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ABSTRACT

As large models are increasingly deployed across various tasks, the limited GPU
memory available for storing and executing task-specific models presents a growing
bottleneck. Model merging has emerged as a promising solution to accommodate
multiple large models within constrained memory budgets. While traditional multi-
task learning methods attempt to merge common layers, they require labor-intensive
annotated labels and incur significant computational overhead. Recent merging
techniques aim to address this issue by combining models at inference time; how-
ever, these approaches often rely on simplistic heuristics, ignore weight distribution
characteristics, assume architectural identity, or require access to test samples to
infer merging coefficients, thereby limiting generalization and scalability. We
present StatsMerging, a novel lightweight learning-based model merging method
guided by weight distribution statistics without requiring ground truth labels or
test samples. StatsMerging offers three key advantages: (1) It uniquely leverages
singular values from singular value decomposition (SVD) to capture task-specific
weight distributions, serving as a proxy for task importance to guide task coefficient
learning; (2) It employs a lightweight learner StatsMergeLearner to model the
weight distributions of task-specific pre-trained models, improving generalization
and enhancing adaptation to unseen samples; (3) It introduces Task-Specific Teacher
Distillation for merging vision models with heterogeneous architectures, a merging
training paradigm that avoids costly ground-truth labels by task-specific teacher
distillation. Notably, we present two types of knowledge distillation, (a) distilling
knowledge from task-specific models to train StatsMergeLearner; and (b) for the
first time, distilling knowledge from models with different architectures prior to
merging, following a distill-then-merge paradigm. Extensive experiments across
vision and NLP tasks demonstrate the effectiveness of StatsMerging. Our results
show that StatsMerging outperforms state-of-the-art techniques, achieving overall
accuracies of 94.5% for Vision and 77.6% for NLP, while further exhibiting strong
generalization to unseen tasks, and robustness to image quality variations.

1 INTRODUCTION

Computer vision has witnessed transformative progress fueled by deep learning, particularly through
the development and adoption of large-scale pre-trained models. Architectures like Convolutional
Neural Networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014),
Vision Transformers (ViTs) (Dosovitskiy et al., 2021b; Touvron et al., 2021), and hybrid approaches
(Liu et al., 2022b) pre-trained on massive datasets have become the cornerstone of modern vision
applications. Large-scale models leveraging multi-modal pre-training, such as CLIP (Radford et al.,
2021)) or generative models like GANs (Goodfellow et al., 2014) and Diffusion Models (Ho et al.,
2020; Rombach et al., 2022) have further pushed the boundaries of visual understanding and synthesis,
enabling the use of pre-trained backbones to a wide range of downstream vision applications. The
dominant practice is to fine-tune these powerful base models to computer vision tasks, including
image classification (He et al., 2016), object detection (Ren et al., 2015; Carion et al., 2020a), semantic
segmentation (Long et al., 2015; Xie et al., 2021), image restoration (Zhang et al., 2017; Saharia et al.,
2022), and image generation (Mirza & Osindero, 2014). This success, however, leads to a practical
challenge: the proliferation of numerous specialized pre-trained weights and model checkpoints
(Cao et al., 2024a; 2025), most of which share the same foundational ViT or CNN backbones.
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Managing this growing collection incurs significant storage overhead, complicates deployment, and
represents a missed opportunity to consolidate the related, yet specialized, knowledge contained
within these models (Wortsman et al., 2022), particularly on compute-constrained platforms such as
edge devices (Cao et al., 2024b; Singh et al., 2024). While Multi-Task Learning (MTL) (Vandenhende
et al., 2022b) aims to create versatile single models for vision tasks, it often demands complex joint
training strategies, concurrent access to diverse datasets, and careful architecture design to balance
performance across disparate tasks.

Model merging offers a compelling post-hoc alternative, seeking to combine independently trained
models without expensive retraining. However, while techniques for model merging have gained
traction, particularly in Natural Language Processing (NLP) (Yadav et al., 2023a; Ilharco et al.,
2023), adapting these techniques to tasks in computer vision domain has been far less explored. A
straightforward approach of simple weight averaging (Wortsman et al., 2022) often fails in vision
tasks due to the complex, hierarchical visual feature representations, task-specific optimizations, and
the presence of intricate noise patterns that lead to sharp, non-convex loss minima (Izmailov et al.,
2018). Recent methods in this direction (Matena & Raffel, 2022; Jin et al., 2023; Yang et al., 2023;
Padmanabhan et al., 2023) neglect the importance of weight distribution.

This paper introduces a novel model merging framework specifically designed to address the afore-
mentioned challenges, for computer vision as well as NLP tasks. We propose StatsMerging, a weight
distribution statistics-guided merging approach that moves beyond simple parameter averaging or
task-vector manipulation. StatsMerging leverages the statistical features from models pre-trained
on prior tasks. We compute salient statistics extracted by leveraging Singular Value Decomposition
(SVD) to capture the dominant properties of the learned feature spaces. This statistical information,
intrinsically captures aspects of the pre-trained model distributions and guides the merging process by
learning a compact Multilayer Perceptron (MLP), coined StatsMergeLearner that predicts adaptive
merging coefficients (λ) shown in Fig. 1.

θpre

Tk

θk

Tk = θk  - θpre

a) Task Vectors

θpre

TA

θMTL

θMTL = θpre  + λ(TA + TB)

b) Task Arithmetic

TB

θpre

λATA

θMTL

θMTL = θpre  + (λATA + λBTB)

c) AdaMerging

λBTB

θpre

θMTL = θpre  + (λATA + λBTB)

d) StatsMerging (Ours)

SML
λA, λB = SML(stats(θpre_a, θpre_b))

λATA

θMTL

λBTB

stats(θpre_a, θpre_b)

Figure 1: Compared to prior works, StatsMergeLearner uniquely learns the merging coefficients by
exploiting statistical features of weights pre-trained on prior tasks. Notably, while both AdaMerging
and StatsMerging are presented in the task-wise level in c) and d) for simplicity of illustration, the
same principle can be applied at the layer-wise level for fine-grained adaptation.

We make four significant contributions summarized as follows:

• We propose StatsMerging1, a novel model merging framework guided by model weight
statistics, leveraging SVD to predict merging coefficients λ.

• We design the lightweight StatsMergeLearner to learn model merging coefficients λ estima-
tion based on statistical features of model weights, through a newly proposed Task-Specific
Teacher Distillation training paradigm without manually-annotated labels.

• We introduce the first heterogeneous architectural merging method, which distills knowledge
from models with non-identical architectures into the unified target architecture.

• Extensive experiments demonstrate the effectiveness of our proposed StatsMerging for
model merging, achieving state-of-the-art average accuracies of 94.5% on Vision tasks and
77.6% on NLP tasks.

1Our code is available at https://github.com/statsmerging/statsmerging.
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2 RELATED WORK

Multi-Task Learning. Multi-Task Learning (MTL) (Zhang & Yang, 2021; Vandenhende et al.,
2022a) represents a paradigm for training a single model to perform multiple tasks concurrently.
While MTL aims to create unified models capable of handling diverse objectives, it typically requires
careful design of network architectures, computationally expensive training, access to large and
diverse datasets, and intricate task balancing strategies (Zhang & Yang, 2021). Furthermore, MTL
necessitates joint training from the outset, which can be computationally expensive and may not be
feasible when dealing with a collection of pre-trained, specialized models. Model merging offers a
compelling alternative by enabling the combination of independently trained models, without the
need for extensive retraining or simultaneous access to multi-task datasets.

Multi-Task Merging. Early approaches to model merging often involved simple heuristics like
Weight Averaging (Wortsman et al., 2022), TIES-Merging (Yadav et al., 2023a), and Arithmetic
Merging (Ilharco et al., 2023). While straightforward to implement, these methods (Ye et al.,
2023; Akiba et al., 2025; Tang et al., 2025) typically lack awareness of the weight distributions
and learned representations within the models, leading to suboptimal performance in the merged
model compared to individually fine-tuned models or unified models trained from scratch. For
instance, naive weight averaging could significantly degrade performance (Wortsman et al., 2022),
highlighting the challenges in consolidating knowledge from independently trained networks. Recent
work decomposes models into common and task-specific subspaces to achieve isotropic merging
(Marczak et al., 2025). Task Singular Vectors (TSV) (Gargiulo et al., 2025) is proposed to reduce
interference among tasks by aligning merging operations along task-relevant directions. Methods in
NLP (Yadav et al., 2023b; Ilharco et al., 2023) have shown promise by learning interpolation weights.

Statistical Characterization for Model Merging. Prior work examines statistical patterns in fine-
tuned models, but typically relies on these signals individually. Foundational second-order analyses
show that task-specific learning induces shifts in weight means and variance (LeCun et al., 1989;
Hassibi & Stork, 1992), both serve as lightweight, data-free approximation to Fisher information
(Kirkpatrick et al., 2017; Matena & Raffel, 2022). However, such gradient-based merging methods
require costly and task-independent computation. Magnitude-based importance has been studied
extensively in pruning and sparse sub-networks (Frankle & Carbin; Molchanov et al., 2019; Zhu
& Gupta, 2017), and in model patching frameworks that identify high-magnitude, task-relevant
components (Goel et al.). A complementary line of work shows that fine-tuning updates concentrate
in a small number of dominant SVD directions, revealing strong low-rank structure (Ilharco et al.,
2023; 2022; Ortiz-Jimenez et al., 2023), consistent with findings for model merging from task
arithmetic (Ilharco et al., 2023), model soups (Wortsman et al., 2022), transformer transferability
(Narang et al., 2021), intrinsic dimensionally (Li et al., 2018), and neural anisotropy (Ortiz-Jiménez
et al., 2020). Similarly, factorization-based knowledge distillation leverages low-rank decompositions
to transfer structured task information (Liu et al., 2022a). However, these approaches either depend
on expensive gradients or isolate only one statistical feature of mean, variance, magnitude or low-rank
structure. Through a lightweight StatsMergeLearner, our work combines mean, variance-as-Fisher
signals, magnitude, and dominant SVD directions to jointly capture task structure for efficient,
label-free model merging.

