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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across various domains, yet their adaptation to specific downstream tasks remains
challenging due to limited labeled data. Although post-training methods (e.g.,
SFT, DPO) have proven effective, they face significant limitations due to the
scarcity of labeled data. In this paper, we present TwinEvol, a framework that
treats downstream task training and evaluation as complementary, co-evolving
submodules. TwinEvol introduces an evaluation agent that co-evolves with the
main model; this agent is not a static external module but rather self-iterates and
evolves through continuous interaction with the generation LLM after iterative
calibration. The agent facilitates more nuanced assessment during downstream
adaptation, incorporating hard negative mining and meta-preference optimization
to achieve comprehensive feedback and efficient knowledge transfer. Through an
iterative twin evolution process, the framework establishes a self-reinforcing cycle
that effectively propagates knowledge from labeled to unlabeled data while main-
taining task alignment. Experiments across various downstream tasks demonstrate
that TwinEvol achieves superior performance compared to existing methods. Our
code is available at https://anonymous.4open.science/r/TwinEvol/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in general do-
mains (Achiam et al., 2023; Wang et al., 2024b), yet their adaptation to specific downstream tasks
remains a critical challenge (Xie et al., 2024; Luo et al., 2024; Lin et al., 2024), particularly in
real-world scenarios where high-quality annotated data is scarce (Honovich et al., 2023; Kung et al.,
2023; Cheng et al., 2024b). Current mainstream post-training optimization approaches, such as Su-
pervised Fine-tuning (SFT) and preference optimization methods (Rafailov et al., 2024; Ethayarajh
et al., 2024), are constrained by their dependence on high-quality data (Bhatt et al., 2024; Rafailov
et al., 2024; Ethayarajh et al., 2024). In most real-world situations, we would face a mix of limited
human-response data and abundant unannotated data (Zhu, 2005; Gu et al., 2025). To overcome
these constraints, researchers have begun exploring semi-supervised approaches that leverage lim-
ited labeled data to guide learning from abundant unlabeled data (Luo et al., 2024).

Existing methods face several challenges: @ Traditional knowledge injection paradigms (such as
SFT-driven pseudo-labeling) (Luo et al., 2024; Wang et al., 2025; Xia et al., 2024) struggle to
fully extract and utilize complex negative feedback signals embedded in unlabeled data, limiting
the model’s ability to learn deeply from self-exploration. @ While preference learning methods
introduce comparative mechanisms, they become susceptible to alignment drift when relying on ex-
ternal or static evaluators disconnected from the model’s evolution (Son et al., 2024), potentially
providing delayed, ineffective, or even erroneous feedback signals (Ramé et al., 2024). The core
issue lies in the lack of organic integration between the model’s generation capability and evalu-
ation capability, which hinders efficient and reliable knowledge transfer from limited high-quality
data to vast unlabeled datasets.

To address these challenges, we propose TwinEvol, a framework that enables the co-evolution of
LLM generation and evaluation capabilities, designed to stimulate and calibrate the LLM’s inherent
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evaluation mechanism. Eliminating dependency on fixed external evaluators, TwinEvol empowers
LLMs to develop dynamic, task-aligned preference recognition abilities.

Our Method: TwinEvol
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iteratively learns and evolves through continuous interaction with the generation module, forming
an efficient knowledge transfer and self-improvement feedback loop. Strategically, TwinEvol
establishes a composite negative feedback and multi-granular supervision system. Hard Negative
Mining enables the LLM to extract subtle yet critical differences, enhancing its discrimination
and improvement capabilities. Meanwhile, the Meta-Preference Optimization (MetaPO) algorithm
achieves efficient supervision information aggregation, with theoretical analysis demonstrating
its superior convergence properties and noise robustness. Dynamically, TwinEvol implements
a Curriculum Evolution mechanism where the LLM’s outputs train and validate the Evaluative
Agent’s judgment accuracy, while the Agent’s precise feedback continuously optimizes the LLM’s
generation strategy. This iterative, interdependent update process forms a symbiotic co-evolution
that enables synchronous enhancement of generation capabilities and internal evaluation standards,
progressively achieving higher-level task alignment and performance improvement. Experimental
validation across multiple downstream tasks demonstrates that TwinEvol significantly outperforms
existing semi-supervised methods.

