

000 001 002 003 004 005 *StatsMerging: STATISTICS-GUIDED MODEL MERGING* 006 *VIA TASK-SPECIFIC TEACHER DISTILLATION*

007
008
009
010
011 **Anonymous authors**
012 Paper under double-blind review

ABSTRACT

013 As large models are increasingly deployed across various tasks, the limited GPU
014 memory available for storing and executing task-specific models presents a growing
015 bottleneck. Model merging has emerged as a promising solution to accommodate
016 multiple large models within constrained memory budgets. While traditional multi-
017 task learning methods attempt to merge common layers, they require labor-intensive
018 annotated labels and incur significant computational overhead. Recent merging
019 techniques aim to address this issue by combining models at inference time; how-
020 ever, these approaches often rely on simplistic heuristics, ignore weight distribution
021 characteristics, assume architectural identity, or require access to test samples to
022 infer merging coefficients, thereby limiting generalization and scalability. We
023 present *StatsMerging*, a novel lightweight learning-based model merging method
024 guided by weight distribution statistics without requiring ground truth labels or
025 test samples. *StatsMerging* offers three key advantages: (1) It uniquely leverages
026 singular values from singular value decomposition (SVD) to capture task-specific
027 weight distributions, serving as a proxy for task importance to guide task coefficient
028 learning; (2) It employs a lightweight learner *StatsMergeLearner* to model the
029 weight distributions of task-specific pre-trained models, improving generalization
030 and enhancing adaptation to unseen samples; (3) It introduces *Task-Specific Teacher*
031 *Distillation* for merging vision models with heterogeneous architectures, a merging
032 training paradigm that avoids costly ground-truth labels by task-specific teacher
033 distillation. Notably, we present two types of knowledge distillation, (a) distilling
034 knowledge from task-specific models to train *StatsMergeLearner*; and (b) for the
035 first time, distilling knowledge from models with different architectures prior to
036 merging, following a distill-then-merge paradigm. Extensive experiments across
037 *vision* and *NLP* tasks demonstrate the effectiveness of *StatsMerging*. Our results
038 show that *StatsMerging* outperforms state-of-the-art techniques, achieving overall
039 accuracies of 94.5% for Vision and 77.6% for NLP, while further exhibiting strong
040 generalization to unseen tasks, and robustness to image quality variations.

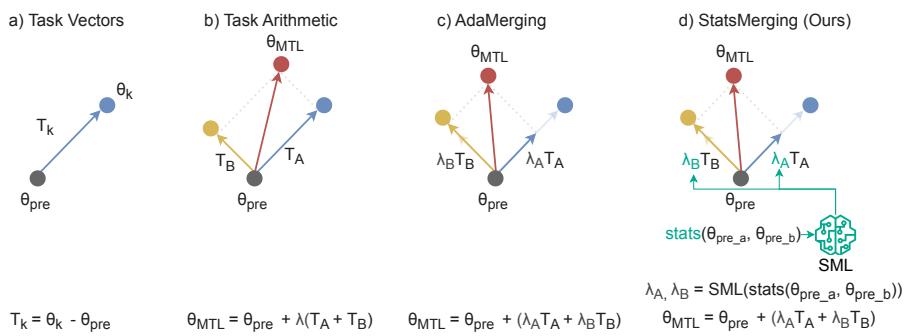
1 INTRODUCTION

041 Computer vision has witnessed transformative progress fueled by deep learning, particularly through
042 the development and adoption of large-scale pre-trained models. Architectures like Convolutional
043 Neural Networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014),
044 Vision Transformers (ViTs) (Dosovitskiy et al., 2021b; Touvron et al., 2021), and hybrid approaches
045 (Liu et al., 2022b) pre-trained on massive datasets have become the cornerstone of modern vision
046 applications. Large-scale models leveraging multi-modal pre-training, such as CLIP (Radford et al.,
047 2021) or generative models like GANs (Goodfellow et al., 2014) and Diffusion Models (Ho et al.,
048 2020; Rombach et al., 2022) have further pushed the boundaries of visual understanding and synthesis,
049 enabling the use of pre-trained backbones to a wide range of downstream vision applications. The
050 dominant practice is to fine-tune these powerful base models to computer vision tasks, including
051 image classification (He et al., 2016), object detection (Ren et al., 2015; Carion et al., 2020a), semantic
052 segmentation (Long et al., 2015; Xie et al., 2021), image restoration (Zhang et al., 2017; Saharia et al.,
053 2022), and image generation (Mirza & Osindero, 2014). This success, however, leads to a practical
054 challenge: the proliferation of numerous specialized pre-trained weights and model checkpoints
055 (Cao et al., 2024a; 2025), most of which share the same foundational ViT or CNN backbones.

054 Managing this growing collection incurs significant storage overhead, complicates deployment, and
 055 represents a missed opportunity to consolidate the related, yet specialized, knowledge contained
 056 within these models (Wortsman et al., 2022), particularly on compute-constrained platforms such as
 057 edge devices (Cao et al., 2024b; Singh et al., 2024). While Multi-Task Learning (MTL) (Vandenhende
 058 et al., 2022b) aims to create versatile single models for vision tasks, it often demands complex joint
 059 training strategies, concurrent access to diverse datasets, and careful architecture design to balance
 060 performance across disparate tasks.

061 Model merging offers a compelling post-hoc alternative, seeking to combine independently trained
 062 models without expensive retraining. However, while techniques for model merging have gained
 063 traction, particularly in Natural Language Processing (NLP) (Yadav et al., 2023a; Ilharco et al.,
 064 2023), adapting these techniques to tasks in computer vision domain has been far less explored. A
 065 straightforward approach of simple weight averaging (Wortsman et al., 2022) often fails in vision
 066 tasks due to the complex, hierarchical visual feature representations, task-specific optimizations, and
 067 the presence of intricate noise patterns that lead to sharp, non-convex loss minima (Izmailov et al.,
 068 2018). Recent methods in this direction (Matena & Raffel, 2022; Jin et al., 2023; Yang et al., 2023;
 069 Padmanabhan et al., 2023) neglect the importance of weight distribution.

070 This paper introduces a novel model merging framework specifically designed to address the afore-
 071 mentioned challenges, for computer vision as well as NLP tasks. We propose *StatsMerging*, a weight
 072 distribution statistics-guided merging approach that moves beyond simple parameter averaging or
 073 task-vector manipulation. *StatsMerging* leverages the statistical features from models pre-trained
 074 on prior tasks. We compute salient statistics extracted by leveraging Singular Value Decomposition
 075 (SVD) to capture the dominant properties of the learned feature spaces. This statistical information,
 076 intrinsically captures aspects of the pre-trained model distributions and guides the merging process by
 077 learning a compact Multilayer Perceptron (MLP), coined *StatsMergeLearner* that predicts adaptive
 078 merging coefficients (λ) shown in Fig. 1.



089 Figure 1: Compared to prior works, *StatsMergeLearner* uniquely learns the merging coefficients by
 090 exploiting statistical features of weights pre-trained on prior tasks. Notably, while both AdaMerging
 091 and *StatsMerging* are presented in the task-wise level in c) and d) for simplicity of illustration, the
 092 same principle can be applied at the layer-wise level for fine-grained adaptation.

093 We make four significant contributions summarized as follows:

- 096 • We propose *StatsMerging*¹, a novel model merging framework guided by model weight
 097 statistics, leveraging SVD to predict merging coefficients λ .
- 098 • We design the lightweight *StatsMergeLearner* to learn model merging coefficients λ estimation
 099 based on statistical features of model weights, through a newly proposed Task-Specific
 100 Teacher Distillation training paradigm without manually-annotated labels.
- 101 • We introduce the first heterogeneous architectural merging method, which distills knowledge
 102 from models with non-identical architectures into the unified target architecture.
- 103 • Extensive experiments demonstrate the effectiveness of our proposed *StatsMerging* for
 104 model merging, achieving state-of-the-art average accuracies of 94.5% on Vision tasks and
 105 77.6% on NLP tasks.

1Our code is available at <https://github.com/statsmerging/statsmerging>.

108

2 RELATED WORK

109

110

Multi-Task Learning. Multi-Task Learning (MTL) (Zhang & Yang, 2021; Vandenhende et al.,
111 2022a) represents a paradigm for training a single model to perform multiple tasks concurrently.
112 While MTL aims to create unified models capable of handling diverse objectives, it typically requires
113 careful design of network architectures, computationally expensive training, access to large and
114 diverse datasets, and intricate task balancing strategies (Zhang & Yang, 2021). Furthermore, MTL
115 necessitates joint training from the outset, which can be computationally expensive and may not be
116 feasible when dealing with a collection of pre-trained, specialized models. Model merging offers a
117 compelling alternative by enabling the combination of independently trained models, without the
118 need for extensive retraining or simultaneous access to multi-task datasets.

119

Multi-Task Merging. Early approaches to model merging often involved simple heuristics like
120 Weight Averaging (Wortsman et al., 2022), TIES-Merging (Yadav et al., 2023a), and Arithmetic
121 Merging (Ilharco et al., 2023). While straightforward to implement, these methods (Ye et al.,
122 2023; Akiba et al., 2025; Tang et al., 2025) typically lack awareness of the weight distributions
123 and learned representations within the models, leading to suboptimal performance in the merged
124 model compared to individually fine-tuned models or unified models trained from scratch. For
125 instance, naive weight averaging could significantly degrade performance (Wortsman et al., 2022),
126 highlighting the challenges in consolidating knowledge from independently trained networks. Recent
127 work decomposes models into common and task-specific subspaces to achieve isotropic merging
128 (Marczak et al., 2025). Task Singular Vectors (TSV) (Gargiulo et al., 2025) is proposed to reduce
129 interference among tasks by aligning merging operations along task-relevant directions. Methods in
130 NLP (Yadav et al., 2023b; Ilharco et al., 2023) have shown promise by learning interpolation weights.

131

Statistical Characterization for Model Merging. Prior work examines statistical patterns in fine-
132 tuned models, but typically relies on these signals individually. Foundational second-order analyses
133 show that task-specific learning induces shifts in weight means and variance (LeCun et al., 1989;
134 Hassibi & Stork, 1992), both serve as lightweight, data-free approximation to Fisher information
135 (Kirkpatrick et al., 2017; Matena & Raffel, 2022). However, such gradient-based merging methods
136 require costly and task-independent computation. Magnitude-based importance has been studied
137 extensively in pruning and sparse sub-networks (Frankle & Carbin; Molchanov et al., 2019; Zhu
138 & Gupta, 2017), and in model patching frameworks that identify high-magnitude, task-relevant
139 components (Goel et al.). A complementary line of work shows that fine-tuning updates concentrate
140 in a small number of dominant SVD directions, revealing strong low-rank structure (Ilharco et al.,
141 2023; 2022; Ortiz-Jimenez et al., 2023), consistent with findings for model merging from task
142 arithmetic (Ilharco et al., 2023), model soups (Wortsman et al., 2022), transformer transferability
143 (Narang et al., 2021), intrinsic dimensionally (Li et al., 2018), and neural anisotropy (Ortiz-Jiménez
144 et al., 2020). Similarly, factorization-based knowledge distillation leverages low-rank decompositions
145 to transfer structured task information (Liu et al., 2022a). However, these approaches either depend
146 on expensive gradients or isolate only one statistical feature of mean, variance, magnitude or low-rank
147 structure. Through a lightweight *StatsMergeLearner*, our work combines mean, variance-as-Fisher
148 signals, magnitude, and dominant SVD directions to jointly capture task structure for efficient,
149 label-free model merging.

150

Method	No Manual Label	No TT Samples	Layer Level	TT Adaptability	Heterogeneous Architecture
Traditional MTL	✗	✗	*	✗	✗
Task Arithmetic	✓	✓	✗	✗	✗
TIES-Merging	✓	✓	✗	✓	✗
Fisher Merging	✓	✓	✗	✗	✗
RegMean	✓	✓	✗	✗	✗
AdaMerging	✓	✗	✓	✓	✗
<i>StatsMerging</i> (Ours)	✓	✓	✓	✓	✓

160

Table 1: Summary of system characteristics in recent works. *: Optional. TT: Test-Time. Test-time
161 adaptability refers to the ability of a model to adjust its weights to unseen data during inference
without access to human-labeled annotations..

162 In summary, our method *StatsMerging* enjoys several advantages compared to prior works: (1) it
 163 eliminates the need of human annotated labels; (2) remains lightweight with marginal overhead; (3)
 164 is explicitly designed to support heterogeneous architectures; and (4) provides flexibility for test-time
 165 adaptability [summarized in Table 1](#).
 166

167 3 METHODOLOGY

169 3.1 PRELIMINARIES

171 **Notations:** A deep neural network is parameterized by a set of weights $\theta = \{\theta_1, \theta_2, \dots, \theta_L\}$ that
 172 learns the mapping from an input data $x_i \in \mathbb{R}^d$ to a predicted value $\hat{y}_i \in \mathbb{R}^D$: $f_\theta(x_i) \rightarrow \hat{y}_i$. Of these,
 173 θ^l represents the l -th $l \in \{1, 2, \dots, L\}$ layer weights where L is the number of layers of the model
 174 f_θ , d denotes an input data x_i 's dimension. For classification problems, y_i is the class label and D is
 175 the number of classes, while for regression problems, D is the dimension of the output vector y_i .

176 The weights of a pre-trained model (e.g., ViT or ResNet) are denoted as $\theta_{pre} = \{\theta_{pre}^1, \theta_{pre}^2, \dots, \theta_{pre}^L\}$.
 177

178 The weights fine-tuned on a specific training data $\{x_i, y_i\}_{i=1}^{N_k^{tr}}$ for task k is recorded as $\theta_k =$
 179 $\{\theta_k^1, \theta_k^2, \dots, \theta_k^L\}$ where N_k^{tr} is the number of training samples.

180 **Problem Formulation:** The problem of *model merging* is formulated as: given K tasks' training
 181 data, find a way to combine weights $\{\theta_k\}_{k=1}^K$ fine-tuned for K tasks previously to obtain a new weight
 182 θ_m without undergoing the retraining process, while the new model f_{θ_m} is capable of performing
 183 well on K tasks jointly.

184 It is assumed that all K fine-tuned weights and the merged weight share the same neural network
 185 architecture. Therefore, the core question is how to *linearly combine* $\{\theta_k\}_{k=1}^K$ to obtain θ_m . In the
 186 task level, the model merging problem is finding a set of coefficients $\lambda_k \in \{\lambda_1, \lambda_2, \dots, \lambda_K\}$ such that
 187 the merged model weights $\theta_m = \sum_{k=1}^K \lambda_k \theta_k$ for model f_{θ_m} perform well on all K tasks. At the layer
 188 level, it becomes searching for a set of coefficients $\lambda_k^l \in \{\lambda_1^1, \lambda_1^2, \dots, \lambda_1^L, \lambda_2^1, \lambda_2^2, \dots, \lambda_2^L, \dots, \lambda_K^L\}$
 189 to obtain the merged model $\theta_m = \sum_{k=1}^K \sum_{l=1}^L \lambda_k^l \theta_k^l$ that maintain high performance on K tasks.
 190

192 3.2 WEIGHT STATISTICS-GUIDED MODEL MERGING

194 In this section, we describe the main intuition and techniques of our proposed method: *StatsMerging*.
 195

196 **Motivation:** Fisher-based methods estimate parameter importance through second-order sensitivity
 197 (Kirkpatrick et al., 2017; Matena & Raffel, 2022) that represents local per-parameter importance
 198 (Amari, 1998; Kunstner et al., 2019), requiring explicit costly gradient computation. Prior studies
 199 highlight signals such as magnitude (Frankle & Carbin; Molchanov et al., 2019; Goel et al.) or
 200 low-dimensional task directions (Ilharco et al., 2023; 2022; Ortiz-Jimenez et al., 2023), each revealing
 201 structured effects of fine-tuning but typically treated in isolation. Inspired by these insights, we adopt
 202 the design principle of jointly leveraging simple, data-free statistics including mean and variance
 203 as lightweight Fisher proxies² with additional global information, magnitude, and dominant SVD
 204 components to capture complementary facets of task structure for efficient, label-free model merging.