Method No No Layer TT Heterogeneous
Manual Label TT Samples Level Adaptability Architecture

Traditional MTL ✗ ✗ * ✗ ✗

Task Arithmetic ✓ ✓ ✗ ✗ ✗
TIES-Merging ✓ ✓ ✗ ✓ ✗
Fisher Merging ✓ ✓ ✗ ✗ ✗

RegMean ✓ ✓ ✗ ✗ ✗
AdaMerging ✓ ✗ ✓ ✓ ✗

StatsMerging (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Summary of system characteristics in recent works. *: Optional. TT: Test-Time. Test-time
adaptability refers to the ability of a model to adjust its weights to unseen data during inference
without access to human-labeled annotations..
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In summary, our method StatsMerging enjoys several advantages compared to prior works: (1) it
eliminates the need of human annotated labels; (2) remains lightweight with marginal overhead; (3)
is explicitly designed to support heterogeneous architectures; and (4) provides flexibility for test-time
adaptability summarized in Table 1.

3 METHODOLOGY

3.1 PRELIMINARIES

Notations: A deep neural network is parameterized by a set of weights θ = {θ1, θ2, . . . , θL} that
learns the mapping from an input data xi ∈ Rd to a predicted value ŷi ∈ RD: fθ(xi) → ŷi. Of these,
θl represents the l-th l ∈ {1, 2, . . . , L} layer weights where L is the number of layers of the model
fθ, d denotes an input data xi’s dimension. For classification problems, yi is the class label and D is
the number of classes, while for regression problems, D is the dimension of the output vector yi.

The weights of a pre-trained model (e.g., ViT or ResNet) are denoted as θpre = {θ1pre, θ2pre, . . . , θLpre}.

The weights fine-tuned on a specific training data {xi, yi}
Ntr

k
i=1 for task k is recorded as θk =

{θ1k, θ2k, . . . , θLk } where N tr
k is the number of training samples.

Problem Formulation: The problem of model merging is formulated as: given K tasks’ training
data, find a way to combine weights {θk}Kk=1 fine-tuned for K tasks previously to obtain a new weight
θm without undergoing the retraining process, while the new model fθm is capable of performing
well on K tasks jointly.

It is assumed that all K fine-tuned weights and the merged weight share the same neural network
architecture. Therefore, the core question is how to linearly combine {θk}Kk=1 to obtain θm. In the
task level, the model merging problem is finding a set of coefficients λk ∈ {λ1, λ2, . . . , λK} such that
the merged model weights θm =

∑K
k=1 λkθk for model fθm perform well on all K tasks. At the layer

level, it becomes searching for a set of coefficients λl
k ∈ {λ1

1, λ
2
1, . . . , λ

L
1 , λ

1
2, λ

2
2, . . . , λ

L
2 , . . . , λ

L
K}

to obtain the merged model θm =
∑K

k=1

∑L
l=1 λ

l
kθ

l
k that maintain high performance on K tasks.

3.2 WEIGHT STATISTICS-GUIDED MODEL MERGING

In this section, we describe the main intuition and techniques of our proposed method: StatsMerging.
Motivation: Fisher-based methods estimate parameter importance through second-order sensitivity
(Kirkpatrick et al., 2017; Matena & Raffel, 2022) that represents local per-parameter importance
(Amari, 1998; Kunstner et al., 2019), requiring explicit costly gradient computation. Prior studies
highlight signals such as magnitude (Frankle & Carbin; Molchanov et al., 2019; Goel et al.) or
low-dimensional task directions (Ilharco et al., 2023; 2022; Ortiz-Jimenez et al., 2023), each revealing
structured effects of fine-tuning but typically treated in isolation. Inspired by these insights, we adopt
the design principle of jointly leveraging simple, data-free statistics including mean and variance
as lightweight Fisher proxies 2 with additional global information, magnitude, and dominant SVD
components to capture complementary facets of task structure for efficient, label-free model merging.

Building on these insights, we use weight statistics as compact representations of the weight distri-
bution, avoiding raw weights which are prohibitively high-dimensional. These summarized distri-
butions of pre-trained weights θk enable the prediction of merging coefficients through a function
g(θk) → λm. The resulting statistics encode task-relevant information about how each model θk
contributes to the final merged model.

Weight Statistics: For a pre-trained weight θk on task k, we compute the mean µθk and variance
σ2 = V ar(θk) to represent its center and breadth, as well as its magnitude m = ||θk||. In addition,
we extract the singular values σ′

i from Singular Value Decomposition (SVD):

Wk = UkΣkV
⊤
k (1)

where Wθk represents the matrix of the model parameter θk. By default, we use rank 3 from Σk to
form weight statistics. We hypothesize that singular values compress the key information regarding

2See Sec. A.4.2 for the derivation.
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weight distribution that can benefit the decision of assigning the amount of weights from θk for
merging. Combining all together, the weight statistics feature vector Sk is formed as

Sk = stats(θk) = [µ, σ2,m, σ′
r] (2)

where stats() extracts the statistical features from the weight θk, σr represents the singular value
vector given rank r: σ′

r = [σ′
1, σ

′
2, . . . , σ

′
r]. Our empirical results indicate that a rank 3 approximation

is effective in extracting key weight information.

Notably, the Equation 3 above is task-wise while we also introduce layer-wise formulation for layer l:

Sl
k = stats(θlk) = [µ, σ2,m, σ′

r]
l (3)

where the layer-wise statistics features of pre-trained model from task k layer l is computed.

StatsMergeLearner (SML): We adopt a multilayer perceptron (MLPs) to learn to predict the
merging coefficients λ given weight statistics feature vector Sk as input. In the task-wise mode, the
StatsMergeLearner is denoted as SML(Sk):

λk = SML(Sk) = g(stats(θk)) (4)
where λk is a scalar representing the merging coefficient of Task k model. In the layer-wise mode,
the StatsMergeLearner is denoted as M(Sk):

λl
k = SML(Sl

k) = g(stats(θlk)) (5)
where λk is a vector containing L layers’ coefficients and λl

k refers to the coefficient of layer l in the
k pre-trained model. StatsMerging is carefully designed that a simple two-layer MLP which serves
as the default learner, is sufficient to learn effective model merging coefficients, as demonstrated in
Section A.5.4.

Optimization Objective. To train StatsMergeLearner (SML), in the standard supervised training
paradigm, we freeze the weights for each task θk and apply the cross-entropy loss function LCE on
the aggregated dataset:

LSL
CE = −

Cm∑
c=1

yc log(ŷc) (6)

where ŷc is the prediction from the merged model for class c, Cm is the total number of classes in the
aggregated dataset 3.

3.3 TASK-SPECIFIC TEACHER DISTILLATION

The requirement of labeled data for training SML can pose a significant burden, as aggregating labels
across K tasks incurs substantial cost. This challenge is further exacerbated when the labels must be
manually annotated by humans. Such high costs further hinder the broader applicability of SML. We
ask the following research question: Is there a feasible way to obtain sufficiently reliable labels for
effective SML learning without incurring the labor-intensive costs of manual annotation?

Observe that, in the model merging context, K pre-trained models are already given. With the help
of well-trained teachers, knowledge distillation (Hinton et al., 2015) has been proven as an effective
way to train a model without human annotations. Therefore, when aggregating samples from K tasks
together with their respective task experts (depicted as gurus in the figures), high-quality labels can
be obtained at no additional manual cost.

These observations guide our design of a novel Task-Specific Teacher Distillation paradigm that
trains the StatsMergeLearner (SML) for model merging. We illustrate the overview in Fig. 2 and
detailed in Algorithm 1. The intermediate process of pseudo label generation and the role of pseudo
labels are further depicted in Fig 3 (a) and (b), respectively.

3The theoretical analysis is provided in Sec. A.4.
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λ1

λ2

λk
SML

θMTL
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Pre-Trained Models
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Task 2
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...
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Model

Weight
Statistics

StatsMergeLearner
(SML)

Update ↻

Figure 2: StatsMerging Overview. StatsMergeLearner (SML) learns the merging coefficients λ
by minimizing the loss between the merged model’s predictions and pseudo labels generated by
task-specific teachers. During inference, only the merged model is employed to predict class labels.

Task 1
(θpre_1)

Task-Specific
Teachers

...

Pseudo Labels
w/o Human Annotations

...

Task-Specific
Samples

...

Task 2
(θpre_2)

Task k
(θpre_k)

Feed Output

(a) Pseudo Label Generation

Merge (θMTL)

SML
Predictions

Loss

......

Merged
Model

StatsMergeLearner
(SML)

Predict

Update

Pseudo Labels
w/o Human Annotations

↻

(b) Distillation using Pseudo Labels

Figure 3: Depiction of Task-Specific Teacher Distillation procedure. (a) Pseudo labels are generated
by feeding samples into Task-Specific Teachers; (b) depicts the roll of distillation labels: the discrep-
ancy between the predictions from the merged model and the pseudo labels from (a) is computed
through the loss function, further update StatsMergLearner’s parameters. w/o: without.

The key intuition behind the Task-Specific Teacher
Distillation is that each pre-trained model θk already
performs well on its own task dataset where
{xi, yi}k ∈ Dk. We regard it (θk) as the
Task-Specific Teacher Tk. Subsequently, the
predictions ŷi,k from the model trained on task k are
sufficiently reliable to serve as high-quality pseudo
labels for the corresponding pre-trained dataset
sample {xi, yi}k. We aggregate such pairs {xi, ŷi}k
to construct the merged dataset to train SML. The key
benefit of this approach is that it enables dataset
preparation without relying on human-annotated
labels. The predicted class label in one-hot encoded
format. Therefore, the cross-entropy loss is applied
while such loss function simplicity helps extend to
other tasks and architectures in vision and NLP
domain:

LCE = −
Cm∑
c=1

ŷc,k log(ŷc)). (7)

Algorithm 1. Unified Statistics-Guided Model Merging via
Task-Specific Teacher Model Distillationa

1: Input: Set of pre-trained models {M1,M2, . . . ,Mk}
with weights {θ1, θ2, . . . , θk} for K tasks.

