid adaptation to new tasks. The framework uses a
variational inference approach to learn the latent variable from trajectory history. Similarly, Machine
Theory of Mind (ToMnet) (Rabinowitz et al., 2018) uses a meta-learning approach to infer the beliefs
and intentions of other agents. These works demonstrate the power of learning latent representations
to disentangle task-specific information from the core policy. A related line of work is Learning
Dynamic Subtask Assignment (LDSA) by (Yang et al., 2022) and DSRA (You et al., 2025), which
addresses the problem of diverse agent behaviors in a cooperative team. LDSA and DSRA learns
to assign agents to internal subtasks, which are learned from a subtask encoder based on the task
identity, to encourage heterogeneity and improve collaboration.

Contrastive and Prototype Contrastive Learning The use of contrastive learning for represen-
tation learning has seen a surge in popularity, particularly in computer vision and single-agent RL.
Contrastive Learning in RL (CURL) (Laskin et al., 2020) demonstrated how InfoNCE-style objectives
can be used to learn robust visual representations from raw pixel inputs, leading to more data-efficient
learning. Prototypical Contrastive Learning (PCL) (Li et al., 2020) extended this by using prototypes
to learn semantically meaningful clusters in the embedding space, which is conceptually similar to
grouping different opponent strategies. These methods provide the methodological foundation for
our encoder training.

3 BACKGROUNDS

A fully cooperative multi-agent task is described as a Dec-POMDP (Oliehoek et al., 2016) task which
consists of a tuple G = ⟨S,A, P, r, Z,O,N, γ⟩ in which s ∈ S is the true state of the environment
and N is the number of agents. At each time step, each agent i ∈ N ≡ {1, . . . , n} chooses an
action ai ∈ A which forms the joint action a ∈ A ≡ AN . The transition on the environment is
according to the state transition function that P (·|s,a) : S ×A× S → [0, 1]. The reward function,
r(s,a) : S ×A→ R, is shared among all the agents, and γ ∈ [0, 1) is the discount factor for future
reward penalty.

Partially observable scenarios are considered in this paper that each agent draws individual obser-
vations z ∈ Z of the environment according to the observation functions O(s, i) : S × N → Z.
Meanwhile, the action-observation history, τi ∈ T ≡ (Z × A)∗, is preserved for each agent and
conditions the stochastic policy πi(ai|τi) : T × A → [0, 1]. The policy π for each agent is de-
termined by a joint action-value function: Qπ(st,at) = Est+1:∞,at+1:∞ [Rt|st,at], in which the
accumulated reward is considered as a discounted return and formulated as Rt =

∑∞
i=0 γ

irt+i.
After the rollout process, the whole trajectory from the initial transition to terminated transition
< (s0,o0,a0, r0), ..., (sH ,oH ,aH , rH) > are stored in the replay buffer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The utility networks and the mixing networks are based on original MARL algorithms. The
Opponent encoders in our proposed method encode a window of past transitions of each timestep and
are trained by contrastive loss during the training process. The opponent embeddings then serve as
the conditions of the utility networks and the mixer network.

Deep q-learning algorithm aims to find the optimal joint action-value function Q∗(s,a; θ) = r(s,a)+
γEs′ [maxa′ Q∗ (s′,a′; θ)]. Due to partial observability, Q (τ,a; θ) is used in place of Q (s,a; θ) and
parameters θ are learnt by minimizing the expected TD error. Centralized training and decentralized
execution (CTDE) enables agents to acquire global states during the training and only individual
observations during the testing execution. In multi-agent settings, VDN learns a joint action-value
function Qtot(τ,a) as the sum of individual value functions: QVDN

tot (τ,a) =
∑n

i=1 Qi(τi, ai). QMIX

introduces a monotonic restriction ∀i ∈ N ,
∂QQMIX

tot (τ,a)
∂Qi(τi,ai)

> 0 to the mixing network to meet the IGM
assumption. IGM asserts the consistency between joint and local greedy action selections in the joint
action-value Qtot(τ,a) and individual action-values [Qi(τi, ai)]

n
i=1:

argmax
a∈A

Qtot(τ,a) =

 argmaxa1∈A Q1(τ1, a1)
...

argmaxan∈A Qn(τn, an)

 .

