
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TWIN EVOLUTION WITH META PREFERENCE OP-
TIMIZATION FOR SEMI-SUPERVISED LEARNING OF
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across various domains, yet their adaptation to specific downstream tasks remains
challenging due to limited labeled data. Although post-training methods (e.g.,
SFT, DPO) have proven effective, they face significant limitations due to the
scarcity of labeled data. In this paper, we present TwinEvol, a framework that
treats downstream task training and evaluation as complementary, co-evolving
submodules. TwinEvol introduces an evaluation agent that co-evolves with the
main model; this agent is not a static external module but rather self-iterates and
evolves through continuous interaction with the generation LLM after iterative
calibration. The agent facilitates more nuanced assessment during downstream
adaptation, incorporating hard negative mining and meta-preference optimization
to achieve comprehensive feedback and efficient knowledge transfer. Through an
iterative twin evolution process, the framework establishes a self-reinforcing cycle
that effectively propagates knowledge from labeled to unlabeled data while main-
taining task alignment. Experiments across various downstream tasks demonstrate
that TwinEvol achieves superior performance compared to existing methods. Our
code is available at https://anonymous.4open.science/r/TwinEvol/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in general do-
mains (Achiam et al., 2023; Wang et al., 2024b), yet their adaptation to specific downstream tasks
remains a critical challenge (Xie et al., 2024; Luo et al., 2024; Lin et al., 2024), particularly in
real-world scenarios where high-quality annotated data is scarce (Honovich et al., 2023; Kung et al.,
2023; Cheng et al., 2024b). Current mainstream post-training optimization approaches, such as Su-
pervised Fine-tuning (SFT) and preference optimization methods (Rafailov et al., 2024; Ethayarajh
et al., 2024), are constrained by their dependence on high-quality data (Bhatt et al., 2024; Rafailov
et al., 2024; Ethayarajh et al., 2024). In most real-world situations, we would face a mix of limited
human-response data and abundant unannotated data (Zhu, 2005; Gu et al., 2025). To overcome
these constraints, researchers have begun exploring semi-supervised approaches that leverage lim-
ited labeled data to guide learning from abundant unlabeled data (Luo et al., 2024).

Existing methods face several challenges: ❶ Traditional knowledge injection paradigms (such as
SFT-driven pseudo-labeling) (Luo et al., 2024; Wang et al., 2025; Xia et al., 2024) struggle to
fully extract and utilize complex negative feedback signals embedded in unlabeled data, limiting
the model’s ability to learn deeply from self-exploration. ❷ While preference learning methods
introduce comparative mechanisms, they become susceptible to alignment drift when relying on ex-
ternal or static evaluators disconnected from the model’s evolution (Son et al., 2024), potentially
providing delayed, ineffective, or even erroneous feedback signals (Ramé et al., 2024). The core
issue lies in the lack of organic integration between the model’s generation capability and evalu-
ation capability, which hinders efficient and reliable knowledge transfer from limited high-quality
data to vast unlabeled datasets.

To address these challenges, we propose TwinEvol, a framework that enables the co-evolution of
LLM generation and evaluation capabilities, designed to stimulate and calibrate the LLM’s inherent

1

https://anonymous.4open.science/r/TwinEvol/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

evaluation mechanism. Eliminating dependency on fixed external evaluators, TwinEvol empowers
LLMs to develop dynamic, task-aligned preference recognition abilities.

Existing Dilemma Our Method: TwinEvol

LLMStatic
Evaluator

LLM
Static

Evaluator
...

Alignment Drift

Calibration

Meta Reward

Figure 1: Conceptual overview of TwinEvol. (Left) Tradi-
tional methods rely on static evaluators, leading to outdated
feedback and alignment drift. (Right) TwinEvol establishes
a co-evolutionary loop to facilitate mutually improvement.

Its innovations manifest in three
dimensions: Architecturally, we
design a dual-branch co-evolutionary
architecture where the main LLM
generates diverse exploratory
responses while a co-evolving
Evaluative Agent. This Eval-
uative Agent is not a static external
module but a dynamic component
that, after initial calibration with
limited high-quality annotated data,
iteratively learns and evolves through continuous interaction with the generation module, forming
an efficient knowledge transfer and self-improvement feedback loop. Strategically, TwinEvol
establishes a composite negative feedback and multi-granular supervision system. Hard Negative
Mining enables the LLM to extract subtle yet critical differences, enhancing its discrimination
and improvement capabilities. Meanwhile, the Meta-Preference Optimization (MetaPO) algorithm
achieves efficient supervision information aggregation, with theoretical analysis demonstrating
its superior convergence properties and noise robustness. Dynamically, TwinEvol implements
a Curriculum Evolution mechanism where the LLM’s outputs train and validate the Evaluative
Agent’s judgment accuracy, while the Agent’s precise feedback continuously optimizes the LLM’s
generation strategy. This iterative, interdependent update process forms a symbiotic co-evolution
that enables synchronous enhancement of generation capabilities and internal evaluation standards,
progressively achieving higher-level task alignment and performance improvement. Experimental
validation across multiple downstream tasks demonstrates that TwinEvol significantly outperforms
existing semi-supervised methods.

Our contributions can be summarized as follows: ❶ Perspective: We conceptualize LLM generation
and evaluation capabilities as having a symbiotic relationship (Twin) and implement their iterative
self-cyclical improvement. ❷ Methodology: We design TwinEvol, a co-evolutionary framework
with MetaPO algorithm to achieve supervision information fusion and model adaptive evolution,
with theoretical guarantees. ❸ Performance: We validate our method’s effectiveness across multi-
ple datasets, demonstrating significant performance improvements.

2 PRELIMINARIES

Supervised Fine-Tuning (SFT) represents the most straightforward approach for adapting LLMs
to downstream tasks, aiming to align the model’s outputs with desired responses. Formally, given
a dataset D = {Xi, Yi}Nl

i=1, where Nl = N (D) is the number of labeled samples in D, Xi is
the input task and Yi is the corresponding expected response. SFT optimizes the model through
a token-by-token loss minimization process. This procedure effectively injects knowledge. While
traditional SFT focuses primarily on positive feedback,TwinEvol makes robustness improvement
through adding comprehensive learning from negative LLM-generated pseudo samples.

Semi-supervised Fine-Tuning addresses scenarios with both labeled and unlabeled data. Given
a labeled dataset Dlabeled = {(Xi, Yi)}Nl

i=1 and an unlabeled dataset Dunlabeled = {Xi}Nu
i=1, where

Nl ≪ Nu, the goal is to leverage limited labeled data as seeds to guide learning on unlabeled data.
While existing approaches focus on direct knowledge transfer through self-training or consistency
regularization, TwinEvol establishes a co-evolutionary mechanism between training and evaluation,
creating a self-reinforcing knowledge flywheel, enabling more effective knowledge propagation.

Preference Optimization aims to align LLMs with human preferences through pairwise compari-
son learning. While DPO (Rafailov et al., 2024) has shown effectiveness in preference alignment
using reference models, SimPO (Meng et al., 2024) proposes a more streamlined approach by re-
moving reference model dependencies. The key difference between TwinEvol and existing prefer-
ence optimization methods is that we use a co-evolutionary framework to optimize the preference
learning, which is more effective than traditional preference optimization methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Response

Response

.

UnLabeled Data

Query

Query
Response

TwinEvol

Response

Response

Response

Response

LLM SFTLLM SFT

SFT
Hard Negative Mining

Response

Response

Generative

LLM

Evaluative
Agent

Generation Capability

Evaluation Capability

Meta PO

Supervision Aggregation

Calibration

Multiple Inference

Consistent Response

Consistency Check

Consistency Check

Pseduo Preference Data

Stable Learning Dynamics

Generalization Error Bound

Co-evolution Convergence

Labeled Data

Response
Lebeled

LLM Response

Ranked Data

LLM Response

Response
Lebeled

Rank

Figure 2: Overview of TwinEvol. The framework integrates a generative LLM with a co-evolved
Evaluative Agent in a symbiotic relationship. The LLM processes both labeled and unla-
beled data to generate responses, while the Evaluative Agent provides preference annotations
through hard negative mining for MetaPO optimization. This establishes a twin evolution cycle
where both components iteratively enhance each other’s capabilities.