2: Output: Merged model Mmerged with weights θmerged

3: // Prepare K pre-trained models
4: if Same architecture A for all Mi then
5: Set Mtarget to the shared architecture
6: else
7: Select a target architecture Mtarget

8: for i = 1 to k do
9: if A(Mi) ̸= A(Mtarget) then
10: Distill Mi into Mtarget to obtain updated θi
11: end if
12: end for
13: end if
14: // Merge K models
15: for k = 1 to K do
16: // mean µ, std σ2, norm m, singular value σ′

r

17: Extract statistics Sk = [µ, σ2,m, σ′
r] from θk

18: Predict coefficients λk = SML(Sk)

19: Merge layer weights: θl
merged =

∑k
i=1 λkθk

20: end for
21: return Mmerged with weights θmerged

aDistillation is detailed in Appendix A.3
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4 EXPERIMENTS AND EVALUATION
4.1 EXPERIMENTAL SETUP

In this section, we present the experimental setup and evaluation results used to compare our method
against recent baselines.

Datasets and Models: Our experiments include eight image classification tasks with datasets SUN397
(Xiao et al., 2016), Stanford Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT
(Helber et al., 2019), SVHN (Netzer et al., 2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun
et al., 1998), DTD (Cimpoi et al., 2014), and CIFAR10 (Krizhevsky, 2009) 4 We use ViT-B/32 CLIP
(Radford et al., 2021) as the pre-trained backbone. Individual task-specific models are obtained by
training on each dataset separately. For merging models with different architectures, we first distill
them into a single backbone before applying our merging method.

Baselines and Metrics: We compare against standard baselines including Individual Training,
Traditional Multi-Task Learning (MTL) (Zhang & Yang, 2021), Weight Averaging (Wortsman et al.,
2022), Task Arithmetic (Ilharco et al., 2023), Fisher Merging (Matena & Raffel, 2022), RegMean (Jin
et al., 2023), TIES-Merging (Yadav et al., 2023a) and AdaMerging (Yang et al., 2023). The primary
evaluation metric is the average accuracy (Avg Acc) on the test sets of all tasks. The evaluation is
conducted on eight different vision classification tasks.

StatsMergeLearner Training Detail: Our MLP-based StatsMergeLearner learns to predict layer-wise
or task-wise merging weights coefficients (λ) based on weight statistics from individual task models.
The StatsMergeLearner is trained for 500 epochs using Adam, with a learning rate of 1e− 3 and a
StepLR scheduler (factor 0.1 every 100 epochs), which translates to around only 3 hours to merge
4 ViTs, offering the practicality and advantage of applying our technique for practitioners without
spending days or weeks for training (Zhang & Yang, 2021; Padmanabhan et al., 2023). We train
the StatsMergeLearner primarily using knowledge distillation from the aggregated dataset without
human annotated labels described in Sec. 3.3, optimized with either Cross-Entropy (Mao et al., 2023)
or KL Divergence (Kullback & Leibler, 1951) loss.

4.2 MERGING PERFORMANCE

In this section, we present a comprehensive evaluation of our approach in comparison to state-of-
the-art task vector merging methods, assessing its superiority across several fundamental aspects:
Multi-task merging performance, generalization to unseen tasks and heterogeneous architectures.

Improved Merging Performance. Our proposed framework StatsMerging demonstrated state-of-
the-art (SOTA) performance spanning eight vision and seven NLP tasks, shown in Fig. 4 across
various model scales 5.

In Vision tasks, StatsMerging achieved 84.5% (ViT-B/32) and 92.1% (ViT-L/14) average accuracy
(Avg Acc). With 40% more available validation samples, StatsMerging++ further improved to 94.5%
(B, +10.0%) and 94.1% (L, +2.0%), outperforming WEMoE (84.5%, 93.6%) and AdaMerging
(81.1%, 91.0%). We attribute the improvements to the ability of StatsMergeLearner to adapt task-
specific weights based on their weight statistics to the merged model. The use of pseudo labels
from task-specific teachers provides stronger signals for StatsMergeLearner in assigning weight
coefficients compared to AdaMerging entropy minimization and more complex task-adaptive expert
selection mechanism in WEMoE.

On NLP benchmarks, StatsMerging reached 77.6% (T5 Base) and 77.5% (T5 Large) Avg Acc,
surpassing the second best method TIES-Merging (Val) of 73.9% (+3.7%) and 74.4% (+3.1%).

4In the remainder of the paper, the abbreviations shown in brackets are used to denote each task dataset:
Vison tasks – SUN397 (SU), Cars (CA), RESISC45 (RE), EuroSAT (EU), SVHN (SV), GTSRB (GT), MNIST
(MN), and DTD (DT); NLP tasks – PAWS (PA), QASC (QA), QuaRTz (QR), Story Cloze (SC), WikiQA (WQ),
Winogrande (WG) and WSC (WS).

5Please refer to the Appendix for experimental details, including the full list of tasks, datasets, baselines,
along with the task-level results in Sections A.1 and A.2, respectively.
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Figure 4: LW StatsMerging++ achieved state-of-the-art performance on eight Vision and seven
NLP tasks across various scales, highlighted in teal-green in the figures. Each number represents the
average accuracy (Avg Acc) across tasks. StatsMerging++ further improved StatsMerging by scaling
validation input samples. The performance of each individual fine-tuned model is shown as dashed
vertical reference lines.

Marginal Parameter and Computation Overhead. SML is lightweight in terms of parameters and
computation. Our 2-Layer StatsMergeLearner with the merged model contain 10.99M parameters,
requires 2.95 GFLOPs, and achieves an inference time of 5.26 ms on an NVIDIA RTX A6000 GPU.

Without the merged model, StatsMergeLearner (SML) itself is orders of magnitude smaller and
computationally lighter than the merged model, with only 0.336M parameters, 0.73M MACs and
1.46M FLOPs. The results demonstrate that SML introduces negligible overhead in terms of pa-
rameters (SML-to-Merged Model Parameter Ratio: 0.336M / 10.99M = 0.0306) and computation
(SML-to-Merged Model Compute Ratio: 1.46M / 2.95G = 0.0005).

Significantly Enhanced Generalization. A merged model is expected to generalize to unseen tasks
by strategically transferring the knowledge from the combined set of old tasks. We benchmarked such
generalization ability of StatsMerging against four strong baselines: Task Arithmetic, TIES-Merging,
AdaMerging, and AdaMerging++. We followed the same evaluation protocol in AdaMerging training
on two groups of tasks, each group consisting of six seen tasks, and testing on two unseen tasks.

Table 2: Generalization results (Avg Acc %) on two unseen tasks when merging Layer-Wise ViT-B/32
models on six tasks. StatsMerging: shaded in gray. Bold: top score. Underscore: 2nd-highest score.

Seen Tasks Unseen Tasks
Method SU CA RE DT SV GT Avg Acc MN EU Avg Acc

Task Arithmetic 63.3 62.4 75.1 57.8 84.6 80.4 70.6 77.2 46.2 61.7
TIES-Merging 67.8 66.2 77.2 56.7 77.1 70.9 69.3 75.9 43.3 59.6
AdaMerging 65.2 65.9 88.5 61.1 92.2 91.5 77.4 84.0 56.1 70.0
AdaMerging++ 68.2 67.6 86.3 63.6 92.6 89.8 78.0 83.9 53.5 68.7
StatsMerging 69.1 71.3 86.7 75.2 93.2 95.7 81.9 (+3.9) 85.1 56.4 70.8 (+0.8)

Method SU CA GT EU DT MN Avg Acc RE SV Avg Acc

Task Arithmetic 64.0 64.0 75.2 87.7 57.0 95.7 73.9 52.3 44.9 51.1
TIES-Merging 68.0 67.1 67.7 78.4 56.5 92.8 71.8 58.7 49.2 53.9
AdaMerging 67.1 67.8 94.8 94.4 59.6 98.2 80.3 50.2 60.9 55.5
AdaMerging++ 68.9 69.6 91.6 94.3 61.9 98.7 80.8 52.0 64.9 58.5
StatsMerging 69.6 73.3 96.1 95.4 74.1 97.2 84.3 (+3.5) 54.2 67.1 60.7 (+2.2)

Details are presented in Table 2, where in both groups our proposed StatsMerging achieved 70.8%
and 60.7%, significantly outperforming the second best method AdaMerging by +0.8% and +2.2%
margins. Such improvements are attributed to both (1) the careful feature design of weight statistics
that captures the dominant information regarding weight distributions from pre-trained models,
which potentially helps reduce noise from each task dataset; and (2) the joint training from all old

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

tasks on the task-specific teacher-distilled labels, enabling the implicit learning of task-agnostic and
task-specific features that can benefit the generalization ability.

Scaling Merging Tasks. When the number
of tasks was increased from 8 to 14 and
eventually 20 (Wang et al., 2024b),
StatsMerging continued to perform reliably,
consistently surpassing prior merging
approaches. This steady improvement
highlights the method’s ability to handle
increasingly diverse task distributions. The
trend persists across both ViT-B/32 and
ViT-L/14 backbones, as illustrated in Table
3. Note RegMean++ (Huu-Tien et al.,
2025) does not provide 14-task results.

Table 3: Comparison of different merging methods on the Vision Merging
Benchmark (8, 14, and 20 tasks) with ViT-B/32 and ViT-L/14 backbones.

Results of our method StatsMerging are shaded in gray. Bold and underscore
indicate the highest and second-highest scores within the merging group below

the double rules in each column, respectively. LW: Layer-wise. T: Task.

ViT-B/32 ViT-L/14

Method 8T 14T 20T 8T 14T 20T

Pre-Trained 48.4 57.3 56.1 64.4 68.0 65.1
Weight Averaging 66.5 64.4 61.1 79.4 76.6 71.5
Task Arithmetic 70.8 65.4 60.6 84.8 79.3 74.0
TIES-Merging 75.1 68.0 63.4 86.9 79.5 75.7
RegMean++ 84.4 – 77.0 91.2 – 81.0
LW StatsMerging++ 94.5 90.7 86.8 94.1 89.1 88.9

Task 1

Task 2

Task k

...