4 METHOD

We propose a framework, Latent Opponent Strategy Identification (LOSI), which augments value-
based MARL algorithms with a contrastive identification module. LOSI is designed to stabilize latent
representation learning and improve robustness against mixed opponent strategies by incorporating a
prototype-guided InfoNCE objective. This section introduces the overall architecture of LOSI, details
the latent opponent embedding mechanism, and explains the prototype-based contrastive learning
procedure. The full pseudo-code is provided in the Appendix (Algorithm 1).

4.1 ARCHITECTURE

We focus on settings where opponent strategies are mixed and their true identities are not provided.
To address this challenge, LOSI employs an opponent encoder that extracts latent strategy information
from partial observations of the environment. Inspired by meta-reinforcement learning, the encoder
processes agent-specific information: the current observation oti, the previous action at−1

i , and the
reward rt−1

i , integrating temporal dependencies through Gated Recurrent Unit (GRU) cells. Within a
fixed window size, the GRU accumulates trajectory information and outputs a latent embedding that
summarizes the opponent’s strategy from agent i’s perspective.

In value-based MARL algorithms, learning proceeds through temporal-difference (TD) updates of
each agent’s utility network. For methods such as QMIX, these updates are applied to the mixed
value Qtot. Each agent’s utility network consists of MLP layers with recurrent GRU states ht

i, which
maintain trajectory history. Extending QMIX, LOSI augments the utility network with the predicted

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

opponent embedding zti . At each timestep, the utility network of agent i receives oti, a
t
i, and zti as

input, producing Qi(τi, ai|zti). The individual utilities are then aggregated by the mixing network,
which enforces monotonicity constraints through hyper-networks.

The mixing network is parameterized by a hyper-network that generates its weights and biases
conditioned on both the global state s and the averaged opponent embedding zt. For each layer in the
mixer, the hyper-network outputs a set of weights and biases. These are combined with per-agent
utilities Qi(τi, ai) and activated via ReLU functions to preserve monotonicity. The configuration of
the mixing network follows the standard setup in PyMARL (Samvelyan et al., 2019).

Figure 2 illustrates the training process. Trajectory batches sampled from the replay buffer are
used not only for TD learning but also for opponent strategy identification. The encoder is trained
using a contrastive learning objective: embeddings from the same trajectory (positive samples) are
encouraged to align, while embeddings from other trajectories in the batch (negative samples) are
pushed apart. This contrastive signal ensures the learned embeddings capture discriminative features
of opponent strategies.

4.2 LATENT EMBEDDINGS VIA CONTRASTIVE IDENTIFICATION

Our framework builds upon the value decomposition paradigm. In QMIX (Rashid et al., 2018), the
joint action-value function is factorized into per-agent utilities using a monotonic mixing network:

Qt
tot(τ ,a) = fθ

(
Qt

1(o
t
1, a

t
1), . . . , Q

t
n(o

t
n, a

t
n), s

t
)
, (1)

where τ is the trajectory, oti and ati, and st denote agent observations, actions, global states at timestep
t, and fθ is constrained to be monotonic in its inputs. Each agent then selects decentralized actions
greedily based on its individual utility. We extend this formulation by introducing an opponent
encoder Eϕ, which maps sequences of observations, actions, and rewards to a latent embedding zt:

zt = Eϕ(τ
t). (2)

The embedding zt conditions both the agent utility networks and the mixing network, providing a
contextual signal that adapts the value function to the opponent’s latent strategy. To capture temporal
dynamics, the encoder is implemented as a recurrent GRU:

zt = GRUϕ(z
t−1, [oti, a

t−1
i , rt−1

i]), (3)

During training, the encoder is optimized so that embeddings from trajectories generated by the same
opponent strategy cluster together, while embeddings from different strategies remain well separated.