205 Building on these insights, we use weight statistics as compact representations of the weight distribution,
 206 avoiding raw weights which are prohibitively high-dimensional. These summarized distributions of pre-trained weights θ_k enable the prediction of merging coefficients through a function
 207 $g(\theta_k) \rightarrow \lambda_m$. The resulting statistics encode task-relevant information about how each model θ_k
 208 contributes to the final merged model.

209 **Weight Statistics:** For a pre-trained weight θ_k on task k , we compute the mean μ_{θ_k} and variance
 210 $\sigma^2 = Var(\theta_k)$ to represent its center and breadth, as well as its magnitude $m = \|\theta_k\|$. In addition,
 211 we extract the singular values σ'_i from Singular Value Decomposition (SVD):

$$W_k = U_k \Sigma_k V_k^\top \quad (1)$$

213 where W_{θ_k} represents the matrix of the model parameter θ_k . By default, we use rank 3 from Σ_k to
 214 form weight statistics. We hypothesize that singular values compress the key information regarding

215 ²See Sec. A.4.2 for the derivation.

216 weight distribution that can benefit the decision of assigning the amount of weights from θ_k for
 217 merging. Combining all together, the weight statistics feature vector S_k is formed as
 218

$$S_k = \text{stats}(\theta_k) = [\mu, \sigma^2, m, \sigma'_r] \quad (2)$$

220 where $\text{stats}()$ extracts the statistical features from the weight θ_k , σ_r represents the singular value
 221 vector given rank r : $\sigma'_r = [\sigma'_1, \sigma'_2, \dots, \sigma'_r]$. Our empirical results indicate that a rank 3 approximation
 222 is effective in extracting key weight information.

223 Notably, the Equation 3 above is task-wise while we also introduce layer-wise formulation for layer l :

$$S_k^l = \text{stats}(\theta_k^l) = [\mu, \sigma^2, m, \sigma'_r]^l \quad (3)$$

224 where the layer-wise statistics features of pre-trained model from task k layer l is computed.
 225

226 **StatsMergeLearner (SML):** We adopt a multilayer perceptron (MLPs) to learn to predict the
 227 merging coefficients λ given weight statistics feature vector S_k as input. In the task-wise mode, the
 228 *StatsMergeLearner* is denoted as $SML(S_k)$:

$$\lambda_k = SML(S_k) = g(\text{stats}(\theta_k)) \quad (4)$$

229 where λ_k is a scalar representing the merging coefficient of Task k model. In the layer-wise mode,
 230 the *StatsMergeLearner* is denoted as $M(S_k)$:

$$\lambda_k^l = SML(S_k^l) = g(\text{stats}(\theta_k^l)) \quad (5)$$

231 where λ_k is a vector containing L layers' coefficients and λ_k^l refers to the coefficient of layer l in the
 232 k pre-trained model. *StatsMerging* is carefully designed that a simple two-layer MLP which serves
 233 as the default learner, is sufficient to learn effective model merging coefficients, as demonstrated in
 234 Section A.5.4.

235 **Optimization Objective.** To train *StatsMergeLearner* (SML), in the standard supervised training
 236 paradigm, we freeze the weights for each task θ_k and apply the cross-entropy loss function L_{CE} on
 237 the aggregated dataset:

$$\mathcal{L}_{CE}^{SL} = - \sum_{c=1}^{C_m} y_c \log(\hat{y}_c) \quad (6)$$

238 where \hat{y}_c is the prediction from the merged model for class c , C_m is the total number of classes in the
 239 aggregated dataset³.

240 3.3 TASK-SPECIFIC TEACHER DISTILLATION

241 The requirement of labeled data for training SML can pose a significant burden, as aggregating labels
 242 across K tasks incurs substantial cost. This challenge is further exacerbated when the labels must be
 243 manually annotated by humans. Such high costs further hinder the broader applicability of SML. We
 244 ask the following **research question**: *Is there a feasible way to obtain sufficiently reliable labels for
 245 effective SML learning without incurring the labor-intensive costs of manual annotation?*

246 Observe that, in the model merging context, K pre-trained models are already given. With the help
 247 of well-trained teachers, knowledge distillation (Hinton et al., 2015) has been proven as an effective
 248 way to train a model without human annotations. Therefore, when aggregating samples from K tasks
 249 together with their respective task experts (depicted as gurus in the figures), high-quality labels can
 250 be obtained at *no additional manual cost*.

251 These observations guide our design of a novel Task-Specific Teacher Distillation paradigm that
 252 trains the *StatsMergeLearner* (SML) for model merging. We illustrate the overview in Fig. 2 and
 253 detailed in Algorithm 1. The intermediate process of pseudo label generation and the role of pseudo
 254 labels are further depicted in Fig 3 (a) and (b), respectively.

255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
³The theoretical analysis is provided in Sec. A.4.

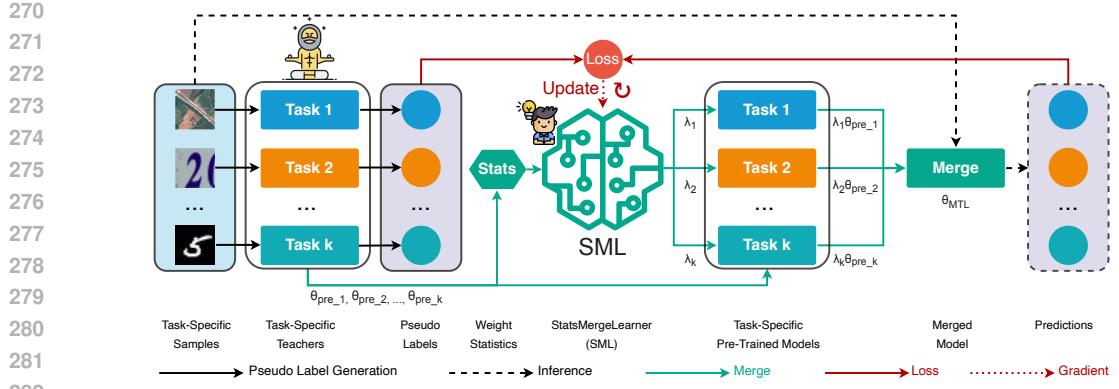


Figure 2: *StatsMerging* Overview. *StatsMergeLearner* (SML) learns the merging coefficients λ by minimizing the loss between the merged model’s predictions and pseudo labels generated by task-specific teachers. During inference, only the merged model is employed to predict class labels.

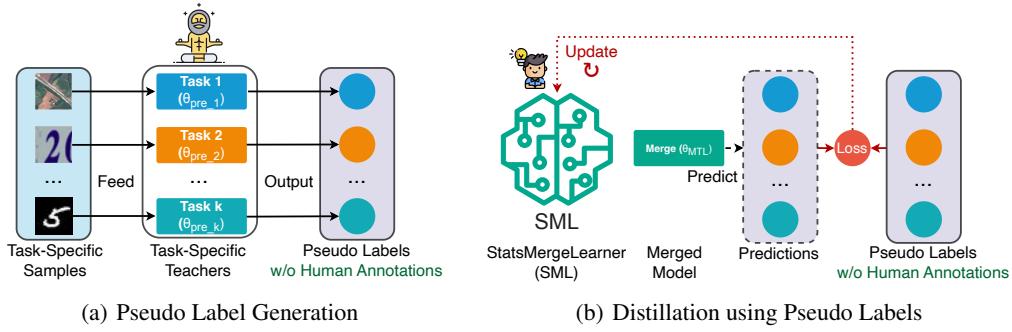


Figure 3: Depiction of Task-Specific Teacher Distillation procedure. (a) Pseudo labels are generated by feeding samples into Task-Specific Teachers; (b) depicts the roll of distillation labels: the discrepancy between the predictions from the merged model and the pseudo labels from (a) is computed through the loss function, further update StatsMergLearner’s parameters. w/o: without.

The key intuition behind the Task-Specific Teacher Distillation is that each pre-trained model θ_k already performs well on its own task dataset where $\{x_i, y_i\}_k \in D_k$. We regard it (θ_k) as the Task-Specific Teacher T_k . Subsequently, the predictions $\hat{y}_{i,k}$ from the model trained on task k are sufficiently reliable to serve as high-quality pseudo labels for the corresponding pre-trained dataset sample $\{x_i, y_i\}_k$. We aggregate such pairs $\{x_i, \hat{y}_i\}_k$ to construct the merged dataset to train SML. The key benefit of this approach is that it enables dataset preparation without relying on human-annotated labels. The predicted class label in one-hot encoded format. Therefore, the cross-entropy loss is applied while such loss function simplicity helps extend to other tasks and architectures in vision and NLP domain:

$$\mathcal{L}_{\text{CE}} = - \sum_{c=1}^{C_m} \hat{y}_{c,k} \log(\hat{y}_c). \quad (7)$$

Algorithm 1. Unified Statistics-Guided Model Merging via Task-Specific Teacher Model Distillation^a

```

1: Input: Set of pre-trained models  $\{M_1, M_2, \dots, M_k\}$  with weights  $\{\theta_1, \theta_2, \dots, \theta_k\}$  for  $K$  tasks.
2: Output: Merged model  $M_{\text{merged}}$  with weights  $\theta_{\text{merged}}$ 
3: // Prepare  $K$  pre-trained models
4: if Same architecture  $A$  for all  $M_i$  then
5:   Set  $M_{\text{target}}$  to the shared architecture
6: else
7:   Select a target architecture  $M_{\text{target}}$ 
8:   for  $i = 1$  to  $k$  do
9:     if  $A(M_i) \neq A(M_{\text{target}})$  then
10:       Distill  $M_i$  into  $M_{\text{target}}$  to obtain updated  $\theta_i$ 
11:     end if
12:   end for
13: end if
14: // Merge  $K$  models
15: for  $k = 1$  to  $K$  do
16:   // mean  $\mu$ , std  $\sigma^2$ , norm  $m$ , singular value  $\sigma'_r$ 
17:   Extract statistics  $S_k = [\mu, \sigma^2, m, \sigma'_r]$  from  $\theta_k$ 
18:   Predict coefficients  $\lambda_k = \text{SML}(S_k)$ 
19:   Merge layer weights:  $\theta_{\text{merged}}^k = \sum_{i=1}^k \lambda_k \theta_k$ 
20: end for
21: return  $M_{\text{merged}}$  with weights  $\theta_{\text{merged}}$ 

```

^aDistillation is detailed in Appendix A.3

324

4 EXPERIMENTS AND EVALUATION

325

4.1 EXPERIMENTAL SETUP

327 In this section, we present the experimental setup and evaluation results used to compare our method
328 against recent baselines.329 **Datasets and Models:** Our experiments include eight image classification tasks with datasets SUN397
330 (Xiao et al., 2016), Stanford Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT
331 (Helber et al., 2019), SVHN (Netzer et al., 2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun
332 et al., 1998), DTD (Cimpoi et al., 2014), and CIFAR10 (Krizhevsky, 2009)⁴ We use ViT-B/32 CLIP
333 (Radford et al., 2021) as the pre-trained backbone. Individual task-specific models are obtained by
334 training on each dataset separately. For merging models with different architectures, we first distill
335 them into a single backbone before applying our merging method.336 **Baselines and Metrics:** We compare against standard baselines including Individual Training,
337 Traditional Multi-Task Learning (MTL) (Zhang & Yang, 2021), Weight Averaging (Wortsman et al.,
338 2022), Task Arithmetic (Iharco et al., 2023), Fisher Merging (Matena & Raffel, 2022), RegMean (Jin
339 et al., 2023), TIES-Merging (Yadav et al., 2023a) and AdaMerging (Yang et al., 2023). The primary
340 evaluation metric is the average accuracy (Avg Acc) on the test sets of all tasks. The evaluation is
341 conducted on eight different vision classification tasks.342 **StatsMergeLearner Training Detail:** Our MLP-based *StatsMergeLearner* learns to predict layer-wise
343 or task-wise merging weights coefficients (λ) based on weight statistics from individual task models.
344 The *StatsMergeLearner* is trained for 500 epochs using Adam, with a learning rate of $1e - 3$ and a
345 StepLR scheduler (factor 0.1 every 100 epochs), which translates to around only 3 hours to merge
346 4 ViTs, offering the practicality and advantage of applying our technique for practitioners without
347 spending days or weeks for training (Zhang & Yang, 2021; Padmanabhan et al., 2023). We train
348 the *StatsMergeLearner* primarily using knowledge distillation from the aggregated dataset without
349 human annotated labels described in Sec. 3.3, optimized with either Cross-Entropy (Mao et al., 2023)
350 or KL Divergence (Kullback & Leibler, 1951) loss.351

4.2 MERGING PERFORMANCE

353 In this section, we present a comprehensive evaluation of our approach in comparison to state-of-
354 the-art task vector merging methods, assessing its superiority across several fundamental aspects:
355 Multi-task merging performance, generalization to unseen tasks and heterogeneous architectures.
356357 **Improved Merging Performance.** Our proposed framework *StatsMerging* demonstrated state-of-
358 the-art (SOTA) performance spanning eight **vision** and seven **NLP** tasks, shown in Fig. 4 across
359 various model **scales**⁵.360 In **Vision** tasks, *StatsMerging* achieved 84.5% (ViT-B/32) and 92.1% (ViT-L/14) average accuracy
361 (Avg Acc). With 40% more available validation samples, *StatsMerging*++ further improved to 94.5%
362 (B, +10.0%) and 94.1% (L, +2.0%), outperforming WEMoE (84.5%, 93.6%) and AdaMerging
363 (81.1%, 91.0%). We attribute the improvements to the ability of *StatsMergeLearner* to adapt task-
364 specific weights based on their weight statistics to the merged model. The use of pseudo labels
365 from task-specific teachers provides stronger signals for *StatsMergeLearner* in assigning weight
366 coefficients compared to AdaMerging entropy minimization and more complex task-adaptive expert
367 selection mechanism in WEMoE.368 On **NLP** benchmarks, *StatsMerging* reached 77.6% (T5 Base) and 77.5% (T5 Large) Avg Acc,
369 surpassing the second best method TIES-Merging (Val) of 73.9% (+3.7%) and 74.4% (+3.1%).370
371
372
373 ⁴In the remainder of the paper, the abbreviations shown in brackets are used to denote each task dataset:
374 Vision tasks – SUN397 (SU), Cars (CA), RESISC45 (RE), EuroSAT (EU), SVHN (SV), GTSRB (GT), MNIST
375 (MN), and DTD (DT); NLP tasks – PAWS (PA), QASC (QA), QuaRTz (QR), Story Cloze (SC), WikiQA (WQ),
376 Winogrande (WG) and WSC (WS).377 ⁵Please refer to the Appendix for experimental details, including the full list of tasks, datasets, baselines,
378 along with the task-level results in Sections A.1 and A.2, respectively.