3 METHODOLOGY

3.1 OVERVIEW

To handle hybrid data scenarios effectively, we propose TwinEvol. The core innovation of TwinEvol
lies in organically integrating the model’s generative and evaluative capabilities, forming a co-
evolving system between the generative LLM and the Evaluative Agent. This framework
creates an evolutionary flywheel that facilitates knowledge propagation from labeled to unlabeled
data. As illustrated in Figure 2, our framework comprises two principal components: the generative
LLM and the co-evolved Evaluative Agent. The framework’s operation depends on the seam-
less coordination of several critical processes: the construction and training of the Evaluative
Agent (Section 3.2), the learning of the generative LLM (Section 3.3), and our approach to Ef-
fective Meta Preference Optimization (Section 3.4), which employs hard negative mining and the
MetaPO algorithm to refine model alignment. This co-evolutionary process culminates in a curricu-
lum learning strategy (Section 3.5), enabling the system to improve continuously.

3.2 CO-EVOLVING EVALUATIVE AGENT

In semi-supervised scenarios, effectively leveraging limited labeled data to generate quality pseudo-
preference signals for abundant unlabeled data is crucial. As shown in Figure 3, the Evaluative
Agent serves as a dynamic quality assessor for model-generated responses. For a pair of responses
Y0 and Y1, the Evaluative Agent determines their preference relationship, which can be either
a tier relationship (i.e., Y0 ∼ Y1) or a strict preference (i.e., Y0 ≻ Y1).

You are a critical ranking agent. Your task is to carefully
examine a question and its various predictions to
determine the best prediction.

Please analyze this carefully and predict if the response
1 is better than response 2.

Evaluative
Agent

Response 1

Response 2

Figure 3: Instruction of the Evaluative Agent.

The Evaluative Agent is trained through
SFT using labeled data. Specifically, for each la-
beled data pair (Qi, Yi), where Qi is the query
and Yi is the annotated response, we generate
model responses Ŷi using the LLM. We then
perform consistency checking by extracting and
comparing answers. This process leads to either
tier annotations (when responses are of similar
quality) or preference annotations (when the labeled response is deemed superior). We take the
inconsistent preference annotations as the training data for the Evaluative Agent:

Drank = {(Qi, Yi, Ŷi, ri | Yi ≻ Ŷi)} . (1)

The Evaluative Agent is then tuned by SFT on Drank. The agent is iteratively trained to
learn preference relationships on downstream tasks, providing more accurate quality assessment
for model-generated responses. Notably, after each update of the main LLM, new preference data

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Drank is generated to train the Evaluative Agent, a process we refer to as calibration. This
iterative calibration ensures that the Evaluative Agent continuously adapts to the evolving
capabilities of the main model.

3.3 CO-EVOLVING GENERATIVE LLM

In the TwinEvol co-evolutionary framework, the main LLM could effectively utilize indirect feed-
back signals provided by the Evaluative Agent based on its generated responses. The training
process of the LLM is as follows. As a warm-up, the LLMM first undergoes SFT using labeled
data Dlabeled to establish foundation domain adaptation capabilities.

In the adaptation process, we should make use of the unlabeled data Dunlabeled to further enhance the
LLM’s performance, which is conducted as follows. First, given an input task Xi ∈ Dunlabeled, we
generate multiple diverse responses through sampling from theM:

Ŷi = {Ŷ k
i =M(Xi; θ) | k = 1, . . . ,K} , (2)

where K is the number of generated responses, which is set to 4 by default and examined in
Section 4.3. Then, we classify the responses {Ŷi}Nu

i=1 into consistent set (Dcon) and inconsistent
set (Dincon) based on response consistency. The consistencies are derived from answer comparisons,
such as numerical values or multiple-choice options, or use LLM to judge the consistency.

The model then evolves through a two-pronged approach. For consistent responses (Dcon), we apply
standard SFT training. For inconsistent responses (Dincon), we leverage the Evaluative Agent
to obtain pseudo-preferences and conduct MetaPO training (will be discussed in Section 3.4.2). The
complete generative LLM update is as:

Mj+1 ← MetaPO(M′
j ,Dincon) ← SFT(Mj ,Dcon) , (3)

whereMj represents the model at iteration j, andM′
j is the model after SFT.

Discussion. This dual-branch architecture establishes the foundation for our co-evolution frame-
work, where the Evaluative Agent provides quality assessment for LLM outputs, while the
LLM generates diverse responses for Evaluative Agent training. This symbiotic relationship
forms the basis for the twin evolution process detailed in the following section.

3.4 EFFECTIVE META PREFERENCE OPTIMIZATION

Traditional preference optimization approaches often rely on limited negative samples, which con-
strain the model’s ability to learn from diverse error patterns. This limitation is particularly pro-
nounced in semi-supervised learning scenarios. To address this challenge and enable robust opti-
mization across the abundant unlabeled data, we introduce effective Meta Preference Optimization
to provide richer alignment signals through diversified negative feedback.

3.4.1 HARD NEGATIVE MINING

Relying solely on single or randomly generated negative samples may not provide the model with
sufficiently robust and targeted learning signals. Therefore, to fully leverage the learning po-
tential from model outputs, we utilize multiple generations Ŷi from the LLM, and employ the
Evaluative Agent to rank them for hard negative mining:

Pi = {(Ŷ j
i , Ŷ

k
i , rjk) | rjk ∈ {0, 1}, 1 ≤ j ̸= k ≤ K} , (4)

where rjk = 1 indicates Ŷ j
i is preferred over Ŷ k

i , and this preference judgment is determined by the
Evaluative Agent. Notably, as the Evaluative Agent and the model co-evolve through
iterative training, the agent becomes increasingly capable of distinguishing subtle differences be-
tween various model-generated responses, resulting in more informative preference signals.

3.4.2 META PREFERENCE OPTIMIZATION

To effectively utilize the hard negative samples {Pi}Nu
i=1 and align the model with downstream tasks,

we propose Meta Preference Optimization (MetaPO). Different from existing preference optimiza-
tion methods (Rafailov et al., 2024; Ethayarajh et al., 2024), MetaPO achieves comprehensive con-
sideration of multiple preference pairs, enabling more comprehensive preference optimization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For MetaPO, we first introduce the length-normalized reward function (Meng et al., 2024):

rθ(Xi, Ŷi) =
β

|Ŷi|
log πθ(Ŷi|Xi) , (5)

where β is a constant controlling the reward scale (default to 1, examined in Section 4.3), and
|Ŷi| represents the response length. For a preference pair with winner response Ŷ w

i and loser re-
sponse Ŷ l

i , their reward difference should exceed a margin γ (set to 1 following common practice):
rθ(Xi, Ŷ

w
i)− rθ(Xi, Ŷ

l
i) > γ . The complete MetaPO objective is defined as:

LMetaPO(πθ) = −
1

N

N∑
i=1

∑
(Ŷ w

i ,Ŷ l
i)∈Bi

log σ(rθ(Xi, Ŷ
w
i)− rθ(Xi, Ŷ

l
i)) . (6)

Through MetaPO, we achieve comprehensive optimization across multiple types of negative feed-
back while maintaining stable model performance improvements. This approach enables robust
optimization against diverse pseudo-responses, leading to more consistent model enhancement.

Theoretical Analysis. We provide a comprehensive theoretical foundation for TwinEvol, establish-
ing its advantages through three complementary theoretical perspectives. ❶ We demonstrate that
MetaPO achieves significant gradient variance reduction compared to single-pair optimization ap-
proaches, leading to more stable learning dynamics (Theorem 1). ❷ We establish a generalization
error bound within the PAC-Bayes framework, quantifying how MetaPO’s multi-pair mechanism
tightens performance guarantees (Theorem 2). ❸ We analyze the convergence properties of our
co-evolutionary framework, proving exponential convergence to optimal performance under well-
defined conditions (Theorem 3). Together, these theoretical results establish a rigorous basis for
understanding TwinEvol’s empirical effectiveness in semi-supervised learning scenarios.

