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Abstract

Retrieval-Augmented-Generation and Gener-001
ation-Augmented-Generation have been pro-002
posed to enhance the knowledge required003
for question answering over Large Language004
Models (LLMs). However, the former re-005
lies on external resources, and both re-006
quire incorporating explicit documents into007
the context, which increases execution costs008
and susceptibility to noise data. Recent009
works indicate that LLMs have modeled rich010
knowledge, albeit not effectively triggered011
or awakened. Inspired by this, we pro-012
pose a novel knowledge-augmented framework,013
Imagination-Augmented-Generation (IAG),014
which simulates the human capacity to com-015
pensate for knowledge deficits while answering016
questions solely through imagination, thereby017
awakening relevant knowledge in LLMs with-018
out relying on external resources. Guided by019
IAG, we propose an imagine richer context020
method for question answering (IMcQA). IM-021
cQA consists of two modules: explicit imagi-022
nation, which generates a short dummy docu-023
ment by learning from long context compres-024
sion, and implicit imagination, which creates025
flexible adapters by distilling from a teacher026
model with a long context. Experimental re-027
sults on three datasets demonstrate that IMcQA028
exhibits significant advantages in both open-029
domain and closed-book settings, as well as in030
out-of-distribution generalization1.031

1 Introduction032

Knowledge-intensive tasks like question answer-033

ing (QA) necessitate utilizing extensive world and034

domain knowledge (Berant et al., 2013; Joshi035

et al., 2017; Kwiatkowski et al., 2019). Nowadays,036

Large Language Models (LLMs) have displayed037

notable competencies in almost every task and in-038

dustry (Liu et al., 2023b). However, LLMs lack039

the sufficient capability to independently handle040

1Our code will be available at https://anonymous.
4open.science/r/IMcQA
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Figure 1: Compared with RAG and GAG , the proposed
IAG eschews external resources, generates a shorter
context (explicitly imagination) and creates flexible
adapters (implicitly imagination) for each question.

knowledge-intensive tasks (Frisoni et al., 2024) and 041

usually generate hallucinations (Zhao et al., 2023). 042

In recent years, to mitigate hallucinations in 043

LLMs and improve performance in knowledge- 044

intensive tasks such as QA, researchers have pro- 045

posed numerous knowledge-augmented methods 046

for LLMs. These methods primarily fall into 047

two categories: Retrieval-Augmented-Generation 048

(RAG) (Guu et al., 2020) and Generation- 049

Augmented-Generation (GAG) (Kim et al., 2024). 050

RAG (Top part of Figure 1) retrieves related doc- 051

uments from external resources (e.g., Wikipedia) 052

and then inputs both the retrieved documents and 053

the question into LLMs (Izacard and Grave, 2021). 054

GAG (Middle part of Figure 1) leverages external 055

LLMs such as ChatGPT (Ouyang et al., 2022) to 056

generate relevant documents (Yu et al., 2023). 057

However, these methods have the following 058

disadvantages2: 1) Dependence on external re- 059

sources, RAG relies on external domain knowledge 060

resources (Ke et al., 2024), while GAG depends 061

on a more powerful external LLM as a knowledge 062

generator. This dependency hinders their broader 063

application. 2) Increased execution costs, The 064

2A more intuitive comparison can be seen in A.1.
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required computing resources and inference time065

continue to increase as the number of documents in-066

creases (Xu et al., 2023a). For example, the typical067

RAG method FiD (Izacard and Grave, 2021) needs068

to handle over 12K tokens for retrieving 100 docu-069

ments, leading to more than a 100-fold increase in070

prompt length and over 1002-fold increase in infer-071

ence time (Liu et al., 2023a). The GAG method (Yu072

et al., 2023) requires additional financial costs (e.g.,073

API calls). 3) Susceptibility to noise data, both074

methods are prone to the inclusion of irrelevant or075

noisy data (Li et al., 2023; Shaier et al., 2024). For076

example, Gao et al. (2024) indicates that noise in077

the documents negatively affects the performance.078

Therefore, there is an urgent need to explore new079

knowledge-augmented methods.080

In fact, LLMs inherently contain rich knowl-081

edge and possess significant potential for resolv-082

ing knowledge-intensive tasks (Bhagavatula et al.,083

2020). Enhancing the performance of specific tasks084

can be achieved by better activating and awakening085

relevant knowledge or expanding memory capacity086

without relying on external resources. For exam-087

ple, simply repeating the question twice (Xu et al.,088

2023b), just reviewing and consolidating knowl-089

edge by appending a straightforward prompt “As090

far as I know” (Yao et al., 2023), and using visual-091

language models to imagine images (Tang et al.,092

2023), all these approaches enhance the perfor-093

mance of LLMs on downstream tasks.094

Therefore, inspired by the above phenomena095

and aiming to address the challenges faced by096

RAG and GAG, we propose a novel knowledge-097

augmented framework, Imagination-Augmented-098

Generation (IAG). IAG simulates the human099

capacity to compensate for knowledge deficits100

solely through imagination in QA. For resolv-101

ing knowledge-intensive tasks, IAG utilizes solely102

LLMs to generate a shorter context and create a103

more flexible adapter (Bottom part of Figure 1).104

Through a knowledge distillation framework, IAG105

achieves knowledge enhancement through imagi-106

nation. The fundamental idea is to permit student107

models, which are deficient in rich contextual108

information (e.g., without abundant retrieved109

documents), to imitate teacher models that are110

endowed with such information.111

Within the framework of IAG, we introduce112

an imagine richer context method for question113

answering (IMcQA). To sufficiently utilize the in-114

herent knowledge of LLMs, we design two main115

modules to activate the various potential knowl- 116

edge modeling in LLMs and obtain a richer context. 117

Specifically, the explicit imagination module first 118

uses symbol distillation to obtain the compressed 119

context and then guides the context generator to 120

generate a short dummy document. Subsequently, 121

within the knowledge distillation framework, the 122

implicit imagination module utilizes the hypernet- 123

work to generate adapters to awaken the question- 124

aware ability of LLMs. Unlike the LoRA (Hu et al., 125

2021) stores task knowledge and ability in modules, 126

the hypernetwork learns to generate a question- 127

aware knowledge module. 128

We evaluate the proposed IMcQA on various 129

LLMs, including T5 (Roberts et al., 2020a) and 130

Llama2 (Touvron et al., 2023). The experimental 131

results across three QA datasets indicate that the 132

proposed method yields performance gains while 133

reducing computational expenses and time. No- 134

tably, it even outperforms baseline methods that 135

retrieve and generate knowledge under the same 136

document settings. In conclusion, the contributions 137

of this paper are summarized as follows: 138

• We propose a new knowledge augmentation 139

framework IAG to fully leverage the LLMs’ 140

intrinsic knowledge more efficiently without 141

relying on external resources. 142

• We propose a novel QA method IMcQA that 143

employs two main modules (explicit imagina- 144

tion and implicit imagination) to utilize better 145

the knowledge stored in the LLMs and awaken 146

a richer context in QA. 147

• Experimental results indicate that the pro- 148

posed method successfully activates the rel- 149

evant internal knowledge of LLMs. IMcQA 150

exhibits significant advantages in both open- 151

domain and closed-book settings, as well as 152

in out-of-distribution generalizations. 153

2 Related Work 154

This paper mainly utilizes context compression, hy- 155

pernetworks and knowledge distillation to achieve 156

knowledge enhancement. The following will eluci- 157

date pertinent research across four facets. 158

Knowledge Enhancement has usually been 159

adopted to alleviate the issue of insufficient knowl- 160

edge in LLMs. There are two main methods: RAG 161

(Sun et al., 2019; Wang et al., 2024) and GAG (Ab- 162

dallah and Jatowt, 2023). The typical RAG method 163
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FiD (Izacard and Grave, 2021) retrieves documents164

