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Abstract

We focus on estimating causal effects of continuous treatments (e.g., dosage in
medicine), also known as dose-response function. Existing methods in causal
inference for continuous treatments using neural networks are effective and to some
extent reduce selection bias, which is introduced by non-randomized treatments
among individuals and might lead to covariate imbalance and thus unreliable
inference. To theoretically support the alleviation of selection bias in the setting
of continuous treatments, we exploit the re-weighting schema and the Integral
Probability Metric (IPM) distance to derive an upper bound on the counterfactual
loss of estimating the average dose-response function (ADRF), and herein the IPM
distance builds a bridge from a source (factual) domain to an infinite number of
target (counterfactual) domains. We provide a discretized approximation of the
IPM distance with a theoretical guarantee in the practical implementation. Based on
the theoretical analyses, we also propose a novel algorithm, called Average Dose-
response estiMatIon via re-weighTing schema (ADMIT). ADMIT simultaneously
learns a re-weighting network, which aims to alleviate the selection bias, and
an inference network, which makes factual and counterfactual estimations. In
addition, the effectiveness of ADMIT is empirically demonstrated in both synthetic
and semi-synthetic experiments by outperforming the existing benchmarks.

1 Introduction

Causal inference, which estimates causal effects from observational data, is a fundamental problem in
identifying causal reactions between actions/treatments and effects. It facilitates the decision-making
process in a wide variety of domains, such as economics [1], public policy [2], medicine [3, 4]
and advertising [5, 6]. Specifically, causal inference aims to estimate the causal effects of taking
different treatments (e.g., whether to take a medication or not), where neural network-based methods
have made a breakthrough in the binary setting [7, 8, 9, 10]. In real-world applications, e.g. a
medical experiment, treatments usually cannot be simplified as binary treatments since the dosage is a
critical factor for the effect of the medication. Compared with causal inference for binary treatments,
causal inference for continuous treatments, also known as dose-response estimation, deals with an
infinite number of treatments, resulting in an infinite number of counterfactuals, far more than one
counterfactual in the binary setting.

The success of neural networks on causal inference for binary treatments [11, 12, 13] can be attributed
in part to the alleviation of selection bias, which leads to unreliable counterfactual inference since the
covariates of subpopulations receiving different treatments are unbalanced due to non-randomized
treatments among them. Specifically, the two distributions of the treated and control groups can
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Figure 1: The framework of estimating ADRF using a re-weighting schema and IPM. The counter-
factual loss cannot be computed since counterfactual outcomes are not unobserved. In the figure,
unobservable variables and incomputable results are indicated by dotted rounded boxes and infeasible
computations are indicated by dashed arrows. We learn sample weights using a re-weighting network
to make the distributions of the subpopulation receiving treatment t and another subpopulation
receiving treatment s ∈ [0, 1], s 6= t be closer in the IPM distance, i.e., more similar, which results in
alleviating selection bias in the continuous treatment setting. We also learn an inference network to
make factual and counterfactual estimations. Then we exploit re-weighted factual loss and the IPM
distance to bound the counterfactual loss. Finally, we combine the factual loss and the bound of the
counterfactual loss as the ADRF loss, which is minimized to simultaneously learn the re-weighting
network and the inference network.

be balanced using Integral Probability Metric (IPM) [11] or re-weighting schemes [12, 13]. In
the continuous setting, since the control groups are potentially infinite, these standard methods for
alleviating selection bias in binary treatments cannot be easily extended to mitigate selection bias
among a theoretically infinite number of subpopulations.

Currently, Schwab et al. [14] propose the Dose Response Network (DRNet) that extends "two heads",
which are two outcomes in a neural network for making factual and counterfactual estimations
in the binary setting, to "multiple heads" for a continuous dosage by discretizing the dosage into
multiple intervals. Several regularization schemes in DRNet, such as distribution matching [7],
propensity dropout [15] and matching on balancing scores [16, 17], are exploited to handle selection
bias. However, these schemes are heuristic and do not provide theoretical evidence to back up their
intuition.

