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Abstract. The purpose of this work is to contribute to the state of the
art of deep-learning methods for diffeomorphic registration. We propose
an adversarial learning LDDMM method for pairs of 3D mono-modal im-
ages based on Generative Adversarial Networks. The method is inspired
by the recent literature on deformable image registration with adversar-
ial learning. We combine the best performing generative, discriminative,
and adversarial ingredients from the state of the art within the LDDMM
paradigm. We have successfully implemented two models with the sta-
tionary and the EPDiff-constrained non-stationary parameterizations of
diffeomorphisms. Our unsupervised learning approach has shown com-
petitive performance with respect to benchmark supervised learning and
model-based methods.
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ative Adversarial Networks, geodesic shooting, stationary velocity fields.

1 Introduction

Since the 80s, deformable image registration has become a fundamental problem
in medical image analysis [1]. A vast literature on deformable image registration
methods exists, providing solutions to important clinical problems and applica-
tions. Up to the ubiquitous success of methods based on Convolutional Neural
Networks (CNNs) in computer vision and medical image analysis, the great ma-
jority of deformable image registration methods were based on energy minimiza-
tion models [2]. This traditional approach is model-based or optimization-based,
in contrast with recent deep-learning approaches that are known as learning-
based or data-based. Diffeomorphic registration constitutes the inception point
in Computational Anatomy studies for modeling and understanding population
trends and longitudinal variations, and for establishing relationships between
imaging phenotypes and genotypes in Imaging Genetics [3, 4]. Model-based dif-
feomorphic image registration is computationally costly. In fact, the huge com-
putational complexity of large deformation diffeomorphic metric mapping (LD-
DMM) [5] is considered the curse of diffeomorphic registration, where very orig-
inal solutions such as the stationary parameterization [6–8], the EPDiff con-
straint on the initial velocity field [9], or the band-limited parameterization [10]
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have been proposed to alleviate the problem. Since the advances that made it
possible to learn the optical flow using CNNs (FlowNet [11]), dozens of deep-
learning data-based methods have been proposed to approach the problem of
deformable image registration in different clinical applications [12], some specifi-
cally for diffeomorphic registration [13–22]. Overall, all data-based methods yield
fast inference algorithms for diffeomorphism computation once the difficulties
with training have been overcome. Generative Adversarial Networks (GANs)
is an interesting unsupervised approach where some interesting proposals for
non-diffeomorphic deformable registration have been made [23] (2D) and [24,
25] (3D). GANs have also been used for diffeomorphic deformable template gen-
eration [26], where the registration sub-network is based on an established U-net
architecture [22, 27], or for finding deformations for other purposes like interpre-
tation of disease evidence [28]. A GAN combines the interaction of two different
networks during training: a generative network and a discrimination network.
The generative network itself can be regarded as an unsupervised method that,
once included in the GAN system, is trained with the feedback of the discrimina-
tion network. The discriminator helps further update the generator during train-
ing with information regarding how the appearance of plausible warped source
images. The main contribution of this work is the proposal of a GAN-based
unsupervised learning LDDMM method for pairs of 3D mono-modal images,
the first to use GANs for diffeomorphic registration. The method is inspired by
the recent literature for deformable image registration with adversarial learn-
ing [24, 25] and combines the best performing components within the LDDMM
paradigm. We have successfully implemented two models for the stationary and
the EPDiff-constrained non-stationary parameterizations and demonstrate the
effectiveness of our models in both 2D simulated and 3D real brain MRI data.

2 Background on LDDMM

Let Ω ⊆ Rd be the image domain. Let Diff(Ω) be the LDDMM Rieman-
nian manifold of diffeomorphisms and V the tangent space at the identity el-
ement. Diff(Ω) is a Lie group, and V is the corresponding Lie algebra [5].
The Riemannian metric of Diff(Ω) is defined from the scalar product in V ,
⟨v, w⟩V = ⟨Lv,w⟩L2 , where L is the invertible self-adjoint differential operator
associated with the differential structure of Diff(Ω). In traditional LDDMM
methods, L = (Id − α∆)s, α > 0, s ∈ R [5]. We will denote with K the inverse
of operator L. Let I0 and I1 be the source and the target images. LDDMM is
formulated from the minimization of the variational problem

E(v) =
1

2

∫ 1

0

⟨Lvt, vt⟩L2dt+
1

σ2
∥I0 ◦ (ϕv

1)
−1 − I1∥2L2 . (1)

The LDDMM variational problem was originally posed in the space of time-
varying smooth flows of velocity fields, v ∈ L2([0, 1], V ). Given the smooth flow
v : [0, 1] → V , vt : Ω → Rd, the solution at time t = 1 to the evolution equation