from Wikipedia to answer questions. LLMs serv-165

ing as a knowledge base have been the focus of166

numerous studies that advocate the extraction of167

knowledge from such models (e.g., GPT-3). For168

instance, Yu et al. (2023) generates 10 documents169

for each question. However, RAG requires external170

resources, and both RAG and GAG need verbose171

long contexts. Recently, methods have been de-172

veloped to enhance LLMs’ abilities by simulating173

human imagination of visual information using ex-174

isting visual-language models (Tang et al., 2023;175

Akter et al., 2024). We prefer self-imagination to176

augment knowledge and aim to leverage the param-177

eterized knowledge within the models (Xu et al.,178

2023b; Kazemnejad et al., 2023). Our proposed179

method not only eliminates the need for external180

resources but also improves the efficiency of acti-181

vating internal knowledge within LLMs.182

Context Compression has often been used to im-183

prove the efficiency of LLMs in processing long184

contexts. Recent studies (Mu et al., 2023) pro-185

pose that long contexts be condensed into summary186

vectors (soft prompts) to ensure their effective uti-187

lization by LLMs. Simultaneously, some studies188

(Jiang et al., 2023; Pan et al., 2024) suggest utiliz-189

ing information redundancy and entropy in lengthy190

texts to compress contexts (Li et al., 2023). Unlike191

these approaches, this paper aims to enhance the192

long-context modeling ability of LLMs. By devel-193

oping a context generator that creates compressed194

contexts, the QA model operating on short contexts195

can achieve a rich contextual understanding similar196

to models designed for longer contexts.197

Knowledge Distillation is a technique where a198

smaller model learns to mimic the predictions of a199

larger model, aiming to retain performance while200

reducing computational resources (Hinton et al.,201

2015). Recent studies (West et al., 2022) present202

symbolic knowledge distillation, a process that fa-203

cilitates knowledge transfer from a teacher model204

via extracting training data to subsequently train205

a student model (Wang et al., 2023b; Ranaldi and206

Freitas, 2024). In this paper, the process of obtain-207

ing compressed context during the explicit imag-208

ination resembles a form of symbolic distillation.209

Regarding training, our emphasis lies in distilling210

the long-context modeling abilities of LLMs.211

Hypernetworks is designed to reduce the number212

of parameters (Ha et al., 2016), i.e., a small neu-213

ral network generates parameters for another big214

neural network. Recent studies (Phang et al., 2022; 215

Ivison et al., 2023) have explored the enhancement 216

of model performance in zero/few-shot settings 217

through meta-learning involving hypernetworks. 218

We utilize hypernetworks to acquire implicit imag- 219

ine capabilities by dynamically generating LoRA 220

for efficiency and generalization. 221

3 Method 222

In this section, we introduce the detailed method 223

of IMcQA to activate LLMs’ intrinsic knowledge 224

and obtain a richer context for QA. The funda- 225

mental premise underlying this method is that QA 226

with a richer context yields greater performance 227

(e.g., RAG with retrieved documents). Conse- 228

quently, diverse methods are employed for ques- 229

tions lacking in richer contexts to activate knowl- 230

edge within LLMs to replicate comparable effects 231

to those achieved with richer contexts. 232

Specifically, IMcQA comprises two main mod- 233

ules. Explicit imagination with long context com- 234

pression learns to imagine a short dummy docu- 235

ment (§ 3.2). And implicit imagination with the hy- 236

pernetwork models’ hidden knowledge that learns 237

a shared knowledge feature projection across ques- 238

tions (§ 3.3). The hypernetwork is trained to gener- 239

ate lightweight LoRA modules, aiming to align the 240

question and the internal knowledge. Besides, there 241

is long context distillation in training, which learns 242

the teacher’s rich representations to compensate for 243

missing knowledge in imagination (§ 3.4). 244

3.1 Formulation 245

The formulation of our task follows RAG for QA 246

(Guu et al., 2020). Let V∗ denote the infinite set, 247

encompassing all potential strings over the tokens 248

in vocabulary V , and this includes the empty string. 249

An instance within a QA dataset is defined as a 250

triplet (q, a, c) comprising question q, answer a, 251

and context c, where q, a, c ∈ V∗. Conventionally, 252

the context c is drawn from the knowledge corpus 253

Z , like Wikipedia, whereby Z ⊂ V∗. Additional 254

background details are available in B.1. 255

3.2 Explicit Imagination with Context 256

Generator 257

To obtain a context c for each question, we utilize 258

LLMs to generate a short dummy document, which 259

can mitigate knowledge corpus error (Lee et al., 260

2023) by considering potentially useful contexts. 261

We employ the "teacher-student" framework. Dur- 262
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Figure 2: Overview of IMcQA method. In the inference phase, for each question, the explicit imagination generates
a short dummy document and the implicit imagination with hypernetwork creates a specific LoRA module. During
training, there are two stages: the first stage is the pre-training of the context generator (§ 3.2), aiming at its ability
to imagine a short dummy document based on the question, and the second stage is the hypernetwork fine-tuning
(§ 3.3) using long context distillation (§ 3.4) to obtain a question-specific LoRA module.

ing the training phase, the teacher model, equipped263

with rich contextual information, generates short264

contexts through context compression. The student265

model, in turn, learns to automatically generate266

these short contexts by leveraging its own LLM267

capabilities.268

As shown in the left part of Figure 2, to help269

LLMs fully utilize the knowledge and generate270

compressed text, we first pretrain the context gen-271

erator on our collected question-compressed doc-272

ument pairs. By leveraging symbolic distillation,273

we employ the long context compression method274

LongLLMLingua (Jiang et al., 2023) to condense275

a large corpus of retrieved documents. These com-276

pressed texts c′ then serve as fine-tuning data along-277

side specific prompts pq (B.2) and question-answer278

pairs for the context generator3 Gθ (θ represents279

the model’s parameter), which guides the model280

to think about its knowledge and generate a short281

dummy document:282

d = Gθ(pq(q; c
′)) (1)283

where d is the dummy document generated from284

the context generator. This process enables LLMs285

to conceive compressed knowledge that robustly286

parallels the question’s knowledge requirements.287

3.3 Implicit Imagination with Hypernetwork288

Generally speaking, richer context can help LLM289

better answer questions. That is, the representation290

3We discuss the role of context generator in the A.2.

of questions and the internal state of LLM when 291

utilizing rich context are the better states. There- 292

fore, in the absence of context, we should focus 293

on building models to awaken LLM to achieve this 294

better state and as a better QA model. 295

We utilize the hypernetwork4 to learn to gen- 296

erate a better QA model, which does not directly 297

optimize the LoRA (Hu et al., 2021) module but 298

generates specific LoRA adapter weights using the 299

inputs for QA (bottom part of Figure 2). This is 300

akin to repeating the question in the prompt (Xu 301

et al., 2023b) and incorporating certain topical cues 302

to stimulate the model’s recall of relevant ques- 303

tions (Wang et al., 2023c). However, the distinction 304

lies in the fact that they serve as wake-up features, 305

whereas we are generating model parameters. 306

The hypernetwork architecture for generating 307

LoRA weights is exhaustively outlined in Figure 308

3. Specifically, Dq
k and U q

k represent the low-rank 309

projections of layer k correlated with the Q, while 310

Dv
k and Uv

k correspond to those associated with the 311

V . Hypernetwork represented as gD and gU , takes 312

concat(f, i{q,v}k ) as input, where f is the feature 313

vectors that use the model’s encoder to obtain and 314

using whitening algorithm (Su, 2021) for dimen- 315

sionality reduction, i{q,v}k ∈ {0, . . . , 2×#blocks} 316

signifies the positional embedding differentiating 317

between layers and between QV . Each hypernet- 318

work is defined by weights Wd and Wu which rep- 319

resent the down and up projections respectively. 320

4We conduct a detailed analysis of the reasons behind the
hypernetwork in the A.3.
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Finally, the hypernetwork equations for D{q,v} and321