To theoretically support the alleviation of selection bias, this paper derives an upper bound on the
counterfactual loss during estimation of the average dose-response function (ADRF). The key points
of the derivation lie in the re-weighted factual loss obtained from observational data and an IPM
term that measures the distance between the factual (re-weighted) and counterfactual distributions, as
illustrated in Figure 1. The infinite number of counterfactual distributions is the main challenge since
the distance cannot be calculated with finite samples in practice. In the practical implementation,
we provide a discretized approximation of the IPM term and prove that the difference between
its approximate and true values converges to zero in probability under the assumption that the
distributions of subpopulations receiving different treatments shift smoothly. On the basis of the
derived upper bound and its implementation with a theoretical guarantee, we propose a novel
algorithm called Average Dose-response estiMatIon via re-weighTing schema (ADMIT). ADMIT
jointly learns an inference network and a re-weighting neural network to reduce selection bias while
making factual and counterfactual estimations. The effectiveness of ADMIT is empirically confirmed
by outperforming the existing benchmarks on both synthetic and semi-synthetic experiments in the
continuous treatment setting.

Our contributions in this paper are 4-fold: (1) to the best of our knowledge, this is the first study
that provides a generalization bound for estimating ADRF, alleviating selection bias; (2) we provide
a discretized approximation of the IPM distance with a theoretical guarantee; (3) we propose
an algorithm, ADMIT, capable of reducing selection bias while making factual and counterfactual
estimations; (4) we conduct both synthetic and semi-synthetic experiments in the continuous treatment
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setting, empirically demonstrating the effectiveness of ADMIT with superiority over the existing
benchmarks.

2 Related Work

Causal inference for continuous treatments is broadly studied through statistical methods [18, 19, 20,
21]. These methods are often based upon the generalized propensity score (GPS) [22], or the entropy
balancing based method [23] that learns the unit weights by incorporating information about known
sample moments to achieve covariate balance, e.g., entropy balancing for continuous treatments
(EBCT) [24]. Adaptation of neural networks for causal inference in the continuous treatments setting
has attracted the attention of research community recently [14, 25, 26]. Schwab et al. [14] present the
DRNet to estimate counterfactuals for continuous treatments, which is an extension of the network
architecture proposed in [11]. Specifically, DRNet divides a continuous treatment into several
successive intervals, and trains one separate head for each interval. Bica et al. [26] point out that
DRNet might be inflexible since it cannot determine the divided intervals dynamically and propose
SCIGAN that generates counterfactual outcomes for continuous treatments based on a generative
adversarial network (GAN) framework. Meanwhile, for the issue that DRNet produces discontinuous
ADRF due to interval discretization of continuous treatments, Varying Coefficient Network (VCNet)
[25] lets the weights of the prediction head be continuous functions of the treatment to preserve
the continuity of ADRF. Moreover, Nie et al. [25] obtain a doubly robust estimator of ADRF by
generalizing the targeted regularization proposed in [10], and provide theoretical guarantees for its
asymptotic correctness. Unlike VCNet, our work is derived from the generalization error of reducing
the selection bias when estimating ADRF. To balance the covariates among infinite subpopulations,
we learn re-sampling weights that reduce the IPM distance between observed and counterfactual
groups. As such, we derive an upper bound on the estimated counterfactual error and demonstrate
experimentally the proposed algorithm ADMIT based on the derived upper bound outperforms GPS,
EBCT, DRNet, SCIGAN and VCNet.

See Appendix A for a discussion on research related to causal inference for binary or continuous
treatments. Appendix A also introduces the relationships between causal inference for continuous
treatments and domain adaptation [27, 28, 29].