PredictionsSame Arch

Task k

Loss

Up
da
te

↻

Predict

      Pseudo Labels
w/o Human Annotations

Diff Arch

Figure 5: Heterogeneous distillation
graph. Shapes represent architectures.

Extension to Heterogeneous Architectures for Model
Merging. To the best of our knowledge, StatsMerging
is the first to offer improved performance without the as-
sumption of architectural identity as in prior works (Worts-
man et al., 2022; Ilharco et al., 2023; Yadav et al., 2023a;
Matena & Raffel, 2022; Jin et al., 2023). The procedure of
Heterogeneous distillation is illustrated in Fig. 5. When
a Task k pre-trained model shared a different architecture
(parallelogram) with the target architecture (rounded rect-
angle), we followed the steps in 3 (a) to generate pseudo
labels to guide the training of the Task k model with the
target architecture (rounded rectangle in red). This enabled
a direct integration into existing model merging pipeline
as all models share the same target architecture after distil-
lation. We conducted experiments on ResNet50 (RN) and
ViT-B/32 (VT) to represent Convolutional Neural Network
(CNN) and Vision Transformer (ViT) architectures.

In particular, we distilled fine-tuned VT teachers into a RN
(Khanuja et al., 2021) student on three diverse tasks of
CIFAR-10 (CI), EuroSAT (EU), and Stanford Cars (CA)
with the distillation loss:
L = αLCE(ŷk, ŷ) + (1− α)T 2 LKL

(
σ( z

T ), σ(
zt
T )

)
,

(8)
where LKL denotes KL-Divergence loss, z is logit,
T = 4.0 represents temperature, α = 0.7 is the weight
balance of two sub-losses. CI is used due to the available
pre-trained RN weights. Remarkably, the distilled RN
matches its VT teacher’s accuracy, achieving 76.4% (VT:
77.7%) for CA and 94.5% for EU (VT: 99.7%) despite
the architectural difference shown in Table 3. We then
applied our StatsMerging to combine the CI–trained RN
and its distilled variants. We merged multiple task models
into a single RN using the merging coefficients inferred by
StatsMergeLearner, yielding an 81.3% Avg Acc,
outperforming the vanilla Task-Arithmetic of 73.7%.

Table 4. Multi-task merging performance (Avg Acc %)
of models in heterogeneous architectures: ResNet50

(RN) & ViT-B/32 (VT). StatsMerging: shaded in gray.
MTL: Multitask Learning. MLD: Multitask Distilled.

Method CI CA EU Avg
Acc

Backbone RN VI VI -
Distilled - RN RN -

Individual 97.8 77.7 99.7 91.7
Distilled - 76.4 94.5 -
MTL 96.4 74.6 96.2 89.1
MTD 89.3 52.7 83.4 75.1

Weight Averaging 77.1 56.4 64.9 59.4

TIES-Merging 76.5 52.8 80.1 69.8
Task Arithmetic 81.4 61.6 78.2 73.7

AdaMerging 84.9 65.1 85.7 78.6
WEMoE 86.5 67.2 87.6 80.4
LW StatsMerging 87.2 68.4 88.4 81.3

9
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4.3 StatsMerging ANALYSIS

Statistical Feature Ablation Study. We
conduct an ablation study on the statistical
features. Results in Table 4 show that
combining all statistical features improves
merging performance, validating our design
choice. Notably, the singular values σ′

improve the multi-task performance in both
same and different architecture settings by
+3.0 and +3.2 increase of average accuracy,
justifying our design choice of using SVD.

Table 5: Multi-task performance (Avg Acc %) of StatsMerging when
ablating statistical features of ViT-B/32 (4) models on four tasks: CA, EU,

RE & GT. Bold: top score. StatsMerging: shaded in gray.

Same Architecture Different Architecture

µ σ2 m σ′ Avg Acc µ σ2 m σ′ Avg Acc

✓ 83.4 ✓ 76.2
✓ ✓ 84.1 (+0.7) ✓ ✓ 77.5 (+1.3)
✓ ✓ ✓ 87.2 (+3.1) ✓ ✓ ✓ 78.1 (+0.6)
✓ ✓ ✓ ✓ 90.2 (+3.0) ✓ ✓ ✓ ✓ 81.3 (+3.2)

SVD Rank Study. We analyze the impact of SVD
rank on merging performance. Table 4 shows that
using rank 3, which generally preserves more than
95% of the weight energy, yields the strongest
overall results. This provides empirical support for
our choice of rank.

Table 6: Impact of Rank on Multi-task merging performance (Avg
Acc %) when merging StatsMerging++ ViT-B/32 models on eight

vision tasks. Bold: top score. StatsMerging: shaded in gray.

Rank 1 2 3 4 5

Avg Acc 86.5 87.2 94.5 89.2 86.7

Coefficient Analysis. We visualize the heatmap of ViT-B/32 (4) across eight tasks in Fig. 6. We
make several key observations: (1) the common recurring pattern of coefficients λ across all eight
tasks from earlier (left) to deeper (right) layers aligns with the repeated self-attention blocks in
the ViT architecture, e.g. Multi-Head Self-Attention (MHSA), MLP (Feed-Forward Network), and
LayerNorm, etc, demonstrating the need of various coefficients for various types of layers; (2) The
sparse non-uniform coefficient distributions (various colors like Layer 13, 19 or 25) suggests that
merging layers can be more efficient at some specific layers instead of using one coefficient for an
entire pre-trained model, justifying the our granularity choice of Layer-Wise over Task-Wise level;
(3) some task-specific coefficient distributions verify the necessity of assigning distinct merging
coefficients across tasks in various layers, such as in Layer 5 vs. 147. Such distributions reflect the
various visual representations for different semantics learned across both layers and tasks.

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156

Cars
RESISC45

SUN397
EuroSAT

SVHN
GTSRB
MNIST

DTD 0.000
0.025
0.050
0.075
0.100
0.125

Figure 6: Heatmap of StatsMerging merging coefficients λ of ViT-B/32 (4) across eight tasks. X-axis:
layer index. Y-axis: Tasks. Coefficients are normalized to sum to 1.

5 CONCLUSION

We propose StatsMerging, a novel merging technique without human annotations. The key intuition
lies in the guidance of weight statistics using a lightweight MLP learner, StatsMergeLearner, to learn
merging coefficient prediction. Exhaustive experiments demonstrate the effectiveness of our proposed
StatsMerging in model merging in diverse Vision and NLP tasks.
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6 ETHICS STATEMENT

This work focuses on a method for merging pre-trained models using statistical guidance, with the
goal of reducing memory redundancy and improving efficiency in multi-task deployments. Our
research does not involve human subjects, personally identifiable information, or sensitive data.
All experiments are conducted on publicly available benchmark datasets, following their intended
academic usage licenses.

We recognize that model merging and multi-task deployment systems could potentially be misused
to scale applications without considering fairness, robustness, or downstream societal impacts.
To mitigate these risks, we limit our evaluation to standard academic benchmarks and encourage
practitioners to carefully assess bias, fairness, and safety when applying such methods in real-world
settings.

7 REPRODUCIBILITY STATEMENT

We make every effort to ensure the reproducibility of our results. All experiments were run on publicly
available datasets (e.g., RESISC45, EuroSAT, CIFAR-100, etc.), and we describe dataset preprocess-
ing, training, and evaluation protocols in detail in the main paper and appendix. Hyperparameters,
model architectures, and training schedules are fully specified.

Our method requires only pre-trained models. No additional training data beyond the standard
benchmarks is used. To facilitate replication, We attached training and test code github link for
reproducing results. We included all details of GPU Hyperpatameters used in experiements.
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A APPENDIX

A.1 EXPERIMENT SETTINGS

This section presents a comprehensive overview of the datasets, baseline methods, and training
procedures.

Task. A task is referred to the specific problem or objective that a model is designed to solve. In this
paper, a task is defined as classifying images within a given dataset.

Dataset Details. This study follows the multi-task model merging protocol from Task Arithmetic
(Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023a) and AdaMerging (Yang et al., 2023) on
eight image classification datasets. The details are provided below:

Vision Datasets:

• SUN397 (SU) (Xiao et al., 2016): a scene classification dataset consisting of 397 classes
and a total of 108,754 images, with each class containing a minimum of 100 images.

• Stanford Cars (CA) (Krause et al., 2013): a car classification benchmark dataset comprosing
196 categories and 16,185 images in total. For each category, the dataset is evenly divided
into training and test sets in a 1:1 ratio.

• RESISC45 (RE) (Cheng et al., 2017): a remote sensing image scene classification bench-
mark with 45 scene classes and 31,500 images. Approximately 700 images are included in
each class.

• EuroSAT (EU) (Helber et al., 2019): a 10-class satellite image classification dataset with
27,000 labeled and geo-referenced images.

• SVHN (SV) (Netzer et al., 2011): a real-world digit classification dataset derived from
house numbers in Google Street View images. This datasets consists of 10 classes with
73,257 training samples and 26,032 test samples. Additional 531,131 samples are available
for training.

• GTSRB (GT) (Stallkamp et al., 2011): a traffic sign classification dataset consisting of 43
classes and more than 50,000 samples in total.

• MNIST (MN) (LeCun et al., 1998): a benchmark dataset for image classification, containing
grayscale images of handwritten digits across 10 classes. It includes 60,000 training and
10,000 test images, with a balanced number across classes.

• DTD (DT) (Cimpoi et al., 2014): a texture classification dataset consisting of 47 classes and
a total of 5,640 images, with approximately 120 images per class.

NLP Datasets:
PAWS (PA) – Paraphrase Adversaries from Word Scrambling (Zhang et al., 2019): a
challenging paraphrase identification dataset with over 108,463 sentence pairs. It contains
adversarially-generated non-paraphrases with high lexical overlap to test a model’s semantic
understanding beyond simple word-matching heuristics.