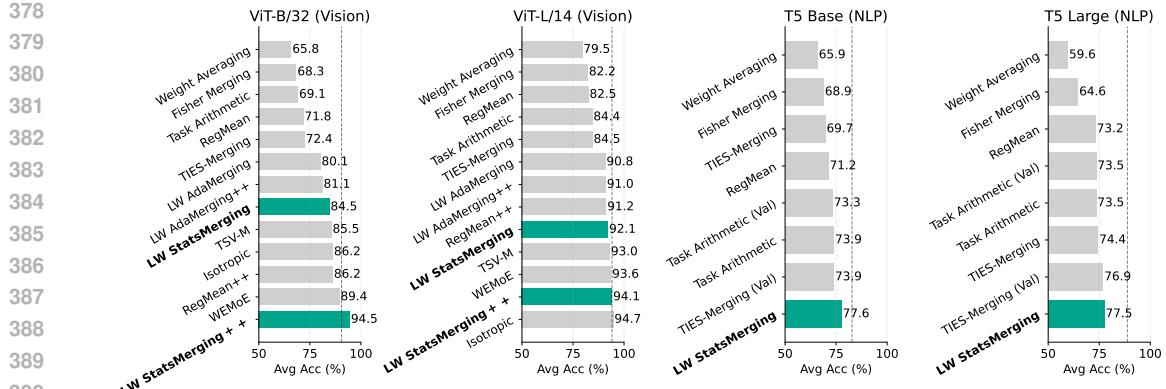


Figure 4: LW *StatsMerging++* achieved state-of-the-art performance on eight **Vision** and seven **NLP** tasks across various scales, highlighted in teal-green in the figures. Each number represents the average accuracy (Avg Acc) across tasks. *StatsMerging++* further improved *StatsMerging* by scaling validation input samples. **The performance of each individual fine-tuned model is shown as dashed vertical reference lines.**

Marginal Parameter and Computation Overhead. SML is lightweight in terms of parameters and computation. Our 2-Layer *StatsMergeLearner* with the merged model contain 10.99M parameters, requires 2.95 GFLOPs, and achieves an inference time of 5.26 ms on an NVIDIA RTX A6000 GPU.

Without the merged model, *StatsMergeLearner* (SML) itself is orders of magnitude smaller and computationally lighter than the merged model, with only 0.336M parameters, 0.73M MACs and 1.46M FLOPs. The results demonstrate that SML introduces negligible overhead in terms of parameters (SML-to-Merged Model Parameter Ratio: 0.336M / 10.99M = 0.0306) and computation (SML-to-Merged Model Compute Ratio: 1.46M / 2.95G = 0.0005).

Significantly Enhanced Generalization. A merged model is expected to generalize to unseen tasks by strategically transferring the knowledge from the combined set of old tasks. We benchmarked such generalization ability of *StatsMerging* against four strong baselines: Task Arithmetic, TIES-Merging, AdaMerging, and AdaMerging++. We followed the same evaluation protocol in AdaMerging training on two groups of tasks, each group consisting of six seen tasks, and testing on two unseen tasks.

Table 2: Generalization results (Avg Acc %) on two unseen tasks when merging Layer-Wise ViT-B/32 models on six tasks. *StatsMerging*: shaded in gray. Bold: top score. Underscore: 2nd-highest score.

Method	Seen Tasks						Avg Acc	Unseen Tasks		
	SU	CA	RE	DT	SV	GT		MN	EU	Avg Acc
Task Arithmetic	63.3	62.4	75.1	57.8	84.6	80.4	70.6	77.2	46.2	61.7
TIES-Merging	67.8	66.2	77.2	56.7	77.1	70.9	69.3	75.9	43.3	59.6
AdaMerging	65.2	65.9	88.5	61.1	92.2	<u>91.5</u>	77.4	<u>84.0</u>	<u>56.1</u>	<u>70.0</u>
AdaMerging++	<u>68.2</u>	<u>67.6</u>	86.3	<u>63.6</u>	<u>92.6</u>	89.8	<u>78.0</u>	83.9	53.5	68.7
StatsMerging	69.1	71.3	<u>86.7</u>	75.2	93.2	95.7	81.9 (+3.9)	85.1	56.4	70.8 (+0.8)
Method	SU	CA	GT	EU	DT	MN	Avg Acc	RE	SV	Avg Acc
Task Arithmetic	64.0	64.0	75.2	87.7	57.0	95.7	73.9	52.3	44.9	51.1
TIES-Merging	68.0	67.1	67.7	78.4	56.5	92.8	71.8	58.7	49.2	53.9
AdaMerging	67.1	67.8	<u>94.8</u>	<u>94.4</u>	59.6	98.2	80.3	50.2	60.9	55.5
AdaMerging++	<u>68.9</u>	<u>69.6</u>	91.6	94.3	<u>61.9</u>	<u>98.7</u>	<u>80.8</u>	52.0	<u>64.9</u>	<u>58.5</u>
StatsMerging	69.6	73.3	96.1	95.4	74.1	97.2	84.3 (+3.5)	<u>54.2</u>	67.1	60.7 (+2.2)

Details are presented in Table 2, where in both groups our proposed *StatsMerging* achieved 70.8% and 60.7%, significantly outperforming the second best method AdaMerging by +0.8% and +2.2% margins. Such improvements are attributed to both (1) the careful feature design of weight statistics that captures the dominant information regarding weight distributions from pre-trained models, which potentially helps reduce noise from each task dataset; and (2) the joint training from all old

432 tasks on the task-specific teacher-distilled labels, enabling the implicit learning of task-agnostic and
 433 task-specific features that can benefit the generalization ability.
 434

435 **Scaling Merging Tasks.** When the number
 436 of tasks was increased from 8 to 14 and
 437 eventually 20 (Wang et al., 2024b),
 438 *StatsMerging* continued to perform reliably,
 439 consistently surpassing prior merging
 440 approaches. This steady improvement
 441 highlights the method’s ability to handle
 442 increasingly diverse task distributions. The
 443 trend persists across both ViT-B/32 and
 444 ViT-L/14 backbones, as illustrated in Table
 445 3. Note RegMean++ (Huu-Tien et al.,
 446 2025) does not provide 14-task results.

447 **Extension to Heterogeneous Architectures for Model**
 448 **Merging.** To the best of our knowledge, *StatsMerging*
 449 is the first to offer improved performance without the as-
 450 sumption of architectural identity as in prior works (Worts-
 451 man et al., 2022; Ilharco et al., 2023; Yadav et al., 2023a;
 452 Matena & Raffel, 2022; Jin et al., 2023). The procedure of
 453 Heterogeneous distillation is illustrated in Fig. 5. When
 454 a Task k pre-trained model shared a different architecture
 455 (parallelogram) with the target architecture (rounded rect-
 456 angle), we followed the steps in 3 (a) to generate pseudo
 457 labels to guide the training of the Task k model with the
 458 target architecture (rounded rectangle in red). This enabled
 459 a direct integration into existing model merging pipeline
 460 as all models share the same target architecture after distil-
 461 lation. We conducted experiments on ResNet50 (RN) and
 462 ViT-B/32 (VT) to represent Convolutional Neural Network
 463 (CNN) and Vision Transformer (ViT) architectures.

464 In particular, we distilled fine-tuned VT teachers into a RN
 465 (Khanuja et al., 2021) student on three diverse tasks of
 466 CIFAR-10 (CI), EuroSAT (EU), and Stanford Cars (CA)
 467 with the distillation loss:

$$\mathcal{L} = \alpha \mathcal{L}_{\text{CE}}(\hat{y}_k, \hat{y}) + (1 - \alpha) T^2 \mathcal{L}_{\text{KL}}(\sigma(\frac{z}{T}), \sigma(\frac{z_t}{T})), \quad (8)$$

468 where \mathcal{L}_{KL} denotes KL-Divergence loss, z is logit,
 469 $T = 4.0$ represents temperature, $\alpha = 0.7$ is the weight
 470 balance of two sub-losses. CI is used due to the available
 471 pre-trained RN weights. Remarkably, the distilled RN
 472 matches its VT teacher’s accuracy, achieving 76.4% (VT:
 473 77.7%) for CA and 94.5% for EU (VT: 99.7%) despite
 474 the architectural difference shown in Table 3. We then
 475 applied our *StatsMerging* to combine the CI-trained RN
 476 and its distilled variants. We merged multiple task models
 477 into a single RN using the merging coefficients inferred by
 478 *StatsMergeLearner*, yielding an 81.3% Avg Acc,
 479 outperforming the vanilla Task-Arithmetic of 73.7%.

Table 3: Comparison of different merging methods on the Vision Merging Benchmark (8, 14, and 20 tasks) with ViT-B/32 and ViT-L/14 backbones. Results of our method *StatsMerging* are shaded in gray. Bold and underscore indicate the highest and second-highest scores within the merging group below the double rules in each column, respectively. LW: Layer-wise. T: Task.

Method	ViT-B/32			ViT-L/14		
	8T	14T	20T	8T	14T	20T
Pre-Trained	48.4	57.3	56.1	64.4	68.0	65.1
Weight Averaging	66.5	64.4	61.1	79.4	76.6	71.5
Task Arithmetic	70.8	65.4	60.6	84.8	79.3	74.0
TIES-Merging	75.1	<u>68.0</u>	63.4	86.9	<u>79.5</u>	75.7
RegMean++	84.4	—	<u>77.0</u>	<u>91.2</u>	—	81.0
LW <i>StatsMerging</i>++	94.5	90.7	86.8	94.1	89.1	88.9

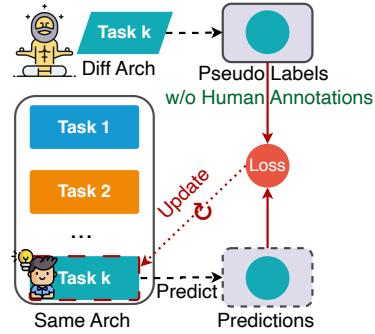


Figure 5: Heterogeneous distillation graph. Shapes represent architectures.

Table 4. Multi-task merging performance (Avg Acc %) of models in heterogeneous architectures: ResNet50 (RN) & ViT-B/32 (VT). *StatsMerging*: shaded in gray. MTL: Multitask Learning. MLD: Multitask Distilled.

Method	CI	CA	EU	Avg Acc
Backbone	RN	VI	VI	-
Distilled	-	RN	RN	-
Individual	97.8	77.7	99.7	91.7
Distilled	-	76.4	94.5	-
MTL	96.4	74.6	96.2	89.1
MTD	89.3	52.7	83.4	75.1
Weight Averaging	77.1	56.4	64.9	59.4
TIES-Merging	76.5	52.8	80.1	69.8
Task Arithmetic	81.4	61.6	78.2	73.7
AdaMerging	84.9	65.1	85.7	78.6
WEMoE	86.5	67.2	87.6	80.4
LW <i>StatsMerging</i>	87.2	68.4	88.4	81.3

486
4874.3 *StatsMerging* ANALYSIS488
489
490
491
492
493
494
495
496
497

Statistical Feature Ablation Study. We conduct an ablation study on the statistical features. Results in Table 4 show that combining all statistical features improves merging performance, validating our design choice. Notably, the singular values σ' improve the multi-task performance in both same and different architecture settings by +3.0 and +3.2 increase of average accuracy, justifying our design choice of using SVD.

498
499
500
501
502

SVD Rank Study. We analyze the impact of SVD rank on merging performance. Table 4 shows that using rank 3, which generally preserves more than 95% of the weight energy, yields the strongest overall results. This provides empirical support for our choice of rank.

503
504
505
506
507
508
509
510
511
512
513

Coefficient Analysis. We visualize the heatmap of ViT-B/32 (4) across eight tasks in Fig. 6. We make several key observations: (1) the **common recurring pattern** of coefficients λ across all eight tasks from earlier (left) to deeper (right) layers aligns with the repeated self-attention blocks in the ViT architecture, e.g. Multi-Head Self-Attention (MHSA), MLP (Feed-Forward Network), and LayerNorm, etc, demonstrating the need of various coefficients for various types of layers; (2) The **sparse non-uniform coefficient distributions** (various colors like Layer 13, 19 or 25) suggests that merging layers can be more efficient at some specific layers instead of using one coefficient for an entire pre-trained model, justifying the our granularity choice of Layer-Wise over Task-Wise level; (3) some **task-specific coefficient distributions** verify the necessity of assigning distinct merging coefficients across tasks in various layers, such as in Layer 5 vs. 147. Such distributions reflect the various visual representations for different semantics learned across both layers and tasks.

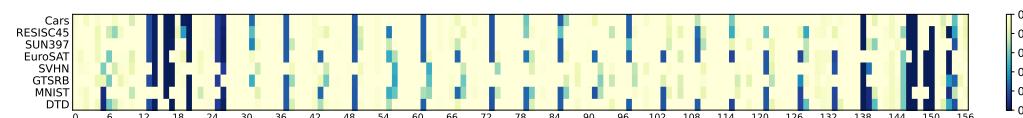
514
515
516
517518
519
520
521

Figure 6: Heatmap of *StatsMerging* merging coefficients λ of ViT-B/32 (4) across eight tasks. X-axis: layer index. Y-axis: Tasks. Coefficients are normalized to sum to 1.

522
523

5 CONCLUSION

524
525
526
527
528

We propose *StatsMerging*, a novel merging technique without human annotations. The key intuition lies in the guidance of weight statistics using a lightweight MLP learner, *StatsMergeLearner*, to learn merging coefficient prediction. Exhaustive experiments demonstrate the effectiveness of our proposed *StatsMerging* in model merging in diverse Vision and NLP tasks.

529
530
531
532
533
534
535
536
537
538
539

Table 5: Multi-task performance (Avg Acc %) of *StatsMerging* when ablating statistical features of ViT-B/32 (4) models on four tasks: CA, EU, RE & GT. Bold: top score. *StatsMerging*: shaded in gray.

Same Architecture				Different Architecture				
μ	σ^2	m	σ'	μ	σ^2	m	σ'	Avg Acc
✓				✓				76.2
✓	✓			✓	✓			77.5 (+1.3)
✓	✓	✓		✓	✓	✓		78.1 (+0.6)
✓	✓	✓	✓	✓	✓	✓	✓	81.3 (+3.2)

Table 6: Impact of Rank on Multi-task merging performance (Avg Acc %) when merging *StatsMerging*++ ViT-B/32 models on eight vision tasks. Bold: top score. *StatsMerging*: shaded in gray.

Rank	1	2	3	4	5
Avg Acc	86.5	87.2	94.5	89.2	86.7

540 **6 ETHICS STATEMENT**
 541

542 This work focuses on a method for merging pre-trained models using statistical guidance, with the
 543 goal of reducing memory redundancy and improving efficiency in multi-task deployments. Our
 544 research does not involve human subjects, personally identifiable information, or sensitive data.
 545 All experiments are conducted on publicly available benchmark datasets, following their intended
 546 academic usage licenses.

547 We recognize that model merging and multi-task deployment systems could potentially be misused
 548 to scale applications without considering fairness, robustness, or downstream societal impacts.
 549 To mitigate these risks, we limit our evaluation to standard academic benchmarks and encourage
 550 practitioners to carefully assess bias, fairness, and safety when applying such methods in real-world
 551 settings.