3 Problem Formulation

Let X denote the d-dimensional space of covariates and Y the outcome space. We refer to T as a
continuous treatment random variable in an interval T = [a, b]. Without loss of generality, we set T =
[0, 1] in this study. Suppose we have an i.i.d. sample of units, indexed by i = 1, 2, · · · , n. Following
Rubin’s potential outcome framework [30], we postulate the existence of potential outcomes, Y t,
for t ∈ T . For each unit i we observe the treatment ti, and the covariate xi. The observed outcome
(denoted as Yi) is defined to be the potential outcome (denoted as Y tii ) corresponding to the received
treatment ti, i.e., Yi = Y tii .

Given an input covariate x and a treatment t, we refer to µ(·, ·) as the individual dose-response
function, which is defined as:

µ(t,x) := E[Y t|X = x]. (1)
Our goal is to derive an estimator of the average dose-response function (ADRF):

µ(t) := E[Y t]. (2)
By the law of iterated expectation, µ(t) = E[µ(t,X)]. In this study, the estimator of ADRF µ(t) is
based on estimating the individual dose-response function µ(t,x).

The following assumptions have been made to ensure that ADRF is identifiable from observational
data.
Assumption 1. (Unconfoundedness) Conditional on the covariates, X , the potential outcomes, Y t,
are independent of the treatment assignment, T ,

{Y t|t ∈ [0, 1]} ⊥ T |X.

This assumption is also known as no unmeasured confounding and ensures that the individual dose-
response function is identifiable from observational data, i.e., µ(t,x) = E[Y t|X = x] = E[Y |X =
x, T = t].
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Assumption 2. (Overlap) There exists some constant c > 0, ∀x ∈ X and ∀t ∈ T ,

PT |X(t|x) ≥ c.

This assumption is the condition that every point in the space of covariates has a non-zero conditional
probability density of receiving any treatment.

4 Theoretical Analyses and Algorithm

This section firstly presents a theorem that the error of estimating ADRF is bounded by the marginal
loss comprising the factual and counterfactual losses. The counterfactual loss cannot be calculated
from observational data since counterfactual outcomes as the ground truth are unobserved. In
the meanwhile, the counterfactual inference might be unreliable due to selection bias. We then
derive theoretically optimal weights in alleviating selection bias from the perspective of importance
sampling. Although the optimal weights are theoretically guaranteed, they are impractical to learn
due to their instability. Under a similar re-weighing schema, a theoretical guarantee is provided to
guide the learning of adaptive weights that mitigate the impact of selection bias. We refer the reader
to Appendix B for detailed proofs.

4.1 Error of estimating ADRF

Let µ̂(t) be an estimator for µ(t), and we are interested in estimators with a small expected mean
squared error (EMSE) in estimating ADRF,

EMSE(µ, µ̂) = E[(µ̂(T)− µ(T))2]. (3)

Since µ(t) cannot be observed from observational data, this study uses hypotheses ft ∈ H to estimate
the individual dose-response function µ(t,x) first. For ease of expression, we write f(t,x) as ft(x).
After that, we combine these hypotheses to estimate µ(t),

µ̂(t) = E[ft(X)]. (4)

We bound the error EMSE(µ, µ̂) by the loss of hypotheses ft, for t ∈ T , with respect to the
corresponding potential outcomes. Let L : Y × Y → R+ be a loss function. The expected loss for
the treatment and covariate pair (t,x) is defined as:

lft(x) := EY t|X [L(Y t, ft(X))|X = x]. (5)

Theorem 1. Let L be the squared loss function, i.e., L(y, y′) = (y − y′)2. For hypotheses ft
of individual dose-response function µ(t, ·) with marginal loss ε(ft) = E[lft(X)], there exists a
constant σmin ≥ 0, such that,

EMSE(µ, µ̂) ≤ ET [ε(ft)]− σmin. (6)

Though µ(t) cannot be observed from observational data, Theorem 1 implies that its expected error
can be bounded by the marginal loss ε(ft), which are related to the prediction loss concerning
potential outcomes, i.e., lft(x). However, the model cannot obtain marginal loss due to the inability
to observe the counterfactuals [31]. A re-weighting schema to address this issue is presented next.