• QASC (QA) – Question Answering via Sentence Composition (Khot et al., 2020): a
multi-hop question-answering dataset with nearly 10,000 multiple-choice science questions.
It is designed to test compositional reasoning, requiring models to combine two distinct
facts to find the answer, often by reasoning over intermediate concepts not mentioned in the
question.

• Quartz (QU) (Tafjord et al., 2019): a dataset of nearly 4,000 questions focused on qualitative
reasoning from text. Each question requires reasoning about the relationship between two
concepts and is presented with two candidate answers. The dataset is designed to test a
deeper understanding that goes beyond simple fact retrieval.

• Story Cloze (SC) (Mostafazadeh et al., 2016): a commonsense reasoning dataset for
evaluating story comprehension. Which contains 50,000 five-sentence stories about everyday
life. The dataset involves reading a four-sentence story context and choosing the correct,
causally sound ending from two possible options. This requires a model to understand
narrative flow and commonsense implications.
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• WikiQA (WQ) (Yang et al., 2015): an open-domain question-answering dataset for the task
of answer sentence selection, featuring over 3,000 . For each question, which is sourced
from Bing query logs, a set of candidate sentences are extracted from Wikipedia. The goal
is to identify which of the sentences actually contains the answer to the question.

• Winogrande (WG) (Sakaguchi et al., 2020): a large-scale commonsense reasoning dataset
of 44,000 problems, inspired by the Winograd Schema Challenge. The task is pronoun
resolution, where a model must resolve an ambiguous pronoun in a sentence. The dataset
was constructed using an adversarial filtering process to remove biases and create problems
that are more difficult for statistical models.

• WSC (WS) – Winograd Schema Challenge (Levesque et al., 2012): a benchmark dataset
for commonsense reasoning focused on pronoun resolution, total 273 problems. It consists
of pairs of sentences that differ by only a few words, which completely changes the referent
of an ambiguous pronoun. Correctly resolving the pronoun requires world knowledge and
reasoning capabilities.

Baseline Details. We evaluate performance using eight comparison baselines and four alternative
configurations of our method.

• Individual: Each task is handled by an independently fine-tuned model with no interference
between tasks. However, this approach cannot perform multiple tasks simultaneously.

• Traditional MTL: This approach aggregates the original training data from all tasks to
train a single multi-task model. It serves as a reference upper bound for evaluating model
merging performance.

• Weight Averaging: A simple model merging technique that averages the parameters of
multiple models directly. It is typically considered a lower bound for model merging
performance.

• Fisher Merging (Matena & Raffel, 2022): This method computes the Fisher Information
Matrix to assess parameter importance, guiding the model merging process based on these
importance scores.

• RegMean (Jin et al., 2023): Introduces a regularization constraint during merging, enforcing
the L2 distance between the merged model and individual models to remain small.

• Task Arithmetic (Ilharco et al., 2023): This method is the first to propose the concept of
“task vectors” and merges these vectors into a pre-trained for model merging.

• TIES-Merging (Yadav et al., 2023a): Addresses task conflict in Task Arithmetic (Ilharco
et al., 2023) by removing redundant parameters and resolving sign conflicts through a
three-step procedure: Trim, Elect Sign, and Disjoint Merge.

• EMR-MERGING (Huang et al., 2024): This approach is a tuning-free method that merges
models in three steps, by selecting a unified parameter sign (Elect), aligning task-specific
parameters via masking (Mask), and adjusting their magnitudes with task-specific scaling
factors (Rescale).

• AdaMerging (Yang et al., 2023): Builds on Task Arithmetic (Ilharco et al., 2023) by
employing an unsupervised method to automatically learn merging coefficients for each task
vector.

• AdaMerging++ (Yang et al., 2023): An extension of TIES-Merging (Yadav et al., 2023a)
that uses an unsupervised approach to learn task-specific merging coefficients.

• StatsMerging (Ours): A lightweight learning-based method guided by the weight distri-
bution statistical features (stats) of task-specific pre-trained weight models, including the
mean, variance, magnitude and singular values. This method employs StatsMergeLearnero
learn stats by knowledge distillation from task-specific teachers without manual labels.

• StatsMerging++ (Ours): A more extensively trained version of StatsMerging.

Training Details.

• Task-Specific Teacher: For each task, we utilize its corresponding Individual model as the
Teacher.
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Code is available at https://github.com/statsmerging/statsmerging.

A.2 DETAILS OF TASK-LEVEL RESULTS

We present the details of task-level results in this section, demonstrating ViT-B/32, ViT-L/14 for
Vision tasks and T5 Base, T5 Large for NLP tasks in Fig. 7 and Tables 3, 4, 5, and 6.
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Figure 7: StatsMerging achieved state-of-the-art performance across scales (ViT-B/32, ViT-L/14, T5
Base, and T5 Large) in both Vision (top) and NLP (bottom) benchmarks.
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A.2.1 VISION BENCHMARK

Table 3: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
vision tasks. Results of our method StatsMerging are shaded in gray. Bold and underscore indicate
the highest and second-highest scores within the merging group below the double rules in each
column, respectively. TW: Task-wise. LW: Layer-wise.

Method SU CA RE EU SV GT MN DT Avg Acc
Pre-Trained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
TIES-Merging 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4
TW AdaMerging 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
TW AdaMerging++ 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
TW StatsMerging 61.3 70.0 74.2 85.2 87.5 82.5 96.2 54.2 76.4 (+3.3)

LW AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
LW AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
WEMoE 74.1 77.4 93.7 99.1 96.2 98.9 99.6 76.4 89.4
LW StatsMerging 67.4 74.1 82.9 91.1 89.8 94.7 98.3 77.5 84.5
LW StatsMerging++ 92.4 95.4 95.1 92.9 94.6 98.7 98.5 88.4 94.5 (+5.1)

Table 4: Multi-task merging performance (Avg Acc %) when merging ViT-L/14 models on eight
vision tasks. Results of our method StatsMerging are shaded in gray. Bold and underscore indicate
the highest and second-highest scores within the merging group below the double rules in each
column, respectively. TW: Task-wise. LW: Layer-wise.

Method SU CA RE EU SV GT MN DT Avg Acc

Pre-Trained 68.2 77.9 71.3 61.3 58.4 50.6 76.4 55.4 64.9
Individual 82.3 92.4 97.4 99.9 98.1 99.2 99.7 84.1 94.1
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Weight Averaging 72.1 81.6 82.6 91.4 78.2 70.6 97.0 62.8 79.5
Fisher Merging 69.2 88.6 87.5 95.5 80.6 74.8 93.3 70.0 82.2
RegMean 73.3 81.8 86.1 92.4 82.8 84.2 98.5 60.8 82.5
Task Arithmetic 74.1 82.1 87.7 92.6 87.9 84.0 98.6 65.5 84.4
TIES-Merging 75.0 84.5 88.0 94.3 85.7 88.1 98.7 67.7 84.5

LW AdaMerging 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
LW AdaMerging++ 79.4 90.3 91.6 97.4 93.4 97.6 99.0 79.2 91.0
WEMoE 81.4 92.6 95.4 99.4 97.7 99.9 99.7 83.7 93.6
LW StatsMerging 80.6 90.5 94.7 96.8 93.6 98.3 98.9 83.2 92.1
LW StatsMerging++ 82.2 92.8 97.2 99.3 97.9 99.5 99.8 84.2 94.1 (+0.5)

A.2.2 NLP BENCHMARK
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Table 5: Evaluation of model merging methods on seven NLP tasks on T5 Base Models. Results of
our method StatsMerging are shaded in gray. Bold and underline indicate the highest and second-
highest scores within the merging group below the double rules in each column, respectively.

Method Val PA QA QR SC WQ WG WS Avg Acc
Pre-Trained – 49.9 35.8 53.3 48.1 76.2 50.0 61.1 53.5
Individual – 94.3 98.3 80.4 84.7 95.5 64.1 62.5 82.8
Traditional MTL – 94.0 97.9 82.5 86.7 95.0 64.1 65.3 83.6

Weight Averaging ✗ 66.4 82.6 60.2 49.5 94.1 50.4 58.3 65.9
Task Arithmetic ✗ 73.3 93.5 68.2 76.5 93.7 55.5 56.9 73.9
TIES-Merging ✗ 74.0 83.3 70.3 64.2 84.7 55.9 55.6 69.7
Fisher Merging ✓ 69.3 85.7 63.6 56.4 93.8 50.9 62.5 68.9
RegMean ✓ 76.8 96.2 62.5 55.0 94.8 51.9 61.1 71.2
Task Arithmetic ✓ 73.4 94.3 67.1 71.7 94.1 52.9 59.7 73.2
TIES-Merging ✓ 79.3 88.6 71.8 72.9 82.5 61.3 61.1 73.9
LW StatsMerging ✓ 82.1 96.2 73.2 73.1 94.9 62.1 62.2 77.6 (+3.7)

Table 6: Evaluation of merging methods across seven NLP tasks on T5 Large Models. Results of our
method StatsMerging are shaded in gray. Bold and underline indicate the highest and second-highest
scores within the merging group below the double rules in each column, respectively.

Method Val PA QA QT SC WQ QG WS Avg Acc
Pre-Trained – 55.4 14.3 54.1 54.1 71.0 49.3 63.9 51.7
Individual – 94.4 98.9 87.8 90.8 96.0 74.7 79.2 88.8
Traditional MTL – 94.2 98.5 89.3 92.0 95.4 73.5 73.6 88.1

Weight Averaging ✗ 61.3 82.6 70.5 53.7 63.2 49.7 36.1 59.6
Task Arithmetic ✗ 79.2 96.8 80.2 83.6 85.8 60.2 55.6 73.5
TIES-Merging ✗ 80.5 96.2 81.8 78.6 62.6 61.9 59.7 74.4
Fisher Merging ✓ 60.4 81.7 75.0 60.1 88.6 50.0 36.1 64.6
RegMean ✓ 86.0 96.9 80.7 78.6 82.6 51.8 36.1 73.2
Task Arithmetic ✓ 77.8 96.0 78.6 82.6 59.1 62.3 52.8 73.3
TIES-Merging ✓ 81.5 96.2 80.1 83.6 64.9 66.5 65.3 76.9
LW StatsMerging ✓ 82.4 96.3 80.9 84.2 65.3 67.1 66.2 77.5 (+0.6)

A.3 DETAILS OF TASK-SPECIFIC TEACHER DISTILLATION

1. Task-Specific Teacher Models Preparation. Collect K pre-trained models Θ =
{θ1, θ2, . . . , θk}, where each model weight is fine-tuned on an independent task k with
dataset {xi, yi}k ∈ Dk. Dk denotes the dataset for task k, xi and yi represent a sample’s
input and its corresponding label. Note that yi is not used for SML learning but only in the
evaluation step.