552
 553 **7 REPRODUCIBILITY STATEMENT**
 554

555 We make every effort to ensure the reproducibility of our results. All experiments were run on publicly
 556 available datasets (e.g., RESISC45, EuroSAT, CIFAR-100, etc.), and we describe dataset preprocess-
 557 ing, training, and evaluation protocols in detail in the main paper and appendix. Hyperparameters,
 558 model architectures, and training schedules are fully specified.

559 Our method requires only pre-trained models. No additional training data beyond the standard
 560 benchmarks is used. To facilitate replication, We attached training and test code github link for
 561 reproducing results. We included all details of GPU Hyperpatameters used in experiemnts.
 562

563
 564 **REFERENCES**

565 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
 566 model merging recipes. *Nature Machine Intelligence*, pp. 1–10, 2025.

567 Shun-Ichi Amari. Natural gradient works efficiently in learning. *Neural computation*, 10(2):251–276,
 568 1998.

569 Christopher M Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.

570 Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything:
 571 Emerging localization properties in vision-language transformers. In *Proceedings of the IEEE/CVF*
 572 *Conference on Computer Vision and Pattern Recognition*, pp. 3828–3837, 2024.

573 Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.

574 Bryan Bo Cao, Abhinav Sharma, Lawrence O’Gorman, Michael Coss, and Shubham Jain. A
 575 lightweight measure of classification difficulty from application dataset characteristics. In *Interna-
 576 tional Conference on Pattern Recognition*, pp. 439–455. Springer, 2024a.

577 Bryan Bo Cao, Abhinav Sharma, Manavjeet Singh, Anshul Gandhi, Samir Das, and Shubham Jain.
 578 Representation similarity: A better guidance of dnn layer sharing for edge computing without
 579 training. In *Proceedings of the 30th Annual International Conference on Mobile Computing and
 580 Networking*, pp. 2242–2244, 2024b.

581 Bryan Bo Cao, Lawrence O’Gorman, Michael Coss, and Shubham Jain. Few-class arena: A
 582 benchmark for efficient selection of vision models and dataset difficulty measurement. In *Pro-
 583 ceedings of the International Conference on Learning Representations (ICLR)*, 2025. URL
 584 <https://openreview.net/forum?id=2ET561DyPe>.

585 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 586 Zagoruyko. End-to-end object detection with transformers. In *European conference on computer
 587 vision (ECCV)*, pp. 213–229. Springer, 2020a.

588 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 589 Zagoruyko. End-to-end object detection with transformers. In *European conference on computer
 590 vision*, pp. 213–229. Springer, 2020b.

594 I Chen, Hsu-Shen Liu, Wei-Fang Sun, Chen-Hao Chao, Yen-Chang Hsu, Chun-Yi Lee, et al.
595 Retraining-free merging of sparse mixture-of-experts via hierarchical clustering. *arXiv preprint*
596 *arXiv:2410.08589*, 2024.

597 Weiyu Chen and James T. Kwok. Pareto merging: Multi-objective optimization for preference-aware
598 model merging. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2025. URL <https://arxiv.org/abs/2408.12105>.

601 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
602 and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.

603 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
604 ing textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern*
605 *recognition*, pp. 3606–3613, 2014.

606 Donato Crisostomi, Marco Fumero, Daniele Baieri, Florian Bernard, and Emanuele Rodola. c^2m^3 :
607 Cycle-consistent multi-model merging. *Advances in Neural Information Processing Systems*, 37:
608 28674–28705, 2024.

609 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
610 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Georgiou, et al. An image is worth
611 16x16 words: Transformers for image recognition at scale. 2021a.

612 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
613 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
614 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
615 In *International Conference on Learning Representations*, 2021b.

616 Yiyang Du, Xiaochen Wang, Chi Chen, Jiabo Ye, Yiru Wang, Peng Li, Ming Yan, Ji Zhang, Fei
617 Huang, Zhifang Sui, et al. Adamms: Model merging for heterogeneous multimodal large language
618 models with unsupervised coefficient optimization. *arXiv preprint arXiv:2503.23733*, 2025.

619 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
620 networks. In *International Conference on Learning Representations*.

621 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
622 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
623 merging. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18695–
624 18705, 2025.

625 Karan Goel, Albert Gu, Yixuan Li, and Christopher Re. Model patching: Closing the subgroup per-
626 formance gap with data augmentation. In *International Conference on Learning Representations*.

627 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
628 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural informa-
629 tion processing systems 27 (NIPS 2014)*, pp. 2672–2680, 2014.

630 Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
631 survey. *International Journal of Computer Vision*, 129(6):1789–1819, 2021.

632 DU Guodong, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim Kuan
633 Goh, Ho-Kin Tang, Daojing He, et al. Parameter competition balancing for model merging. In *The*
634 *Thirty-eighth Annual Conference on Neural Information Processing Systems*.

635 Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
636 *Advances in neural information processing systems*, 5, 1992.

637 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
638 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
639 pp. 770–778, 2016.

640 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
641 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
642 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

648 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 649 corruptions and perturbations. In *Proceedings of the International Conference on Learning*
 650 *Representations (ICLR)*, 2019.

651

652 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 653 *preprint arXiv:1503.02531*, 2015.

654

655 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*
 656 *Neural Information Processing Systems 33 (NeurIPS 2020)*, pp. 6840–6851, 2020.

657

658 Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
 659 Tuning-free high-performance model merging. *Advances in Neural Information Processing*
 660 *Systems*, 37:122741–122769, 2024.

661

662 Dang Huu-Tien, Takeshi Suzuki, Le-Minh Nguyen, et al. Regmean++: Enhancing effectiveness and
 663 generalization of regression mean for model merging. *arXiv e-prints*, pp. arXiv–2508, 2025.

664

665 Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon
 666 Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpolating
 667 weights. *Advances in Neural Information Processing Systems*, 35:29262–29277, 2022.

668

669 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 670 and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference*
 671 *on Learning Representations*, 2023.

672

673 Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
 674 eraging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*,
 675 2018. UAI 2018.

676

677 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
 678 by merging weights of language models. In *The Eleventh International Conference on Learning*
 679 *Representations*, 2023.

680

681 Julie Kallini, Shikhar Murty, Christopher D. Manning, Christopher Potts, and Róbert Csordás.
 682 Mrt5: Dynamic token merging for efficient byte-level language models. In *Proceedings of the*
 683 *13th International Conference on Learning Representations (ICLR 2025)*, 2025. URL <https://openreview.net/forum?id=VYWBMcq1L7H>.

684

685 Simran Khanuja, Melvin Johnson, and Partha Talukdar. Mergedistill: Merging pre-trained language
 686 models using distillation. *arXiv preprint arXiv:2106.02834*, 2021.

687

688 Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A dataset for
 689 question answering via sentence composition. In *Proceedings of the AAAI Conference on Artificial*
 690 *Intelligence*, volume 34, pp. 8082–8090, 2020.

691

692 Jinuk Kim, Marwa El Halabi, Mingi Ji, and Hyun Oh Song. Layermerge: neural network depth
 693 compression through layer pruning and merging. *arXiv preprint arXiv:2406.12837*, 2024.

694

695 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 696 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 697 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 698 (13):3521–3526, 2017.

699

700 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
 701 grained categorization. In *Proceedings of the IEEE International Conference on Computer Vision*
 702 *Workshops (ICCVW)*, pp. 554–561. IEEE, 2013. ISBN 978-1-4799-3022-7. doi: 10.1109/ICCVW.
 2013.77.

703

704 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
 705 port, University of Toronto, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

702 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, volume 25, pp. 703 1097–1105, 2012.

704

705 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.

706

707

708 Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approximation for natural gradient descent. *Advances in neural information processing systems*, 32, 709 2019.

710

711

712 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information processing systems*, 2, 1989.

713

714 Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits. 715 <http://yann.lecun.com/exdb/mnist/>, 1998.

716

717 Yeoreum Lee, Jinwook Jung, and Sungyong Baik. Mitigating parameter interference in model 718 merging via sharpness-aware fine-tuning. *arXiv preprint arXiv:2504.14662*, 2025.

719

720 Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. *KR*, 721 2012(13th):3, 2012.

722

723 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension 724 of objective landscapes. In *International Conference on Learning Representations*, 2018.

725

726 Lu Li, Tianyu Zhang, Zhiqi Bu, Suyuchen Wang, Huan He, Jie Fu, Yonghui Wu, Jiang Bian, 727 Yong Chen, and Yoshua Bengio. Map: Low-compute model merging with amortized pareto 728 fronts via quadratic approximation. *arXiv preprint arXiv:2406.07529*, 2024. URL <https://arxiv.org/abs/2406.07529>.

729

730 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im- 731 age restoration using swin transformer. In *Proceedings of the IEEE/CVF international conference 732 on computer vision*, pp. 1833–1844, 2021.

733

734 Ziyi Lin, Dongyang Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Wenqi Shao, 735 Keqin Chen, Jiaming Han, et al. Sphinx: A mixer of weights, visual embeddings and image scales 736 for multi-modal large language models. In *European Conference on Computer Vision*, pp. 36–55. Springer, 2024.

737

738 Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via 739 factorization. *Advances in neural information processing systems*, 35:1100–1113, 2022a.

740

741 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. 742 A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and 743 Pattern Recognition (CVPR)*, pp. 11976–11986, 2022b.

744

745 Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic 746 segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition 747 (CVPR)*, pp. 3431–3440, 2015.

748

749 Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic 750 bound of learning rate. *arXiv preprint arXiv:1902.09843*, 2019.

751

752 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis and 753 applications. In *International conference on Machine learning*, pp. 23803–23828. PMLR, 2023.

754

755 Daniel Marczał, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D Bagdanov, 756 and Joost van de Weijer. No task left behind: Isotropic model merging with common and task- 757 specific subspaces. *arXiv preprint arXiv:2502.04959*, 2025.

758

James Martens. New insights and perspectives on the natural gradient method. *arXiv preprint 759 arXiv:1412.1193*, 2014.

756 Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *Advances in*
 757 *Neural Information Processing Systems*, 35:17703–17716, 2022.

758

759 Tommaso Mencattini, Adrian Robert Minut, Donato Crisostomi, Andrea Santilli, and Emanuele
 760 Rodola. Merge Θ : Efficient evolutionary merging on consumer-grade gpus. *arXiv preprint*
 761 *arXiv:2502.10436*, 2025.

762 Ranjith Merugu, Mohammad Sameer Suhail, Akshay P Sarashetti, Venkata Bharath Reddem,
 763 Pankaj Kumar Bajpai, and Amit Satish Unde. Joint flow and feature refinement using attention for
 764 video restoration. *arXiv preprint arXiv:2505.16434*, 2025.

765 Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. 2014.

766

767 P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
 768 resource efficient inference. In *5th International Conference on Learning Representations, ICLR*
 769 *2017-Conference Track Proceedings*, 2019.

770 Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
 771 wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding
 772 of commonsense stories. In *Proceedings of the 2016 Conference of the North American Chapter*
 773 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 839–849,
 774 2016.

775

776 Sharan Narang, Hyung Won Chung, Yi Tay, Liam Fedus, Thibault Fevry, Michael Matena, Karishma
 777 Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, et al. Do transformer modifications transfer
 778 across implementations and applications? In *Proceedings of the 2021 Conference on Empirical*
 779 *Methods in Natural Language Processing*, pp. 5758–5773, 2021.

780 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 781 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*
 782 *learning and unsupervised feature learning*, volume 2011, pp. 4. Granada, 2011.

783 Guillermo Ortiz-Jiménez, Apostolos Modas, Seyed-Mohsen Moosavi, and Pascal Frossard. Neural
 784 anisotropy directions. *Advances in Neural Information Processing Systems*, 33:17896–17906,
 785 2020.

786

787 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 788 space: Improved editing of pre-trained models. *Advances in Neural Information Processing*
 789 *Systems*, 36:66727–66754, 2023.

790 Arathi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh Ananthanarayanan, Yuanchao Shu, Nikolaos
 791 Karianakis, Guoqing Harry Xu, and Ravi Netravali. Gemel: Model merging for {Memory-
 792 Efficient},{Real-Time} video analytics at the edge. In *20th USENIX Symposium on Networked*
 793 *Systems Design and Implementation (NSDI 23)*, pp. 973–994, 2023.

794 Athanasios Papoulis. *Random variables and stochastic processes*. McGraw Hill, 1965.

795

796 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 797 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 798 Learning transferable visual models from natural language supervision. In *Proceedings of the 38th*
 799 *International Conference on Machine Learning (ICML)*, volume 139 of *Proceedings of Machine*
 800 *Learning Research*, pp. 8748–8763. PMLR, 2021.

801 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 802 detection with region proposal networks. In *Advances in neural information processing systems 28*
 803 *(NIPS 2015)*, pp. 91–99, 2015.

804

805 Yinuo Ren, Chao Ma, and Lexing Ying. Understanding the generalization benefits of late learning
 806 rate decay. In *International Conference on Artificial Intelligence and Statistics*, pp. 4465–4473.
 807 PMLR, 2024.

808

809 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, 2022.

810 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
 811 Image super-resolution via iterative refinement. In *IEEE Transactions on Pattern Analysis and*
 812 *Machine Intelligence*, 2022.

813

814 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 815 adversarial winograd schema challenge at scale. In *Proceedings of the AAAI Conference on*
 816 *Artificial Intelligence*, volume 34, pp. 8732–8740, 2020.

817 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to*
 818 *Algorithms*. Cambridge University Press, 2014.

819

820 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 821 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

822 Manavjeet Singh, Sri Pramodh Rachuri, Bryan Bo Cao, Abhinav Sharma, Venkata Bhumireddy,
 823 Francesco Bronzino, Samir R Das, Anshul Gandhi, and Shubham Jain. Ovida: Orchestrator for
 824 video analytics on disaggregated architecture. In *2024 IEEE/ACM Symposium on Edge Computing*
 825 (*SEC*), pp. 135–148. IEEE Computer Society, 2024.

826 Woomin Song, Seunghyuk Oh, Sangwoo Mo, Jaehyung Kim, Sukmin Yun, Jung-Woo Ha, and Jinwoo
 827 Shin. Hierarchical context merging: Better long context understanding for pre-trained llms. *arXiv*
 828 *preprint arXiv:2404.10308*, 2024.

829

830 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
 831 recognition benchmark: a multi-class classification competition. In *The 2011 international joint*
 832 *conference on neural networks*, pp. 1453–1460. IEEE, 2011.

833 George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
 834 merging with svd to tie the knots. *arXiv preprint arXiv:2410.19735*, 2024.

835

836 Long Sun, Jinshan Pan, and Jinhui Tang. Shufflemixer: An efficient convnet for image super-
 837 resolution. *Advances in Neural Information Processing Systems*, 35:17314–17326, 2022.

838

839 Wenju Sun, Qingyong Li, Yangli-ao Geng, and Boyang Li. Cat merging: A training-free approach
 840 for resolving conflicts in model merging. *arXiv preprint arXiv:2505.06977*, 2025.

841

842 Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. Quartz: An open-domain dataset of
 843 qualitative relationship questions. *arXiv preprint arXiv:1909.03553*, 2019.

844

845 Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
 846 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 847 10781–10790, 2020.