U{q,v} can be expressed as:322

f = whitening(Encoder(q; d)) (2)323

324

x = concat(f, i{q,v}k | iqk = 2k, ivk = 2k + 1) (3)325
326

D{q,v}, U{q,v} = gD(x), gU (x) (4)327

where the Encoder represents the encoder of the328

model, whitening is a dimensionality reduction329

algorithm, and concat means to splice the content.330

gD and gU denote the descending and ascending331

dimensions of hypernetwork. More formally,332

g(x) = MM(ReLU(MM,Wd),Wu) (5)333

where MM stands for matrix multiplication, ReLU334

is a activation function.335

3.4 Training with Long Context Distillation336

Within the framework of knowledge distillation,337

components such as hidden representations (Jiao338

et al., 2020), attention dependencies (Wang et al.,339

2020), and relations among representations (Park340

et al., 2021) are regarded as valuable knowledge341

for transfer. In this paper, we consider long context342

distillation (LCD) as the contextualized knowledge343

that mainly guides the student.344

Specifically, the teacher model FiD (Izacard and345

Grave, 2021), which utilizes longer contextual in-346

puts and theoretically contains more information347

(richer context). It will activate more specific inter-348

nal knowledge and serve as a supervisory model.349

The teacher model assists the student model T5350

(Roberts et al., 2020a), which has the same size as 351

the teacher and leverages short contextual inputs. 352

This aids in activating richer feature representations 353

and knowledge. The optimization objective for the 354

student model at each mini-batch zr = (xr, yr) is: 355

Ls(θs, θt, zr) = αLce(yr, S(xr; θs))

+(1− α)Lce(T (xr; θt), S(xr; θs))
(6) 356

where we have a teacher model denoted as T (·; θt) 357

and a student model denoted as S(·; θs). The cor- 358

responding model parameters are θt and θs. 359

As shown in the right of Figure 2, we perform 360

an additional representation alignment for better 361

knowledge transfer. In our distillation, both teacher 362

model and student model have the L layers, we feed 363

the text into them and can obtain the corresponding 364

output hidden states {Ht
l }Ll=0, {Hs

l }Ll=0, and atten- 365

tion matrices {At
l}Ll=1, {As

l }Ll=1. We suppose the 366

student’s l-th layer is aligned with the teacher’s l-th 367

layer, then the outputs of the student (i.e., Hs
l and 368

As
l ) should be close to the teacher’s (i.e., Ht

l and 369

At
l). For aligning hidden states, following (Park 370

et al., 2021), we use cosine distance COS to calcu- 371

late the proximity between the hidden states of the 372

teacher and the student: 373

Lhid = − COS(Hs
l , H

t
l ) (7) 374

While for aligning attention dependencies, we fol- 375

low (Jiao et al., 2020) to optimize the mean square 376

error (MSE) between the attention matrices of the 377

teacher and the student: 378

Lattn = − MSE(As
l , A

t
l) (8) 379

The overall objective for knowledge transfer is: 380

Lalign(H
s
l , H

t
l , A

s
l , A

t
l) = Lattn + Lhid (9) 381

The overall objective for training IMcQA is the 382

weighted sum of the two objectives: 383

L = Ls + λLalign (10) 384

4 Experiment 385

In this section, we conduct experiments to demon- 386

strate the effectiveness and efficiency of IAG and 387

IMcQA on QA. The experiment mainly answers 388

four research questions (RQs): 389

RQ1: Can IAG and IMcQA achieve knowledge 390

augmentation for QA over LLMs? (§ 4.4) 391
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Models # Docs NQ TriviaQA WebQ

Large (800M) XL (3B) Large (800M) XL (3B) Large (800M) XL (3B)
# Closed-book Setting
T5 (Roberts et al., 2020a) 0 28.5∗ 28.30 28.7∗ 33.92 30.6∗ 34.43
LoRA (Hu et al., 2021) 0 17.70 23.15 23.87 32.16 29.13 35.24
IMcQA (Ours) 0 29.32 29.59 30.11 35.71 32.68 37.40
# Retrieval Augmented Setting (compared with RAG)
DPR∗ (Karpukhin et al., 2020) (110M) 100 41.5 - 56.8 - 41.1 -
RAG∗ (Lewis et al., 2020) 10 44.5 - 56.1 - 45.2 -
FiD∗ (Izacard and Grave, 2021) 10 46.7 50.1 61.9 66.3 48.1 50.8
FiD (Izacard and Grave, 2021) 100 51.4∗ 55.2‡ 67.6∗ 72.9‡ 50.5 52.9‡

EAR (Chuang et al., 2023) 10 39.6 42.3∗ 60.0 64.6∗ - -
RFiD (Wang et al., 2023a) 10 48.3 50.5 63.4 67.8 - -
FILCO∗ (Wang et al., 2023d) 1 - 44.7 - 59.0 - -
IMcQA (Ours) 10 49.9 50.9‡ 69.7 70.3‡ 51.5 52.8‡

IMcQA (Ours) 30 53.1 - 70.5 - 52.0 -
# Generation Augmented Setting (compared with GAG)
GENREAD (sampling)∗ (Yu et al., 2023) 10† 40.3 42.6 67.8 69.6 51.5 52.6
GENREAD (clustering)∗ (Yu et al., 2023) 10† 43.5 45.6 70.2 71.6 53.5 54.4
IMcQA (Ours) 10† 48.8 49.2‡ 70.9 72.2‡ 54.5 55.6‡

# Imagination Augmented Setting
LoRA (Hu et al., 2021) 1† 40.1 44.2 62.8 66.9 43.7 48.2
IMcQA (Ours) 1† 42.3 46.5 65.5 68.4 45.3 50.5

Table 1: QA performances of different methods with different settings. The first part (closed-book setting) indicates
that only utilize questions; The latter three parts utilize explicit documents. The best results are in bold, while the
second-best are underlined. * means that those results are from existing papers, † denotes that the documents were
generated (‡ indicates that the number of documents is reduced due to insufficient memory for distillation).