2. Train/Val/Test Split. Each dataset Dk for task k is split into training, validation, and
test sets with an 8:1:1 ratio unless otherwise specified, denoted as Dtrain

k , Dval
k , and Dtest

k ,
respectively.

3. Pseudo Label Preparation for Training Set Dtrain. Following (2), for task k, the task-
specific teacher θk takes a sample xi,k and generates its prediction ŷi,k as a pseudo label. The
resulting pairs (xi,k, ŷi,k) are aggregated to form task k’s training dataset Dtrain

k ⊆ Dtrain.

4. Val Dval and Test Dtest Preparation. Following (2), for task k, the original pairs (xi,k, yi,k)
in the split validation set (Dval

k ⊆ Dval) or test set (Dtest
k ⊆ Dtest) are used, where yi,k is the

human-annotated ground truth label used solely for evaluation.

5. Complete Dataset D Preparation. Aggregate Dtrain, Dval, and Dtest to form the complete
dataset D = {Dtrain, Dval, Dtest}.
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Concretely, in the eight vision tasks, the samples {xi, yi}k ∈ Dk are drawn from the
following datasets: SUN397 (SU), Cars (CA), RESISC45 (RE), EuroSAT (EU), SVHN
(SV), GTSRB (GT), MNIST (MN), and DTD (DT). The pseudo label ŷi is generated by
the task-specific teacher set Θ = {θ1, θ2, . . . , θk}. These are aggregated to constitute the
overall dataset D. The same procedure applies to the NLP tasks.

A.3.1 DETAILS OF SVD CONSTRUCTION

The construction of the parameter matrix for singular value decomposition (SVD) is as follows: For
each layer k, we flatten its parameter tensor Wk into a 2D matrix. For linear layers, this is typically
(out features, in features). For convolutional layers with a kernel of shape (out channels, in channels,
kernel height, kernel width), we reshape it to (out channels, in channels × kernel height × kernel
width). We then compute the SVD:

WK = UKΣKV T
K (9)

and extract the singular values from ΣK . The singular values across all layers are concatenated to
form the feature vector used as input to SML.

A.4 THEORETICAL ANALYSES

A.4.1 OPTIMIZATION PERSPECTIVE

Following the setup in Sec.3.2, let {θk}Kk=1 be K pre-trained models and

θ(λ) =

K∑
k=1

λkθk, λ ∈ ∆K−1, (10)

where ∆K−1 is the (K − 1)-dimensional probability simplex.

Since ground-truth labels are unavailable, we train using teacher pseudo labels q(y | x). Following
(Bishop, 2006), replacing the true label distribution by any surrogate distribution yields a valid
expected log-likelihood objective. Thus the pseudo label cross-entropy is

LPL(θ) = Ex∼DEy∼q(·|x)
[
− log pθ(y | x)

]
. (11)

Using the standard derivative of log-likelihood,
∇θLPL(θ) = Ex,y∼q [−∇θ log pθ(y | x)] . (12)

Motivated by the classical Fisher Information (Bishop, 2006), we define the pseudo label (PL) Fisher:

FPL(θ) = Ex,y∼q

[
∇θ log pθ(y | x)∇θ log pθ(y | x)⊤

]
. (13)

When q(· | x) = p⋆(· | x), this reduces to the standard Fisher Information matrix.

For a reference model θ0, the second-order Taylor expansion (Boyd & Vandenberghe, 2004) yields:

LPL(θ) ≈ LPL(θ0) +
1

2
(θ − θ0)

⊤HPL(θ0)(θ − θ0). (14)

For cross-entropy networks near optimum, the Hessian is well approximated by the Fisher (Bishop,
2006; Martens, 2014):

HPL(θ0) ≈ FPL(θ0). (15)
Thus:

LPL(θ) ≈ LPL(θ0) +
1

2
(θ − θ0)

⊤FPL(θ0)(θ − θ0). (16)

Define the parameter-difference matrix:

P =
[
θ1 − θ0, θ2 − θ0, . . . , θK − θ0

]
∈ Rn×K (17)

where n is the number of parameters in θ.
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Since
θ(λ)− θ0 = Pλ, (18)

substituting into equation 16 gives:

LPL(θ(λ)) ≈ LPL(θ0) +
1

2
λ⊤ (P⊤FPL(θ0)P )︸ ︷︷ ︸

APL

λ. (19)

Thus the optimal merging coefficients are:

λ⋆
PL = arg min

λ∈∆K−1

1

2
λ⊤APLλ. (20)

Let p⋆(y | x) denote the true label distribution. The true Fisher and true quadratic matrix is defined
as:

Ftrue(θ0) = Ex,y∼p⋆ [∇ log pθ∇ log p⊤θ ], (21)

Atrue = P⊤Ftrue(θ0)P. (22)

Assume the teacher satisfies for total variation:
TV(q(· | x), p⋆(· | x)) ≤ ε, (23)

and that likelihood gradients are bounded (Shalev-Shwartz & Ben-David, 2014; van der Vaart, 1998).

Standard stability arguments yield:
∥FPL(θ0)− Ftrue(θ0)∥ = O(ε). (24)

Thus:
∥APL −Atrue∥ = ∥P⊤(FPL − Ftrue)P∥ = O(ε). (25)

From sensitivity analysis of strictly convex quadratic programs (Boyd & Vandenberghe, 2004):
∥λ⋆

PL − λ⋆
true∥ = O(ε). (26)

Taking all together, the above derivation shows that pseudo label supervision is theoretically sufficient
for recovering the Fisher-optimal merging coefficients. When the teacher pseudo label distribution is
close to the ground truth label distribution in total variation distance, the pseudo label Fisher curvature
approximates the true Fisher curvature, and the resulting quadratic program yields merging weights
provably within O(ϵ) of the ground truth solution. Thus. SML trained with pseudo labels optimizes
nearly the same second-order objective if ground truth labels were available.

Furthermore, our statistics of mean, variance, magnitude, and rank 3 from SVD serve as compact,
data-free approximations to the Fisher curvature that governs the optimal merge. The variance
term captures diagonal Fisher structure, the mean and magnitude encode parameter scale and shift
effects that influence the quadratic form PTFP , and the low-rank SVD directions approximate
dominant Fisher eigenvectors observed empirically in deep networks. Thus, the statistic vector Sk

preserves the key curvature signals needed for SML to learn merging coefficients that closely match
the Fisher-optimal solution.

A.4.2 MEAN AND VARIANCE DETERMINE THE SECOND-MOMENT

Define mean and variance of a fine-tuned weight θ.
µ = E[θ] (27)

σ2 = Var(θ) = E
[
(θ − µ)2

]
. (28)

Then the second moment of θ can be written as

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E[(θ)2] = E
[
(θ − µ+ µ)2

]
= E

[
(θ − µ)2

]
+ 2µE[θ − µ] + µ2

= E
[
(θ − µ)2

]︸ ︷︷ ︸
σ2

+2µ · 0 + µ2

= σ2 + µ2.

(29)

For every parameter θ,
E[θ2] = Var(θ) + (E[θ])2 = σ2 + µ2. (30)

Thus, the mean and variance of a parameter fully determine its second moment (Papoulis, 1965):
second moment of θ = E[θ2], (31)

and therefore offer a complete, data-free representation of the second-order statistics underlying the
parameter distribution.
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A.5 EXTENDED EXPERIMENTS

A.5.1 MERGING PERFORMANCE

Extended experimental merging results are presented in Table 7. Results for Pre-Trained models,
Individual models, and those trained using Traditional MTL are listed above the double horizontal
lines. Below these lines, the comparison is organized into three groups: Task-wise methods appear
first, followed by Layer-wise approaches, and finally the Parameter-wise method. Notably, while
finer granularity is generally associated with improved merging performance (Yang et al., 2023),
our LW StatsMerging++, operating at the Layer-wise level, surpasses EMR-Merging (Huang et al.,
2024), which is based on the finer Parameter-wise granularity.

Table 7: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
tasks. Results of our method StatsMerging are shaded in gray. Bold and underscore indicate the
highest and second-highest scores within the merging group below the double rules in each column,
respectively. GL: Granularity Level. TW: Task-wise. LW: Layer-wise. PW: Parameter-wise.

Method SU CA RE EU SV GT MN DT Avg Acc
Pre-Trained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Task-wise
Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
TIES-Merging 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4
TW AdaMerging 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
TW AdaMerging++ 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
TW StatsMerging 61.3 70.0 74.2 85.2 87.5 82.5 96.2 54.2 76.4

Layer-wise
LW AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
LW AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
LW StatsMerging 67.4 74.1 82.9 91.1 89.8 94.7 98.3 77.5 84.5
LW StatsMerging++ 92.4 95.4 95.1 92.9 94.6 98.7 98.5 88.4 94.5 (+13.4)

Parameter-wise
EMR-MERGING 75.2 72.8 93.5 99.5 96.9 98.1 99.6 74.4 88.7
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A.5.2 GENERALIZATION EVALUATION OF SML

We use SML trained on the eight vision datasets (LW StatsMerging), where it was exposed solely to
the ViT-B/32 architecture for Task-Specific Experts on each vision task. This SML is then used to
generate merging coefficients for merging two unseen ResNet50 models, each pre-trained on unseen
CIFAR10 (CF10) and CIFAR100 (CF100) tasks. We evaluate SML in the Layer-Wise (LW) setting.
This setup is summarized in Table 8.