848

849 Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Merging models
 850 on the fly without retraining: A sequential approach to scalable continual model merging. *arXiv*
 851 *preprint arXiv:2501.09522*, 2025.

852

853 Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang,
 854 Jiangyue Yan, Yao Su, et al. A survey on post-training of large language models. *arXiv preprint*
 855 *arXiv:2503.06072*, 2025.

856

857 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Hervé Jégou, and Alexandre
 858 Sablayrolles. Training data-efficient image transformers & distillation through attention. In
 859 *International Conference on Machine Learning (ICML)*, pp. 10347–10357. PMLR, 2021.

860

861 Aad W van der Vaart. *Asymptotic Statistics*. Cambridge University Press, 1998.

862

863 Simon Vandenhende, Stamatios Georgoulis, Leander Arras, Luc Van Gool, and Radu Timofte. Multi-
 864 task learning for computer vision: Recent advances and future directions. *IEEE Transactions on*
 865 *Pattern Analysis and Machine Intelligence*, 44(10):6488–6513, 2022a.

866

867 Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
 868 and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. *IEEE Transactions*
 869 *on Pattern Analysis and Machine Intelligence*, 44(7):3614–3633, 2022b.

864 Ke Wang, Nikolaos Dimitriadis, Alessandro Favero, Guillermo Ortiz-Jimenez, Francois Fleuret,
 865 and Pascal Frossard. Lines: Post-training layer scaling prevents forgetting and enhances model
 866 merging. *arXiv preprint arXiv:2410.17146*, 2024a.

867 Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, Fran ois Fleuret, and Pascal Frossard.
 868 Localizing task information for improved model merging and compression. *arXiv preprint
 869 arXiv:2405.07813*, 2024b.

870 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
 871 Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
 872 Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
 873 without increasing inference time. In *Proceedings of the 39th International Conference on Machine
 874 Learning (ICML)*, volume 162 of *Proceedings of Machine Learning Research*, pp. 23965–23998.
 875 PMLR, 2022.

876 Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
 877 Exploring a large collection of scene categories. *International Journal of Computer Vision*, 119:
 878 3–22, 2016.

879 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
 880 Simple and efficient design for semantic segmentation with transformers. In *Advances in Neural
 881 Information Processing Systems 34 (NeurIPS 2021)*, pp. 12077–12090, 2021.

882 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
 883 Resolving interference when merging models. *Advances in Neural Information Processing Systems*,
 884 36:7093–7115, 2023a.

885 Sachin Yadav, Chitta Malaviya, Graham Neubig, and Puneet Agarwal. Merging transformers without
 886 training via a convex combination of parameter subsets. pp. 41105–41125, 2023b.

887 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
 888 Adamerging: Adaptive model merging for multi-task learning. *arXiv preprint arXiv:2310.02575*,
 889 2023.

890 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
 891 Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
 892 *arXiv preprint arXiv:2408.07666*, 2024.

893 Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-domain question
 894 answering. In *Proceedings of the 2015 conference on empirical methods in natural language
 895 processing*, pp. 2013–2018, 2015.

896 Peng Ye, Chenyu Huang, Mingzhu Shen, Tao Chen, Yongqi Huang, Yuning Zhang, and Wanli Ouyang.
 897 Merging vision transformers from different tasks and domains. *arXiv preprint arXiv:2312.16240*,
 898 2023.

899 Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Rethinking soft labels for knowledge
 900 distillation: A bias–variance tradeoff perspective. In *Proceedings of the International Conference
 901 on Learning Representations (ICLR)*, 2021. URL https://openreview.net/forum?id=6x_osD4AX9.

902 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
 903 Residual learning of deep cnn for image denoising. In *IEEE transactions on image processing*,
 904 volume 26, pp. 3142–3155. IEEE, 2017.

905 Qitian Zhang, Mitchell Wortsman, Simon Kornblith, Rohan Taori, Tatsunori Hashimoto, Benjamin
 906 Recht, and Yair Carmon. Zipit! merging models from different tasks without training. In
 907 *International Conference on Learning Representations (ICLR)*, 2024a.

908 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE Transactions on Knowledge and
 909 Data Engineering*, 34(12):5586–5609, 2021.

910 Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling.
 911 *arXiv preprint arXiv:1904.01130*, 2019.

918 Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
919 Cam: Cache merging for memory-efficient llms inference. In *Forty-first International Conference*
920 *on Machine Learning*, 2024b.

921 Didi Zhu, Yibing Song, Tao Shen, Ziyu Zhao, Jinluan Yang, Min Zhang, and Chao Wu. Remedy:
922 Recipe merging dynamics in large vision-language models. In *The Thirteenth International*
923 *Conference on Learning Representations*, 2025.

925 Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
926 compression. *arXiv preprint arXiv:1710.01878*, 2017.

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972
973

A APPENDIX

974
975

A.1 EXPERIMENT SETTINGS

976
977

This section presents a comprehensive overview of the datasets, baseline methods, and training procedures.

978
979

Task. A task is referred to the specific problem or objective that a model is designed to solve. In this paper, a task is defined as classifying images within a given dataset.

980
981
982
983

Dataset Details. This study follows the multi-task model merging protocol from Task Arithmetic (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023a) and AdaMerging (Yang et al., 2023) on eight image classification datasets. The details are provided below:

984

Vision Datasets:

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- **SUN397 (SU)** (Xiao et al., 2016): a scene classification dataset consisting of 397 classes and a total of 108,754 images, with each class containing a minimum of 100 images.
- **Stanford Cars (CA)** (Krause et al., 2013): a car classification benchmark dataset comprising 196 categories and 16,185 images in total. For each category, the dataset is evenly divided into training and test sets in a 1:1 ratio.
- **RESISC45 (RE)** (Cheng et al., 2017): a remote sensing image scene classification benchmark with 45 scene classes and 31,500 images. Approximately 700 images are included in each class.
- **EuroSAT (EU)** (Helber et al., 2019): a 10-class satellite image classification dataset with 27,000 labeled and geo-referenced images.
- **SVHN (SV)** (Netzer et al., 2011): a real-world digit classification dataset derived from house numbers in Google Street View images. This dataset consists of 10 classes with 73,257 training samples and 26,032 test samples. Additional 531,131 samples are available for training.
- **GTSRB (GT)** (Stallkamp et al., 2011): a traffic sign classification dataset consisting of 43 classes and more than 50,000 samples in total.
- **MNIST (MN)** (LeCun et al., 1998): a benchmark dataset for image classification, containing grayscale images of handwritten digits across 10 classes. It includes 60,000 training and 10,000 test images, with a balanced number across classes.
- **DTD (DT)** (Cimpoi et al., 2014): a texture classification dataset consisting of 47 classes and a total of 5,640 images, with approximately 120 images per class.

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

NLP Datasets:

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

PAWS (PA) – Paraphrase Adversaries from Word Scrambling (Zhang et al., 2019): a challenging paraphrase identification dataset with over 108,463 sentence pairs. It contains adversarially-generated non-paraphrases with high lexical overlap to test a model’s semantic understanding beyond simple word-matching heuristics.

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- **QASC (QA) – Question Answering via Sentence Composition** (Khot et al., 2020): a multi-hop question-answering dataset with nearly 10,000 multiple-choice science questions. It is designed to test compositional reasoning, requiring models to combine two distinct facts to find the answer, often by reasoning over intermediate concepts not mentioned in the question.
- **Quartz (QU)** (Tafjord et al., 2019): a dataset of nearly 4,000 questions focused on qualitative reasoning from text. Each question requires reasoning about the relationship between two concepts and is presented with two candidate answers. The dataset is designed to test a deeper understanding that goes beyond simple fact retrieval.
- **Story Cloze (SC)** (Mostafazadeh et al., 2016): a commonsense reasoning dataset for evaluating story comprehension. Which contains 50,000 five-sentence stories about everyday life. The dataset involves reading a four-sentence story context and choosing the correct, causally sound ending from two possible options. This requires a model to understand narrative flow and commonsense implications.

- 1026 • **WikiQA (WQ)** (Yang et al., 2015): an open-domain question-answering dataset for the task
1027 of answer sentence selection, featuring over 3,000 . For each question, which is sourced
1028 from Bing query logs, a set of candidate sentences are extracted from Wikipedia. The goal
1029 is to identify which of the sentences actually contains the answer to the question.
- 1030 • **Winogrande (WG)** (Sakaguchi et al., 2020): a large-scale commonsense reasoning dataset
1031 of 44,000 problems, inspired by the Winograd Schema Challenge. The task is pronoun
1032 resolution, where a model must resolve an ambiguous pronoun in a sentence. The dataset
1033 was constructed using an adversarial filtering process to remove biases and create problems
1034 that are more difficult for statistical models.
- 1035 • **WSC (WS) – Winograd Schema Challenge** (Levesque et al., 2012): a benchmark dataset
1036 for commonsense reasoning focused on pronoun resolution, total 273 problems. It consists
1037 of pairs of sentences that differ by only a few words, which completely changes the referent
1038 of an ambiguous pronoun. Correctly resolving the pronoun requires world knowledge and
1039 reasoning capabilities.

1040 **Baseline Details.** We evaluate performance using eight comparison baselines and four alternative
1041 configurations of our method.

- 1043 • **Individual**: Each task is handled by an independently fine-tuned model with no interference
1044 between tasks. However, this approach cannot perform multiple tasks simultaneously.
- 1045 • **Traditional MTL**: This approach aggregates the original training data from all tasks to
1046 train a single multi-task model. It serves as a reference *upper bound* for evaluating model
1047 merging performance.
- 1048 • **Weight Averaging**: A simple model merging technique that averages the parameters of
1049 multiple models directly. It is typically considered a *lower bound* for model merging
1050 performance.
- 1051 • **Fisher Merging** (Matena & Raffel, 2022): This method computes the Fisher Information
1052 Matrix to assess parameter importance, guiding the model merging process based on these
1053 importance scores.
- 1054 • **RegMean** (Jin et al., 2023): Introduces a regularization constraint during merging, enforcing
1055 the L_2 distance between the merged model and individual models to remain small.
- 1056 • **Task Arithmetic** (Ilharco et al., 2023): This method is the first to propose the concept of
1057 “task vectors” and merges these vectors into a pre-trained for model merging.
- 1058 • **TIES-Merging** (Yadav et al., 2023a): Addresses task conflict in Task Arithmetic (Ilharco
1059 et al., 2023) by removing redundant parameters and resolving sign conflicts through a
1060 three-step procedure: Trim, Elect Sign, and Disjoint Merge.
- 1061 • **EMR-MERGING** (Huang et al., 2024): This approach is a tuning-free method that merges
1062 models in three steps, by selecting a unified parameter sign (Elect), aligning task-specific
1063 parameters via masking (Mask), and adjusting their magnitudes with task-specific scaling
1064 factors (Rescale).
- 1065 • **AdaMerging** (Yang et al., 2023): Builds on Task Arithmetic (Ilharco et al., 2023) by
1066 employing an unsupervised method to automatically learn merging coefficients for each task
1067 vector.
- 1068 • **AdaMerging++** (Yang et al., 2023): An extension of TIES-Merging (Yadav et al., 2023a)
1069 that uses an unsupervised approach to learn task-specific merging coefficients.
- 1070 • **StatsMerging (Ours)**: A lightweight learning-based method guided by the weight distri-
1071 bution statistical features (stats) of task-specific pre-trained weight models, including the
1072 mean, variance, magnitude and singular values. This method employs *StatsMergeLearner*
1073 to learn stats by knowledge distillation from task-specific teachers without manual labels.
- 1074 • **StatsMerging++ (Ours)**: A more extensively trained version of *StatsMerging*.

1075 **Training Details.**

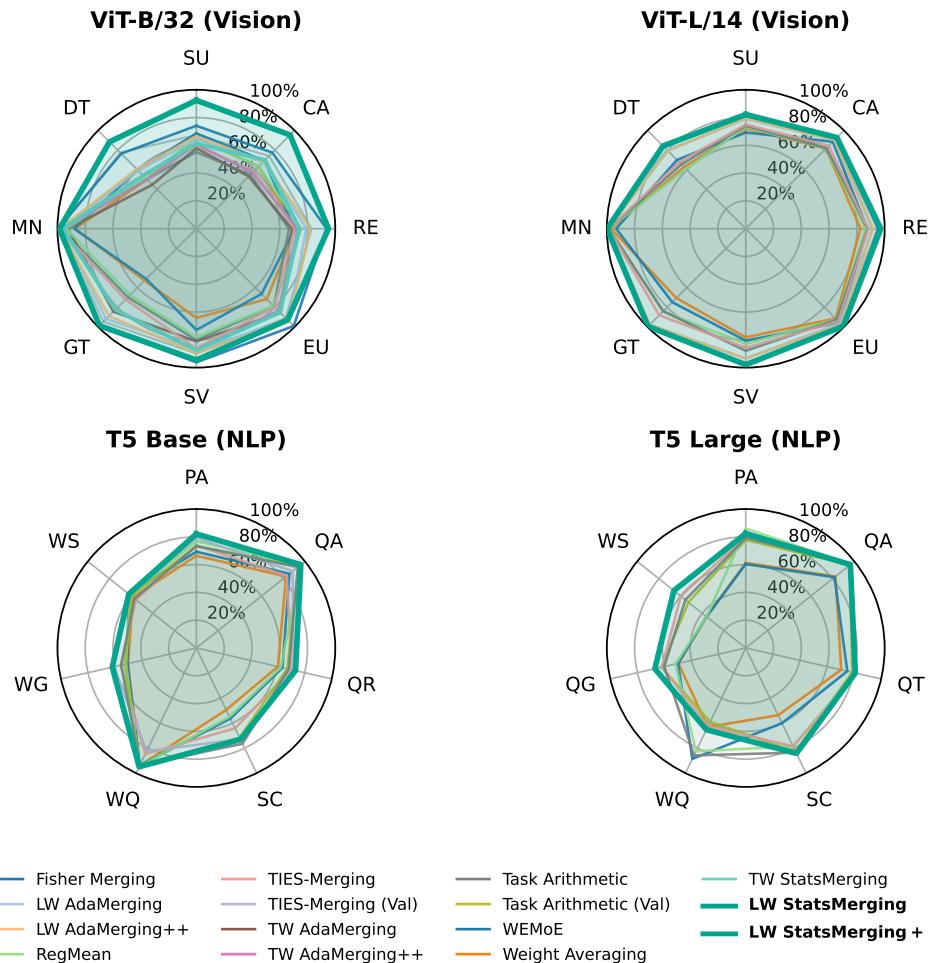
1076

- 1077 • **Task-Specific Teacher**: For each task, we utilize its corresponding **Individual** model as the
1078 **Teacher**.

1080 Code is available at <https://github.com/statsmerging/statsmerging>.
 1081

1082 A.2 DETAILS OF TASK-LEVEL RESULTS

1083
 1084 We present the details of task-level results in this section, demonstrating ViT-B/32, ViT-L/14 for
 1085 Vision tasks and T5 Base, T5 Large for NLP tasks in Fig. 7 and Tables 3, 4, 5, and 6.
 1086



1118 Figure 7: *StatsMerging* achieved state-of-the-art performance across scales (ViT-B/32, ViT-L/14, T5
 1119 Base, and T5 Large) in both Vision (top) and NLP (bottom) benchmarks.
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 A.2.1 VISION BENCHMARK
1135
11361137 Table 3: Multi-task merging performance (Avg Acc %) when merging **ViT-B/32** models on eight
1138 **vision** tasks. Results of our method *StatsMerging* are shaded in gray. Bold and underscore indicate
1139 the highest and second-highest scores within the merging group below the double rules in each
1140 column, respectively. TW: Task-wise. LW: Layer-wise.