RQ2: Does IMcQA have a good out-of-distribution392

generalization ability? (§ 4.5)393

RQ3: Does IAG have advantages in effectiveness394

and efficiency compared to RAG and GAG? (§ 4.6)395

RQ4: What is the role of explicit and implicit imag-396

ination modules in IMcQA? (§ 4.7)397

4.1 Datasets398

We evaluate the proposed approach on three pub-399

lic question answering datasets: NaturalQuestions400

(NQ) (Kwiatkowski et al., 2019), WebQuestions401

(WQ) (Berant et al., 2013) and TriviaQA (TQA)402

(Joshi et al., 2017). To evaluate the model perfor-403

mance, we use the exact match (EM) score for eval-404

uating predicted answers (Rajpurkar et al., 2016).405

We provide dataset details in the B.4.406

4.2 Baselines407

Both the moderately sized language model (< 1B)408

and the large language model (LLM) (≥ 3B) are409

under consideration. T5 (Roberts et al., 2020a)410

is selected as the backbone for our moderately411

sized language models. We evaluate our proposed412

IMcQA against several knowledge-enhanced ap-413

proaches, which include RAG models such as DPR414

(Karpukhin et al., 2020), RAG (Lewis et al., 2020),415

EAR (Chuang et al., 2023), RFiD (Wang et al.,416

2023a), FILCO (Wang et al., 2023d) and FiD (Izac- 417

ard and Grave, 2021), as well as the GAG model 418

GENREAD (Yu et al., 2023), and parameters effi- 419

cient fine-tuning method LoRA (Hu et al., 2021). 420

To demonstrate the plug-and-play capability of 421

IMcQA on the zero-shot settings of LLMs (≥ 3B), 422

we use Llama2-7B and -13B (Touvron et al., 2023) 423

as the basic model. We evaluate with 6 diverse set- 424

tings: without retrieval, with retrieval, with LoRA, 425

RECITE (Sun et al., 2023), HICL (Wang et al., 426

2024) and using the proposed IMcQA. 427

4.3 Implementations 428

In the pretraining stage, the context generator 429

initialized with T5-large utilizes the generated 430

question-compressed pairs. During the second 431

stage, the teacher model employs a FiD reader 432

with different sizes (FiD-l and FiD-xl) that are fine- 433

tuned on the training split of target datasets. The 434

student model freezes the backbone and updates 435

solely the hypernetwork5. 436

4.4 Main Results 437

4.4.1 Supervised Setting 438

Table 1 shows the performance results, full results 439

including T5-Base are in the C.1. When juxtaposed 440

5B.3 contains more implementation and baseline details.
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Figure 4: Zero-Shot results (EM, %) of Llama2-7B
on three open-domain QA datasets. The number in
parentheses indicates the number of documents used.

with closed-book models, RAG, and GAG meth-441

ods, our proposed IAG framework IMcQA method442

exhibits state-of-the-art (SOTA) performance with443

the equivalent magnitude of document numbers.444

In the closed-book setting (in the upper part of445

the table), our method outperforms the baseline by446

an average of +2% EM score, indicating its excel-447

lence in utilizing internal knowledge with imagina-448

tion. It’s especially noteworthy that as the model449

size expands, the performance advantages of the450

imagination become ever more evident.451

The following three parts show the experimental452

results under the open domain setting6. Although453

our method only deals with one short dummy454

document, it can still achieve results similar to or455

better than the RAG and GAG methods, which456

handle 10 documents. The findings reveal that457

IMcQA exploits imagined condensed text to strike458

a balance between efficiency and overhead. Be-459

yond this, when IMcQA implements 10 retrieved460

documents under RAG, it overtakes RFiD’s perfor-461

mance, posting 1.6% higher in NQ, 4.4% in TQA,462

and 2.7% in WQ. IMcQA employing 10 gener-463

ated documents under GAG outstrips GENREAD464

(clustering)’s performance, documenting a 4.5%465

increment in NQ, 0.7% in TQA, and 1.1% in WQ.466

4.4.2 Zero-shot Setting467

Figure 4 illustrates the zero-shot results for LLMs468

implementing IMcQA with a frozen Llama2-7B469

and -13B. This research seeks to explore the pos-470

sibility of enhancing LLMs via IAG. Due to the471

high computational demands of training, we only472

fine-tuned the hypernetwork on a mixed dataset473

without LCD in this experiment and evaluated per-474

6Due to memory constraints from online distillation, we
only compare the IMcQA-l under the RAG setting using 30
documents with FiD using 100 documents.

formance in a zero-shot setting7. More zero-shot 475

setting results can be seen in C.3. 476

We discerned that Llama2’s performance can be 477

enhanced by imagining knowledge autonomously. 478

While leveraging explicit imagined context could 479

amplify the average EM +1%, this is not as signif- 480

icant as the improvement achieved by retrieving 481

10 documents, indicating the limitations of relying 482

solely on prompt cues for triggering corresponding 483

knowledge. IMcQA can enhance knowledge via 484

two main imagination processes, escalating EM by 485

+15.33% for NQ, +11.97% for TQA, and +16.38% 486

for WQ. Compared to two other advanced RAG 487

methods, IMcQA using a single document, per- 488

forms only 1 EM lower than the HICL method 489

(Wang et al., 2024) on the TQA but achieves +10% 490

EM on the NQ and +5% EM on the WQ. With IAG, 491

Llama2-7B demonstrated an average improvement 492

of +14% across the three datasets. This trend is 493

also observed in Llama2-13B’s results (Figure 6). 494

This implies that even in zero-shot settings, our 495

method can still offer substantial benefits to LLMs. 496

Models # Docs Base (220M) Large (800M)

NQ TQA WQ NQ TQA WQ
T5 0 22.16 3.18 4.12 28.5* 3.18 4.12
IMcQA 0 23.89 6.21 10.94 29.32 10.17 14.06
FiD 10 46.81 53.93 24.02 46.7* 57.93 25.12
IMcQA 10 47.01 55.74 24.13 49.92 60.03 25.79
LoRA 1† 5.43 3.15 4.02 4.42 6.50 7.87
IMcQA 1† 40.14 46.61 18.92 42.32 54.80 22.05

Table 2: IID and OOD results. The performance on
three open-domain datasets for the model trained on NQ
is reported, with the underlined values indicating the
IID performance. Full OOD results and details of three
datasets are shown in the C.2.

4.5 Out-Of-Distribution (OOD) Performance 497

To further demonstrate the generalizations of the 498

IMcQA method and the importance of hypernet- 499

work, we also evaluate its performance in OOD 500

generalizations. Table 2 shows the IID and OOD 501

performance of FiD, and IMcQA methods with 502

different document settings when training on NQ 503

(From NQ generalization to the other two datasets). 504

It is patently clear that an increment in docu- 505

ment provision leads to better OOD performance, 506

likely due to the presence of answer-oriented con- 507

tent within these documents. Remarkably, IMcQA 508

can come within a relatively narrow 5% gap of FiD, 509

even when utilizing a single imagined document as 510

7Detailed prompts information can be found in the B.2.
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opposed to 10 retrieved documents.511

Simultaneously, IMcQA generally showcases su-512

perior performance in OOD when provided with 10513

retrieved documents. This superiority can be traced514

back to the pivotal role played by hypernetwork515

in generating LoRA adapters’ weights based on516

questions. This equips models with the capability517

to invoke and access internal knowledge based on518

context-specific discourse rather than confining to519

resolving distinct questions.520

Models Training
Params

# Docu-
ments

# Avg
Tokens

Inference
Time

GPU
Memory

Training
Time

T5 220M 0 19.8 79.8s 2828M 0.9h
IMcQA 139.3M 0 19.8 82.3s 2710M 1.2h
IMcQA 139.3M 1 522.1 214.6s 2882M 1.7h
FiD 220M 10 1748.3 683.3s 4358M 2.3h
GENREAD 220M 10 1912.5 704.8s 4412M -
FiD 220M 100 16625.7 1293.2s 19048M 5.8h

Table 3: Training and inference cost on the NQ. The
backbone model is T5-Base.