∂t(ϕ
v
t )

−1 = −vt ◦ (ϕv
t )

−1 (2)
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with initial condition (ϕv
0)

−1 = id is a diffeomorphism, (ϕv
1)

−1 ∈ Diff(Ω). The
transformation (ϕv

1)
−1, computed from the minimum of E(v), is the diffeomor-

phism that solves the LDDMM registration problem between I0 and I1. The
most significant limitation of LDDMM is its large computational complexity. In
order to circumvent this problem, the original LDDMM variational problem is
parameterized on the space of initial velocity fields

E(v0) =
1

2
⟨Lv0, v0⟩L2 +

1

σ2
∥I0 ◦ (ϕv

1)
−1 − I1∥2L2 . (3)

where the time-varying flow of velocity fields v is obtained from the EPDiff
equation

∂tvt +K[(Dvt)
T · Lvt +DLvt · vt + Lvt · ∇ · vt] = 0 (4)

with initial condition v0 (geodesic shooting). The diffeomorphism (ϕv
1)

−1, com-
puted from the minimum of E(v0) via Equations 4 and 2, verifies the momentum
conservation constraint (MCC) [29], and, therefore, it belongs to a geodesic path
on Diff(Ω). Simultaneously to the MCC parameterization, a family of methods
was proposed to further circumvent the large computational complexity of the
original LDDMM [6–8]. In all these methods, the time-varying flow of velocity
fields v is restricted to be steady or stationary [30]. In this case, the solution
does not belong to a geodesic.

3 Generative Adversarial Networks for LDDMM

Similarly to model-driven approaches for estimating LDDMM diffeomorphic reg-
istration, data-driven approaches for learning LDDMM diffeomorphic registra-
tion aim at the inference of a diffeomorphism (ϕv

1)
−1 such that the LDDMM en-

ergy is minimized for a given (I0, I1) pair. In particular, data-driven approaches
compute an approximation of the functional

S(argmin
v∈V

E(v, I0, I1)) (5)

where S represents the operations needed to compute (ϕv
1)

−1 from v, and the
energy E is either given by Equations 1 or 3. The functional approximation is
obtained via a neural network representation with parameters learned from a
representative sample of image pairs. Unsupervised approaches assume that the
LDDMM parameterization in combination with the minimization of the energy
E considered as a loss function are enough for the inference of suitable diffeomor-
phic transformations after training. Therefore, there is no need for ground truth
deformations. GAN-based approaches depart from unsupervised approaches by
the definition of two different networks: the generative network (G) and the dis-
crimination network (D), and are trained in an adversarial fashion as follows.
The discrimination network D learns to distinguish between a warped source
image I0 ◦ (ϕv

1)
−1 generated by G and a plausible warped source image. It is

trained using the loss function

LD =

{
− log(p) c ∈ P+

− log(1− p) c ∈ P− (6)
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where c indicates the input case, P+ and P− indicate positive or negative cases
for the GAN, and p is the probability computed by D for the input case. In the
first place, D is trained on a positive case c ∈ P+ representing a target image
I1 and a warped source image Iw0 plausibly registered to I1 with a diffeomor-
phic transformation. The warped source image is modeled from I0 and I1 with
a strictly convex linear combination: Iw0 = βI0 + (1− β)I1. It should be noticed
that, although the warped source image would ideally be I1, the selection of
Iw0 = I1 (e.g. β = 0) empirically leads to the discriminator rapidly outperform-
ing the generator. This approach to discriminators has been successfully used in
adversarial learning methods for deformable registration [25]. Next, D is trained
on a negative case c ∈ P− representing a target image I1 and a warped source
image Iw0 obtained from the generator network G. The generative network in this
context is the diffeomorphic registration network. G is aimed at the approxima-
tion of the functional given in Equation 5 similarly to unsupervised approaches
for the inference of (ϕv

1)
−1. It is trained using the combined loss function

LG = Ladv + λE(v, I0, I1). (7)

where Ladv is the adversarial loss function, defined from Ladv = − log(p) where
p is computed from D; E is the LDDMM energy given by Equations 1 or 3; and
λ is the weight for balancing the adversarial and the generative losses. For each
sample pair (Iw0 , I1), G is fed with the pair of images and updates the network
parameters from the back-propagation of the information of the loss function
values coming from the LDDMM energy and the discriminator probability of
being a pair generated by G.