Method	SU	CA	RE	EU	SV	GT	MN	DT	Avg Acc
Pre-Trained	62.3	59.7	60.7	45.5	31.4	32.6	48.5	43.8	48.0
Individual	75.3	77.7	96.1	99.7	97.5	98.7	99.7	79.4	90.5
Traditional MTL	73.9	74.4	93.9	98.2	95.8	98.9	99.5	77.9	88.9
Weight Averaging	65.3	63.4	71.4	71.7	64.2	52.8	87.5	50.1	65.8
Task Arithmetic	55.2	54.9	66.7	78.9	80.2	69.7	97.3	50.4	69.1
Fisher Merging	68.6	69.2	70.7	66.4	72.9	51.1	87.9	59.9	68.3
RegMean	65.3	63.5	75.6	78.6	78.1	67.4	93.7	52.0	71.8
TIES-Merging	59.8	58.6	70.7	79.7	86.2	72.1	98.3	54.2	72.4
TW AdaMerging	58.0	53.2	68.8	85.7	81.1	84.4	92.4	44.8	71.1
TW AdaMerging++	60.8	56.9	73.1	83.4	87.3	82.4	95.7	50.1	73.7
TW StatsMerging	61.3	70.0	74.2	85.2	87.5	82.5	96.2	54.2	76.4 (+3.3)
LW AdaMerging	64.5	68.1	79.2	93.8	87.0	91.9	97.5	59.1	80.1
LW AdaMerging++	66.6	68.3	82.2	<u>94.2</u>	89.6	89.0	98.3	60.6	81.1
WEMoE	74.1	77.4	93.7	99.1	96.2	98.9	99.6	76.4	89.4
LW StatsMerging	67.4	74.1	82.9	91.1	89.8	94.7	98.3	<u>77.5</u>	84.5
LW StatsMerging++	92.4	95.4	95.1	92.9	<u>94.6</u>	<u>98.7</u>	<u>98.5</u>	88.4	94.5 (+5.1)

1153
1154
1155
1156
1157
1158
1159
1160
1161 Table 4: Multi-task merging performance (Avg Acc %) when merging **ViT-L/14** models on eight
1162 **vision** tasks. Results of our method *StatsMerging* are shaded in gray. Bold and underscore indicate
1163 the highest and second-highest scores within the merging group below the double rules in each
1164 column, respectively. TW: Task-wise. LW: Layer-wise.

Method	SU	CA	RE	EU	SV	GT	MN	DT	Avg Acc
Pre-Trained	68.2	77.9	71.3	61.3	58.4	50.6	76.4	55.4	64.9
Individual	82.3	92.4	97.4	99.9	98.1	99.2	99.7	84.1	94.1
Traditional MTL	80.8	90.6	96.3	96.3	97.6	99.1	99.6	84.4	93.5
Weight Averaging	72.1	81.6	82.6	91.4	78.2	70.6	97.0	62.8	79.5
Fisher Merging	69.2	88.6	87.5	95.5	80.6	74.8	93.3	70.0	82.2
RegMean	73.3	81.8	86.1	92.4	82.8	84.2	98.5	60.8	82.5
Task Arithmetic	74.1	82.1	87.7	92.6	87.9	84.0	98.6	65.5	84.4
TIES-Merging	75.0	84.5	88.0	94.3	85.7	88.1	98.7	67.7	84.5
LW AdaMerging	79.0	90.3	90.8	96.2	93.4	98.0	99.0	79.9	90.8
LW AdaMerging++	79.4	90.3	91.6	97.4	93.4	97.6	99.0	79.2	91.0
WEMoE	81.4	<u>92.6</u>	<u>95.4</u>	99.4	<u>97.7</u>	99.9	<u>99.7</u>	<u>83.7</u>	93.6
LW StatsMerging	80.6	90.5	94.7	96.8	93.6	98.3	98.9	83.2	92.1
LW StatsMerging++	82.2	92.8	97.2	<u>99.3</u>	97.9	<u>99.5</u>	99.8	84.2	94.1 (+0.5)

1179 A.2.2 NLP BENCHMARK
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189 Table 5: Evaluation of model merging methods on seven **NLP** tasks on **T5 Base** Models. Results of
1190 our method *StatsMerging* are shaded in gray. Bold and underline indicate the highest and second-
1191 highest scores within the merging group below the double rules in each column, respectively.

Method	Val	PA	QA	QR	SC	WQ	WG	WS	Avg Acc
Pre-Trained	–	49.9	35.8	53.3	48.1	76.2	50.0	61.1	53.5
Individual	–	94.3	98.3	80.4	84.7	<u>95.5</u>	64.1	62.5	82.8
Traditional MTL	–	94.0	97.9	82.5	86.7	<u>95.0</u>	64.1	65.3	83.6
Weight Averaging	✗	66.4	82.6	60.2	49.5	94.1	50.4	58.3	65.9
Task Arithmetic	✗	73.3	<u>93.5</u>	68.2	76.5	93.7	55.5	56.9	73.9
TIES-Merging	✗	74.0	83.3	70.3	64.2	84.7	55.9	55.6	69.7
Fisher Merging	✓	69.3	85.7	63.6	56.4	93.8	50.9	62.5	68.9
RegMean	✓	<u>76.8</u>	96.2	62.5	55.0	<u>94.8</u>	51.9	61.1	71.2
Task Arithmetic	✓	73.4	94.3	67.1	71.7	<u>94.1</u>	52.9	59.7	73.2
TIES-Merging	✓	79.3	88.6	71.8	72.9	82.5	61.3	61.1	73.9
LW StatsMerging	✓	82.1	<u>96.2</u>	73.2	<u>73.1</u>	94.9	62.1	<u>62.2</u>	77.6 (+3.7)

1206
1207 Table 6: Evaluation of merging methods across seven **NLP** tasks on **T5 Large** Models. Results of our
1208 our method *StatsMerging* are shaded in gray. Bold and underline indicate the highest and second-highest
1209 scores within the merging group below the double rules in each column, respectively.

Method	Val	PA	QA	QT	SC	WQ	QG	WS	Avg Acc
Pre-Trained	–	55.4	14.3	54.1	54.1	71.0	49.3	63.9	51.7
Individual	–	94.4	98.9	87.8	90.8	96.0	74.7	79.2	88.8
Traditional MTL	–	94.2	98.5	89.3	92.0	95.4	73.5	73.6	88.1
Weight Averaging	✗	61.3	82.6	70.5	53.7	63.2	49.7	36.1	59.6
Task Arithmetic	✗	79.2	96.8	80.2	<u>83.6</u>	<u>85.8</u>	60.2	55.6	73.5
TIES-Merging	✗	80.5	96.2	81.8	78.6	62.6	61.9	59.7	74.4
Fisher Merging	✓	60.4	81.7	75.0	60.1	88.6	50.0	36.1	64.6
RegMean	✓	86.0	96.9	80.7	78.6	82.6	51.8	36.1	73.2
Task Arithmetic	✓	77.8	96.0	78.6	82.6	59.1	62.3	52.8	73.3
TIES-Merging	✓	81.5	96.2	80.1	<u>83.6</u>	64.9	<u>66.5</u>	65.3	76.9
LW StatsMerging	✓	<u>82.4</u>	<u>96.3</u>	80.9	84.2	65.3	67.1	66.2	77.5 (+0.6)

1224 A.3 DETAILS OF TASK-SPECIFIC TEACHER DISTILLATION

- 1225 **1. Task-Specific Teacher Models Preparation.** Collect K pre-trained models $\Theta = \{ \theta_1, \theta_2, \dots, \theta_K \}$, where each model weight is fine-tuned on an independent task k with
1226 dataset $\{x_i, y_i\}_k \in D_k$. D_k denotes the dataset for task k , x_i and y_i represent a sample's
1227 input and its corresponding label. Note that y_i is not used for SML learning but only in the
1228 evaluation step.
- 1229 **2. Train/Val/Test Split.** Each dataset D_k for task k is split into training, validation, and
1230 test sets with an 8:1:1 ratio **unless otherwise specified**, denoted as D_k^{train} , D_k^{val} , and D_k^{test} ,
1231 respectively.
- 1232 **3. Pseudo Label Preparation for Training Set D^{train} .** Following (2), for task k , the task-
1233 specific teacher θ_k takes a sample $x_{i,k}$ and generates its prediction $\hat{y}_{i,k}$ as a pseudo label. The
1234 resulting pairs $(x_{i,k}, \hat{y}_{i,k})$ are aggregated to form task k 's training dataset $D_k^{\text{train}} \subseteq D^{\text{train}}$.
- 1235 **4. Val D^{val} and Test D^{test} Preparation.** Following (2), for task k , the original pairs $(x_{i,k}, y_{i,k})$
1236 in the split validation set ($D_k^{\text{val}} \subseteq D^{\text{val}}$) or test set ($D_k^{\text{test}} \subseteq D^{\text{test}}$) are used, where $y_{i,k}$ is the
1237 human-annotated ground truth label used solely for evaluation.
- 1238 **5. Complete Dataset D Preparation.** Aggregate D^{train} , D^{val} , and D^{test} to form the complete
1239 dataset $D = \{D^{\text{train}}, D^{\text{val}}, D^{\text{test}}\}$.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 Concretely, in the eight vision tasks, the samples $\{x_i, y_i\}_k \in D_k$ are drawn from the following datasets: SUN397 (SU), Cars (CA), RESISC45 (RE), EuroSAT (EU), SVHN (SV), GTSRB (GT), MNIST (MN), and DTD (DT). The pseudo label \hat{y}_i is generated by the task-specific teacher set $\Theta = \{\theta_1, \theta_2, \dots, \theta_k\}$. These are aggregated to constitute the overall dataset D . The same procedure applies to the NLP tasks.

A.3.1 DETAILS OF SVD CONSTRUCTION

The construction of the parameter matrix for singular value decomposition (SVD) is as follows: For each layer k , we flatten its parameter tensor W_k into a 2D matrix. For linear layers, this is typically (out features, in features). For convolutional layers with a kernel of shape (out channels, in channels, kernel height, kernel width), we reshape it to (out channels, in channels \times kernel height \times kernel width). We then compute the SVD:

$$W_k = U_k \Sigma_k V_k^T \quad (9)$$

and extract the singular values from Σ_k . The singular values across all layers are concatenated to form the feature vector used as input to SML.

A.4 THEORETICAL ANALYSES

A.4.1 OPTIMIZATION PERSPECTIVE

Following the setup in Sec.3.2, let $\{\theta_k\}_{k=1}^K$ be K pre-trained models and

$$\theta(\lambda) = \sum_{k=1}^K \lambda_k \theta_k, \quad \lambda \in \Delta^{K-1}, \quad (10)$$

where Δ^{K-1} is the $(K-1)$ -dimensional probability simplex.

Since ground-truth labels are unavailable, we train using teacher pseudo labels $q(y | x)$. Following (Bishop, 2006), replacing the true label distribution by any surrogate distribution yields a valid expected log-likelihood objective. Thus the pseudo label cross-entropy is

$$\mathcal{L}_{\text{PL}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim q(\cdot | x)} [-\log p_\theta(y | x)]. \quad (11)$$

Using the standard derivative of log-likelihood,

$$\nabla_\theta \mathcal{L}_{\text{PL}}(\theta) = \mathbb{E}_{x, y \sim q} [-\nabla_\theta \log p_\theta(y | x)]. \quad (12)$$

Motivated by the classical Fisher Information (Bishop, 2006), we define the *pseudo label (PL) Fisher*:

$$F_{\text{PL}}(\theta) = \mathbb{E}_{x, y \sim q} [\nabla_\theta \log p_\theta(y | x) \nabla_\theta \log p_\theta(y | x)^\top]. \quad (13)$$

When $q(\cdot | x) = p^*(\cdot | x)$, this reduces to the standard Fisher Information matrix.

For a reference model θ_0 , the second-order Taylor expansion (Boyd & Vandenberghe, 2004) yields:

$$\mathcal{L}_{\text{PL}}(\theta) \approx \mathcal{L}_{\text{PL}}(\theta_0) + \frac{1}{2} (\theta - \theta_0)^\top H_{\text{PL}}(\theta_0) (\theta - \theta_0). \quad (14)$$

For cross-entropy networks near optimum, the Hessian is well approximated by the Fisher (Bishop, 2006; Martens, 2014):

$$H_{\text{PL}}(\theta_0) \approx F_{\text{PL}}(\theta_0). \quad (15)$$

Thus:

$$\mathcal{L}_{\text{PL}}(\theta) \approx \mathcal{L}_{\text{PL}}(\theta_0) + \frac{1}{2} (\theta - \theta_0)^\top F_{\text{PL}}(\theta_0) (\theta - \theta_0). \quad (16)$$

Define the parameter-difference matrix:

$$P = [\theta_1 - \theta_0, \theta_2 - \theta_0, \dots, \theta_K - \theta_0] \in \mathbb{R}^{n \times K} \quad (17)$$

where n is the number of parameters in θ .

1296 Since

1297
$$\theta(\lambda) - \theta_0 = P\lambda, \quad (18)$$

1298 substituting into equation 16 gives:

1299 1300
$$\mathcal{L}_{\text{PL}}(\theta(\lambda)) \approx \mathcal{L}_{\text{PL}}(\theta_0) + \frac{1}{2} \lambda^\top \underbrace{(P^\top F_{\text{PL}}(\theta_0) P)}_{A_{\text{PL}}} \lambda. \quad (19)$$

1302

1303 Thus the optimal merging coefficients are:

1304 1305
$$\lambda_{\text{PL}}^* = \arg \min_{\lambda \in \Delta^{K-1}} \frac{1}{2} \lambda^\top A_{\text{PL}} \lambda. \quad (20)$$

1306

1307 1308 Let $p^*(y | x)$ denote the true label distribution. The true Fisher and true quadratic matrix is defined as:

1309 1310
$$F_{\text{true}}(\theta_0) = \mathbb{E}_{x,y \sim p^*} [\nabla \log p_\theta \nabla \log p_\theta^\top], \quad (21)$$

1311

1312

1313 1314
$$A_{\text{true}} = P^\top F_{\text{true}}(\theta_0) P. \quad (22)$$

1315

1316 Assume the teacher satisfies for total variation:

1317 1318
$$\text{TV}(q(\cdot | x), p^*(\cdot | x)) \leq \varepsilon, \quad (23)$$

1319 and that likelihood gradients are bounded (Shalev-Shwartz & Ben-David, 2014; van der Vaart, 1998).