4.6 Training Cost and Inference Speed-up521

We proceeded to measure the inference speed doc-522

umented in GPU time and training time for 5000523

steps on the NQ dataset using T5-Base. The ex-524

periments were conducted on a single RTX 3090525

GPU, maintaining a standard batch size of 8 during526

training and 1 during inference.527

As evident from Table 3, the proposed method’s528

advantage lies in its diminished requirement for529

parameter updates, which can be attributed to the530

shared hypernetwork’s utilization that generates531

LoRA adapters, thereby negating the necessity532

of individual LoRA adapters’ setup. Despite the533

lack of a training advantage due to distillation534

constraints, IMcQA achieves efficient reasoning535

through an extremely lightweight design, saving536

more than half the training time compared to meth-537

ods using a large number of documents (×0.3).538

Compared to the other two methods, the processed539

tokens are significantly decreased, while either out-540

performing them or showing negligible differences541

in performance. This represents an optimal trade-542

off between efficiency and computational demand.543

Moreover, unlike GAG, our approach incurs no544

financial costs associated with API calls, and the545

reduced model size facilitates faster generation.546

4.7 Ablation Experiment547

This study introduces two key imagination pro-548

cesses to stimulate LLMs’ internal knowledge: Ex-549

plicit Imagination (EI) and Implicit Imagination550

(II). We particularly examined the influence of dif-551

ferent imagination types on performance.552

Figure 5 demonstrates that both EI and II are 553

important for IMcQA. Omitting either one results 554

in a considerable reduction in performance, with a 555

drop exceeding 10% observed when EI is neglected. 556

This is harmonious with the initial observation that 557

performance improvement becomes more notice- 558

able when relevant documents are available, thus 559

underscoring EI’s superiority. 560

The outcomes of Long Context Distillation 561

(LCD) and the application of EI in the hypernet- 562

work also make marginal contributions to the over- 563

all results. This validates the previous assertion 564

that a more extensive context tends to optimize 565

performance, although with limited gains. The ex- 566

periments and analysis above demonstrate the im- 567

portance of each component and the effectiveness 568

of our IMcQA method. 569

Figure 5: Ablation experiment results (%) of T5-Base
on three open-domain QA datasets.

5 Conclusion and Future Work 570

This study proposes a novel knowledge-augmented 571

strategy for LLMs, namely Imagine Augmented 572

Generation (IAG), and a specific method IMcQA 573

for open domain question answering. The proposed 574

method effectively activates and utilizes intrinsic 575

knowledge within LLMs through two imaginations: 576

explicit imagination, and implicit imagination. Ex- 577

perimental results demonstrate a significant im- 578

provement in QA performance while remaining 579

relatively lightweight. Although the main focus of 580

this method is on one specific task, we believe these 581

findings can offer a novel perspective on how to bet- 582

ter harness the potential of LLMs. In the future, we 583

plan to apply IAG to more NLP tasks and explore 584

multimodal knowledge-augmented generation. 585
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Limitations586

While this study has demonstrated significant587

achievements in QA tasks, there are notable limita-588

tions:589

Tasks. The proposed methods in the study are spe-590

cialized specifically for QA. It remains unknown591

how effective they would be in other types of592

knowledge-intensive tasks, such as fact-checking593

or dialogue systems. Further validation is needed594

to assess the generalizations and applicability of595

this approach.596

Multimodal. We have only considered imagined597

text and hidden representations. In future work, it598

is imperative to explore multimodal information599

including the impact of imagining images on per-600

formance.601

Method. Our method relies on the knowledge602

learned by LLMs in the pre-training phase, which603

may limit the model’s ability to quickly adapt to604

new information. The dependency on internal605

knowledge activation in IAG may lead to a less606

transparent decision-making process in the model,607

making it challenging to explain the logic behind608

the generated answers. In the future, there is a need609

to continue exploring adaptive knowledge enhance-610

ment methods to optimize results further.611

Ethical Considerations612

In this paper, we proposed a novel knowledge en-613

hancement method aimed at leveraging the knowl-614

edge of LLMs. However, LLMs may generate615

inappropriate or discriminatory knowledge. Our616

approach does not introduce ethical concerns. The617

datasets we used are public, and there are no pri-618

vacy issues.619
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A Method931

A.1 Comparison of Three Paradigms932

Compared to RAG and GAG, our method has cer-933

tain limitations, such as requiring a more complex934

training process and the necessity of training a935

model. Similar to the GAG method, which uses a936

master’s degree in law as a knowledge base, our937

method also struggles to generate content when938

encountering new and unknown world knowledge,939

which presents a challenge that needs to be ad-940

dressed. Additionally, the knowledge base might941

be affected by knowledge gaps in low-resource942

settings where there is a lack of a comprehensive943

knowledge base.944

Next, we compare IAG, RAG, and GAG across945

four criteria for a more intuitive understanding.946

From the table 4, it can be observed that the docu-947

ment relevance obtained by IAG and GAG is higher,948

while RAG heavily relies on the retriever and exter-949

nal knowledge base. In terms of document length950

usage, IAG only needs to use a virtual document,951

greatly reducing the number of tokens. Therefore,952

IAG is superior to the other two methods in terms953

of reasoning time.954

A.2 Context Generator955

There are two main goals in the pre-training of the956

model in the first stage of IAG (context generator):957

first, to improve its ability as a document generator958

by learning to generate rich and concise documents;959

second, to introduce some external knowledge that960

the model initially does not possess. It’s worth961

noting that the second goal is crucial, as the model962

may encounter knowledge it has not yet learned. 963

Thus, IAG does not rely on external large models or 964

retrievers for external reasoning and can complete 965

reasoning independently. 966

A.3 Hypernetwork 967

Hypernetworks have gained significant attention 968

in recent years due to their potential to enhance 969

various aspects of neural network performance. In 970

this section, we analyze the reasons for employing 971

hypernetworks in detail: 972

Hypernetworks, which are neural networks de- 973

signed to generate the weights of other networks, 974

allow for dynamic adjustment of model parame- 975

ters. This adaptability enables the model to better 976

suit different tasks and datasets, thereby improv- 977

ing overall performance. By utilizing hypernet- 978

works, the number of models that need to be trained 979

individually can be significantly reduced. Tradi- 980

tional methods require separate models for each 981

task, whereas hypernetworks can generate weights 982

for multiple tasks. This capability enhances train- 983

ing efficiency. In our task, we use hypernetworks to 984

generate adapters for the question and input, which 985

are then inserted into the model. This helps the 986

model incorporate the knowledge targeted by the 987

question, corresponding to implicit imagination. 988

Compared to traditional efficient fine-tuning, this 989

process is more aligned with the goal of imagina- 990

tion. 991

Hypernetworks can capture the commonalities 992

and differences between various tasks by learn- 993

ing to generate weights. This ability to general- 994

ize across tasks improves the model’s performance 995

on unseen data, making it more robust in diverse 996

scenarios. In multi-task learning or meta-learning 997

scenarios, hypernetworks can considerably reduce 998

the need for storing multiple independent models. 999

A hypernetwork only needs to store a single gen- 1000

erating network and some shared parameters, thus 1001

significantly decreasing the storage space required. 1002

Hypernetworks can quickly generate new weights 1003

to adapt to new tasks as they arise. This rapid 1004

adaptation capability is particularly useful in ap- 1005

plications that require frequent updates or expan- 1006

sions. In our experiments 4.5, we also found that 1007

using a hypernetwork can significantly enhance 1008

the generalization ability for tasks. This is be- 1009

cause it not only retains knowledge within the 1010

domain-specific modules but also learns to gen- 1011

erate question-targeted knowledge to be inserted 1012
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Document Relevance Context Length Inference Time Inference Dependence

RAG Medium Too Long Very High Retriever
GAG High Long High Larger Model (InstructGPT)
IAG High Short Low None