Theorem 1 (Stable Learning Dynamics). Denote LSimPO as the loss function of SimPO, which
only generates one pair of responses per sample. Assuming these pairs (Ŷ w

i , Ŷ l
i) ∈ Bi are all

independent, we have:
V ar [∇LMetaPO]

V ar [∇LSimPO]
= O

(
1

K2

)
. (7)

Proof Sketch. Let Mi = |Bi| be the number of pairs of contrastive pairs (Ŷ w
i , Ŷ l

i) for each sample
Xi. The gradient of MetaPO loss with respect to the parameters θ can be written as:

∇θLMetaPO = − 1

N

N∑
i=1

[
1

Mi

Mi∑
m=1

σ
(
rθ(Xi, Ŷ

l
m) −rθ(Xi, Ŷ

w
m)
) (
∇θrθ(Xi, Ŷ

w
m)− ∇θrθ(Xi, Ŷ

l
m)
)]

.

(8)For each sample Xi, the gradient can be viewed as the average of Mi independent gradients, which
makes the overall variance only 1/Mi of the variance of the SimPO loss gradient. Since M =
O(K2), it’s straightforward to get to the conclusion of Theorem 1. The detailed proof is provided
in Appendix B.1.

This substantial variance reduction yields multiple advantages. Firstly, it fosters smoother and
more stable learning dynamics. By framing the LLM’s learning process as a trajectory on the θ-
parameterized statistical manifold. Secondly, a more consistent gradient direction enables the model
to converge more directly and efficiently towards high-quality solution regions. This also reduces
sensitivity to hyperparameter choices, such as the learning rate, rendering the training process more
robust. Finally, by meticulously comparing multiple similar yet distinct candidate solutions and
engaging in a form of self-calibration, MetaPO can more precisely capture and learn from subtle
preference distinctions.

Theorem 2 (Generalization Error Bound). LetR(πθ) be the expected risk and R̂(πθ) the empir-
ical risk, then with probability 1− δ, we have:

R(πθ) ≤ R̂(πθ) +O

(√
KL(πθ∥πref) + ln(NK2/δ)

NK2

)
. (9)

where KL(πθ∥πref) represents the KL-divergence between πθ and base reference model πref.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The proof of Theorem 2 can be found in Appendix B.2. This theorem provides theoretical guarantees
for MetaPO’s generalization performance. The bound shows the influence of the sample size N and
the number of generated responses K on the generalization error. A larger K yields up to

(
K
2

)
preference pairs per input, effectively increasing the preference information used for training. This
is reflected in the NK2 term in the denominator of the bound, indicating that increasing K generally
tends to tighten the generalization bound. This complements the stable learning dynamics achieved
with larger K, as stated in Theorem 1. We will discuss the effect of K on the generalization error
in Section 4.3. The ln(K2) factor in the numerator, relative to K2 in the denominator, suggests
that the beneficial impact of K on the error rate can be significant, assuming the KL divergence is
appropriately bounded.

In this part, we analyze the convergence properties. To better quantify the performance improve-
ments of LLM and the Evaluative Agent, we assume that after t iterations, the performance
of LLM is denoted as Mt, and the performance of the Evaluative Agent as Rt. Let M∗ and
R∗ represent their optimal performance levels, respectively. Here, R̃ signifies the baseline perfor-
mance of the Evaluative Agent. Specifically, Mt improves when Rt ≥ R̃, and declines when
Rt < R̃. The following theorem demonstrates that, under specific assumptions, the co-evolutionary
process achieves convergence with a rapid convergence rate, providing a theoretical foundation for
the consistent performance gains in Section 4.
Theorem 3 (Co-evolution Convergence). Let αM , αR be positive constants. Under the following
assumptions:

Mt+1 −Mt = αM (M∗ −Mt)(Rt − R̃) , Rt+1 −Rt = αR(R
∗ −Rt)Mt ,

0 < R̃ ≤ R0 ≤ R∗ , 0 < M0 ≤M∗ , αRM
∗ ≤ 1 , αM (R∗ − R̃) ≤ 1 ,

(10)

then there exist constants C and λ > 0 such that the following inequality holds:

∥(Mt, Rt)− (M∗, R∗)∥ ≤ Ce−λt . (11)

The proof of Theorem 3 can be found in Appendix B.3.

This theorem provides a theoretical foundation for the exponential convergence of our co-
evolutionary framework. The results directly support TwinEvol’s core design principle of symbi-
otic improvement, where the LLM benefits from increasingly accurate preference signals from the
Evaluative Agent (Rt − R̃), while the Agent’s capabilities are enhanced proportionally to
the LLM’s performance (Mt). This mathematical formulation validates our framework’s ability to
create a self-reinforcing knowledge flywheel through iterative co-evolution.

3.5 CURRICULUM LEARNING IN TWINEVOL

TwinEvol introduces a curriculum learning paradigm to address the critical challenge of data scarcity
in downstream tasks. Central to this paradigm is the synergistic co-evolution of a generative LLM
and an Evaluative Agent. This dual-entity system, enhanced by hard negative mining and
Meta Preference Optimization, establishes a virtuous cycle: ❶ The LLM generates progressively
sophisticated data, ❷ Upon which the Evaluative Agent refines its evaluative acuity, ❸ In
turn providing more precise and challenging feedback. This dynamic interplay inherently cultivates
an emergent curriculum, where the system autonomously adapts its learning trajectory to its evolving
capabilities. Rather than relying on static datasets or predefined stages, TwinEvol demonstrates how
a system can bootstrap its own advancement, transforming limited labeled data into a catalyst for
sustained knowledge acquisition and performance gains. This culminates in a robust framework for
continuous adaptation, paving the way towards more autonomous and resource-efficient learning
models. Algorithm 1 and Appendix D.1 detail the complete training procedure.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Foundation Models. To validate the broad applicability of our approach, we conducted experiments
using foundation models with varying architectures and parameter scales. Our selection includes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across different models on various datasets. Red numbers show
improvements of our method compared to SFT baseline. Best performance is highlighted in bold.

Method MMLU MMLU Pro ARC FPB USMLE PubMedQA ConvFinQA Avg.

Vanilla 66.4 47.1 81.1 81.7 70.2 73.5 51.1 67.3

SFT 67.9 49.8 81.8 96.2 70.8 75.0 81.3 74.7
AdaptLLM – – – 49.7 31.5 27.6 30.9 –
InstructPT – – – 76.1 47.4 44.5 55.2 –
MemoryLLM 56.4 31.8 56.3 57.7 37.8 55.5 37.2 47.5
RAG (BM25) 66.6 37.4 80.8 83.7 69.3 69.0 63.4 67.2
RAG (FAISS) 66.5 38.8 81.3 82.5 69.1 71.5 64.6 67.8
Hermes-3 63.6 37.9 74.9 73.9 54.5 68.5 54.9 61.2
Reflection-Llama 65.5 37.5 82.2 80.8 67.4 71.5 40.8 63.7
SemiEvol 68.8 50.3 83.4 96.2 71.6 76.0 82.4 75.5

TwinEvol Iter 1 69.1+1.2 50.5+0.7 83.6+1.8 96.8+0.6 71.2+0.4 76.0+1.0 83.0+1.7 75.7+1.0
TwinEvol Iter 2 69.4+1.5 50.6+0.8 84.2+2.4 97.2+1.0 71.8+1.0 76.0+1.0 83.2+1.9 76.1+1.4
TwinEvol Iter 3 69.2+1.3 50.8+1.0 84.3+2.5 97.2+1.0 72.2+1.4 76.5+1.5 83.7+2.4 76.3+1.6
TwinEvol Iter 4 69.7+1.8 50.8+1.0 84.7+2.9 97.5+1.3 72.0+1.2 77.0+2.0 84.1+2.8 76.5+1.8

Table 2: Performance comparison across different model architectures and sizes. Red numbers
indicate improvements over the SFT baseline. Best performance is highlighted in bold.

Method MMLU MMLU Pro ARC FPB USMLE PubMedQA ConvFinQA Avg.