Table 8: Generalization Experiment Setup
Architecture Type Architecture Task

Train Task-Expert ViT-B/32 SU, CA, RE, EU, SV, GT, MN, DT
Test Merged ResNet50 CF10, CF100

Challenge: Mismatch Layer. To generalize to a different architecture, we encountered the chal-
lenge that the expert and the merged model layers differ. We subsample 22 coefficients to merge
ResNet50 models from the 320 ViT-B/32 coefficients, enforcing consistency in the relative positions
of coefficients and layers across both architectures. This approach is inspired by the insight from
LiNeS (Wang et al., 2024a) that common and task-specific features are learned in shallow and deeper
layers, respectively. Preserving these relative positions may help maintain the common-to-task-
specific relationship.

Results are shown in Table 9. To the best of our knowledge, we are the first to evaluate generalizability
to an unseen architecture, as prior model merging methods assume identical model architectures.
The pre-trained models achieved an Avg Acc of 85.97%. However, there remains a substantial
gap between the pre-trained models (85.97%) and recent advanced merging methods, with LW
AdaMerging and LW StatsMerging achieving 26.66% and 43.15%, respectively. This gap highlights
the extremely challenging nature of the task, as both the test tasks and the merged model architecture
are unseen. Notably, our proposed LW StatsMerging improves LW AdaMerging by a large margin of
16.49%.

Table 9: Multi-task merging performance (Avg Acc %) when merging ResNet50 models on CIFAR10
and CIFAR100 using SML trained with ViT-B/32 architecture on eight tasks. Results of our method
STATSMERGING are in bold shaded in gray. LW: Layer-wise.

Method CF10 CF100 Avg Acc
Pre-Trained 97.80 74.14 85.97
LW AdaMerging 44.21 9.10 26.66
LW StatsMerging 64.70 (+20.49) 21.60 (+12.50) 43.15 (+16.49)
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A.5.3 ROBUSTNESS EVALUATION

Input Corruption Tolerance. We evaluate the robustness of StatsMerging against Task Arithmetic
(Ilharco et al., 2023) and AdaMerging (Yang et al., 2023) under three image corruption scenarios:
Motion Blur, Impulse Noise, and Gaussian Noise. The corrupted test sets are constructed following
the protocols outlined in (Yang et al., 2023; Hendrycks & Dietterich, 2019). We assess performance
on four datasets: Stanford Cars (CA) (Krause et al., 2013), EuroSAT (EU) (Helber et al., 2019),
RESISC45 (RE) (Cheng et al., 2017), and GTSRB (GT) (Stallkamp et al., 2011). Results are reported
in Table 10. Overall, StatsMerging consistently outperforms the baselines. On the clean test set, it
achieves a 2.4% accuracy improvement over AdaMerging. Under corrupted conditions, StatsMerging
yields performance gains of 3.1%, 6.3%, and 4.3% for Motion Blur, Impulse Noise, and Gaussian
Noise, respectively.

Table 10: Robustness results when merging ViT-B/32 models on four tasks. StatsMerging: shaded in
gray. Bold: top score. Values are reported in %.

Method CA EU RE GT Avg Acc
Clean Test Set

Task Arithmetic 66.9 94.7 82.6 75.1 79.8
AdaMerging 73.7 96.1 85.8 96.3 88.0
StatsMerging 75.6 96.3 92.1 97.6 90.4 (+2.4)

Motion Blur
Task Arithmetic 65.3 68.1 80.0 64.2 69.4
AdaMerging 71.2 74.6 82.7 94.1 80.6
StatsMerging 73.5 76.9 89.2 95.2 83.7 (+3.1)

Impulse Noise
Task Arithmetic 62.1 49.1 72.7 40.4 56.1
AdaMerging 67.2 30.8 75.9 77.5 62.8
StatsMerging 70.4 50.4 77.6 78.1 69.1 (+6.3)

Gaussian Noise
Task Arithmetic 63.6 55.4 75.9 49.4 61.1
AdaMerging 69.9 41.2 80.6 76.0 66.9
StatsMerging 71.2 53.6 82.1 78.0 71.2 (+4.3)

Input Noise Tolerance Boundary. To test the boundry of input noise tolerance, we conducted
experiments on merging two vision tasks on RESISC45 (RE) and EuroSAT (EU) on images with
three levels of Gaussian noise: Low noise (σ = 10), Medium noise (σ = 15), and High noise
(σ = 20). Results are shown in Table 11. In summary, as the noise level increased, the performance
of both methods degraded. However, our proposed method StatsMerging consistently achieved higher
accuracy than AdaMerging++ across all levels of Gaussian noise.

Table 11: Comparison of StatsMerging and AdaMerging on two vision tasks RESISC45 (RE) and
EuroSAT (EU)) under three Gaussian noise levels (Low, Medium, and High). Numbers represent
Avg Acc (%) across two tasks.

Method Low Medium High
AdaMerging++ 56.0 48.4 35.9
StatsMerging 57.3 (+1.3) 50.1 (+1.7) 36.7 (+0.8)

Label Noise Tolerance. We use the entropy of a task expert’s prediction (a model fine-tuned on task
k) based on its output probability distribution, we further normalized the entropy values to the range
[0, 1] and split the dataset according to three noise levels evenly based on the normalized entropy:
Low noise [0, 0.33], Medium noise [0.33, 0.66], and High noise [0.66, 1], where numbers represent
the boundaries of the normalized entropy. We note that entropy computed in this way represents the
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confidence of a model, particularly the Task-Specific Teacher, acting as a proxy for label noise level,
e.g., lower entropy indicates higher model confidence, and thus lower label noise, and vice versa.
This interpretation aligns with its usage in the literature.

We conducted experiments on eight vision tasks under three noise levels. Results are shown in
Table 12. We summarize the new key insights as follows: both methods achieved their best
performance on low-noise labels (as expected) with over 95% Avg Acc, and gradually degraded
to around 80% as the noise level increased. Our proposed method, StatsMerging, consistently
outperformed AdaMerging++, with performance gains of +4.4%, +6.2%, and +8.5% under low,
medium, and high noise levels, respectively. Both methods appear to be learnable across three
noise levels. We did not observe any noise level boundary where StatsMerging underperformed
AdaMerging++.

Table 12: Comparison of StatsMerging and AdaMerging on eight vision tasks under three noise levels
(Low, Medium, and High). Numbers represent Avg Acc (%) across eight tasks.

Method Low Medium High
AdaMerging++ 95.5 91.4 80.1
StatsMerging 99.9 (+4.4) 97.6 (+6.2) 88.6 (+8.5)

A.5.4 EFFECT OF MODEL CAPACITY ON SML

Table 13 evaluates StatsMergeLearner (SML) with different design choices across RESISC45 and
EuroSAT. While increasing capacity with deeper MLPs or a lightweight Transformer provides
marginal accuracy gains (+0.1 - 0.3) and faster convergence, these come at the cost of higher
parameter counts and computational complexity. The 2-layer MLP strikes a favorable balance
between accuracy and efficiency, preserving the lightweight nature of SML while demonstrating the
effectiveness of the overall framework.

Table 13: Avg Acc (%) performance of SML with different capacities on RE and EU. *: Current
capacity in the submission. L: Layer.

SML Design Choice RE EU Avg Acc #Params (M) MACs (M) FLOPs (M)

Individual Model 96.1 99.7 97.9 – – –
2L MLP* 96.0 98.0 97.4 0.366 0.73 1.46
4L MLP 97.0 98.0 97.5 (+0.1) 0.732 1.46 2.91
2L Transformer 97.0 98.5 97.7 (+0.3) 0.396 0.79 1.58

A.5.5 LABEL TYPE AND LOSS FUNCTION ANALYSIS

In this section, we analyze the performance of training StatsMergeLearner on two types of pseudo
labels: (1) Soft Pseudo Labels, and (2) Hard Pseudo Labels, the former of which is commonly
employed in knowledge distillation frameworks (Gou et al., 2021; Hinton et al., 2015) especially for
classification tasks. Formally, we present two versions of our training losses:

Soft Pseudo Labels (SPL): The predicted class probability distribution. Thus we use Kull-
back–Leibler divergence (KL-Div) (Kullback & Leibler, 1951) loss function:

LKL =

Cm∑
c=1

pc,k log

(
pc,k
qc

)
(32)

where pc,k is the predicted probability of class c from the pre-trained model θk on task k, and qc is
the predicted probability of class c from the merged model θm.

Hard Pseudo Labels (HPL): The predicted class label in one-hot encoded format. Therefore, the
cross-entropy loss is applied:

LCE = −
Cm∑
c=1

ŷc,k log(ŷc)) (33)
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Results are shown in 14. We highlight two key observations: (1) Training StatsMergeLearner with
Hard Pseudo Labels (HPL) using cross-entropy loss (KD CE) yields performance comparable to
training with ground-truth labels (GT CE), achieving 81.2% vs. 88.5% at the task-wise (TW) level
and 83.5% vs. 90.4% at the layer-wise (LW) level. Importantly, StatsMerging eliminates the need for
manually annotated labels, validating our intuition of leveraging task-specific teacher knowledge for
supervision. (2) When trained on Soft Pseudo Labels (SPL) using KL-Divergence loss (KL-Div),
StatsMergeLearner underperforms relative to HPL with cross-entropy, obtaining 73.3% vs. 81.2% at
the TW level and 52.4% vs. 83.5% at the LW level, respectively.

We hypothesize that the observed performance drop is due to noisy inter-class relationships within
the aggregated dataset (Yuan et al., 2021). While a detailed investigation of these relationships is
beyong the scope of this work on model merging, we believe it presents promising directions for
future research.

Label & Loss Function Study. We conduct a
loss function study on ViT-B/32 (4) models
merged from four tasks, as shown in Table 4.
Observe that StatsMerging trained on pseudo
labels via Task-Specific Teacher Distillation
(KD) achieves similar performance to
StatsMerging trained on ground-truth labels
(GT), with 88.5% and 81.2% average accuracy
in TW and 90.4% and 83.5% in LW levels.