Table 4: Comparison of Different Paradigms

into the model.1013

B Experimantal Settings1014

B.1 Background1015

Our task formulation follows retrieval augmented1016

models for QA (Guu et al., 2020; Sachan et al.,1017

2021). Let V∗ denote the infinite set, encompass-1018

ing all potential strings over the tokens in vocab-1019

ulary V , and this includes the empty string. An1020

instance within a QA dataset is defined as a triplet1021

(q, a, c) comprising question q, answer a, and con-1022

text c, where q, a, c ∈ V∗. Conventionally, the1023

context c is drawn from the knowledge corpus Z ,1024

like Wikipedia, whereby Z ⊂ V∗.1025

The goal of QA is to learn a distribution func-1026

tion, represented as p(a|q), wherein the models1027

decode a string a that serves as an abstractive an-1028

swer to a given query q. In a closed-book setting,1029

LLMs directly encode the given question and pre-1030

dict the answer (Roberts et al., 2020b). Specifi-1031

cally, considering the context c as the empty string,1032

the reliance is solely on the model parameters, i.e.,1033

â = argmaxa∈V∗ p(a|q, θ), where θ represents the1034

LLMs’ parameters. However, employing a direct1035

approach of requesting models to output answers1036

frequently results in subpar performance, primar-1037

ily attributable to omitting a substantial amount1038

of world knowledge during the process. There-1039

fore, a popular approach is open domain setting,1040

which marginalizes p(a|q, c) over contexts c in the1041

knowledge corpus (Lewis et al., 2020; Sachan et al.,1042

2021) or generated from models (Yu et al., 2023).1043

Given the computational infeasibility of calculating1044

probabilities for all contexts, p(a|q, c) is approxi-1045

mated to the sum of probabilities for top k contexts,1046

i.e., p(a|q, c) =
ci∈c∑

c∈TopK(q)

p(a|q, ci)p(ci|q), where1047

Topk(q) denotes the set of resulting top k passages1048

after the retrieval or generated with a query q.1049

B.2 Prompts for Explicit Imagine with LLMs1050

The prompt for explicit imagination of the context1051

generator to imagine a short dummy useful docu-1052

ment is: 1053

Imagine contexts based on the question: \n input 1054

\n Contexts: \n 1055

Table 11 shows the full prompts for zero-shot 1056

results on LLM that we use for open domain QA: 1057

NQ, TQA, WQ. 1058

Models Docu-
ments Steps Lr Batch

Size
T5 0 40000 1e-4 8
LoRA-Base 0 40000 5e-4 8
IMcQA 0 50000 1e-3 8
LoRA-l 0 40000 1e-4 4
IMcQA-l 0 50000 5e-4 4
FiD-3b 0 40000 1e-4 2
LoRA-3b 0 40000 1e-4 4
IMcQA 0 50000 1e-4 1
LoRA-Base 0† 40000 5e-4 8
IMcQA 0† 50000 1e-3 8
LoRA-l 0† 40000 1e-4 4
IMcQA-l 0† 50000 5e-4 4
LoRA-3b 0† 40000 1e-4 2
IMcQA-3b 0† 50000 1e-4 1
IMcQA 10 50000 5e-4 1
IMcQA-l 10 50000 5e-4 1
FiD-3b 10 40000 1e-4 1
IMcQA-3b 10 50000 1e-4 1

Table 5: Hyperparameter Settings.

B.3 Implementations 1059

In this section, we describe the implementation of 1060

our experiments in detail, including the baseline 1061

methods, backbone models, and hyperparameters. 1062

Our model is built based on the T5 (Roberts et al., 1063

2020a). Differing from fine-tuning all model pa- 1064

rameters θ of the updated Pre-trained Language 1065

Model (LLM), LoRA (Hu et al., 2021) freezes 1066

all pre-trained Transformer parameters and opti- 1067

mizes only the parameters of each LoRA adapter. 1068

We employ LoRA to train a parameter-efficient 1069

fine-tuning baseline. Drawing from this, our ap- 1070
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Models # Docu- NQ TQA WQ
ments NQ TQA WQ NQ TQA WQ NQ TQA WQ

T5 0 22.16 3.18 4.12 2.65 21.8 3.15 0.88 2.95 28.3
LoRA-Base 0 16.17 4.71 6.89 3.15 21.16 0.00 1.33 3.04 26.38
IMcQA 0 23.89 6.21 10.94 5.31 22.69 6.30 3.23 5.10 30.31
LoRA-Base 1† 37.17 45.20 15.62 19.57 55.37 12.50 14.15 30.89 28.88
IMcQA 1† 40.14 46.61 18.92 24.78 60.75 12.82 17.70 35.24 41.06
FiD 10 46.81 53.93 24.02 28.57 63.32 17.83 18.81 41.88 41.78
IMcQA 10 47.01 55.74 24.13 31.77 64.95 19.52 24.43 48.10 46.36
T5-l 0 28.5* 3.18 4.12 2.65 28.7* 3.15 0.88 2.95 30.6*
LoRA-l 0 17.70 7.49 8.66 3.54 23.87 4.72 0.00 5.65 29.13
IMcQA-l 0 29.32 10.17 14.06 7.02 30.11 7.81 2.65 7.06 32.68
LoRA-l 1† 37.61 48.50 20.71 20.54 62.71 14.81 15.36 33.83 39.37
IMcQA-l 1† 42.32 54.80 22.05 26.11 65.48 18.11 18.58 47.46 45.28
FiD-l 10 46.7* 57.93 25.12 34.29 61.9* 19.64 27.65 53.87 48.1*
IMcQA-l 10 49.92 60.03 25.79 34.35 69.67 20.28 30.19 54.94 51.52

Table 6: OOD results. The primary row in the table header delineates the dataset trained, while the underscored sec-
ondary row demonstrates the in-distribution performance. IMcQA attains optimal performance both in-distribution
and OOD under diverse document configurations.

proach updates only the parameters of the Hyper-1071

network to generate the weights for each LoRA1072

adapter. This method is adopted based on Lon-1073

gLoRA’s (Chen et al., 2023) recommendations and1074

experimental findings, demonstrating improved per-1075

formance when the normalization and FFN layers1076

components are updated. This is because: 1) dy-1077

namically generating LoRA weights enhances gen-1078

eralization and parameter sharing, and 2) LoRA1079

performs comparably to fine-tuning but mitigates1080

the risk of catastrophic forgetting.1081

For the baseline, most of the hyperparameters are1082

the default parameters of FiD (Izacard and Grave,1083

2021). For LoRA (Hu et al., 2021), add the LoRA1084

module only to the QV of the attention layers and1085

also release the normalization and FFN layers.1086

We consider conducting experiments using three1087

different sizes of T5, namely T5-base, T5-large, T5-1088

3b, and Llama2-7B, Llama2-13B (Touvron et al.,1089

2023). Due to memory constraints and online dis-1090

tillation limitations, A100 supports processing 201091

documents for T5-3b, while Llama2 does not sup-1092

port distillation. All experiments with T5-3b are1093

conducted on 2 A100 GPUs, T5-large on 2 A60001094

GPUs, and T5-Base on 2 RTX 3090 GPUs. How-1095

ever, experiments with Llama2-7b and 13b, except1096

for IMcQA on 2 A100 GPUs, are tested on 8 RTX1097

3090 GPUs.1098

B.3.1 Hyperparameters 1099

The detailed hyperparameter setting is as shown in 1100

Table 5. For the LoRA modules, we set the α 32 1101

and the lora rank 32. 1102

B.3.2 Baselines 1103

DPR (Karpukhin et al., 2020) generates by search- 1104

ing for the most relevant documents through dense 1105

vector space representation. 1106

FiD (Izacard and Grave, 2021) retrieve relevant 1107

documents and send them separately to the En- 1108

coder, then fuse the information in the Decoder. 1109

RFiD (Wang et al., 2023a) uses the encoder of FiD 1110

to distinguish between causal and incidental fea- 1111

tures, and guides the decoder to generate answers 1112

based on this distinction. 1113

EAR (Chuang et al., 2023) significantly enhances 1114

the traditional sparse retrieval method BM25 by 1115

connecting query expansion models and retrievers. 1116

FILCO (Wang et al., 2023d) identifies useful 1117

context based on lexical and information-theoretic 1118

methods. 1119

GENREAD (Yu et al., 2023) prompt LLMs like 1120

InstructGPT (Ouyang et al., 2022) to generate a 1121

large number of relevant documents and let the 1122

reader process them. 1123

LoRA We use LoRA (Hu et al., 2021) to obtain 1124

an efficiently fine-tuned baseline and compare it 1125

with our method. 1126
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B.3.3 Evaluation1127