Llama3.2 3B

Vanilla 59.2 22.4 68.1 62.0 40.1 59.0 28.8 48.5
SFT 61.2 41.1 73.9 92.8 63.9 71.0 65.8 67.1
TwinEvol Iter 4 63.1+1.9 42.3+1.2 76.5+2.6 94.1+1.3 65.8+1.9 74.0+3.0 70.2+4.4 69.4+2.3

Llama3.1 8B

Vanilla 66.4 47.1 81.1 81.7 70.2 73.5 51.1 67.3
SFT 67.9 49.8 81.8 96.2 70.8 75.0 81.3 74.7
TwinEvol Iter 4 69.7+1.8 50.8+1.0 84.7+2.9 97.5+1.3 72.0+1.2 77.0+2.0 84.1+2.8 76.5+1.8

Gemma2 9B

Vanilla 72.1 43.0 87.1 73.7 58.7 64.5 45.9 63.6
SFT 73.7 50.0 87.6 95.2 66.6 74.5 79.8 75.3
TwinEvol Iter 4 75.4+1.7 51.9+1.9 88.6+1.0 96.5+1.3 68.4+1.8 76.8+2.3 83.7+3.9 77.3+2.0

Llama3.1-8B (Dubey et al., 2024), Gemma2-9B (Team et al., 2024), and Llama3.2-3B (Dubey et al.,
2024), with diverse architectures and scales.

Evaluation and Implementation Details We follow (Luo et al., 2024) for model semi-supervised
fine-tuning. Our evaluation suite encompasses both general-purpose and specialized domain bench-
marks. General datasets include MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang et al., 2024d),
and ARC (Clark et al., 2018), while domain-specific evaluation includes FPB (Malo et al., 2014),
USMLE (Jin et al., 2021), PubMedQA (Jin et al., 2019), and ConvFinQA (Chen et al., 2022), which
target specialized knowledge in finance and healthcare domains. See Appendix D.2 for comprehen-
sive implementation details. Code is available at https://anonymous.4open.science/r/TwinEvol.

Baseline Methods. Our experimental evaluation encompasses several categories of baseline ap-
proaches: (1) Fundamental Techniques, including Vanilla inference and Supervised Fine-tuning
(SFT) methods; (2) Self-Evolution Approaches, comprising self-reflection methods like Reflection-
Llama (Li et al., 2024), and data-augmented training methods such as Hermes-3 (Teknium
et al., 2024) and Tulu-3 (Lambert et al., 2024); (3) Domain Adaptation Techniques, including
AdaptLLM (Cheng et al., 2024b) and InstructPT (Cheng et al., 2024a) for specialized domain adap-
tation; (4) Inference Enhancement Methods, such as MemoryLLM (Wang et al., 2024c) for retrieval-
augmented generation. To ensure fair comparison, all baseline methods utilize foundation models
with comparable parameter counts.

7

https://anonymous.4open.science/r/TwinEvol

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation study demonstrating the effectiveness of key components in TwinEvol.
✓indicates the component is included in the corresponding variant. Rank: dynamic ranking via
co-evolving Evaluative Agent; MPO: Meta Preference Optimization; CONS: consistency checking
for response classification; SFT: Supervised Fine-Tuning.

Variant Rank MPO CONS SFT MMLU MMLU-Pro ARC

Full ✓ ✓ ✓ ✓ 69.7 50.8 84.7

V1 ✓ 66.7 47.9 82.0
V2 ✓ ✓ 68.9 50.2 83.3
V3 ✓ ✓ 67.5 50.1 82.2
V4 ✓ ✓ ✓ 68.2 50.2 83.2
V5 Static ✓ ✓ ✓ 67.1 49.8 82.5
V6 ✓ SimPO ✓ ✓ 69.0 50.5 82.4

0.5 1 1.5 2 2.5

MetaPO

66

67

68

69

70

71

Ac
cu

ra
cy

 (%
)

MMLU
ARC

82

83

84

85

86

87

(a) Analysis on β

1 2 3 4 5

Hard Negative Samples K

66

67

68

69

70

71

Ac
cu

ra
cy

 (%
)

MMLU
ARC

82

83

84

85

86

87

(b) Analysis on K

1.0 1.1 1.2 1.3 1.4 1.5
MMLU Perplexity

0

15

30

D
en

si
ty

Vanilla
TwinEvol

(c) PPL on MMLU

1.0 1.1 1.2 1.3 1.4 1.5
MMLU Pro Perplexity

0

5

10

D
en

si
ty

Vanilla
TwinEvol

(d) PPL on MMLU-Pro

Figure 4: Sensitivity analysis of TwinEvol’s performance, demonstrating its stability to hyperpa-
rameters, and Perplexity analysis on MMLU/MMLU-Pro.

4.2 MAIN RESULT

Cross-method Comparison. As shown in Table 1, TwinEvol achieves consistent performance im-
provements across all benchmarks, demonstrating its effectiveness in leveraging both labeled and
unlabeled data. We get the following observations: ❶ Performance Enhancement through Su-
pervision. Table 1 shows that SFT and SemiEvol approaches yield substantial improvements by
effectively leveraging both labeled and unlabeled data. ❷ Limitations of Post-training Methods.
Post-training techniques show marginal improvements or degradation due to distribution misalign-
ment and insufficient capability enhancement. ❸ Constraints of Adaptive Fine-tuning. Adaptive
fine-tuning shows limited improvement due to lower-quality data sources compromising instruction-
following capabilities. ❹ Consistent Improvement. TwinEvol demonstrates consistent improve-
ments through effective unlabeled data utilization and multi-model collaborative learning.

Cross-architecture Analysis. Table 2 demonstrates TwinEvol’s consistent performance gains across
diverse parameter scales and architectures, underscoring its inherent scalability. TwinEvol exhibits a
unique capability for performance equilibration, which effectively addresses architectural predispo-
sitions through reciprocal knowledge transfer. This is exemplified by its ability to enhance Gemma’s
domain-specific performance (in FPB/PubMedQA) while preserving its general capabilities.

4.3 ANALYSIS

Ablation Study. We conducted ablation experiments to evaluate TwinEvol’s components, with re-
sults shown in Table 3, which reveals: (1) Full Model Performance. The complete TwinEvol
framework achieves optimal performance across all benchmarks, demonstrating effective compo-
nent synergy. (2) SFT Impact. The performance gap between V1 (SFT-only) and baseline high-
lights supervised fine-tuning’s crucial role, particularly evident in MMLU improvements. (3) Con-
sistency Selection. V2’s improvement over V1 demonstrates the effectiveness of consistency-based
data filtering, with notable gains in MMLU-Pro and consistent improvements in other metrics. (4)
Preference Ranking. The comparison between V4 and V3 shows the ranking model’s contribution,
yielding improvements. (5) Co-evolution Necessity. To validate the effectiveness of the dynamic
Evaluative Agent, we design V5. V5’s performance degradation demonstrates that co-evolution be-
tween generator and evaluative agents is critical, as the static evaluative agent’s feedback becomes
progressively outdated. Additionally, as shown in V6, MetaPO is better than SimPO in our tasks,
corroborating our theoretical analysis.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Sensitivity Analysis We conducted sensitivity analysis of the TwinEvol framework on MMLU and
ARC datasets, focusing on the MetaPO coefficient β and the number of hard negative samples K.
As shown in Figure 4a and 4b, the model demonstrates robust performance across different values
of β and K. Performance improves with increasing K before stabilizing at K = 4. Based on these
observations, we set β = 1 and K = 4 as default configurations. The analysis reveals that TwinEvol
exhibits low sensitivity to hyperparameter variations, demonstrating its stability.

Perplexity Analysis. Figure 4c and 4d illustrate the perplexity distribution of TwinEvol compared
to vanilla models. Our approach substantially reduces perplexity on both MMLU and MMLU-Pro,
indicating enhanced model calibration and decision confidence. The consistent reduction across
diverse benchmarks suggests effective knowledge integration rather than task-specific overfitting.

0 20 40 60 80 100
Accuracy (%)

MMLU

MMLU_pro

ARC

FPB

PubMedQA
Vanilla
TwinEvol

Figure 5: Stability analysis of TwinEvol.