4.2 Re-weighting via importance sampling

The fundamental problem of estimating ADRF is that it is impossible to observe all potential outcomes
for any unit in data. The potential outcome Y t could only be observed in the subpopulation that
received treatment t, i.e., T = t. We refer to pX|T (x|t) as the distribution of T = t subpopulation,
and pX(x) as the distribution of population. The two distributions, pX|T (x|t) and pX(x), are not
equal since X and T are not independent. Their difference leads to the margin loss ε(ft) not being
equal to the conditional loss of hypothesis ft, ε(ft|T = s), which is defined as:

ε(ft|T = s) = EX|T [lft(X)|T = s]. (7)
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The conditional loss ε(ft|T = s) is the expected loss with respect to the distribution of the subpop-
ulation that received treatment s, i.e., T = s, and the marginal loss ε(ft) is the expected loss with
respect to the distribution of the population. When the treatments t and s are equal, the conditional
loss ε(ft|T = s) is called factual loss; otherwise, it is called counterfactual loss. The counterfactual
loss is infeasible since the potential outcome Y t could only be observed in the subpopulation who
receive the treatment t. A minimizer ft of ε(ft) is required to minimize the error of estimating
ADRF according to Theorem 1, which may be different from a minimizer of ε(ft|T = t) since
pX|T (x|t) 6= pX(x). Importance sampling is introduced to estimate ε(ft) in this work, which aims
to estimate Ex∼g(x)[h(x)] of a particular distribution g(x) while only samples generated from a
different distribution q(x) are available. The basic idea is to rewrite the expectation as:

Ex∼g(x)[h(x)] = Ex∼q(x)

[
h(x) · g(x)

q(x)

]
, (8)

where g(x)
q(x) is called sampling weight. To estimate ε(ft) based on the factual loss ε(ft|T = t), a

weight w(x) is utilized for each unit to define a re-weighted factual loss:

εw(ft|T = t) = EX|T [w(X)lft(X)|T = t]. (9)

By Equation (8), the re-weighted factual loss is equal to the marginal loss when w(x) = w∗(x),
where

w∗(x) =
pX(x)

pX|T (x|t)
=

pT (t)

pT |X(t|x)
. (10)

The term pT |X(t|x) is the conditional density of receiving a treatment t given the covariate x,
which is also known as the Generalized Propensity Score (GPS) [22, 32]. In binary treatment
cases, the propensity score could balance the distributions of covariates between the treated and
control groups [33]. Hirano and Imbens [32] stress that the GPS has a similar balancing property in
continuous treatment cases. Fong et al. [20] propose the covariate balancing generalized propensity
score methodology by defining a stabilized weight based on the GPS. Interestingly, the weight defined
in [20] is exactly the same as w∗(x) derived from the sample weight via importance sampling.

The weight w∗(x) based on the GPS is theoretically optimal in expectation [22] but may be impracti-
cal to obtain. On the one hand, the approaches based on the propensity score may be unstable in the
estimations [34, 35]. What’s worse, this issue may be amplified in continuous treatment cases since
the conditional density is difficult to estimate accurately [31]. On the other hand, it could be proved
that a large sampling weight g(x)

q(x) may result in a high variance in the estimations, which could lead
to a poor finite sample performance. Therefore, the following subsection focuses on learning adaptive
weights to balance observed covariates across subpopulations that received different treatments and
giving a generalization bound of the marginal loss.

4.3 Generalization bound of the marginal loss

The imbalance of covariates across subpopulations that received different treatments caused by
selection bias is closely connected with covariate shift in domain adaptation. This study alleviates
this imbalance using an IPM distance, which is similar to the distribution distance metrics in domain
adaptation, and gives a generalization bound of the marginal loss when using adaptive weights in
Equation (9).