For QA datasets, we choose the exact match (EM)1128

score (Rajpurkar et al., 2016) as the evaluation1129

metric. An answer is deemed correct if it aligns1130

with any of the responses in the list of accept-1131

able answers after normalization. Normalization1132

involves transforming the text into lowercase, omit-1133

ting articles, punctuation, and eliminating redun-1134

dant spaces.1135

Dataset Train Dev Test

WebQ 3,417 361 2,032
NQ 79,168 8,757 3,610
TQA 78,785 8,837 11,313

Table 7: Open-Domain QA dataset statistics

B.4 Downstream Evaluation Datasets1136

We use the following three Open-Domain QA for1137

the experiments (§ 4.1).1138

• NaturalQuestions (Kwiatkowski et al., 2019)1139

contains questions corresponding to Google1140

search queries. The open-domain version of1141

this dataset is obtained by discarding answers1142

with more than 5 tokens, each accompanied1143

by a Wikipedia article containing the answer.1144

• TriviaQA (Joshi et al., 2017) contains ques-1145

tions gathered from trivia and quiz-league1146

websites. The unfiltered version of TriviaQA1147

is used for open-domain question answering,1148

each question is accompanied by pages from1149

web and Wikipedia searches that may contain1150

the answer.1151

• WebQuestions (Berant et al., 2013) contains1152

questions from web queries matched to corre-1153

sponding entries in FreeBase (Bollacker et al.,1154

2008).1155

Table 7 presents detailed statistics of the dataset1156

sizes, including the training, development, and test1157

sets. We note that all our models are trained ex-1158

clusively on the training data, and we did not in-1159

clude the development data in our training process.1160

Therefore, the performance numbers reported in1161

the paper for the dev and test data are independent1162

of the training data.1163

Figure 6: Zero-Shot results (EM, %) of Llama2-13B
on three open-domain QA datasets. The number in
parentheses indicates the number of documents used.

C Full Experimental Results 1164

C.1 Supervised Performance 1165

As shown in Table 12, our initial observations in- 1166

dicate that regardless of the method implemented, 1167

supplying a certain quantity of related documents 1168

can expedite improvement and enhance perfor- 1169

mance in QA. FiD (Izacard and Grave, 2021) 1170

model outclasses all baseline models in perfor- 1171

mance. Notably, utilizing FiD-xl with a mere 10 1172

documents yields performance on par with that 1173

attained through the use of FiD-l with 100 docu- 1174

ments. Larger models not only encapsulate more 1175

knowledge but also demonstrate a superior ability 1176

to activate and apply this knowledge efficiently. 1177

Additionally, in comparison with LoRA (Hu 1178

et al., 2021) methods, IMcQA enhances EM scores 1179

by an average of +2.2%. In the closed-book set- 1180

ting, the LoRA method manifests a substantial de- 1181

crease in performance, likely attributable to the 1182

inadequacy of learning sufficient knowledge via 1183

questions for storage in the LoRA module. On 1184

the other hand, IMcQA harnesses both explicit and 1185

implicit imaginations to exploit knowledge for im- 1186

proved outcomes. These results indicate that the 1187

knowledge stored in the LLMs’ parameters can still 1188

be further exploited. 1189

C.2 OOD Results 1190

Table 6 shows the full OOD results in QA. It can be 1191

observed that our method has the best OOD gener- 1192

alization ability on all three benchmarks. Although 1193

LoRA performs well on the in-distribution part, its 1194

performance is generally poor on OOD, with some 1195

even showing negative performance. This high- 1196

lights the importance of the domain adaptability 1197

of the implicit imagination Hypernetwork in our 1198

method, which generates LoRA adapter weights 1199
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Figure 7: Zero-Shot results (Best_Subspan EM, %) of
Llama2-7B on three open-domain QA datasets.

based on input.1200

C.3 Zero-Shot Results1201

LLMs have limited capacity to utilize extensive1202

context effectively and are prone to generating il-1203

lusions and redundant content. Best_subspan EM1204

assesses whether the answer is included in the out-1205

put. Previous studies have corroborated that LLMs1206

encapsulate a considerable volume of knowledge1207

and exhibit robust performance in QA.1208

Here, we report the Best_Subspan_EM values of1209

Llama2-7B and Llama2-13B on three QA datasets.1210

From Figure 7 and Figure 8, it can be observed that1211

Best_Subspan_EM significantly improves, but the1212

EM values are relatively small. This indicates that1213

LLMs may not effectively utilize retrieval docu-1214

ments and are prone to outputting a lot of irrelevant1215

information. Therefore, there is an urgent need to1216

explore efficient techniques that leverage external1217

information and internal knowledge.1218

However, the model did exhibit a weak adher-1219

ence to instructions, often failing to output the exact1220

answer. Remarkably, Llama2-13B displayed a de-1221

cline in EM with increased document length on the1222

WQ dataset, whereas the Best_Subspan_EM value1223

augmented. Contrarily, our method excelled in ex-1224

tracting key information by using text imagination1225

during the compression phase.1226

C.4 OOD and Ablation Experiment Results1227

Here, we supplement the experimental results of1228

LoRA and IMcQA under supervised fine-tuning1229

in closed-book settings and the ablation results of1230

feedforward neural network (FFN) and Long Con-1231

Figure 8: Zero-Shot results (Best_Subspan EM, %) of
Llama2-13B on three open-domain QA datasets.

Model NQ TriviaQA WebQ
LLaMA-2-7B

Zero-shot 8.6 14.5 2.6
DPR + ICL 18.3 32.5 15.6
DPR + RECITE (Sun et al., 2023) 16.8 43.9 24.8
DPR + HICL (Wang et al., 2024) 25.1 47.5 28.1
DPR + ImcQA (Ours) 33.7 44.5 31.9

Table 8: Zero-shot results of Llama2-7B

text Distillation (LCD). It can be observed that our 1232

method like LoRA, belongs to parameter-efficient 1233

fine-tuning, and because we share the Hypernet- 1234

work to generate LoRA adapter weights, we fine- 1235

tune fewer parameters. 1236

From Table 9, it can be seen that releasing FFN 1237

can bring more performance improvement, pos- 1238

sibly because adding LoRA in Attention cannot 1239

fully utilize enough knowledge (Yao et al., 2022). 1240

With the support of LCD, performance is further 1241

improved, with an average increase in EM of +5%. 1242

This also proves the effectiveness of our proposed 1243

LCD. In comparison with IMcQA and LoRA, it 1244

becomes more evident that LoRA tends to transfer 1245

knowledge to the LoRA module, resulting in low 1246

generalization. Our method enhances knowledge 1247

activation through dynamic generation, showing 1248

significant effects not only in-distribution but also 1249

in OOD. 1250

C.5 Error Analysis 1251

Using LLM as a knowledge base inevitably leads 1252

to hallucinations, which is a significant area of 1253

research in LLM development. In our quality anal- 1254

ysis, we sampled 100 generated documents. As 1255

shown in Table 10, we found that hallucinations 1256

occurred with a probability of 4%, while the occur- 1257
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rence of meaningless text, such as repeated values,1258

was 6%. Consequently, the impact of hallucina-1259

tions in our method is relatively minor.1260
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Models # Docu- Trainable NQ TQA WQ
ments Params NQ TQA WQ NQ TQA WQ NQ TQA WQ