Statability Analysis. Figure 5 presents our
analysis of model inference stability. We
employed GPT-4o to rephrase test instruc-
tions and conducted 5 independent evalua-
tions, reporting both mean performance and
standard deviation. The results demonstrate
that TwinEvol maintains comparable stabil-
ity to the original model.Details on the sta-
bility analysis are provided in Appendix C.2.

Computational Efficiency Despite introduc-
ing a dual-branch architecture, TwinEvol
maintains competitive computational efficiency while delivering consistent performance improve-
ments. Detailed computational efficiency analysis is provided in Appendix C.1.

5 RELATED WORK

LLM Post-training is crucial for unlocking their domain adaptation capabilities and task general-
ization potential (Wang et al., 2024e; Jeong et al., 2024; Wang et al., 2024a). This stage effectively
enhances model performance across multiple dimensions, including long-context reasoning (Ze-
likman et al., 2022), human alignment (Kaufmann et al., 2023; Rafailov et al., 2024), instruction
following (Zhang et al., 2023), and domain-specific adaptation (Cheng et al., 2024b). Through post-
training, LLMs can be effectively deployed in specialized domains such as healthcare (Jin et al.,
2019), finance (Chen et al., 2022), and legal applications (Izzidien et al., 2024), making it a criti-
cal step in realizing their practical value. However, the scarcity of domain-specific data presents a
significant challenge in real-world applications, leading to data efficiency concerns in LLM post-
training (Tan et al., 2024; Xu et al., 2024b; Kundu et al., 2024).

Data-efficient LLM Post-training aims to address real-world data scarcity, including data selec-
tion (Tsai et al., 2024; Zhou et al., 2024; Kim & Baek, 2024; Lu et al., 2024), data synthesis (Xu
et al., 2024c;a; Dai et al., 2025), and model self-evolution (Madaan et al., 2024; Chen et al., 2024;
You et al., 2024; Dong et al., 2024). While these methods have been extended to semi-supervised
learning scenarios (Luo et al., 2024) with limited labeled and abundant unlabeled data. Existing
semi-supervised post-training methods face critical challenges: the accumulation of pseudo-labeling
errors, insufficient negative feedback mechanisms, and static paradigms lack continuous evolution
capabilities. In this work, TwinEvol leverages collaborative learning with MetaPO and curriculum
learning for a self-reinforcing cycle of knowledge transfer.

6 CONCLUSION

In this paper, we present TwinEvol, a novel semi-supervised co-evolutionary framework for LLM
adaptation that addresses the challenge of limited high-quality annotated data. Through its unique
dual-branch architecture incorporating a generative LLM and a co-evolving Evaluative Agent, along
with Hard Negative Mining and MetaPO optimization algorithm, TwinEvol effectively facilitates
knowledge transfer and capability amplification from limited labeled data to abundant unlabeled
data. Both theoretical analysis and extensive experimental results validate that TwinEvol signifi-
cantly enhances model performance, offering a promising direction for LLM adaptation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For reproducibility purposes, we have made our code available at https://anonymous.4open.science/
r/TwinEvol/. Also, we provided the detailed implementation details in Section 4.1, Appendix D.2
and Appendix C.

ETHICS STATEMENT

Our research adheres to the ICLR Code of Ethics.The code and related materials will be appropri-
ately released to ensure transparency and reproducibility of our work. All datasets used in this study
are publicly available.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Gantavya Bhatt, Yifang Chen, Arnav M Das, Jifan Zhang, Sang T Truong, Stephen Mussmann,
Yinglun Zhu, Jeffrey Bilmes, Simon S Du, Kevin Jamieson, et al. An experimental design
framework for label-efficient supervised finetuning of large language models. arXiv preprint
arXiv:2401.06692, 2024.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang Ma, Sameena Shah, and William Yang Wang.
Convfinqa: Exploring the chain of numerical reasoning in conversational finance question an-
swering. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 6279–6292, 2022.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. In-
struction pre-training: Language models are supervised multitask learners. arXiv preprint
arXiv:2406.14491, 2024a.

Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading com-
prehension. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=y886UXPEZ0.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu, Lin Zhao,
Shaochen Xu, Fang Zeng, Wei Liu, et al. Auggpt: Leveraging chatgpt for text data augmentation.
IEEE Transactions on Big Data, 2025.

Qingxiu Dong, Li Dong, Xingxing Zhang, Zhifang Sui, and Furu Wei. Self-boosting large language
models with synthetic preference data. arXiv preprint arXiv:2410.06961, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Zhengyao Gu, Henry Peng Zou, Yankai Chen, Aiwei Liu, Weizhi Zhang, and Philip S Yu. Semi-
supervised in-context learning: A baseline study. arXiv preprint arXiv:2503.03062, 2025.

10

https://anonymous.4open.science/r/TwinEvol/
https://anonymous.4open.science/r/TwinEvol/
https://openreview.net/forum?id=y886UXPEZ0

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics, pp. 14409–14428, 2023.

Ahmed Izzidien, Holli Sargeant, and Felix Steffek. Llm vs. lawyers: Identifying a subset of sum-
mary judgments in a large uk case law dataset. arXiv preprint arXiv:2403.04791, 2024.

Daniel P Jeong, Zachary C Lipton, and Pradeep Ravikumar. Llm-select: Feature selection with large
language models. arXiv preprint arXiv:2407.02694, 2024.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
for biomedical research question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2567–2577, 2019.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 2023.

Minsang Kim and Seungjun Baek. Measuring sample importance in data pruning for training llms
from a data compression perspective. arXiv preprint arXiv:2406.14124, 2024.

Achintya Kundu, Fabian Lim, Aaron Chew, Laura Wynter, Penny Chong, and Rhui Dih Lee. Effi-
ciently distilling llms for edge applications. arXiv preprint arXiv:2404.01353, 2024.

Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and Nanyun Peng. Active instruction tuning:
Improving cross-task generalization by training on prompt sensitive tasks. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 1813–1829, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, et al. T\"
ulu 3: Pushing frontiers in open language model post-training. arXiv preprint arXiv:2411.15124,
2024.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-
tuning: Student-selected data recycling for LLM instruction-tuning. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics ACL
2024, pp. 16189–16211, Bangkok, Thailand and virtual meeting, August 2024. Association for
Computational Linguistics. URL https://aclanthology.org/2024.findings-acl.958.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
efficient fine-tuning for llm-based recommendation. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 365–374, 2024.

Lei Lu, Zhepeng Wang, Ruexue Bao, Mengbing Wang, Fangyi Li, Yawen Wu, Weiwen Jiang, Jie Xu,
Yanzhi Wang, and Shangqian Gao. All-in-one tuning and structural pruning for domain-specific
llms. arXiv preprint arXiv:2412.14426, 2024.

Junyu Luo, Xiao Luo, Xiusi Chen, Zhiping Xiao, Wei Ju, and Ming Zhang. Semievol: Semi-
supervised fine-tuning for llm adaptation, 2024. URL https://arxiv.org/abs/2410.14745.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. Good debt or bad
debt: Detecting semantic orientations in economic texts. Journal of the Association for Informa-
tion Science and Technology, 65(4):782–796, 2014.

11

https://aclanthology.org/2024.findings-acl.958
https://arxiv.org/abs/2410.14745

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David A. McAllester. Simplified pac-bayesian margin bounds. In Annual Conference Computational
Learning Theory, 2003. URL https://api.semanticscholar.org/CorpusID:14620324.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. arXiv
preprint arXiv:2401.12187, 2024.

Seongho Son, William Bankes, Sayak Ray Chowdhury, Brooks Paige, and Ilija Bogunovic. Right
now, wrong then: Non-stationary direct preference optimization under preference drift. arXiv
preprint arXiv:2407.18676, 2024.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
and synthesis: A survey. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 930–957, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size, 2024. https://arxiv. org/abs/2408.00118,
1(2):3, 2024.

Ryan Teknium, Jeffrey Quesnelle, and Chen Guang. Hermes 3 technical report, 2024. URL https:
//arxiv.org/abs/2408.11857.