3.1 Proposed GAN architecture

Generator network. In this work, the diffeomorphic registration network G is
intended to learn LDDMM diffeomorphic registration parameterized on the space
of steady velocity fields or the space of initial velocity fields subject to the EPDiff
equation (Equation 4). The diffeomorphic transformation (ϕv

1)
−1 is obtained

from these velocity fields either from scaling and squaring [7, 8] or the solution
of the deformation state equation [5]. Euler integration is used as PDE solver for
all the involved differential equations. A number of different generator network
architectures have been proposed in the recent literature, with predominance of
simple fully convolutional (FC) [23] or U-Net like architectures [24, 25]. In this
work, we propose to use the architecture by Duan et al. [24] adapted to fit our
purposes. The network follows the general U-net design of utilizing an encoder-
decoder structure with skip connections. However, during the encoding phase,
the source and target images are fed to two encoding streams with different
resolution levels. The combination of the two encoding streams allows a larger
receptive field suitable to learn large deformations. The upsampling is performed
with a deconvolutional operation based on transposed convolutional layers [31].
We have empirically noticed that the learnable parameters of these layers help
reduce typical checkerboard GAN artifacts in the decoding [32].
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Discriminator network. The discriminator network D follows a traditional
CNN architecture. The two input images are concatenated and passed through
five convolutional blocks. Each block includes a convolutional layer, a RELU
activation function, and a size-two max-pooling layer. After the convolutions,
the 4D volume is flattened and passed through three fully connected layers. The
output of the last layer is the probability of the input images to come from a
registered pair not generated by G.

Generative-Discriminative integration layer. The generator and the dis-
criminator networks G and D are connected through an integration layer. This
integration layer allows calculating the diffeomorphism (ϕv

1)
−1 that warps the

source image I0. The selected integration layer depends on the velocity pa-
rameterization: stationary (SVF-GAN) or EPDiff-constrained time-dependent
(EPDiff-GAN). The computed diffeomorphisms are applied to the source image
via a second 3D spatial transformation layer [33] with no learnable parameters.

Parameter selection and implementation details We selected the parame-
ters λ = 1000, σ2 = 1.0, α = 0.0025, and s = 4 and a unit-domain discretization
of the image domain Ω [5]. Scaling and squaring and Euler integration were per-
formed in 8 and 10 time samples respectively. The parameter β for the convex
linear modeling of warped images was selected equal to 0.2. Both the generator
network and the discriminator network were trained with Adam’s optimizer with
default parameters and learning rates of 5e−5 for G and 1e−6 for D, respectively.
The experiments were run on a machine equipped with one NVidia Titan RTX
with 24 GBS of video memory and an Intel Core i7 with 64 GBS of DDR3 RAM,
and developed in Python with Keras and a TensorFlow backend.

Source Target DD SVF St. LDDMM SVF Flash V0 SVF-GAN SVF EPDiff-GAN V0

Fig. 1. Example of simulated 2D registration results. Up: source and target images of
five selected experiments. Down, left to right: deformed images and velocity fields com-
puted from diffeomorphic Demons (DD), stationary LDDMM (St. LDDMM), Flash,
and our proposed SVF-GAN and EPDiff-GAN. SVF stands for a stationary velocity
field and V0 for the initial velocity field of a geodesic shooting approach, respectively.
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4 Experiments and Results

2D simulated dataset. We simulated a total of 2560 torus images by varying
the parameters of two ellipse equations, similarly to [19]. The parameters were
drawn from two Gaussian distributions:N (4, 2) for the inner ellipse andN (12, 4)
for the outer ellipse. The simulated images were of size 64 × 64. The networks
were trained during 1000 epochs with a batch size of 64 samples.

3D brain MRI datasets. We used a total of 2113 T1-weighted brain MRI im-
ages from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The images
were acquired at the baseline visit and belong to all the available ADNI projects
(1, 2, Go, and 3). The images were preprocessed with N3 bias field correction,
affinely registered to the MNI152 atlas, skull-stripped, and affinely registered to
the skull-stripped MNI152 atlas. The evaluation of our generated GAN models
in the task of diffeomorphic registration was performed in NIREP dataset [34],
where one image was chosen as reference and pair-wise registration was per-
formed with the remaining 15. All images were scaled to size 176 × 224 × 176,
and in this case trained for 50 epochs with a batch size of 1 sample. Inference of
either a stationary or a time dependent velocity field takes 1.3 seconds.