T5 0 220M 22.16 3.18 4.12 2.65 21.8 3.15 0.88 2.95 28.3
LoRA-Base 0 28.3M 5.43 3.15 4.02 0.00 9.60 0.00 0.22 1.77 20.47

w FFN 0 141.5M 16.17 4.71 6.89 3.15 21.16 0.00 1.33 3.04 26.38
w FFN & LCD 0 141.5M 21.37 2.82 6.89 1.99 17.94 3.74 0.00 2.82 32.50

IMcQA 0 26.1M 5.31 3.82 5.71 0.22 10.34 2.12 0.55 2.30 16.58
w FFN 0 139.3M 21.05 4.52 6.50 3.51 19.08 3.15 2.11 3.84 28.17
w FFN & LCD 0 141.5M 23.89 6.21 10.94 5.31 22.69 6.30 3.23 5.10 30.31

T5-l 0 770M 28.5* 3.18 4.12 2.65 28.7* 3.15 0.88 2.95 30.6*
LoRA-l 0 42.5M 4.42 6.50 7.87 3.98 10.03 3.94 1.99 6.71 18.11

w FFN 0 445.1M 17.70 7.49 8.66 3.54 23.87 4.72 0.00 5.65 29.13
w FFN & LCD 0 445.1M 28.32 4.52 10.94 5.31 25.71 6.12 1.75 4.52 29.92

IMcQA-l 0 34.8M 7.08 8.90 9.45 4.42 13.14 8.66 2.43 10.17 17.72
w FFN 0 437.5M 23.01 8.33 11.02 3.51 20.08 3.15 3.51 5.65 31.50
w FFN & LCD 0 437.5M 29.32 10.17 14.06 7.02 30.11 7.81 2.65 7.06 32.68

Table 9: OOD and ablation experiment results. * denotes the results are from the existing papers and LCD denotes
Long Context Distillation.

Hallucinations Meaningless

4% 6%

Question: When is the next Deadpool movie being released? Question: Who got the first Nobel Prize in Physics?
Document: "Deadpool (film) Deadpool is a 2016 American
superhero film based on the Marvel Comics character of the same
name, produced by Marvel Studios and distributed by Walt
Disney Studios Motion Pictures.

Document: The Nobel Prize is not a prize in itself.

Correct answer: May 18, 2018 Correct answer: Wilhelm Conrad Röntgen

Table 10: Hallucinations and Meaningless Analysis.

Methods Prompt

CBQA

Please write a high-quality answer for the given question using your knowledge.
Only give me the answer and do not output any other words.
Question: {question}
Answer:

Retrieval

Please write a high-quality answer for the given question using only the provided
search results (some of which might be irrelevant). Only give me the answer
and do not output any other words.
Context: {context}
Answer the question based on the given passages.
Question: {question}
Answer:

Imagine

Please write a high-quality answer for the given question using your knowledge
and the provided imagined compressed results (some of which might be irrelevant).
Only give me the answer and do not output any other words.
Imagined Context: {context}
Answer the question based on your knowledge and the given imagined context.
Question: {question}
Answer:

Table 11: Prompts for different methods on Zero-Shot setting. CBQA denotes closed-book QA that just prompts
the model with the question.
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Models Reader
Params

# Docu-
ments NQ TriviaQA WebQ

# Closed-book Setting
T5∗ (Roberts et al., 2020a) 220M 0 25.9 23.8 27.9
T5-l∗ (Roberts et al., 2020a) 770M 0 28.5 28.7 30.6
T5-xl (Roberts et al., 2020a) 3b 0 28.30 33.92 34.43
LoRA-Base 220M 0 16.17 21.16 26.38
LoRA-l 770M 0 17.70 23.87 29.13
LoRA-xl 3b 0 23.15 32.16 35.24
IMcQA (Ours) 220M 0 23.89 22.69 30.31
IMcQA-l (Ours) 770M 0 29.32 30.11 32.68
IMcQA-xl (Ours) 3b 0 29.59 35.71 37.40
# Retrieval Augmented Generation
DPR∗ (Karpukhin et al., 2020) 110M 100 41.5 56.8 41.1
RAG∗ (Lewis et al., 2020) 400M 10 44.5 56.1 45.2
FiD∗ (Izacard and Grave, 2021) 220M 100 48.2 65.0 46.71
FiD-l∗ (Izacard and Grave, 2021) 770M 100 51.4 67.6 50.52
FiD-xl (Izacard and Grave, 2021) 3b 20 55.18 72.92 52.85
FiD-l∗ (Izacard and Grave, 2021) 770M 10 46.7 61.9 48.1
FiD-xl∗ (Izacard and Grave, 2021) 3b 10 50.1 66.3 50.8
EAR-l (Chuang et al., 2023) 770M 10 39.6 60.0 -
EAR-xl∗ (Chuang et al., 2023) 3b 10 42.3 64.6 -
RFiD-l (Wang et al., 2023a) 770M 10 48.3 63.4 -
RFiD-xl (Wang et al., 2023a) 3b 10 50.5 67.8 -
FILCO-xl∗ (Wang et al., 2023d) 3b 1 44.7 59.0 -
IMcQA (Ours) 220M 10 47.01 64.95 46.36
IMcQA-l (Ours) 770M 10 49.92 69.67 51.52
IMcQA-xl (Ours) 3b 5‡ 50.87 70.34 52.78
IMcQA-l (Ours) 770M 30 53.1 70.5 52.0
# Generation Augmented Generation
GENREAD-l (sampling)∗ (Yu et al., 2023) 770M 10† 40.3 67.8 51.5
GENREAD-l (clustering)∗ (Yu et al., 2023) 770M 10† 43.5 70.2 53.5
GENREAD-xl (sampling)∗ (Yu et al., 2023) 3b 10† 42.6 69.6 52.6
GENREAD-xl (clustering)∗ (Yu et al., 2023) 3b 10† 45.6 71.6 54.4
IMcQA (Ours) 220M 10† 46.22 66.70 51.43
IMcQA-l (Ours) 770M 10† 48.83 70.85 54.52
IMcQA-xl (Ours) 3b 5†‡ 49.23 72.18 55.39
# Imagination Augmented Generation (Ours)
LoRA-Base 220M 1† 34.51 54.05 32.28
LoRA-l 770M 1† 40.05 62.81 43.70
LoRA-xl 3b 1† 44.15 66.92 48.23
IMcQA 220M 1† 40.14 60.75 41.73
IMcQA-l 770M 1† 42.32 65.48 45.28
IMcQA-xl 3b 1† 46.51 68.38 50.45

Table 12: Full QA performances (%) of different methods on three datasets. The first part (closed-book setting)
indicates that explicit documentation was not utilized; The latter three parts utilize explicit augmented documents.
The best results are in bold. * means that those results are from existing papers, † denotes that the number of
documents is generated (‡ indicates that the number of documents is reduced due to insufficient memory for
distillation).
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