1320 Standard stability arguments yield:

1321 1322
$$\|F_{\text{PL}}(\theta_0) - F_{\text{true}}(\theta_0)\| = O(\varepsilon). \quad (24)$$

1323 Thus:

1324 1325
$$\|A_{\text{PL}} - A_{\text{true}}\| = \|P^\top (F_{\text{PL}} - F_{\text{true}}) P\| = O(\varepsilon). \quad (25)$$

1326 From sensitivity analysis of strictly convex quadratic programs (Boyd & Vandenberghe, 2004):

1327 1328
$$\|\lambda_{\text{PL}}^* - \lambda_{\text{true}}^*\| = O(\varepsilon). \quad (26)$$

1329 Taking all together, the above derivation shows that pseudo label supervision is theoretically sufficient
1330 for recovering the Fisher-optimal merging coefficients. When the teacher pseudo label distribution is
1331 close to the ground truth label distribution in total variation distance, the pseudo label Fisher curvature
1332 approximates the true Fisher curvature, and the resulting quadratic program yields merging weights
1333 provably within $O(\varepsilon)$ of the ground truth solution. Thus, SML trained with pseudo labels optimizes
1334 nearly the same second-order objective if ground truth labels were available.1335 Furthermore, our statistics of mean, variance, magnitude, and rank 3 from SVD serve as compact,
1336 data-free approximations to the Fisher curvature that governs the optimal merge. The variance
1337 term captures diagonal Fisher structure, the mean and magnitude encode parameter scale and shift
1338 effects that influence the quadratic form $P^\top F P$, and the low-rank SVD directions approximate
1339 dominant Fisher eigenvectors observed empirically in deep networks. Thus, the statistic vector S_k
1340 preserves the key curvature signals needed for SML to learn merging coefficients that closely match
1341 the Fisher-optimal solution.1342

A.4.2 MEAN AND VARIANCE DETERMINE THE SECOND-MOMENT

1343 Define mean and variance of a fine-tuned weight θ .

1344 1345
$$\mu = \mathbb{E}[\theta] \quad (27)$$

1346 1347
$$\sigma^2 = \text{Var}(\theta) = \mathbb{E}[(\theta - \mu)^2]. \quad (28)$$

1348 1349 Then the second moment of θ can be written as

1350
 1351 $\mathbb{E}[(\theta)^2] = \mathbb{E}[(\theta - \mu + \mu)^2]$
 1352 $= \mathbb{E}[(\theta - \mu)^2] + 2\mu\mathbb{E}[\theta - \mu] + \mu^2$
 1353 $= \underbrace{\mathbb{E}[(\theta - \mu)^2]}_{\sigma^2} + 2\mu \cdot 0 + \mu^2$
 1354 $= \sigma^2 + \mu^2.$
 1355
 1356
 1357

1358 For every parameter θ ,

$$\mathbb{E}[\theta^2] = \text{Var}(\theta) + (\mathbb{E}[\theta])^2 = \sigma^2 + \mu^2. \quad (30)$$

1360
 1361 Thus, the mean and variance of a parameter fully determine its second moment (Papoulis, 1965):
 1362
 1363 $\text{second moment of } \theta = \mathbb{E}[\theta^2], \quad (31)$
 1364 and therefore offer a complete, data-free representation of the second-order statistics underlying the
 1365 parameter distribution.

1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404 A.5 EXTENDED EXPERIMENTS
14051406 A.5.1 MERGING PERFORMANCE
1407

1408 Extended experimental merging results are presented in Table 7. Results for Pre-Trained models,
1409 Individual models, and those trained using Traditional MTL are listed above the double horizontal
1410 lines. Below these lines, the comparison is organized into three groups: Task-wise methods appear
1411 first, followed by Layer-wise approaches, and finally the Parameter-wise method. Notably, while
1412 finer granularity is generally associated with improved merging performance (Yang et al., 2023),
1413 our **LW StatsMerging++**, operating at the Layer-wise level, surpasses EMR-Merging (Huang et al.,
1414 2024), which is based on the finer Parameter-wise granularity.

1415
1416 Table 7: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
1417 tasks. Results of our method *StatsMerging* are shaded in gray. Bold and underscore indicate the
1418 highest and second-highest scores within the merging group below the double rules in each column,
1419 respectively. GL: Granularity Level. TW: Task-wise. LW: Layer-wise. PW: Parameter-wise.

Method	SU	CA	RE	EU	SV	GT	MN	DT	Avg Acc
Pre-Trained	62.3	59.7	60.7	45.5	31.4	32.6	48.5	43.8	48.0
Individual	75.3	77.7	96.1	99.7	97.5	98.7	99.7	79.4	90.5
Traditional MTL	73.9	74.4	93.9	98.2	95.8	98.9	99.5	77.9	88.9
Task-wise									
Weight Averaging	65.3	63.4	71.4	71.7	64.2	52.8	87.5	50.1	65.8
Task Arithmetic	55.2	54.9	66.7	78.9	80.2	69.7	97.3	50.4	69.1
Fisher Merging	68.6	69.2	70.7	66.4	72.9	51.1	87.9	59.9	68.3
RegMean	65.3	63.5	75.6	78.6	78.1	67.4	93.7	52.0	71.8
TIES-Merging	59.8	58.6	70.7	79.7	86.2	72.1	98.3	54.2	72.4
TW AdaMerging	58.0	53.2	68.8	85.7	81.1	84.4	92.4	44.8	71.1
TW AdaMerging++	60.8	56.9	73.1	83.4	87.3	82.4	95.7	50.1	73.7
TW StatsMerging	61.3	70.0	74.2	85.2	87.5	82.5	96.2	54.2	76.4
Layer-wise									
LW AdaMerging	64.5	68.1	79.2	<u>93.8</u>	87.0	91.9	97.5	59.1	80.1
LW AdaMerging++	66.6	68.3	82.2	94.2	89.6	89.0	<u>98.3</u>	60.6	81.1
LW StatsMerging	67.4	<u>74.1</u>	<u>82.9</u>	91.1	<u>89.8</u>	<u>94.7</u>	<u>98.3</u>	<u>77.5</u>	84.5
LW StatsMerging++	92.4	95.4	95.1	92.9	94.6	98.7	98.5	88.4	94.5 (+13.4)
Parameter-wise									
EMR-MERGING	75.2	72.8	93.5	99.5	96.9	98.1	99.6	74.4	88.7

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 A.5.2 GENERALIZATION EVALUATION OF SML
1459

1460 We use SML trained on the eight vision datasets (LW *StatsMerging*), where it was exposed solely to
 1461 the ViT-B/32 architecture for Task-Specific Experts on each vision task. This SML is then used to
 1462 generate merging coefficients for merging two *unseen* ResNet50 models, each pre-trained on *unseen*
 1463 CIFAR10 (CF10) and CIFAR100 (CF100) tasks. We evaluate SML in the Layer-Wise (LW) setting.
 1464 This setup is summarized in Table 8.

1465
1466 Table 8: Generalization Experiment Setup

Architecture Type		Architecture	Task
Train	Task-Expert	ViT-B/32	SU, CA, RE, EU, SV, GT, MN, DT
Test	Merged	ResNet50	CF10, CF100

1471
 1472 *Challenge: Mismatch Layer.* To generalize to a different architecture, we encountered the chal-
 1473 lenge that the expert and the merged model layers differ. We subsample 22 coefficients to merge
 1474 ResNet50 models from the 320 ViT-B/32 coefficients, enforcing consistency in the relative positions
 1475 of coefficients and layers across both architectures. This approach is inspired by the insight from
 1476 LiNeS (Wang et al., 2024a) that common and task-specific features are learned in shallow and deeper
 1477 layers, respectively. Preserving these relative positions may help maintain the common-to-task-
 1478 specific relationship.

1479 Results are shown in Table 9. To the best of our knowledge, we are the **first** to evaluate generalizability
 1480 to an *unseen architecture*, as prior model merging methods assume identical model architectures.
 1481 The pre-trained models achieved an Avg Acc of 85.97%. However, there remains a substantial
 1482 gap between the pre-trained models (85.97%) and recent advanced merging methods, with LW
 1483 AdaMerging and LW StatsMerging achieving 26.66% and 43.15%, respectively. This gap highlights
 1484 the extremely challenging nature of the task, as both the test tasks and the merged model architecture
 1485 are unseen. Notably, our proposed LW StatsMerging improves LW AdaMerging by a large margin of
 1486 16.49%.

1487 Table 9: Multi-task merging performance (Avg Acc %) when merging ResNet50 models on CIFAR10
 1488 and CIFAR100 using SML trained with ViT-B/32 architecture on eight tasks. Results of our method
 1489 **STATSMERGING** are in bold shaded in gray. **LW**: Layer-wise.

Method	CF10	CF100	Avg Acc
Pre-Trained	97.80	74.14	85.97
LW AdaMerging	44.21	9.10	26.66
LW StatsMerging	64.70 (+20.49)	21.60 (+12.50)	43.15 (+16.49)

1512 A.5.3 ROBUSTNESS EVALUATION
1513

1514 **Input Corruption Tolerance.** We evaluate the robustness of *StatsMerging* against Task Arithmetic
 1515 ([Ilharco et al., 2023](#)) and AdaMerging ([Yang et al., 2023](#)) under three image corruption scenarios:
 1516 Motion Blur, Impulse Noise, and Gaussian Noise. The corrupted test sets are constructed following
 1517 the protocols outlined in ([Yang et al., 2023; Hendrycks & Dietterich, 2019](#)). We assess performance
 1518 on four datasets: Stanford Cars (CA) ([Krause et al., 2013](#)), EuroSAT (EU) ([Helber et al., 2019](#)),
 1519 RESISC45 (RE) ([Cheng et al., 2017](#)), and GTSRB (GT) ([Stallkamp et al., 2011](#)). Results are reported
 1520 in Table 10. Overall, *StatsMerging* consistently outperforms the baselines. On the clean test set, it
 1521 achieves a 2.4% accuracy improvement over AdaMerging. Under corrupted conditions, *StatsMerging*
 1522 yields performance gains of 3.1%, 6.3%, and 4.3% for Motion Blur, Impulse Noise, and Gaussian
 1523 Noise, respectively.

1524 Table 10: Robustness results when merging ViT-B/32 models on four tasks. *StatsMerging*: shaded in
 1525 gray. Bold: top score. Values are reported in %.

Method	CA	EU	RE	GT	Avg Acc
Clean Test Set					
Task Arithmetic	66.9	94.7	82.6	75.1	79.8
AdaMerging	73.7	96.1	85.8	96.3	88.0
StatsMerging	75.6	96.3	92.1	97.6	90.4 (+2.4)
Motion Blur					
Task Arithmetic	65.3	68.1	80.0	64.2	69.4
AdaMerging	71.2	74.6	82.7	94.1	80.6
StatsMerging	73.5	76.9	89.2	95.2	83.7 (+3.1)
Impulse Noise					
Task Arithmetic	62.1	49.1	72.7	40.4	56.1
AdaMerging	67.2	30.8	75.9	77.5	62.8
StatsMerging	70.4	50.4	77.6	78.1	69.1 (+6.3)
Gaussian Noise					
Task Arithmetic	63.6	55.4	75.9	49.4	61.1
AdaMerging	69.9	41.2	80.6	76.0	66.9
StatsMerging	71.2	53.6	82.1	78.0	71.2 (+4.3)

1547 **Input Noise Tolerance Boundary.** To test the boundry of input noise tolerance, we conducted
 1548 experiments on merging two vision tasks on RESISC45 (RE) and EuroSAT (EU) on images with
 1549 three levels of Gaussian noise: **Low noise** ($\sigma = 10$), **Medium noise** ($\sigma = 15$), and **High noise**
 1550 ($\sigma = 20$). Results are shown in Table 11. In summary, as the noise level increased, the performance
 1551 of both methods degraded. However, our proposed method *StatsMerging* consistently achieved higher
 1552 accuracy than AdaMerging++ across all levels of Gaussian noise.

1553
 1554 Table 11: Comparison of *StatsMerging* and AdaMerging on two vision tasks RESISC45 (RE) and
 1555 EuroSAT (EU)) under three Gaussian noise levels (Low, Medium, and High). Numbers represent
 1556 Avg Acc (%) across two tasks.

Method	Low	Medium	High
AdaMerging++	56.0	48.4	35.9
StatsMerging	57.3 (+1.3)	50.1 (+1.7)	36.7 (+0.8)

1562 **Label Noise Tolerance.** We use the entropy of a task expert’s prediction (a model fine-tuned on task
 1563 k) based on its output probability distribution, we further normalized the entropy values to the range
 1564 [0, 1] and split the dataset according to three noise levels evenly based on the normalized entropy:
 1565 **Low noise** [0, 0.33], **Medium noise** [0.33, 0.66], and **High noise** [0.66, 1], where numbers represent
 1566 the boundaries of the normalized entropy. We note that entropy computed in this way represents the

confidence of a model, particularly the Task-Specific Teacher, acting as a proxy for label noise level, e.g., lower entropy indicates higher model confidence, and thus lower label noise, and vice versa. This interpretation aligns with its usage in the literature.

We conducted experiments on eight vision tasks under three noise levels. Results are shown in Table 12. We summarize the **new key insights** as follows: both methods achieved their best performance on low-noise labels (as expected) with over 95% Avg Acc, and gradually degraded to around 80% as the noise level increased. Our proposed method, *StatsMerging*, consistently outperformed AdaMerging++, with performance gains of +4.4%, +6.2%, and +8.5% under low, medium, and high noise levels, respectively. Both methods appear to be learnable across three noise levels. We did not observe any noise level boundary where *StatsMerging* underperformed AdaMerging++.

Table 12: Comparison of *StatsMerging* and AdaMerging on eight vision tasks under three noise levels (Low, Medium, and High). Numbers represent Avg Acc (%) across eight tasks.

Method	Low	Medium	High
AdaMerging++	95.5	91.4	80.1
<i>StatsMerging</i>	99.9 (+4.4)	97.6 (+6.2)	88.6 (+8.5)

A.5.4 EFFECT OF MODEL CAPACITY ON SML

Table 13 evaluates StatsMergeLearner (SML) with different design choices across RESISC45 and EuroSAT. While increasing capacity with deeper MLPs or a lightweight Transformer provides marginal accuracy gains (+0.1 - 0.3) and faster convergence, these come at the cost of higher parameter counts and computational complexity. The 2-layer MLP strikes a favorable balance between accuracy and efficiency, preserving the lightweight nature of SML while demonstrating the effectiveness of the overall framework.

Table 13: Avg Acc (%) performance of SML with different capacities on RE and EU. *: Current capacity in the submission. L: Layer.

SML Design Choice	RE	EU	Avg Acc	#Params (M)	MACs (M)	FLOPs (M)
Individual Model	96.1	99.7	97.9	—	—	—
2L MLP*	96.0	98.0	97.4	0.366	0.73	1.46
4L MLP	97.0	98.0	97.5 (+0.1)	0.732	1.46	2.91
2L Transformer	97.0	98.5	97.7 (+0.3)	0.396	0.79	1.58

A.5.5 LABEL TYPE AND LOSS FUNCTION ANALYSIS

In this section, we analyze the performance of training *StatsMergeLearner* on two types of pseudo labels: (1) Soft Pseudo Labels, and (2) Hard Pseudo Labels, the former of which is commonly employed in knowledge distillation frameworks (Gou et al., 2021; Hinton et al., 2015) especially for classification tasks. Formally, we present two versions of our training losses:

Soft Pseudo Labels (SPL): The predicted class probability distribution. Thus we use Kullback–Leibler divergence (KL-Div) (Kullback & Leibler, 1951) loss function:

$$\mathcal{L}_{\text{KL}} = \sum_{c=1}^{C_m} p_{c,k} \log \left(\frac{p_{c,k}}{q_c} \right) \quad (32)$$

where $p_{c,k}$ is the predicted probability of class c from the pre-trained model θ_k on task k , and q_c is the predicted probability of class c from the merged model θ_m .