Yun-Da Tsai, Mingjie Liu, and Haoxing Ren. Code less, align more: Efficient llm fine-tuning for
code generation with data pruning. arXiv preprint arXiv:2407.05040, 2024.

Fei Wang, Ninareh Mehrabi, Palash Goyal, Rahul Gupta, Kai-Wei Chang, and Aram Galstyan. Data
advisor: Dynamic data curation for safety alignment of large language models. arXiv preprint
arXiv:2410.05269, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Xiaoxuan Wang, Yihe Deng, Mingyu Derek Ma, and Wei Wang. Entropy-based adaptive weighting
for self-training. arXiv preprint arXiv:2503.23913, 2025.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, Jingbo Shang, and Julian McAuley. Memoryllm: Towards self-updatable
large language models, 2024c. URL https://arxiv.org/abs/2402.04624.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024d.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment tech-
niques: Rlhf, rlaif, ppo, dpo and more. arXiv preprint arXiv:2407.16216, 2024e.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
lecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building domain
specific large language models. In Findings of the Association for Computational Linguistics ACL
2024, pp. 10184–10201, 2024.

12

https://api.semanticscholar.org/CorpusID:14620324
https://arxiv.org/abs/2408.11857
https://arxiv.org/abs/2408.11857
https://arxiv.org/abs/2402.04624

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shengzhe Xu, Cho-Ting Lee, Mandar Sharma, Raquib Bin Yousuf, Nikhil Muralidhar, and Naren
Ramakrishnan. Are llms naturally good at synthetic tabular data generation? arXiv preprint
arXiv:2406.14541, 2024a.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024b.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. arXiv preprint arXiv:2406.08464, 2024c.

Jiaxuan You, Mingjie Liu, Shrimai Prabhumoye, Mostofa Patwary, Mohammad Shoeybi, and Bryan
Catanzaro. Llm-evolve: Evaluation for llm’s evolving capability on benchmarks. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 16937–
16942, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Xiaojin Jerry Zhu. Semi-supervised learning literature survey. 2005.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

In this Appendix, we present comprehensive supplementary materials that underpin the results dis-
cussed in the main text. Section A provides a detailed reproducibility statement, Section B contains
rigorous proofs of all theorems, Section C offers additional analyses on computational efficiency,
stability, and further discussion, and Section D delivers full algorithmic and implementation details.

Appendix Contents

A. Reproducibility . 14

B. Proof of Theorems . 14

B.1 Proof of Theorem 1. .14

B.2 Proof of Theorem 2. .15

B.3 Proof of Theorem 3. .16

C. Additional Analysis . 17

C.1 Computational Efficiency Analysis . 17

C.2 Stability Analysis . 17

C.3 Robustness under Noisy Unlabeled Data . 17

C.4 Further Discussion . 18

D. Additional Details .19

D.1 Algorithm Details . 19

D.2 Implementation Details . 20

A REPRODUCIBILITY

To increase reproducibility, we have provided all the details of TwinEvol in the Appendix. Our
code is available at https://anonymous.4open.science/r/TwinEvol/ anonymously. We also commit to
making our code and data publicly available.

B PROOF OF THEOREMS

B.1 PROOF OF THEOREM 1

Theorem 4. Denote LSimPO as the loss function of SimPO, which only generates one pair of re-
sponses per sample. Assume that each Y k

i is generated independently, we have
V ar[∇LMetaPO]

V ar[∇LSimPO]
= O(1

K2
) (12)

Proof. Let’s analyze this step by step:

1) First, let’s consider SimPO which only uses a single preference pair per sample. For each input
task Xi, let Bi = {(Ŷ w

m , Ŷ l
m)}Mi

m=1 be Mi preference pairs, where Mi = O(K2).

2) For SimPO with only a single pair (Ŷ w, Ŷ l) per sample Xi, the gradient is:

∇θLSimPO = − 1

N

N∑
i=1

[
σ(rθ(Xi, Ŷ

l)− rθ(Xi, Ŷ
w)) (∇θrθ(Xi, Ŷ

w)−∇θrθ(Xi, Ŷ
l))
]

(13)

14

https://anonymous.4open.science/r/TwinEvol/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

3) To simplify notation, let’s denote:

gi(Ŷ
w, Ŷ l) = σ(rθ(Xi, Ŷ

l)− rθ(Xi, Ŷ
w))(∇θrθ(Xi, Ŷ

w)−∇θrθ(Xi, Ŷ
l)) (14)

and its variance σ2
g = V ar(gi(Ŷ

w, Ŷ l)).

4) For SimPO, the gradient variance can be calculated as:

V ar(∇θLSimPO) =
1

N2

N∑
i=1

σ2
g =

σ2
g

N
(15)

5) For MetaPO, which utilizes multiple preference pairs, the gradient is:

∇θLMetaPO = − 1

N

N∑
i=1

[
1

Mi

Mi∑
m=1

σ(rθ(Xi, Ŷ
l
m)− rθ(Xi, Ŷ

w
m)) (∇θrθ(Xi, Ŷ

w
m)−∇θrθ(Xi, Ŷ

l
m))
]

= − 1

N

N∑
i=1

[
1

Mi

Mi∑
m=1

gi(Ŷ
l
m, Ŷ w

m)

]
(16)

6) Due to the independence assumption of generated responses, the gradient variance of MetaPO is:

V ar(∇θLMetaPO) =
1

N2

N∑
i=1

1

M2
i

M∑
m=1

σ2
g = O

(
σ2
g

NK2

)
(17)

7) Therefore, the ratio of variations is:

V ar[∇LMetaPO]

V ar[∇LSimPO]
= O

(
1

K2

)
(18)

This result demonstrates that MetaPO significantly reduces gradient variance compared to SimPO
by a factor of O(1

K2). This reduction in variance leads to more stable training and potentially faster
convergence. The quadratic relationship with K suggests that even a modest increase in the number
of generated responses can substantially improve training stability.

B.2 PROOF OF THEOREM 2

Theorem 5. Let R(πθ) be the expected risk and R̂(πθ) the empirical risk, then with probability
1− δ, we have

R(πθ) ≤ R̂(πθ) +O

√KL(πθ∥πref) + ln(NK2

δ)

NK2

 (19)

where KL(πθ∥πref) represents the KL-divergence between πθ and base reference model πref.

Proof. First, we define the dataset D̃ = {(Xi, Ŷ
w
m , Ŷ l

m)}1≤i≤n,1≤m≤Mi and the loss function

ℓ(θ;Xi, Ŷ
w
i , Ŷ l

m) = − log σ
(
rθ(Xi, Ŷ

w
m)− rθ(Xi, Ŷ

l
m)
)

. Let D be the distribution of the input

X . Then we can calculate the empirical risk R̂(πθ) = 1
N

N∑
i=1

1
Mi

Mi∑
m=1

ℓ(θ;Xi, Ŷ
w
i , Ŷ l

m) and the

expected riskR(πθ) = EX∼D,Ŷ w,Ŷ l∼πθ
[ℓ(θ;X, Ŷ w, Ŷ l)].

Under the PAC-Bayes Framework, using McAllester’s bound (McAllester, 2003), with probability
1− δ, we have

R (πθ) ≤ R̂ (πθ) +

√√√√KL(πθ∥πref) + log Ñ
δ

2(Ñ − 1)
(20)

where Ñ =
N∑
i=1

Mi is the total amount of data (Xi, Ŷ
w
m , Ŷ l

m) we used and πref is the reference policy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since Mi = O(K2), we can get that with probability 1− δ, the following inequality holds.

R(πθ) ≤ R̂(πθ) +O

√KL(πθ∥πref) + ln(NK2

δ)

NK2

 . (21)

Theoretical Implications. This generalization bound provides several key insights into MetaPO’s
behavior. First, the error decreases at rate O(1/

√
N), which achieves the optimal convergence rate

in statistical learning theory. This indicates MetaPO’s strong statistical efficiency in utilizing training
samples.

Trade-offs in Response Generation. The O(
√
K logK/N) term reveals an important trade-off

in the number of generated responses K. While Theorem 1 shows that larger K reduces gradient
variance quadratically, the generalization bound suggests a mild increase in error with K. The
logarithmic dependence on K indicates this trade-off favors moderate values that balance variance
reduction and generalization.