Our contributions can be summarized as follows: @ Perspective: We conceptualize LLM generation
and evaluation capabilities as having a symbiotic relationship (Twin) and implement their iterative
self-cyclical improvement. @ Methodology: We design TwinEvol, a co-evolutionary framework
with MetaPO algorithm to achieve supervision information fusion and model adaptive evolution,
with theoretical guarantees. ® Performance: We validate our method’s effectiveness across multi-
ple datasets, demonstrating significant performance improvements.

2 PRELIMINARIES

Supervised Fine-Tuning (SFT) represents the most straightforward approach for adapting LLMs
to downstream tasks, aiming to align the model’s outputs with desired responses. Formally, given
a dataset D = {Xi,Yi}?’:’I, where N; = N(D) is the number of labeled samples in D, X; is
the input task and Y; is the corresponding expected response. SFT optimizes the model through
a token-by-token loss minimization process. This procedure effectively injects knowledge. While
traditional SFT focuses primarily on positive feedback, TwinEvol makes robustness improvement
through adding comprehensive learning from negative LLM-generated pseudo samples.

Semi-supervised Fine-Tuning addresses scenarios with both labeled and unlabeled data. Given
a labeled dataset Dppeled = { (X, Y;)}fv:’l and an unlabeled dataset Dypapeled = {Xi}fv:“l, where
N; <« N,, the goal is to leverage limited labeled data as seeds to guide learning on unlabeled data.
While existing approaches focus on direct knowledge transfer through self-training or consistency
regularization, TwinEvol establishes a co-evolutionary mechanism between training and evaluation,
creating a self-reinforcing knowledge flywheel, enabling more effective knowledge propagation.

Preference Optimization aims to align LLMs with human preferences through pairwise compari-
son learning. While DPO (Rafailov et al., 2024) has shown effectiveness in preference alignment
using reference models, SimPO (Meng et al., 2024) proposes a more streamlined approach by re-
moving reference model dependencies. The key difference between TwinEvol and existing prefer-
ence optimization methods is that we use a co-evolutionary framework to optimize the preference
learning, which is more effective than traditional preference optimization methods.
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Figure 2: Overview of TwinEvol. The framework integrates a generative LLM with a co-evolved
Evaluative Agent in a symbiotic relationship. The LLM processes both labeled and unla-
beled data to generate responses, while the Evaluative Agent provides preference annotations
through hard negative mining for MetaPO optimization. This establishes a twin evolution cycle
where both components iteratively enhance each other’s capabilities.
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3.1 OVERVIEW

To handle hybrid data scenarios effectively, we propose TwinEvol. The core innovation of TwinEvol
lies in organically integrating the model’s generative and evaluative capabilities, forming a co-
evolving system between the generative LLM and the Evaluative Agent. This framework
creates an evolutionary flywheel that facilitates knowledge propagation from labeled to unlabeled
data. As illustrated in Figure 2, our framework comprises two principal components: the generative
LLM and the co-evolved Evaluative Agent. The framework’s operation depends on the seam-
less coordination of several critical processes: the construction and training of the Evaluative
Agent (Section 3.2), the learning of the generative LLM (Section 3.3), and our approach to Ef-
fective Meta Preference Optimization (Section 3.4), which employs hard negative mining and the
MetaPO algorithm to refine model alignment. This co-evolutionary process culminates in a curricu-
lum learning strategy (Section 3.5), enabling the system to improve continuously.