Hard Pseudo Labels (HPL): The predicted class label in one-hot encoded format. Therefore, the cross-entropy loss is applied:

$$\mathcal{L}_{\text{CE}} = - \sum_{c=1}^{C_m} \hat{y}_{c,k} \log(\hat{y}_c) \quad (33)$$

1620 Results are shown in 14. We highlight two key observations: (1) Training *StatsMergeLearner* with
 1621 Hard Pseudo Labels (HPL) using cross-entropy loss (KD CE) yields performance comparable to
 1622 training with ground-truth labels (GT CE), achieving 81.2% vs. 88.5% at the task-wise (TW) level
 1623 and 83.5% vs. 90.4% at the layer-wise (LW) level. Importantly, *StatsMerging* eliminates the need for
 1624 manually annotated labels, validating our intuition of leveraging task-specific teacher knowledge for
 1625 supervision. (2) When trained on Soft Pseudo Labels (SPL) using KL-Divergence loss (KL-Div),
 1626 *StatsMergeLearner* underperforms relative to HPL with cross-entropy, obtaining 73.3% vs. 81.2% at
 1627 the TW level and 52.4% vs. 83.5% at the LW level, respectively.

1628 We hypothesize that the observed performance drop is due to noisy inter-class relationships within
 1629 the aggregated dataset (Yuan et al., 2021). While a detailed investigation of these relationships is
 1630 beyond the scope of this work on model merging, we believe it presents promising directions for
 1631 future research.

1632 **Label & Loss Function Study.** We conduct a
 1633 loss function study on ViT-B/32 (4) models
 1634 merged from four tasks, as shown in Table 4.
 1635 Observe that *StatsMerging* trained on pseudo
 1636 labels via Task-Specific Teacher Distillation
 1637 (KD) achieves similar performance to
 1638 *StatsMerging* trained on ground-truth labels
 1639 (GT), with 88.5% and 81.2% average accuracy
 1640 in TW and 90.4% and 83.5% in LW levels.

Table 4. Multi-task performance (Avg Acc %) of *StatsMerging* when merging ViT-B/32 (4) models across four tasks. *StatsMerging* shaded in gray. GT: Ground Truth. KD: Knowledge Distillation. TW: Task-wise. LW: Layer-wise.

Loss	Level	CA	EU	RE	GT	Avg Acc
GT	TW	73.2	94.2	91.1	95.6	88.5
KD	TW	64.2	88.6	85.2	86.7	81.2
GT	LW	75.6	96.3	92.1	97.6	90.4
KD	LW	68.7	91.6	87.2	93.5	83.5

Table 14: Multi-task performance (Avg Acc %) of *StatsMerging* when merging ViT-B/32 (4) models on four tasks. *StatsMerging*: shaded in gray. GT: Ground Truth. KD: Knowledge Distillation. GL: Granularity level. TW: Task-wise. LW: Layer-wise.

GL	Loss	CA	EU	RE	GT	Avg Acc
TW	GT CE	73.2	94.2	91.1	95.6	88.5
TW	KD KL-Div	56.5	97.6	56.5	82.4	73.3
TW	KD CE	64.2	88.6	85.2	86.7	81.2
LW	GT CE	75.6	96.3	92.1	97.6	90.4
LW	KD KL-Div	53.1	41.4	65.9	49.1	52.4
LW	KD CE	68.7	91.6	87.2	93.5	83.5

1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 A.5.6 IMPACT OF DATA SIZE
1675

1676 The performance gain of *StatsMerging++* with more validation data is much larger than that of
1677 *AdaMerging++* as shown in Table 15. When the data rate increases from 1% to 5%, LW *StatsMerg-1678*
1679 *ing++* improves from 84.5% to 94.5%, whereas LW *AdaMerging++* only increases from 80.6% to
81.0%. This demonstrates LW *StatsMerging++* is more data efficient than LW *AdaMerging++*.

1680
1681 Table 15: Impact of the amount of available data on performance (Avg Acc %) when merging
1682 ViT-B/32 models. *StatsMerging* is shaded in gray.

Method	Data	SU	CA	RE	EU	SV	GT	MN	DT	Avg Acc
LW AdaMerging	1%	61.9	66.3	81.8	86.0	88.6	85.8	97.4	52.5	77.5
LW AdaMerging++	1%	66.9	68.6	81.4	91.8	89.2	87.1	98.1	61.8	80.6
LW StatsMerging	1%	67.4	74.1	82.9	91.1	89.8	94.7	98.3	77.5	84.5
LW AdaMerging	5%	63.7	68.6	79.1	93.3	86.5	91.7	97.2	61.9	80.1
LW AdaMerging++	5%	66.4	68.4	81.5	92.9	90.0	89.0	98.2	61.5	81.0
LW StatsMerging++	5%	92.4	95.4	95.1	92.9	94.6	98.7	98.5	88.4	94.5 (+5.1)
LW AdaMerging	100%	64.5	68.1	79.2	93.8	87.0	91.9	97.5	59.1	80.1
LW AdaMerging++	100%	66.6	68.3	82.2	94.2	89.6	89.0	98.3	60.6	81.1

1694
1695 **Difference between StatsMerging++ and AdaMerging++:**

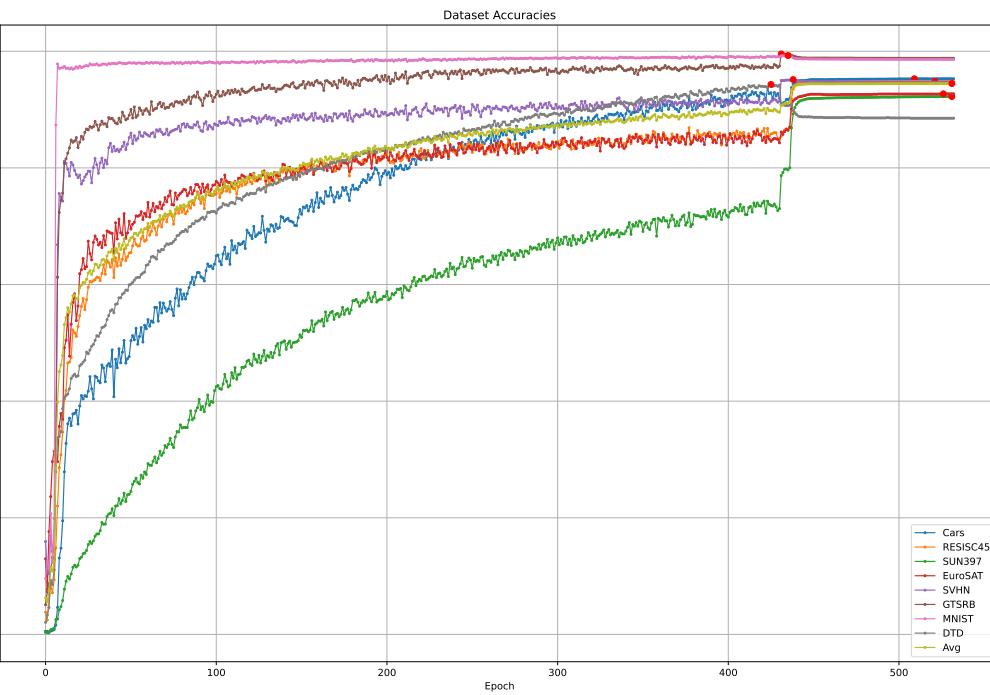
1696
1697 • *StatsMerging++* uses 5% validation data instead of the 1% used in *StatsMerging*.
1698 • **AdaMerging++** additionally removes parameter redundancies and resolves sign conflicts
1699 via TIES-Merging; this modification is independent of the amount of data used.

1700
1701 Table 16: Impact of Training Size on LW *StatsMerging* for Eight Vision Merging Tasks (Avg Acc %).

Training Data Percentage	5%	25%	50%	75%
Avg Acc	84.50	86.60	89.08	89.14

1728 A.5.7 TRAINING CURVE
1729

1730 We present the training curve of ViT-B/32 across eight Vision tasks in Fig. 8. The sharp drop in
 1731 learning rate at around step 420 stabilizes the *StatsMergeLearner* updates, reduces gradient noise, and
 1732 allows the merged model to settle into a flatter minimum. This scheduling effect explains the sudden
 1733 increase in training accuracy across all eight tasks, rather than any change in the data or validation
 1734 split. This behavior is well-known in deep neural network training and is consistent with empirical
 1735 and theoretical evidence in prior work (Luo et al., 2019; Ren et al., 2024)

1759 Figure 8: *StatsMerging++* Training Accuracy Curve.
1760

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 A.6 EXTENDED RELATED WORK
1783

1784 **Model Merging Foundations.** Recent efforts in model merging have introduced various strategies
1785 to efficiently combine multiple models without retraining. Approaches such as ZipIt (Zhang et al.,
1786 2024a), EMR-Merging (Huang et al., 2024), and Training-Free Pre-trained Model Merging methods
1787 (Sun et al., 2025; Chen et al., 2024) emphasize data-free, tuning-free methodologies, often leveraging
1788 weight-space heuristics or task-vector alignment. Techniques like Pareto Merging (Chen & Kwok,
1789 2025), MAP (Li et al., 2024), and C^2M^3 (Crisostomi et al., 2024) formulate model merging as a
1790 multi-objective or constrained optimization problem to preserve task performance across domains.
1791 Other works such as Parameter Competition Balancing (Guodong et al.) and Sharpness-Aware
1792 Fine-Tuning (Lee et al., 2025) address parameter interference during merging. Meanwhile, methods
1793 like LayerMerge (Kim et al., 2024) and MERGE3 (Mencattini et al., 2025) aim to improve scalability
1794 and computational efficiency, making merging feasible on consumer-grade hardware.

1795 **Merging Methods in Computer Vision.** The application of model merging techniques in computer
1796 vision is relatively less explored compared to natural language processing (Yadav et al., 2023b;
1797 Ilharco et al., 2023). Computer vision models, particularly deep convolutional neural networks
1798 (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014) and Vision Trans-
1799 formers (ViTs) (Dosovitskiy et al., 2021a; Touvron et al., 2021), learn complex, hierarchical feature
1800 representations that are highly sensitive to task-specific optimizations (Izmailov et al., 2018). Simple
1801 averaging techniques often fail due to the non-convex nature of the loss landscape and the divergence
1802 of learned feature spaces across different visual tasks. Recent advancements (Matena & Raffel, 2022;
1803 Yang et al., 2023) have shown potential, but often lack explicit mechanisms to account for the unique
1804 properties inherent in visual data and architectures, such as spatial relationships in CNNs or attention
1805 mechanisms in ViTs. Furthermore, the effectiveness of these methods across the broad spectrum
1806 of computer vision tasks, including low-level restoration (Zhang et al., 2017; Saharia et al., 2022),
1807 mid-level detection (Ren et al., 2015; Carion et al., 2020b), and high-level classification (He et al.,
1808 2016), has not been comprehensively validated. Our work addresses these limitations by introducing a
1809 novel merging framework that leverages internal model weight statistics to guide the merging process,
1810 making it more adaptable and effective across diverse computer vision tasks and architectures.

1811 **Relationship to KnOTS.** Compare KnOTS and combine it with the proposed SML.

1812 We included KnOTS (Stoica et al., 2024) as an additional baseline and evaluated *StatsMerging* +
1813 KnOTS. As shown in Table 17, *StatsMerging* + KnOTS performs worse than our proposed *StatsMerg-*
1814 *ing* in this two-task setting. We hypothesize that this is due to (i) KnOTS being sensitive to SVD rank
1815 selection and scaling, and (ii) its design being more beneficial for larger and more diverse task sets.
1816 Although KnOTS converges faster, it incurs approximately 10 \times higher training cost per epoch due to
1817 repeated SVD computations.

1818 Table 17: Comparison of different merging methods on two-task merging (RE, EU).
1819

Method	RE	EU	Avg Acc (%)
Individual	96.1	99.7	97.9
Task Arithmetic	85.2	96.7	90.9
TIES-Merging	86.4	97.2	91.8
<i>StatsMerging</i> + KnOTS	92.1	94.2	93.2
<i>StatsMerging</i>	96.0	98.0	97.4 (+4.2)

1820 **Relationship to LiNeS.** *Similarity:* Both share a similar goal of preserving common features across
1821 tasks while retaining task-specific representations. *Difference:* LiNeS (Wang et al., 2024a) scales
1822 the updates from shallow to deep layers linearly, controlled by α and β . In Layer-Wise (LW)
1823 *StatsMerging*, merging coefficients (λ) are optimized across the entire merged model by SML.
1824 Therefore, in theory, λ should jointly account for the scales of updates from shallow to deeper layers.
1825 In addition, SML does not assume the linear scaling from shallow to deeper layers as in LiNeS.

1826 We therefore posit that SML (and other learning-based methods) may not benefit significantly from
1827 directly integrating LiNeS scaling coefficients, either during training or in post-training stages. This
1828 is consistent with the fact that in the LiNeS paper, the merging methods that LiNeS integrates with
1829 are heuristic-based, including Task Arithmetic, Ties-Merging, Consensus Merging (Table 18), and

1836 Model Soup. The only learning-based method reported in the experiments is AdaMerging, which
 1837 was only used solely for comparison, if I am not mistaken. Although SML can be combined with
 1838 LiNeS in practice/implementation, we find it theoretically unnecessary.

1839
 1840 *Comparison:* We present the comparison of LiNeS and our updated *StatsMerging* (w SML) on
 1841 merging ViT-B/32 in Table 18. Our proposed *StatsMerging* (84.5%) significantly outperforms the
 1842 best reported LiNeS result (77.2%).

1843
 1844 Table 18: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
 1845 tasks. Results of our method *StatsMerging* are in bold. LW: Layer-wise.

Method	Avg Acc
Task Arithmetic	69.7
Task Arithmetic + LiNeS	74.2
Ties-Merging	73.6
Ties-Merging + LiNeS	77.2
Consensus Merging	74.5
Consensus Merging + LiNeS	77.6
LW AdaMerging	80.1
LW AdaMerging++	81.1
LW StatsMerging	84.5

1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

1890 A.7 VISUAL ASSETS ATTRIBUTION
18911892 We credit the guru (Task-Specific Teachers) and student visual icons to Freepik–Flaticon
1893 (<https://www.flaticon.com/free-icons/idea>), which enhance the clarity and presentation quality of our
1894 approach.

1895

1896 A.8 FUTURE WORK AND LIMITATIONS
18971898 In this work, we focus on vision-based classification and simple NLP tasks, leaving extensions to
1899 other domains, such as object detection (Tan et al., 2020), super-resolution (Sun et al., 2022), and
1900 image and video restoration (Liang et al., 2021; Merugu et al., 2025), for future work. Additionally,
1901 expanding this approach to beyond vision and language tasks, particularly large language models
1902 (LLMs) (Yang et al., 2024; Song et al., 2024; Zhang et al., 2024b; Tie et al., 2025; Kallini et al., 2025),
1903 as well as to multi-modal learning (Zhu et al., 2025; Du et al., 2025; Bousselham et al., 2024; Lin
1904 et al., 2024), represents a promising direction for further research. Moreover, we identify a direction
1905 for future work that can facilitate more efficient SML learning. While our work primarily focuses on
1906 empirical results, we regard theoretical development, such as formal proofs, as an important direction
1907 for future research.

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943