The IPM is a class of metrics that measure the distance between two probability distributions, which
is defined as:

IPMG(p, q) = supg∈G

∣∣∣∣∫ g(x)(p(x)− q(x))dx

∣∣∣∣ , (11)

where G is a function family of functions g : X → R. For simplicity, we abbreviate pX|T (x|t) and
pX|T (x|t)w(x) as pt and pwt , respectively. We first state a Lemma bounding the difference between
the re-weighted factual loss, εw(ft|T = t), and the counterfactual loss, ε(ft|T = s), where s 6= t.
Lemma 1. Let G be a family of functions l : X → R. Assume the per-unit expected loss function
L(f, f ′) ∈ G for all f, f ′ ∈ H. Then for any s ∈ [0, 1] and s 6= t, we have:

ε(ft|T = s) ≤ εw(ft|T = t) + IPMG(ps, p
w
t ). (12)
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Based on Lemma 1, we could give a generalization bound of the marginal loss through the re-weighted
factual loss as follows.
Theorem 2. Let IPMmax = maxs∈[0,1]{IPMG(ps, p

w
t )}. The following inequality holds under the

conditions of Lemma 1,
ε(ft) ≤ εw(ft|T = t) + IPMmax. (13)

Theorem 2 shows that the marginal loss is upper bound by the re-weighted factual loss and an IPM
distance. The first term could be estimated with observed samples. The second term is defined based
on the distance between the two probability distributions of the subpopulation receiving treatment t
and another subpopulation. Choosing a family of norm-1 reproducing kernel Hilbert space (RKHS)
functions leads to IPM being the Maximum Mean Discrepancy (MMD) metric [36]. When involving
discrete domains, there may have samples {xp1, · · · ,xpn} ∼ p and {xq1, · · · ,xqm} ∼ q, an estimator
of the MMD distance between p and q could be obtained as follows:

MM̂D
2

k(p, q) :=
1

n2

n∑
i=1

n∑
j=1

k(xpi ,x
p
j)− 2

mn

n∑
i=1

m∑
j=1

k(xpi ,x
q
j) +

1

m2

m∑
i=1

m∑
j=1

k(xqi ,x
q
j), (14)

where k denotes a differentiable kernel, e.g., the Gaussian RBF kernel. A certain number of samples
are needed to estimate the MMD as shown in Equation 14. When the treatment is discrete and finite,
all the choices of the treatment can be observed in the samples and thus one can estimate the MMD
from these samples. However, when the treatment is continuous, the samples that received some
treatment t may be unavailable since only a finite number of samples are observed while the choice
of t is infinite. In other words, the IPM term in Theorem 2 involves continuously shifting domains
(for each s ∈ [0, 1]), which cannot be estimated empirically. To overcome this challenge, we bound
the difference between the IPMmax and its discretization under the assumption that the probability
distributions of subpopulations that received different treatments shift smoothly.
Assumption 3. Let pt1 and pt2 denote the conditional probability densities of subpopulations that
received treatment t1 and t2, respectively. We assume that there is a constant α such that the following
inequality holds for all t1, t2 ∈ [0, 1]:

IPMG(pt1 , pt2) ≤ α |t1 − t2| . (15)

It could be proved that the minimum α that meets the conditions of Assumption 3 is
maxt∈[0,1]{limδ→0} IPM(pt,pt+δ)

δ according to the triangle inequality for the IPM. Intuitively, α in
Assumption 3 indicates the maximum rate of the probability distribution shift of subpopulations,
and it is easy to find a constant α that satisfy the condition since the IPM term is bounded when
the outcome of the hypothesis ft is finite, e.g., survival years (outcome) after taking some medicine
(treatment). Therefore, Assumption 3 is practical and feasible in real-world applications. When we
set a continuous treatment t, it is generally assumed that the conditional probability of t given x
smoothly shift [26]. For instance, the difference in the probability of taking a similar dose given an
age is small if the dose of a particular medicine depends on the age of the patient. Therefore, the age
distributions of groups taking similar doses vary smoothly, or in other words, it holds most of the
time that α is relatively small.