3.2 CO-EVOLVING EVALUATIVE AGENT

In semi-supervised scenarios, effectively leveraging limited labeled data to generate quality pseudo-
preference signals for abundant unlabeled data is crucial. As shown in Figure 3, the Evaluative
Agent serves as a dynamic quality assessor for model-generated responses. For a pair of responses
Yp and Y7, the Evaluative Agent determines their preference relationship, which can be either
a tier relationship (i.e., Yo ~ Y1) or a strict preference (i.e., Yy > Y7).

The Evaluative Agent is trained through
SFT using labeled data. Specifically, for each la-
beled data pair (Q;,Y;), where Q; is the query
and Y; is the annotated response, we generate
model responses Y; using the LLM. We then
perform consistency checking by extracting and
comparing answers. This process leads to either
tier annotations (when responses are of similar

You are a critical ranking agent. Your task is to carefully
examine a question and its various predictions to
determine the best prediction.

Evaluative
Response 1 @
Response 2 «ih Agent

Please analyze this carefully and predict if the response
1 is better than response 2.

Figure 3: Instruction of the Evaluative Agent.

quality) or preference annotations (when the labeled response is deemed superior). We take the
inconsistent preference annotations as the training data for the Evaluative Agent:

Drank = {(Qi,Y;‘,YA;;,T'i | le - }Afl)} . (l)

The Evaluative Agent is then tuned by SFT on Dy,. The agent is iteratively trained to
learn preference relationships on downstream tasks, providing more accurate quality assessment
for model-generated responses. Notably, after each update of the main LLM, new preference data
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Drank 1s generated to train the Evaluative Agent, a process we refer to as calibration. This
iterative calibration ensures that the Evaluative Agent continuously adapts to the evolving
capabilities of the main model.

3.3 CO-EVOLVING GENERATIVE LLM

In the TwinEvol co-evolutionary framework, the main LLM could effectively utilize indirect feed-
back signals provided by the Evaluative Agent based on its generated responses. The training
process of the LLM is as follows. As a warm-up, the LLM M first undergoes SFT using labeled
data Diypeleq to establish foundation domain adaptation capabilities.

In the adaptation process, we should make use of the unlabeled data Dygjapeled to further enhance the
LLM’s performance, which is conducted as follows. First, given an input task X; € Dynlabeled> WE
generate multiple diverse responses through sampling from the M:

Vi ={V}F = M(X;;0) | k=1,...,K}, )
where K is the number of generated responses, which is set to 4 by default and examined in
Section 4.3. Then, we classify the responses {yi}ﬁvz”l into consistent set (D.o,) and inconsistent

set (Dincon) based on response consistency. The consistencies are derived from answer comparisons,
such as numerical values or multiple-choice options, or use LLM to judge the consistency.

The model then evolves through a two-pronged approach. For consistent responses (Deop ), We apply
standard SFT training. For inconsistent responses (Dincon), We leverage the Evaluative Agent
to obtain pseudo-preferences and conduct MetaPO training (will be discussed in Section 3.4.2). The
complete generative LLM update is as:

Mj+1 — MetaPO(M;, Dincon) < SFT(M7, Dcon) s (3)
where M ; represents the model at iteration j, and ./\/l; is the model after SFT.

Discussion. This dual-branch architecture establishes the foundation for our co-evolution frame-
work, where the Evaluative Agent provides quality assessment for LLM outputs, while the
LLM generates diverse responses for Evaluative Agent training. This symbiotic relationship
forms the basis for the twin evolution process detailed in the following section.

3.4 EFFECTIVE META PREFERENCE OPTIMIZATION

Traditional preference optimization approaches often rely on limited negative samples, which con-
strain the model’s ability to learn from diverse error patterns. This limitation is particularly pro-
nounced in semi-supervised learning scenarios. To address this challenge and enable robust opti-
mization across the abundant unlabeled data, we introduce effective Meta Preference Optimization
to provide richer alignment signals through diversified negative feedback.