4.3 PROTOTYPE-BASED CONTRASTIVE LEARNING

To ensure that embeddings are discriminative and stable, we adopt a prototype-based InfoNCE
objective. A memory bank maintains K prototypes pkKk=1, each representing a latent strategy cluster.
For a given trajectory embedding z, the nearest prototype is identified as:

k∗ = argmin
k
∥z − pk∥22. (4)

The contrastive loss is then defined as:

LNCE = − log
exp

(
sim(z, pk∗)/τ

)∑K
j=1 exp

(
sim(z, pj)/τ

) , (5)

where sim(u, v) = u⊤v
|u||v| is cosine similarity and τ is a temperature parameter. Prototypes are updated

online by exponential moving average:

pk∗ ← αpk∗ + (1− α)z. (6)

This objective encourages embeddings from the same opponent strategy to align with their nearest
prototype, while preserving separation between different strategies. The prototype mechanism
prevents collapse and stabilizes representation learning across training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.4 JOINT OPTIMIZATION

The final training objective combines temporal-difference (TD) learning with the prototype-based
contrastive loss:

L(θ, ϕ) = LTD(θ, ϕ) + λ(t)LNCE(ϕ, {pk}), (7)
where the TD loss is defined as:

LTD = E
[(
yt −Qtot(τt,at; θ, ϕ)

)2]
, (8)

with target values computed as:

yt = rt + γmax
a′

Qtot(τt+1,a
′; θ−). (9)

The coefficient λ(t) adaptively balances value learning and contrastive learning via an annealing
schedule:

λ(t) = λmax ·
(
1− e−βt

)
, (10)

so that early training emphasizes stable value estimation, while later training places greater weight on
embedding discrimination.

This joint optimization ensures that Q-learning faithfully optimizes the cooperative reward signal,
while the embeddings remain clustered and strategy-aware. As a result, LOSI achieves stable
convergence and strong generalization in mixed-strategy environments.

5 EXPERIMENT

In this section, we evaluate the performance of the proposed LOSI framework on fully cooperative
SMAC-Hard micro-management challenges. Performance is measured by the mean winning rate in
each scenario. We report results on six enhanced SMAC-Hard tasks and six newly designed, more
complex scenarios. Additionally, we conduct ablation studies to assess the effectiveness of opponent
strategy identification and the impact of ability usage.

5.1 EXPERIMENTS SETTINGS

SMAC-Hard: We first evaluate LOSI on six tasks from SMAC-Hard. Unlike standard SMAC
tasks, SMAC-Hard introduces mixed opponent strategies, where opponents randomly select their
behaviors from a strategy pool. Importantly, agents are not given access to the opponent strategy IDs.
The difficulty level is set to 7 by default. Winning rates are averaged over five independent seeds and
smoothed with a factor of 0.6 for better visualization across 10M time steps.

SMAC-HARD with abilities: To further validate LOSI, we design six additional tasks with
increased complexity. These tasks incorporate fog of war, agent abilities, and larger agent populations,
thereby enlarging both the joint action and observation spaces. Unlike the standard SMAC setting,
ability usage is not restricted; units can freely use their abilities subject to cooldown constraints. As
before, the difficulty level is set to 7, and winning rates are averaged over five seeds and smoothed
with a factor of 0.6 within 10M time steps.

Baselines: We adapt our method to QMIX algorithms and compare our methods to the value-based
QPLEX algorithm, popular policy-based algorithm MAPPO, and a dynamic sub-goal solution method
DSRA. The QMIX, QPLEX in this paper are from the pymarl2 codebase Hu et al. (2021). MAPPO
is provided by Yu et al. (2022a) and DSRA is from the github codebase You et al. (2025).

5.2 EXPERIMENT RESULTS

SMAC-Hard As illustrated in Figure 3, the proposed LOSI method consistently outperforms strong
baseline algorithms, including QMIX, QPLEX, and MAPPO. Furthermore, LOSI also surpasses
DSRA, a method specifically designed for handling multi-subgoal problems, highlighting its supe-
rior adaptability to diverse opponent behaviors. In the 10m_vs_11m task, the QPLEX algorithm
experiences a sharp drop in winning rates, primarily due to the collapse of its attention matrix when

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Comparison of our method against baselines on six SMAC-Hard scenarios with 5 mixed
opponent strategies, including the original hard and super-hard tasks: 10m_vs_11m, 27m_vs_30m,
MMM2, 3s5z_vs_3s6z, corridor, 6h_vs_8z. The solid line shows the average evaluation winning rate
across 5 seeds and the shaded areas correspond to the 25-75% percentiles.

confronted with high performance variance across different runs. By contrast, LOSI maintains stable
learning dynamics and achieves higher overall performance. Another particularly challenging case is
the 6h_vs_8z task. Unlike most other scenarios, performance across all algorithms remains very low.
Nevertheless, LOSI shows gradual improvement, eventually reaching a winning rate of around 23%,
with a clear upward trend. This suggests that our method successfully identifies and defeats at least
one of the opponent’s strategies. However, due to the intrinsic difficulty of the task—arising from
both the unit imbalance and the opponent’s diverse tactical choices—longer training horizons may be
required for LOSI to systematically adapt to and overcome the remaining strategies.