Based on Assumption 3, the following Lemma states that the IPMmax corresponding to continuously
shifting domain (for each t ∈ [0, 1]) could be approximated as an IPM term based on discrete
domains (for each t ∈ {t1, · · · , tn}).
Lemma 2. Suppose we have n i.i.d. sample of units, and the ith unit received a treatment ti ∼ p(t).
This study assumes Assumption 3 holds for a constant α. Then we have,

IPMmax≤maxi∈{1,··· ,n}{IPMG(pti ,p
w
t )}+Op

(
α
3
√
n

)
. (16)

The RHS of Equation 16 bounds the worst case of IPMmax by a discrete set {IPMG(pti , p
w
t )|i ∈

{1, · · · , n}} since all αi are enlarged to α during the proof of Lemma 2, where αi =

maxt∈[ti,ti+1]
IPM(pt,pti )

t−ti . Therefore, the difference between the IPMmax and its discretization
will be generally smaller than Lemma 2 displays. To empirically estimate IPMG(pti , p

w
t ), the

following Lemma states that a point ti could be replaced by its neighbourhood [ti, ti + δ].
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Algorithm 1 ADMIT: Average dose-response estimation via re-weighting schema
Input: Observed samples D = {(xi, si, Yi)|i = 1, · · · , n}, loss function L(·, ·),function family G

for IPM, batch size nb, neighbourhood size δ. Initialized parameters: θ = [θφ, θh, θω]
1: while θ not converged do
2: Sample mini-batch {(xi1 , si1 , yi1), · · · , (xinb , sinb , yinb )} from D
3: Calculate the weight of each unit: wij = ω(sij , φ(xij ))
4: for l = 1 to L = d1/δe do
5: for k = 1 to L and k 6= l do
6: IPMG(p∆k, p

w
∆l) = IPMG({wij · xij}sij∈[(l−1)δ,lδ], {xih}sih∈[(k−1)δ,kδ])

7: end for
8: IPMl

∆max = maxk∈{1,··· ,L},k 6=l{IPMG(p∆k, p
w
∆l)}

9: end for
10: Calculate the gradients of the IPM term:

g1 = ∆θω
1
L

∑
l IPMl

∆max

g2 = ∆θφ
1
L

∑
l IPMl

∆max
11: Calculate the gradients of the re-weighted factual loss:

g3 = ∆θh
1
nb

∑
j wij · L(h(sij , φ(xij )), yij )

g4 = ∆θφ
1
nb

∑
j wij · L(h(sij , φ(xij )), yij )

12: Update parameters: [θφ, θh, θω]← [θφ − η(g2 + g4), θh − ηg3, θω − ηg1]
13: end while
Output: Learned representation function φ(·), outcome function h(·, ·), re-weighting function ω(·, ·)

Lemma 3. Let p∆s = PX|T (x|t ∈ [s, s + δ]) (0 < δ < 1) denote the conditional density of
covariates when t ∈ [s, s+ δ]. Then the following inequality holds under Assumption 3,

IPMG(ps, p
w
t ) ≤ IPMG(p∆s, p

w
t ) + αδ. (17)

Following Lemma 2 and Lemma 3, we bound the marginal loss as follows.

Theorem 3. Suppose we have n i.i.d. sample of units, and the ith unit received a treatment ti.
Let IPM∆max = maxi∈{1,··· ,n}{IPMG(p∆ti , p

w
t )}. This study assumes Assumption 3 holds for a

constant α. Then, for a neighbourhood size 0 < δ < 1 we have,

ε(ft) ≤ εw(ft|T = t) + IPM∆max +Op

(
α
3
√
n

)
+ αδ. (18)

Contrary to the second term in Theorem 2, IPM∆max could be estimated empirically, since we may
get samples that received treatment t ∈ [ti, ti + δ] by choosing an appropriate neighbourhood size δ.