3.4.1 HARD NEGATIVE MINING

Relying solely on single or randomly generated negative samples may not provide the model with
sufficiently robust and targeted learning signals. Therefore, to fully leverage the learning po-
tential from model outputs, we utilize multiple generations Y; from the LLM, and employ the
Evaluative Agent to rank them for hard negative mining:

P = {7,V rj) | mjr € {0,1},1 < j # k < K}, )

where r;;, = 1 indicates }A/l-] is preferred over Yik, and this preference judgment is determined by the
Evaluative Agent. Notably, as the Evaluative Agent and the model co-evolve through
iterative training, the agent becomes increasingly capable of distinguishing subtle differences be-
tween various model-generated responses, resulting in more informative preference signals.

3.4.2 META PREFERENCE OPTIMIZATION

To effectively utilize the hard negative samples {Pl}f\[:”l and align the model with downstream tasks,
we propose Meta Preference Optimization (MetaPO). Different from existing preference optimiza-
tion methods (Rafailov et al., 2024; Ethayarajh et al., 2024), MetaPO achieves comprehensive con-
sideration of multiple preference pairs, enabling more comprehensive preference optimization.



Under review as a conference paper at ICLR 2026

For MetaPO, we first introduce the length-normalized reward function (Meng et al., 2024):

. B .
TH(XMY;‘) = ﬁlogﬂ—e(}/”Xl)) (5)
where [ is a constant controlling the reward scale (default to 1, examined in Section 4.3), and
|Y;| represents the response length. For a preference pair with winner response Y;* and loser re-
sponse Y}, their reward difference should exceed a margin -y (set to 1 following common practice):
ro(X;, Y") — r9(X;, Y}) > ~. The complete MetaPO objective is defined as:

N
Ltewapo (T9) = —% S Y logo(re(Xi, ) — re(X:, YY) (6)
= vhes:
Through MetaPO, we achieve comprehensive optimization across multiple types of negative feed-
back while maintaining stable model performance improvements. This approach enables robust
optimization against diverse pseudo-responses, leading to more consistent model enhancement.

Theoretical Analysis. We provide a comprehensive theoretical foundation for TwinEvol, establish-
ing its advantages through three complementary theoretical perspectives. @ We demonstrate that
MetaPO achieves significant gradient variance reduction compared to single-pair optimization ap-
proaches, leading to more stable learning dynamics (Theorem 1). @& We establish a generalization
error bound within the PAC-Bayes framework, quantifying how MetaPO’s multi-pair mechanism
tightens performance guarantees (Theorem 2). @ We analyze the convergence properties of our
co-evolutionary framework, proving exponential convergence to optimal performance under well-
defined conditions (Theorem 3). Together, these theoretical results establish a rigorous basis for
understanding TwinEvol’s empirical effectiveness in semi-supervised learning scenarios.

Theorem 1 (Stable Learning Dynamics). Denote Ls;upo as the loss function of SimPO, which

only generates one pair of responses per sample. Assuming these pairs ()A/Z-“’, Yil ) € B; are all
independent, we have:

Var[VLyewro] _ (1> ™)

Var [VLsimpo]  \ K2

Proof Sketch. Let M; = |B;| be the number of pairs of contrastive pairs (Y;, Y}!) for each sample
X;. The gradient of MetaPO loss with respect to the parameters 6 can be written as:

M;

TS o (ro(Xa V) —ro(X V) (Vara(Xe V)= Varo(Xe, V)]
"' m=1

1 N
v«9LMetaPO = X Z
N i=1

For each sample X, the gradient can be viewed as the average of M, independent gradients, whfcgﬁ
makes the overall variance only 1/M; of the variance of the SimPO loss gradient. Since M =
O(K?), it’s straightforward to get to the conclusion of Theorem 1. The detailed proof is provided
in Appendix B.1. O

This substantial variance reduction yields multiple advantages. Firstly, it fosters smoother and
more stable learning dynamics. By framing the LLM’s learning process as a trajectory on the 6-
parameterized statistical manifold. Secondly, a more consistent gradient direction enables the model
to converge more directly and efficiently towards high-quality solution regions. This also reduces
sensitivity to hyperparameter choices, such as the learning rate, rendering the training process more
robust. Finally, by meticulously comparing multiple similar yet distinct candidate solutions and
engaging in a form of self-calibration, MetaPO can more precisely capture and learn from subtle
preference distinctions.