SMAC-Hard with Abilities Figure 4 reports results on the six newly designed scenarios with ability
usage. In these settings, opponent strategies involve stochastic activation of unit abilities, while agents
can also employ abilities subject to their respective cooldown constraints, creating a significantly more
dynamic and complex combat environment. Across all scenarios, LOSI demonstrates competitive or
superior performance compared to the baselines. In 2vr_vs_3sc, 3rp_vs_5zl, and mmmt scenarios,
LOSI achieves comparable results while still slightly outperforming other methods. In 7q_vs_2bc
scenario, LOSI converges much faster, indicating its ability to rapidly recognize and adapt to
opponent strategies. Notably, in the more demanding 3rp_vs_24zl and 7q_vs_2bc tasks, LOSI
delivers substantial performance gains, significantly surpassing all baselines. These results highlight
LOSI’s ability to leverage the learned opponent embeddings to guide policy adaptation, even in high-
dimensional action spaces involving ability management. Similar to the SMAC-Hard experiments,
QPLEX occasionally suffers from attention collapse due to the large variance in outcomes, further
underscoring LOSI’s robustness and stability.

6 DISCUSSION

Performance Enhancement As shown in Figure 3, removing the opponent identification module
leads to clear performance degradation. In particular, the original value-based methods such as
QMIX and QPLEX attempt to handle diverse opponent strategies using a single stationary policy.
This design imposes significant challenges for accurate Q-value approximation. The centralized
state-action values depend not only on the underlying environment state but also on the unobserved

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of our method against baselines on six newly-designed SMAC-Hard scenarios
with 5 mixed opponent strategies. The codebase ’onpolicy’ from MAPPO requires deeper modifi-
cation of the starcraft.py which is not provided in the SMAC-Hard repository. Thus the MAPPO
baseline is not provided here. The solid line shows the average evaluation winning rate across 5 seeds
and the shaded areas correspond to the 25-75% percentiles.

opponent strategy. As a result, the Q values associated with the same environmental state may vary
considerably across trajectories when opponents adopt different strategies. This variance introduces
instability into both the centralized mixing network and the individual policy networks. A similar
phenomenon is observed in the actor–critic paradigm, where MAPPO suffers from unstable value
estimates in the critic network, which in turn negatively affects the quality of the learned actor
policies.

The DSRA algorithm, despite its ability to model multiple subgoals, fails to extend this capacity to
effective opponent strategy recognition. DSRA employs a variational autoencoder (VAE) to generate
subgoal embeddings and reconstruct observations, after which the embeddings are combined with
an ability matrix and passed through a Gumbel-Softmax operation for policy selection. However,
DSRA faces two major limitations in this setting. First, the number of subgoals must be specified
as a fixed hyperparameter, while in practice the number of opponent strategies is unknown and
potentially variable. Second, the embeddings learned by DSRA often shift rapidly within a single
trajectory, which can undermine the efficiency and stability of subgoal identification. Together, these
factors limit the applicability of DSRA when tackling dynamic opponent behaviors in mixed-strategy
environments.

Agent Abilities Figure 4 highlights the experimental results for scenarios in which both agents and
opponents can exploit specialized abilities. Unlike the standard SMAC-Hard tasks, these new tasks
allow agents to make decisions about whether and when to use abilities, such as the Blink ability for
Stalker units, which enables instantaneous relocation. These abilities greatly expand the effective
action space and introduce additional layers of strategic diversity. Both agents and opponents can
employ abilities at varying times and on different targets, which significantly increases the complexity
of policy learning. Importantly, this enlarged action space provides more fine-grained signals for
meta-learning, thereby facilitating more precise opponent strategy identification.