Table 4. Multi-task performance (Avg Acc %) of StatsMerging when
merging ViT-B/32 (4) models across four tasks. StatsMerging shaded

in gray. GT: Ground Truth. KD: Knowledge Distillation. TW:
Task-wise. LW: Layer-wise.

Loss Level CA EU RE GT Avg Acc

GT TW 73.2 94.2 91.1 95.6 88.5
KD TW 64.2 88.6 85.2 86.7 81.2

GT LW 75.6 96.3 92.1 97.6 90.4
KD LW 68.7 91.6 87.2 93.5 83.5

Table 14: Multi-task performance (Avg Acc %) of StatsMerging when merging ViT-B/32 (4) models
on four tasks. StatsMerging: shaded in gray. GT: Ground Truth. KD: Knowledge Distillation. GL:
Granularity level. TW: Task-wise. LW: Layer-wise.

GL Loss CA EU RE GT Avg Acc
TW GT CE 73.2 94.2 91.1 95.6 88.5
TW KD KL-Div 56.5 97.6 56.5 82.4 73.3
TW KD CE 64.2 88.6 85.2 86.7 81.2

LW GT CE 75.6 96.3 92.1 97.6 90.4
LW KD KL-Div 53.1 41.4 65.9 49.1 52.4
LW KD CE 68.7 91.6 87.2 93.5 83.5
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A.5.6 IMPACT OF DATA SIZE

The performance gain of StatsMerging++ with more validation data is much larger than that of
AdaMerging++ as shown in Table 15. When the data rate increases from 1% to 5%, LW StatsMerg-
ing++ improves from 84.5% to 94.5%, whereas LW AdaMerging++ only increases from 80.6% to
81.0%. This demonstrates LW StatsMerging++ is more data efficient than LW AdaMerging++.

Table 15: Impact of the amount of available data on performance (Avg Acc %) when merging
ViT-B/32 models. StatsMerging is shaded in gray.

Method Data SU CA RE EU SV GT MN DT Avg Acc

LW AdaMerging 1% 61.9 66.3 81.8 86.0 88.6 85.8 97.4 52.5 77.5
LW AdaMerging++ 1% 66.9 68.6 81.4 91.8 89.2 87.1 98.1 61.8 80.6
LW StatsMerging 1% 67.4 74.1 82.9 91.1 89.8 94.7 98.3 77.5 84.5

LW AdaMerging 5% 63.7 68.6 79.1 93.3 86.5 91.7 97.2 61.9 80.1
LW AdaMerging++ 5% 66.4 68.4 81.5 92.9 90.0 89.0 98.2 61.5 81.0
LW StatsMerging++ 5% 92.4 95.4 95.1 92.9 94.6 98.7 98.5 88.4 94.5 (+5.1)

LW AdaMerging 100% 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
LW AdaMerging++ 100% 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1

Difference between StatsMerging++ and AdaMerging++:

• StatsMerging++ uses 5% validation data instead of the 1% used in StatsMerging.
• AdaMerging++ additionally removes parameter redundancies and resolves sign conflicts

via TIES-Merging; this modification is independent of the amount of data used.

Table 16: Impact of Training Size on LW StatsMerging for Eight Vision Merging Tasks (Avg Acc %).
Training Data Percentage 5% 25% 50% 75%

Avg Acc 84.50 86.60 89.08 89.14
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A.5.7 TRAINING CURVE

We present the training curve of ViT-B/32 across eight Vision tasks in Fig. 8. The sharp drop in
learning rate at around step 420 stabilizes the StatsMergeLearner updates, reduces gradient noise, and
allows the merged model to settle into a flatter minimum. This scheduling effect explains the sudden
increase in training accuracy across all eight tasks, rather than any change in the data or validation
split. This behavior is well-known in deep neural network training and is consistent with empirical
and theoretical evidence in prior work (Luo et al., 2019; Ren et al., 2024)
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Figure 8: StatsMerging++ Training Accuracy Curve.
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A.6 EXTENDED RELATED WORK

Model Merging Foundations. Recent efforts in model merging have introduced various strategies
to efficiently combine multiple models without retraining. Approaches such as ZipIt (Zhang et al.,
2024a), EMR-Merging (Huang et al., 2024), and Training-Free Pre-trained Model Merging methods
(Sun et al., 2025; Chen et al., 2024) emphasize data-free, tuning-free methodologies, often leveraging
weight-space heuristics or task-vector alignment. Techniques like Pareto Merging (Chen & Kwok,
2025), MAP (Li et al., 2024), and C2M3 (Crisostomi et al., 2024) formulate model merging as a
multi-objective or constrained optimization problem to preserve task performance across domains.
Other works such as Parameter Competition Balancing (Guodong et al.) and Sharpness-Aware
Fine-Tuning (Lee et al., 2025) address parameter interference during merging. Meanwhile, methods
like LayerMerge (Kim et al., 2024) and MERGE3 (Mencattini et al., 2025) aim to improve scalability
and computational efficiency, making merging feasible on consumer-grade hardware.

Merging Methods in Computer Vision. The application of model merging techniques in computer
vision is relatively less explored compared to natural language processing (Yadav et al., 2023b;
Ilharco et al., 2023). Computer vision models, particularly deep convolutional neural networks
(CNNs) (Krizhevsky et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014) and Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021a; Touvron et al., 2021), learn complex, hierarchical feature
representations that are highly sensitive to task-specific optimizations (Izmailov et al., 2018). Simple
averaging techniques often fail due to the non-convex nature of the loss landscape and the divergence
of learned feature spaces across different visual tasks. Recent advancements (Matena & Raffel, 2022;
Yang et al., 2023) have shown potential, but often lack explicit mechanisms to account for the unique
properties inherent in visual data and architectures, such as spatial relationships in CNNs or attention
mechanisms in ViTs. Furthermore, the effectiveness of these methods across the broad spectrum
of computer vision tasks, including low-level restoration (Zhang et al., 2017; Saharia et al., 2022),
mid-level detection (Ren et al., 2015; Carion et al., 2020b), and high-level classification (He et al.,
2016), has not been comprehensively validated. Our work addresses these limitations by introducing a
novel merging framework that leverages internal model weight statistics to guide the merging process,
making it more adaptable and effective across diverse computer vision tasks and architectures.

Relationship to KnOTS. Compare KnOTS and combine it with the proposed SML.

We included KnOTS (Stoica et al., 2024) as an additional baseline and evaluated StatsMerging +
KnOTS. As shown in Table 17, StatsMerging + KnOTS performs worse than our proposed StatsMerg-
ing in this two-task setting. We hypothesize that this is due to (i) KnOTS being sensitive to SVD rank
selection and scaling, and (ii) its design being more beneficial for larger and more diverse task sets.
Although KnOTS converges faster, it incurs approximately 10× higher training cost per epoch due to
repeated SVD computations.

Table 17: Comparison of different merging methods on two-task merging (RE, EU).
Method RE EU Avg Acc (%)
Individual 96.1 99.7 97.9
Task Arithmetic 85.2 96.7 90.9
TIES-Merging 86.4 97.2 91.8
StatsMerging + KnOTS 92.1 94.2 93.2
StatsMerging 96.0 98.0 97.4 (+4.2)

Relationship to LiNeS. Similarity: Both share a similar goal of preserving common features across
tasks while retaining task-specific representations. Difference: LiNeS (Wang et al., 2024a) scales
the updates from shallow to deep layers linearly, controlled by α and β. In Layer-Wise (LW)
StatsMerging, merging coefficients (λ) are optimized across the entire merged model by SML.
Therefore, in theory, λ should jointly account for the scales of updates from shallow to deeper layers.
In addition, SML does not assume the linear scaling from shallow to deeper layers as in LiNeS.

We therefore posit that SML (and other learning-based methods) may not benefit significantly from
directly integrating LiNeS scaling coefficients, either during training or in post-training stages. This
is consistent with the fact that in the LiNeS paper, the merging methods that LiNeS integrates with
are heuristic-based, including Task Arithmetic, Ties-Merging, Consensus Merging (Table 18), and
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Model Soup. The only learning-based method reported in the experiments is AdaMerging, which
was only used solely for comparison, if I am not mistaken. Although SML can be combined with
LiNeS in practice/implementation, we find it theoretically unnecessary.

Comparison: We present the comparison of LiNeS and our updated StatsMerging (w SML) on
merging ViT-B/32 in Table 18. Our proposed StatsMerging (84.5%) significantly outperforms the
best reported LiNeS result (77.2%).

Table 18: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
tasks. Results of our method StatsMerging are in bold. LW: Layer-wise.

Method Avg Acc
Task Arithmetic 69.7
Task Arithmetic + LiNeS 74.2
Ties-Merging 73.6
Ties-Merging + LiNeS 77.2
Consensus Merging 74.5
Consensus Merging + LiNeS 77.6
LW AdaMerging 80.1
LW AdaMerging++ 81.1
LW StatsMerging 84.5
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A.7 VISUAL ASSETS ATTRIBUTION

We credit the guru (Task-Specific Teachers) and student visual icons to Freepik–Flaticon
(https://www.flaticon.com/free-icons/idea), which enhance the clarity and presentation quality of our
approach.

A.8 FUTURE WORK AND LIMITATIONS

In this work, we focus on vision-based classification and simple NLP tasks, leaving extensions to
other domains, such as object detection (Tan et al., 2020), super-resolution (Sun et al., 2022), and
image and video restoration (Liang et al., 2021; Merugu et al., 2025), for future work. Additionally,
expanding this approach to beyond vision and language tasks, particularly large language models
(LLMs) (Yang et al., 2024; Song et al., 2024; Zhang et al., 2024b; Tie et al., 2025; Kallini et al., 2025),
as well as to multi-modal learning (Zhu et al., 2025; Du et al., 2025; Bousselham et al., 2024; Lin
et al., 2024), represents a promising direction for further research. Moreover, we identify a direction
for future work that can facilitate more efficient SML learning. While our work primarily focuses on
empirical results, we regard theoretical development, such as formal proofs, as an important direction
for future research.
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