Model Complexity Considerations. The bound’s implicit dependence on model dimension d
through the covering number illustrates the relationship between model complexity and the theo-
retical guarantees. This provides a formal characterization of how model architecture choices affect
the learning process.

B.3 PROOF OF THEOREM 3

Theorem 6 (Co-evolution Convergence). Let αM , αR be positive constants. Under the following
assumptions:

Mt+1 −Mt = αM (M∗ −Mt)(Rt − R̃)

Rt+1 −Rt = αR(R
∗ −Rt)Mt

0 < R̃ ≤ R0 ≤ R∗ , 0 < M0 ≤M∗

αRM
∗ ≤ 1 , αM (R∗ − R̃) ≤ 1

(22)

then there exist constants C and λ > 0 such that the following inequality holds:

∥(Mt, Rt)− (M∗, R∗)∥ ≤ Ce−λt . (23)

Proof. The given system is a discrete-time dynamical system, and its fixed point is (M∗, R∗).

From the assumptions, we have

M∗ −Mt+1 = (M∗ −Mt)(1− αM (Rt − R̃))

R∗ −Rt+1 = (R∗ −Rt)(1− αRMt)
(24)

Denote At = 1− αM (Rt − R̃), Bt = 1− αRMt for t ∈ N. Then we have 0 ≤ At, Bt ≤ 1, and for
any t > s > 0,

M∗ −Mt+1 = (M∗ −Mt) ·At = · · · = (M∗ −Ms) ·AtAt−1 · · ·As

R∗ −Rt+1 = (R∗ −Rt) ·Bt = · · · = (R∗ −Rs) ·BtBt−1 · · ·Bs
(25)

Then, we can obtain that R̃ ≤ Rt ≤ R∗, 0 < Mt ≤ M∗, At < µ,Bt < µ(t ≥ t0) for some
0 < µ < 1 and t0, which is not hard to prove by induction from Equation 25. Therefore, we have

M∗ −Mt ≤ (M∗ −Mt0)µ
t−t0 , R∗ −Rt ≤ (R∗ −Rt0)µ

t−t0 (26)
which implies

∥(Mt, Rt)− (M∗, R∗)∥ =
√

(Mt −M∗)2 + (Rt −R∗)2

≤
√

(Mt0 −M∗)2 + (Rt0 −R∗)2 · µt−t0

= Cµt = C ′e−λt

(27)

for some constant C,C ′ and λ > 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ADDITIONAL ANALYSIS

C.1 COMPUTATIONAL EFFICIENCY ANALYSIS

To assess computational overhead and scaling, we conducted supplementary experiments across two
model sizes (Llama3.2-3B and Llama3.1-8B), comparing per-iteration training time against standard
SFT and a memory-augmented baseline.

Table 4: Computational resource analysis for SFT, MemoryLLM, and TwinEvol across model sizes.

Method Llama3.2-3B Llama3.1-8B
SFT 0.62 1.50
MemoryLLM 1.39 3.02
TwinEvol 0.80 1.98

As shown in Table 4, the overhead of TwinEvol does not increase substantially with parameter count
and remains well below MemoryLLM, indicating practical efficiency at larger scales.

Three design choices contribute to this efficiency. First, shared parameter initialization: both the
LLM and the Evaluative Agent reuse the same foundation architecture, enabling efficient initial-
ization and optimization. Second, selective preference optimization: MetaPO is applied only to
inconsistent preference pairs, avoiding computation on already well-aligned data. Third, iterative
co-evolution: as both models improve, later iterations learn more efficiently, partially amortizing the
initial overhead.

Overall, the overhead is comparable to common alignment methods such as SFT/DPO, while
TwinEvol delivers consistent gains in semi-supervised settings. The favorable scaling profile makes
TwinEvol viable for real-world deployment at scale.

C.2 STABILITY ANALYSIS

Table 5: Stability Analysis Results (Mean± Std).

Model MMLU MMLU_pro ARC FPB PubMedQA
Vanilla 66.4± 1.50 47.1± 1.70 81.1± 0.90 81.7± 0.65 73.5± 0.50
TwinEvol 69.7± 1.70 50.8± 1.27 84.7± 0.90 97.5± 1.25 76.5± 0.50

To thoroughly evaluate the stability of TwinEvol, we conducted a comprehensive analysis comparing
it with the vanilla model across five standard benchmarks. Table 5 presents detailed results showing
both models’ performance with standard deviations across 5 independent runs. The data reveals that
TwinEvol maintains comparable or better stability than the vanilla model while achieving higher
accuracy across all benchmarks.

The analysis demonstrates that TwinEvol’s improvements are statistically significant and robust.
The standard deviations remain comparable to or lower than the baseline model, indicating that
our approach enhances performance without sacrificing stability. This is particularly noteworthy in
specialized domains like FPB and PubMedQA, where TwinEvol shows substantial improvements
while maintaining low variance. The consistent performance across multiple runs suggests that
the twin evolution mechanism effectively stabilizes the learning process, likely due to the mutual
reinforcement between the LLM and Evaluative Agent components.

C.3 ROBUSTNESS UNDER NOISY UNLABELED DATA

We evaluate robustness to systematic noise in unlabeled data on ConvFinQA. To simulate semantic
noise, we obfuscate and paraphrase a fraction (10%, 20%, 30%) of unlabeled queries using GPT-4o,
and train all models on these noisy unlabeled sets while keeping the evaluation on the original test
set. This setup tests stability under distribution corruption without changing the gold evaluation
protocol.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Robustness to semantic noise on ConvFinQA (Accuracy, %). Unlabeled queries are
paraphrase-obfuscated at the indicated rates; evaluation is on the original test set.

Method 0% 10% 20% 30%
SFT 81.3 - - -
SFT+SelfLabel 81.9 80.9 79.5 77.8
SemiEvol 82.4 82.0 81.3 79.6
TwinEvol 84.1 83.6 83.1 82.9

The baseline methods degrade notably as noise increases, reflecting error accumulation in self-
labeling. In contrast, TwinEvol exhibits graceful degradation, attributed to the Evaluative
Agent and Meta Preference Optimization jointly suppressing error propagation. Under 30% noise,
TwinEvol still surpasses the SFT model trained only on clean data, indicating robust extraction of
signal from noisy unlabeled corpora.

C.4 FURTHER DISCUSSION

Overfitting. A potential concern is whether training the Evaluative Agent using only labeled data
might lead to overfitting, given the typically small size of such datasets. However, the Evaluative
Agent in our TwinEvol framework is designed to mitigate this risk. Firstly, each labeled example
generates multiple preference pairs through comparisons with model-generated responses, which
effectively expands the training set for the Evaluative Agent. Secondly, the iterative co-evolution
process of TwinEvol continuously exposes the Evaluative Agent to new and evolving response pat-
terns from the LLM. This dynamic training environment helps the Evaluative Agent to generalize
better. Our empirical results, which demonstrate consistent performance improvements across di-
verse benchmarks, validate this approach and indicate effective generalization rather than overfitting
of the Evaluative Agent.

Comparison with Traditional SFT+PO Pipelines. It is crucial to highlight that traditional SFT+PO
pipelines operate under significantly different data paradigms. These methods typically neces-
sitate substantial volumes of human-annotated preference pairs for effective alignment. In con-
trast, TwinEvol is specifically engineered for semi-supervised learning scenarios characterized by
a scarcity of labeled data and, importantly, the absence of human-generated preference feedback.
This fundamental divergence in data availability and assumptions makes a direct, equitable com-
parison challenging. TwinEvol’s primary contribution lies in its efficacy within these low-resource,
semi-supervised contexts, where access to extensive preference datasets is not feasible.