In these settings, the timing and targeting of abilities become as critical as traditional movement
and attack decisions. Thus, the training process requires not only accurate Q-value estimates
for standard actions but also highly reliable estimates for ability-related decisions, which often
serve as decisive actions in combat. Unstable Q values for these critical actions can lead to large

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

fluctuations in performance, making it particularly challenging for baseline algorithms to converge.
Our LOSI framework, by contrast, demonstrates superior robustness in such scenarios, as its opponent
identification module enables agents to adaptively condition their policies on inferred opponent
strategies. This capability explains its strong performance in the ability-enabled environments, where
relying on a single stationary policy is insufficient to achieve competitive results.

Figure 5: The t-SNE visualization results of the opponent policy embedding at the first 200, 10000 to
10020, and 20000 to 20200 training iterations.

Opponent Strategy Identification To further validate the effectiveness of our framework, we
visualize the learned embeddings of opponent strategies using t-SNE (Maaten & Hinton, 2008).
As illustrated in Figure 5, the embeddings are initially intermingled, reflecting the difficulty of
distinguishing opponent behaviors at the beginning of training. After approximately 10k iterations,
the model successfully separates one opponent strategy, and by the final 200 episodes, three distinct
clusters emerge. Notably, while the SMAC-Hard environment contains five ground-truth opponent
strategies, our LOSI identifies three robust clusters. This suggests that some strategies, such as “attack
the nearest enemy” and “attack the weakest enemy,” may be too similar in practice to yield separable
embeddings.

Importantly, the clustering observed in t-SNE does not rely on explicit access to opponent strategy
IDs, which are hidden from the agent during training. Instead, the embeddings reflect an implicit
disentanglement of strategic patterns that are aligned with the convergence dynamics of the utility
networks. Despite the partial mismatch between the number of ground-truth strategies and the
number of clusters identified, the visualization demonstrates that LOSI captures meaningful strategic
distinctions. This implicit recognition process contributes directly to performance improvements, as
agents are better equipped to adjust their behaviors based on inferred opponent tactics.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Latent Opponent Strategy Identification (LOSI), a novel framework that
enables agents in multi-agent reinforcement learning (MARL) to dynamically adapt their policies
to diverse opponent strategies. Departing from traditional approaches, LOSI learns discriminative
representations of opponent behaviors in a fully unsupervised manner by training an encoder with
a contrastive learning objective (InfoNCE). This design effectively clusters sub-trajectories from
the same episode while separating those from different episodes, producing latent embeddings that
serve as powerful conditioning signals for MARL policies and mixing networks. Through extensive
experiments on the challenging SMAC-Hard benchmarks, we showed that LOSI substantially outper-
forms strong baselines, delivering improved robustness and generalization across mixed and evolving
opponent strategies. Notably, LOSI achieves this without requiring explicit strategy labels, which
represents an important step toward developing adaptive and strategy-aware agents for complex real-
world applications. Looking forward, we plan to extend LOSI to a wider range of MARL algorithms,
including both value-decomposition and actor–critic architectures with value-based critics, and to
integrate it with online opponent modeling or meta-learning techniques for faster adaptation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 CHECKLIST

8.1 DECLARATION OF LLM USAGE

During the paper writing, LLMs are used solely for polishing the writing, such as correcting spelling
and grammar errors, and for no further purpose.

8.2 ETHICS

There are no ethical concerns currently because the codebase, the environment, and the data are
open-sourced and are cited in the paper.

8.3 REPRODUCIBILITY

The testbed is publicly accessible from GitHub, and StarCraft II is provided by Storm platform. The
codes are also provided in the supplementary materials.

REFERENCES

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 38th International Conference
on Machine Learning (ICML), 2021.

Yue Deng, Yan Yu, Weiyu Ma, Zirui Wang, Wenhui Zhu, Jian Zhao, and Yin Zhang. Smac-hard:
Enabling mixed opponent strategy script and self-play on smac. arXiv preprint arXiv:2412.17707,
2024.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36:37567–
37593, 2023.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International conference on machine learning, pp. 1804–1813. PMLR,
2016.

Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A deep policy
inference q-network for multi-agent systems. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 1388–1396, 2018.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2102.03479, 2021.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International conference on machine learning, pp. 5639–5650.
PMLR, 2020.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning of
unsupervised representations. arXiv preprint arXiv:2005.04966, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jing Liang, Fan Zhou, Shuying Li, Jun Chen, Guandong Zhou, Huaiming Xu, and Xin Li. Learning
opponent behavior for robust cooperation in multi-agent reinforcement learning. IEEE Transactions
on Cybernetics, 53(12):7527–7540, 2023.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Tim Plaehn, Lennart Maes, Julian Köhn, and Peter Sunehag. Opponent modeling with multi-agent
transfer learning. In Proceedings of the 22nd International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2023.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew Botvinick.
Machine theory of mind. In International conference on machine learning, pp. 4218–4227. PMLR,
2018.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pp. 4292–4301, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pp. 5887–5896. PMLR, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized
execution: Multi-agent conditional policy factorization. In International Conference on Learning
Representations (ICLR), 2023.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li. Ldsa:
Learning dynamic subtask assignment in cooperative multi-agent reinforcement learning. Advances
in neural information processing systems, 35:1698–1710, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and Weinan Zhang.
Multi-agent determinantal q-learning. In International Conference on Machine Learning, pp.
10757–10766. PMLR, 2020.

Chenlong You, Yingbo Wu, Junpeng Cai, Qi Luo, and Yanbing Zhou. Dynamic subtask representation
and assignment in cooperative multi-agent tasks. Neurocomputing, 628:129535, 2025.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022a.

Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based
opponent modeling. Advances in Neural Information Processing Systems, 35:28208–28221,
2022b.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 12491–12500. PMLR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PSEUDOCODE

The pseudocode is provided here according to the descriptions in the method section.

Algorithm 1 QMIX with Prototype-based Contrastive Identification

Require: Agent networks Qi
θ , mixing network fθ , encoder Eϕ, prototype memory {pk}Kk=1, replay buffer D

for each training episode do
Reset environment, initialize hidden states hi

0, encoder state z0
for each timestep t = 1, . . . , T do

Each agent i selects ai
t ∼ πi(oit, h

i
t, zt)

Execute joint action at, observe rt, next obs ot+1

Update hidden states hi
t+1 and encoder embedding zt+1 = Eϕ(τt+1)

Store transition (τt,at, rt, τt+1, zt) in D
end for
Sample batch B from D
for each episode in B do

Compute encoder embedding z = Eϕ(τ)
Find nearest prototype pk∗ = argmink ∥z − pk∥2
Compute InfoNCE loss:

LNCE = − log
exp(sim(z, pk∗)/τ)∑
j exp(sim(z, pj)/τ)

Update prototype pk∗ ← αpk∗ + (1− α)z
end for
Compute TD targets yt = rt + γmaxa′ Qtot(τt+1,a

′)
Compute TD loss LTD = (yt −Qtot(τt,at))

2

Form joint objective L = LTD + λ(t)LNCE
Update θ, ϕ by gradient descent on L

end for

B SMAC-HARD

The experiment testbed in this paper is SMAC-Hard scenario, which is an enhanced version of
original SMAC tasks in the aspect of mixed opponent strategies. The SMAC-Hard environment is a
new environment, which might not be known to public. Therefore, we briefly summarize the content
of SMAC-Hard.

B.1 SUMMARY

The paper ’SMAC-Hard: Enabling Mixed Opponent Strategy Script and Self-play on SMAC’ in-
troduces an extended and more challenging benchmark for Multi-Agent Reinforcement Learning
(MARL) to address the issue of algorithms overfitting to the static, limited opponent policies in
the original StarCraft Multi-Agent Challenge (SMAC). The core problem identified is that existing
SMAC adversaries lack sufficient diversity, causing MARL agents to learn strategies that exploit
unintended vulnerabilities rather than developing true robustness and generalizability.

To overcome these limitations, the authors propose SMAC-HARD, a novel framework that signifi-
cantly increases the complexity of the opponent strategies. The benchmark’s main enhancements
include support for customizable opponent strategies, randomization of adversarial policies, and unit
abilities support. These features expose the agents to a broad and dynamic spectrum of opponent
behaviors during training, forcing them to learn more stable and universally applicable policies.