Results in the 2D simulated dataset Figure 1 show the deformed images
and the velocity fields obtained in the 2D simulated dataset by diffeomorphic
Demons [7], a stationary version of LDDMM (St. LDDMM) [8], the spatial ver-
sion of Flash [10], and our proposed SVF and EPDiff GANs. Apart from diffeo-
morphic Demons that uses Gaussian smoothing for regularization, all the consid-
ered methods use the same parameters for operator L. Therefore, St. LDDMM
and SVF-GAN can be seen as a model-based and a data-based approach for the
minimization of the same variational problem. The same happens with Flash and
EPDiff-GAN. From the figure, it can be appreciated that our proposed GANs
are able to obtain accurate warps of the source to the target images, similarly to
model-based approaches. For SVF-GAN, the inferred velocity fields are visually
similar to model-based approaches in three of five experiments. For EPDiff-GAN,
the inferred initial velocity fields are visually similar to model-based approaches
in four of five experiments.

4.1 Results in the 3D NIREP dataset

Quantitative assessment Figure 2 shows the Dice similarity coefficients ob-
tained with diffeomorphic Demons [7], St. LDDMM [8], Voxelmorph II [16], the
spatial version of Flash [10], Quicksilver [14] and our proposed SVF and EPDiff
GANs. SVF-GAN shows an accuracy similar to St. LDDMM and competitive
with diffeomorphic Demons. Our proposed method tends to overpass Voxelmorph
II in the great majority of the structures. On the other hand, EPDiff-GAN shows
an accuracy similar to Flash and Quicksilver in the great majority of regions,
with the exception of the temporal pole (TP) and the orbital frontal gyrus
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Fig. 2. Evaluation in NIREP. Dice scores obtained by propagating the diffeomorphisms
to the segmentation labels on the 16 NIREP brain structures. Left, methods parameter-
ized with stationary velocity fields: diffeomorphic Demons (DD), stationary LDDMM
(St. LDDMM), Voxelmorph II, our proposed SVF-GAN with the two-stream architec-
ture, SVF-GAN without discriminator and SVF-GAN with a U-net. Right, geodesic
shooting methods: Flash, Quicksilver (QS), our proposed EPDiff-GAN, EPDiff-GAN
without discriminator, and EPDiff-GAN with a U-net.

(OFG), two small localized and difficult to register regions. Furthermore, the
two-stream architecture greatly improves the accuracy obtained by a simple U-
Net. SVF-GAN outperforms the ablation study model in which no discriminator
was used, though EPDiff-GAN only shows clear performance improvements in
some structures. It drives our attention that Flash underperformed in the supe-
rior frontal gyrus (SFG). All tested methods generate smooth deformations with
almost no foldings, as can be seen in table 1 from the supplementary material.

Qualitative assessment For a qualitative assessment of the quality of the
registration results, Figure 3 shows the sagittal and axial views of one selected
NIREP registration result. In the figure, it can be appreciated a high matching
between the target and the warped ventricles, and more difficult to register
regions like the cingulate gyrus (observable in the sagittal view) or the insular
cortex (observable in the axial view).

5 Conclusions

We have proposed an adversarial learning LDDMM method for the registration
of 3D mono-modal images. We have successfully implemented two models: one for
the stationary parameterization and the other for the EPDiff-constrained non-
stationary parameterization (geodesic shooting). The performed ablation study
shows how GANs improve the results of the proposed registration networks.
Furthermore, our experiments have shown that the inferred velocity fields are
comparable to the solutions of model-based approaches. In addition, the eval-
uation study has shown the competitiveness of our approach with state of the
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I0 I1 I0 − I1

SVF I0 ◦ (ϕv
1)−1 I0 ◦ (ϕv

1)−1 − I1

V0 I0 ◦ (ϕv
1)−1 I0 ◦ (ϕv

1)−1 − I1

I0 I1 I0 − I1

SVF I0 ◦ (ϕv
1)−1 I0 ◦ (ϕv

1)−1 − I1

V0 I0 ◦ (ϕv
1)−1 I0 ◦ (ϕv

1)−1 − I1

Fig. 3. Example of 3D registration results. First row, sagittal and axial views of the
source and the target images and the differences before registration. Second row, in-
ferred stationary velocity field, warped image, and differences after registration for
SVF-GAN. Third row, inferred initial velocity field, warped image, and differences af-
ter registration for EPDiff-GAN.

art model- and data- based methods. It should be remarked that our meth-
ods perform similarly to Quicksilver, a supervised method that uses patches for
training, and therefore, it learns in a rich-data environment. In contrast, our
method is unsupervised and uses the whole image for training in a data-hungry
environment. Indeed, our proposed methods outperform Voxelmorph II, an un-
supervised method for diffeomorphic registration usually selected as benchmark
in the state of the art. Finally, our proposal may constitute a good candidate for
the massive computation of diffeomorphisms in Computational Anatomy stud-
ies, since once training has been completed, our method shows a computational
time of over a second for the inference of velocity fields.
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