Robustness to Noisy Hard Negatives. In scenarios involving low-quality or noisy initial data, the
risk of unreliable negative samples impacting preference optimization is a valid concern. TwinEvol
incorporates several mechanisms to enhance robustness against such challenges. Firstly, an initial
SFT phase on available labeled data establishes a foundational level of response quality. Secondly,
the Evaluative Agent, trained on clean labeled examples, provides a more reliable source
for preference judgments, guiding the LLM even when its own initial generations might be noisy.
Thirdly, MetaPO’s design, which aggregates signals from multiple preference pairs, inherently offers
a degree of resilience against individual noisy or misleading negative samples. Finally, the iterative
co-evolutionary process itself fosters a curriculum effect: as both the LLM and the Evaluative
Agent improve, the quality of generated responses progressively refines, creating a virtuous cycle
that mitigates the early-stage impact of noise. While no system is entirely immune to noise, these
integrated strategies collectively contribute to TwinEvol’s ability to navigate and improve even in
imperfect data environments.

Mitigation of Pseudo-Label Error Propagation. While pseudo-labeling inherently bears the risk
of propagating erroneous signals, TwinEvol employs a multi-faceted defense strategy. First, the
Evaluative Agent is initially trained on clean, human-annotated data (Eq. 1), establishing a
robust foundation before generating pseudo-preferences. Second, the iterative co-evolution of the
LLM and Evaluative Agent creates a virtuous cycle: as the LLM’s outputs improve in qual-
ity, the Evaluative Agent receives more reliable training signals, progressively curbing error
amplification. Third, MetaPO’s aggregation over multiple diverse response pairs dilutes the impact

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

of any single incorrect annotation, as formalized in Theorem 1. Finally, the emergent curriculum
effect from this co-evolutionary process ensures that both models naturally transition from simpler
to more complex data, further containing noise. Empirical results across benchmarks consistently
validate the efficacy of these safeguards, demonstrating stable performance even under ambiguous
or noisy conditions.

Algorithm 1 Algorithm of TwinEvol

Require: Labeled dataset Dlabeled, Unlabeled dataset Dunlabeled, LLMM, Evaluative
Agent (denoted as A), Number of responses K, Number of iterations T ;
Ensure: Fine-tuned LLMM′

1: InitializeM and A with pre-trained weights
2: M← SFT(M,Dlabeled)
3: for iteration t = 1 to T do
4: // Evaluative Agent Training Step
5: Initialize Drank = ∅
6: for each labeled sample (Xi, Yi) in Dlabeled do
7: Generate response Ŷi =M(Xi)

8: if Yi ≻ Ŷi then
9: Add (Xi, Yi, Ŷi) to Drank

10: end if
11: end for
12: Update Evaluative Agent: A ← SFT(A,Drank)
13: // LLM Training Step
14: Initialize Dcon = ∅
15: Initialize Dpref_pairs = ∅
16: for each sample Xi in Dunlabeled do
17: Generate K diverse responses: {Ŷ k

i }Kk=1 =M(Xi)

18: Identify consistent responses Ŷi,cons from {Ŷ k
i }

19: if such Ŷi,cons exists for Xi then
20: Add (Xi, Ŷi,cons) to Dcon

21: end if
22: Construct preference pairsPi = {(Ŷ w

i , Ŷ l
i)} from all K responses {Ŷ k

i } using the updated
Evaluative Agent A

23: Add all pairs from Pi to Dpref_pairs
24: end for
25: Update LLM via SFT:M← SFT(M,Dcon)
26: Update LLM via MetaPO:M← MetaPO(M,Dpref_pairs)
27: end for
28: returnM′ =M

D ADDITIONAL DETAILS

D.1 ALGORITHM DETAILS

Algorithm 1 presents the complete training procedure of TwinEvol. The algorithm consists of three
main components that operate in an iterative manner. First, Hard Negative Mining (lines 4-7) gen-
erates K diverse responses for each input and constructs preference pairs, providing comprehensive
supervision signals. Second, the Evaluative Agent Training Step (lines 8-12) leverages la-
beled data to create ranking annotations, enabling the Evaluative Agent to learn preference
relationships. Finally, the LLM Training Step (lines 13-17) updates the model through both SFT on
consistent responses and MetaPO on inconsistent ones, forming a twin evolution cycle. This iterative
process naturally implements curriculum learning as both models progressively improve, where en-
hanced model capabilities lead to better quality training signals, which in turn enable further model
improvements in subsequent iterations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 IMPLEMENTATION DETAILS

We provide comprehensive implementation details to ensure reproducibility of our experiments. All
experiments were conducted on NVIDIA Hopper GPUs with 80GB memory. The implementation
leverages PyTorch with CUDA and mixed precision training (FP16/BF16).

For the foundation models, we employed different sequence length configurations to accommodate
model architectures. Llama3.1-8B and Llama3.2-3B operate with a maximum sequence length of
4096 tokens, while Gemma2-9B extends to 8192 tokens to leverage its enhanced context handling
capabilities.

The training process utilizes a carefully tuned set of hyperparameters optimized for model perfor-
mance. We employ a learning rate of 2e-5 with a cosine decay schedule, complemented by 100
warmup steps. The optimization process incorporates weight decay of 0.01 and gradient clipping at
1.0. To balance computational efficiency and training stability, we set gradient accumulation steps
to 4 and run the training for 3 epochs. For MetaPO optimization, we set β = 1.0 and K = 4
based on our sensitivity analysis (Section 4.3). The Evaluative Agent model follows identical
hyperparameters except for an increased learning rate of 5e-5 to facilitate faster adaptation. In the
decoding process, we use temperature sampling with temperature 1.

Our data processing pipeline implements several key optimizations. Input sequences are tokenized
using model-specific tokenizers with the aforementioned maximum sequence lengths. The clean set
uses an entropy-based filtering with a ratio of 50% following previous work.

For consistent and fair comparison, our data partitioning follows the established protocol from
SemiEvol (Luo et al., 2024), with a ratio of 2:6:2 for labeled data, unlabeled data, and test data,
respectively.

Consistency Check Procedure. As described in Section 3.3, we generate multiple candidate re-
sponses for each unlabeled data point and apply consistency validation. For structured tasks, we use
predefined rules to extract core answers and perform direct comparison. When the majority answers
reach consensus, we treat this as a valid pseudo-label. For open-ended generation, we leverage
external LLMs for consistency judgment between candidate responses.

Generation LLM Instruction, we follow a standardized instruction template as shown in Table 7
to ensure consistent model responses across all benchmarks. This template enforces a structured
format for both questions and answers, with explicit markers for answer boundaries to facilitate
accurate evaluation. All evaluations utilize the official benchmark scripts to maintain consistency
with published results.

Evaluation Agent Instruction, we provide the instruction of the Evaluative Agent as shown in
Table 8. This provides the Evaluative Agent with a clear directive: given the context of a question
and two candidate responses (Response 1 and Response 2), determine if the first is superior to the
second and output a simple Y or N. This feedback is the cornerstone that enables our MetaPO
algorithm to learn effectively.

Table 7: iInstruction template for Generative LLMs.

Query Template
Answer the following {question_type} question.
Your answer must be on a new line starting with "Answer: ".
{additional_prompt}

Question:
{question}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: iInstruction template for the Evaluative Agent ranking task.

Evaluative Agent Prompt Template
You are a critical ranking agent. Your task is to carefully examine a question and its various
predictions to determine the best prediction.

Question: {question}

Response 1: {response_1}
Response 2: {response_2}

Please analyze this carefully and predict if the response 1 is better than response 2.

Your Options:
- Y: Response 1 is better.
- N: Response 2 is better.

Your response must follow this format:

Answer: [Y/N]

LLMS USAGE

We adhere to the ICLR Code of Ethics. We use large language models to polish the text and also
fetch the relevant references and the latest related works. The scientific contributions remain entirely
our own.

21

	Introduction
	Preliminaries
	Methodology
	Overview
	Co-evolving Evaluative Agent
	Co-evolving Generative LLM
	Effective Meta Preference Optimization
	Hard Negative Mining
	Meta Preference Optimization

	Curriculum Learning in TwinEvol

	Experiments
	Experiment Setup
	Main Result
	Analysis

	Related Work
	Conclusion
	Reproducibility
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Additional Analysis
	Computational Efficiency Analysis
	Stability Analysis
	Robustness under Noisy Unlabeled Data
	Further Discussion

	Additional Details
	Algorithm Details
	Implementation Details