The experimental evaluations conducted using SMAC-HARD demonstrated that even widely used
and state-of-the-art MARL algorithms struggle significantly against the newly introduced edited and
mixed-strategy opponents. The paper concludes by positioning SMAC-HARD as a critical next step
in MARL research, one that is necessary for properly benchmarking and advancing the development
of the next generation of algorithms capable of operating reliably in unpredictable, open-ended
multi-agent systems.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 EXAMPLE SCRIPTS

The SMAC-Hard provides different LLM-genreated and manually edited opponent scripts. In this
subsection, according to the authors’ official github repository, we analyze and demonstrate some
example opponent script pieces to show the diverse opponent strategy.

B.2.1 BASE SCRIPT

...
def script(self, agents, enemies, agent_ability, visible_matrix, iteration):

actions = []
agents = [agent for _, agent in agents.items() if agent.health != 0]
enemies = [enemy for _, enemy in enemies.items() if enemy.health != 0]
if not agents or not enemies:

return []

if self.map_name in [’3st_vs_5zl’, ’3rp_vs_5zl’, ’2c_vs_64zg’]:
for a in agents:

actions.append(attack(a, (16, 16), visible_matrix))
...

B.2.2 ATTACK NEAREST ENEMY

...
weakest_agent = min(agents, key=lambda e: e.health / e.health_max)

for agent in agents:

if agent.unit_type == UnitTypeId.MEDIVAC.value:
actions.append(move(agent,(weakest_agent.pos.x+2, weakest_agent.pos.y)))

else:
target_tag = self.target_dict.get(agent.tag, None)
target = find_by_tag(enemies, target_tag)
if target == None or target.health == 0:

nearest_enemy = min(enemies, key=lambda e: distance_to(agent, e))
self.target_dict[agent.tag] = nearest_enemy.tag
target_tag = nearest_enemy.tag

actions.append(attack(agent, find_by_tag(enemies, target_tag), visible_matrix))
...

B.2.3 ATTACK WEAKEST ENEMY

...
weakest_enemy = min(enemies, key=lambda e: (e.health + e.shield) / (e.health_max + e.
shield_max))

weakest_agent = min(agents, key=lambda e: e.health / e.health_max)

for agent in agents:
if agent.unit_type == UnitTypeId.MEDIVAC.value:

actions.append(move(agent,(weakest_agent.pos.x, weakest_agent.pos.y)))
else:

target_tag = self.target_dict.get(agent.tag, None)
target = find_by_tag(enemies, target_tag)
if target == None or target.health == 0:

self.target_dict[agent.tag] = weakest_enemy.tag
target = weakest_enemy

actions.append(attack(agent, target, visible_matrix))
...

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2.4 3RP_VS_5ZL SCRIPT 1

...
if self.init:

self.up_cliff = [agents[0].tag, agents[1].tag]
self.down_cliff = [agents[2].tag, agents[3].tag]
self.free = agents[4].tag
self.targets = {}
self.init=False

if len(agents) >= 4:
Group 1 on the cliff and Group 2 off the cliff, the free agent always chases enemies
for agent in agents:

nearest_target = min(enemies, key=lambda e: distance_to(e, agent))
if agent.tag in self.up_cliff:

if nearest_target.pos.y > self.cliff_y:
actions.append(attack(agent, nearest_target, visible_matrix))

else:
actions.append(move(agent, (16, 16)))

elif agent.tag in self.down_cliff:
if nearest_target.pos.y < self.cliff_y:

actions.append(attack(agent, nearest_target, visible_matrix))
else:

actions.append(move(agent, (16, 9)))
elif agent.tag ==self.free:

actions.append(attack(agent, nearest_target, visible_matrix))
else:

for iter, agent in enumerate(agents):
target = find_by_tag(enemies, self.targets.get(agent.tag, None))
if target == None or target.health == 0:

target = min(enemies, key=lambda e: distance_to(e, agent))
self.targets[agent.tag] = target.tag

actions.append(attack(agent, target, visible_matrix))

return actions
...