To minimize the error εu in estimating the ADRF, Theorem 1 and Theorem 3 suggest that we should
minimize the upper bound in Equation (18) with respect to the re-weighted conditional loss and the
IPM term, which leads us to Algorithm 1 detailed in the following subsection.

4.4 Proposed algorithm

Our algorithm, ADMIT, is proposed based on the theoretical results derived in the previous sub-
sections. As illustrated in Figure 2, we use neural networks to build the model, which is mainly
composed of three components: a representation network φ(x), a re-weighting network ω(t, φ(x)),
and an inference network h(t, φ(x)).

This work firstly learns a treatment-agnostic representation z = φ(x) of x using all data. The
influence of treatment t is different from that of x [11], which might be lost during training if φ(x) is
high-dimensional. To address this issue, the varying coefficient model [37, 25] is adopted to build
h(t, φ(x)) and ω(t, φ(x)). Take the former as an example, h(t, φ(x)) is defined as:

h(t, φ(x)) = NNθh(t)(φ(x)), (19)
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Figure 2: Model architecture of the proposed ADMIT.

where NNθh(t) is a neural network with parameter θh(t). Thus, the treatment t determines the
nonlinear functions in NNθh(t).

Based on the theoretical analyses aforementioned, ADMIT aims to seek a re-weighting function ω
and an inference function h to minimize the error EMSE(µ, µ̂) of estimating the ADRF, using the
following objective:

minθ
1

n

n∑
i=1

(ω(ti, φ(xi)) · L(h(ti, φ(xi)), Yi) + maxj∈{1,··· ,n},j 6=i{IPMG(p∆tj , p
w
∆ti)}), (20)

where θ = [θφ, θω, θh]. To effectively calculate the IPM, the interval [0, 1] is divided into d1/δe
intervals to confirm the neighbourhood of the ith unit, and details of the calculation are presented in
lines 4 to 9 of Algorithm 1. The model is trained using stochastic gradient descent to minimize the
objective. Finally, an estimator of ADRF is built as:

µ̂(t) =
1

n

n∑
i=1

h(t, φ(xi)). (21)

5 Experiments

It is difficult to get the ground truth treatment effect on real-world datasets due to the inability to
observe the counterfactuals. To deal with this, existing literature [14, 25, 26] often use synthetic/semi-
synthetic data for meaningful evaluation. We use one synthetic dataset and two semi-synthetic
datasets, News [14, 7] and TCGA [38], to demonstrate the effectiveness of ADMIT. Details of these
datasets and implementation can be found in Appendix C.

5.1 Experimental setup

Synthetic data generation. We generate covariates x ∼ Unif(0,1) ∈ R6, and the assigned treat-
ments and their corresponding outcomes are generated as follows:

• t = (1 + exp(−t′))−1, t′ ∼ N (µ1, 0.5) where

µ1 = 10
sin(max(x1, x2, x3)) + max(x3, x4, x5)3

1 + (x1 + x5)2
+ sin(0.5x3)(1 + exp(x4 − 0.5x3))

+ x2
3 + 2sin(x4) + 2x5 − 6.5,

• y ∼ N (µ2, 0.5) where µ2 = cos(2π(t− 0.5))(t2 + 4max(x1,x6)3

1+2x2
3

sin(x4)).

Semi-synthetic data generation. We obtain covariates from two real-world datasets, News [14, 7]
and TCGA [38]. To obtain the assigned treatments and their corresponding outcomes, we generate a
set of parameters, vi = ui/||ui|| and i = 1, 2, 3, where ui is sampled from a normal distribution
N (0,1), then
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Method Simulation TCGA News

DRNet 0.209± 0.0127 0.216± 0.0281 0.274± 0.0194
SCIGAN 0.638± 0.0467 0.301± 0.0204 0.707± 0.0074
VCNet 0.129± 0.0186 0.139± 0.0107 0.201± 0.0193

VCNet+EBCT 0.162± 0.0256 0.126± 0.0234 0.196± 0.0123
GPS 0.179± 0.0016 0.196± 0.0011 0.176± 0.0049

ADMIT 0.081± 0.0048 0.071± 0.0074 0.106± 0.0135

Table 1: Comparison of ADMIT with (non) neural network-based baselines. Reported performance
(
√

EMSE) of average dose-response estimation on one synthetic and two semi-synthetic datasets.
Metrics are reported as Mean ± Std.