B.2.5 3RP_VS_5ZL SCRIPT 2

...
if self.init:

for agent in agents:
self.status[agent.tag] = ’Attack’

self.init = False

Assign targets to agents in groups
for a_id, agent in enumerate(agents):

if agent.health / agent.health_max < 0.2 and agent.shield/agent.shield_max < 0.2:
self.status[agent.tag] = ’Retreat’

elif agent.shield/agent.shield_max >0.8:
self.status[agent.tag] = ’Attack’

status = self.status[agent.tag]

target = find_by_tag(enemies, self.groups.get(agent.tag, None))
if target == None or target.health == 0:

self.groups[agent.tag] = enemies[a_id % len(enemies)].tag
target = enemies[a_id % len(enemies)]

if status == ’Attack’:
actions.append(attack(agent, target, visible_matrix))

elif status == ’Retreat’:
actions.append(move(agent, toward(agent, target, -2)))

return action
...

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2.6 SCRIPT WITH ABILITIES

...
for agent in agents:

a_ability = [ab.abilities for ab in agent_ability if ab.unit_tag==agent.tag][0]
avail_ability = [a.ability_id for a in a_ability]

if agent.unit_type == 140:
Uprooted Spore Crawler
target = min(enemies, key=lambda e: distance_to(e, agent))

if distance_to(agent, self.center) > 5:
actions.append(move(agent, self.center))

else:
if distance_to(agent, target) >= 8 and distance_to(agent, self.center) < 4:

actions.append(move(agent, target))
else:

if 1731 in avail_ability:
actions.append(apply_ability(agent, 3680, (agent.pos.x, agent.pos.y)))

elif agent.unit_type ==99:
rooted Spore Crawler
target = min(enemies, key=lambda e: distance_to(e, agent))
if distance_to(target, agent) >= 8 or distance_to(agent, self.center) >5:

if 1727 in avail_ability:
actions.append(apply_ability(agent, 3681, None))

else:
actions.append(attack(agent, target, visible_matrix))

return actions
...

C HYPER-PARAMETERS

In this paper, we conduct experiments on the five algorithms, including QMIX, QPLEX, DSRA,
MAPPO, and LOSI. The performance is influenced by hyper-parameters used in the experiments. In
this section, we list the hyper-parameters we use in during the training. Because of the large amount
of parameters, we only show the important different parameters compared to the default settings.
The QMIX and QPLEX algorithms implementation are from the pymarl2 codebase which follows
the pymarl2 default parameters. The MAPPO is from the on-policy codebase, in which the authors
provide specific parameters for each scenario in SMAC, so we use these hyper-parameters in the
scripts.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 1: Hyper-parameters in experiments

hyper-parameter QMIX QPLEX DSRA LOSI

runner parallel parallel episode parallel
batch_size_run 8 8 1 8

batch_size 128 128 32 128
t_max 10050000 10050000 10050000 10050000

epsilon_anneal_time 100000 100000 50000 100000
td_lambda 0.6 0.6 0.0 0.6

optim Adam Adam RMSProp Adam
double_q False True True True

adv_hypernet_layers - 3 - -
adv_hypernet_embed - 64 - -

num_kernel - 10 - -
is_minus_one - True - -
weighted_head - True - -

is_adv_attention - True - -
is_stop_gradient - True - -

n_subtasks - - 4 -
agent_subtask_embed_dim - - 64 -

sft_way - - gumbel_softmax -
lambda_subtask_prob - - 0.001 -
lambda_subtask_repr - - 0.001 -

subtask_policy_use_hypernet - - True -
use_tanh - - True -

subtask_repr_layers - - 2 -
random_sele - - False -

z_dim - - - 16
ctx_window - - - 10

ctx_hid - - - 64
ctx_reward - - - True

nce_negatives - - - 64
nce_queue_size - - - 5000
nce_momentum - - - 0.9
nce_temperature - - - 0.07

17

	Introduction
	Related Work
	Backgrounds
	Method
	Architecture
	Latent Embeddings via Contrastive Identification
	Prototype-based Contrastive Learning
	Joint Optimization

	Experiment
	Experiments Settings
	Experiment Results

	Discussion
	Conclusion and Future Work
	CheckList
	Declaration of LLM usage
	Ethics
	Reproducibility

	Pseudocode
	SMAC-Hard
	Summary
	Example Scripts
	Base Script
	Attack Nearest Enemy
	Attack Weakest Enemy
	3rp_vs_5zl Script 1
	3rp_vs_5zl Script 2
	Script with Abilities

	Hyper-parameters