• t ∼Beta(γ, β) where β = γ−1
d∗ + 2− γ and d∗ =

vT3 x

2vT2 x
,

• y ∼ N (µ, 0.5) where µ=4(t−0.5)2×sin(π2 t)×2(max(−2, exp((
vT2 x

vT3 x
− 0.3)))+10vT1 x).

As discussed in [26], a larger γ will result in a higher selection bias. Without specific instruction, we
set γ = 2 in our experiments.

Baselines and metrics. For neural network baselines, we compare ADMIT with DRNet [14], VCNet
[25] and SCIGAN [26]. With the same settings as in [25], we apply targeted regularization on both
DRNet and VCNet, and add a conditional density estimation head for DRNet. For statistical baselines,
we compare ADMIT with GPS [32] and entropy balancing for continuous treatments (EBCT) [24].
When evaluating EBCT, we adopt the sample weights learned by EBCT, and take VCNet as its
inference network to estimate the ADRF. For metrics, we use Expected Mean Squared Error (EMSE)
on the test dataset, where EMSE = 1

N

∑N
i=1(µ̂(ti)− µ(ti))

2.

5.2 Benchmarks comparison

2 4 6 8
selection bias 

0.2

0.4

EM
SE

SCIGAN
DRNet
VCNet
ADMIT

Figure 3: Comparison of four models in terms of their√
EMSE for varying selection bias on TCGA.

Table 1 shows that the proposed ADMIT 2

is more accurate in estimating the average
dose-response in both synthetic and semi-
synthetic datasets. The dimensions of co-
variates in TCGA and News are around 4000
and 3000, respectively. This result may in-
dicate that ADMIT is well adapted to the
high-dimensional data. Moreover, using the
sample weights obtained by pre-processing
the data with EBCT also enhances the per-
formance on the two semi-synthetic datasets
compared with VCNet. This result demon-
strates the sample weights learned by EBCT
could alleviate the selection bias to some
extent. However, the performance boost is
smaller than ADMIT, which indicates the
superiority of the learned sample weights
guided by the derived bound in this study.
Additionally, the performance of ADMIT
may benefit from the design where ADMIT jointly learns the re-weighing network and the inference
network in one optimization by minimizing the derived upper bound. This one-step approach may be
preferable to two-step approaches, i.e., EBCT, which is demonstrated by Zhang et al. [39].

2The implementation of ADMIT is available at https://github.com/waxin/ADMIT
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5.3 Selection bias

As indicated in [26], the variance of the Beta distribution decreases with the increase of γ in the
semi-synthetic data generation, resulting in higher selection bias. We compare the performance of
ADMIT with VCNet, SCIGAN and DRNet on TCGA when varying choices of γ from 1 (no bias) to
8 (high bias) to assess the robustness of these methods in different levels of selection bias. We found
that ADMIT shows consistent performance and outperforms the three baselines across the entire
range of evaluated selection bias. This result demonstrates the effectiveness of ADMIT in empirically
mitigating the impact of selection bias.

6 Conclusion

In this paper, we propose a novel re-weighting schema to mitigate the impact of selection bias in
causal inference with continuous treatments. Under this schema, this paper provides and proves
a generalization error bound on the estimation of ADRF based on an IPM distance between the
observed (re-weighted) and counterfactual distributions, with theoretical evidence on learning sample
weights that alleviate the unreliable counterfactual inference problem caused by selection bias. In
the practical implementation, we provide a discretized approximation of the IPM distance with a
theoretical guarantee, leading to an algorithm ADMIT that jointly learns re-weighting and inference
networks.
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