Theorem 2 (Generalization Error Bound). Let R(7y) be the expected risk and R(wg) the empir-
ical risk, then with probability 1 — 9, we have:

R(ms) < R(mg) + O (\/ KL eg) + (VK /5)) | N

NK?

where KL(mg||7,) represents the KL-divergence between my and base reference model T,,.
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The proof of Theorem 2 can be found in Appendix B.2. This theorem provides theoretical guarantees
for MetaPO’s generalization performance. The bound shows the influence of the sample size N and
the number of generated responses K on the generalization error. A larger K yields up to (12( )
preference pairs per input, effectively increasing the preference information used for training. This
is reflected in the N K ? term in the denominator of the bound, indicating that increasing K generally
tends to tighten the generalization bound. This complements the stable learning dynamics achieved
with larger K, as stated in Theorem 1. We will discuss the effect of K on the generalization error
in Section 4.3. The In(K?) factor in the numerator, relative to K2 in the denominator, suggests
that the beneficial impact of K on the error rate can be significant, assuming the KL divergence is
appropriately bounded.

In this part, we analyze the convergence properties. To better quantify the performance improve-
ments of LLM and the Evaluative Agent, we assume that after ¢ iterations, the performance
of LLM is denoted as M, and the performance of the Evaluative Agent as R;. Let M* and
R* represent their optimal performance levels, respectively. Here, R signifies the baseline perfor-
mance of the Evaluative Agent. Specifically, M; improves when R; > }?, and declines when
R; < R. The following theorem demonstrates that, under specific assumptions, the co-evolutionary
process achieves convergence with a rapid convergence rate, providing a theoretical foundation for
the consistent performance gains in Section 4.

Theorem 3 (Co-evolution Convergence). Let ayr, ar be positive constants. Under the following
assumptions:

Mt+1 — Mt = Oé]\4(]\4>.< — Mt)(Rf — R), Rt+1 — Rt = OZR(R* — Rt)Mt,

. - (10)
0<R§R0§R*, O<M0§M*, OZRM*Sl, OéM(R*—R)Sl,
then there exist constants C and A > 0 such that the following inequality holds:
I(Me, Ry) — (M*, R)|| < Ce (11

The proof of Theorem 3 can be found in Appendix B.3.

This theorem provides a theoretical foundation for the exponential convergence of our co-
evolutionary framework. The results directly support TwinEvol’s core design principle of symbi-
otic improvement, where the LLM benefits from increasingly accurate preference signals from the
Evaluative Agent (R; — R), while the Agent’s capabilities are enhanced proportionally to
the LLM’s performance (M;). This mathematical formulation validates our framework’s ability to
create a self-reinforcing knowledge flywheel through iterative co-evolution.

3.5 CURRICULUM LEARNING IN TWINEVOL

TwinEvol introduces a curriculum learning paradigm to address the critical challenge of data scarcity
in downstream tasks. Central to this paradigm is the synergistic co-evolution of a generative LLM
and an Evaluative Agent. This dual-entity system, enhanced by hard negative mining and
Meta Preference Optimization, establishes a virtuous cycle: @ The LLM generates progressively
sophisticated data, ® Upon which the Evaluative Agent refines its evaluative acuity, ® In
turn providing more precise and challenging feedback. This dynamic interplay inherently cultivates
an emergent curriculum, where the system autonomously adapts its learning trajectory to its evolving
capabilities. Rather than relying on static datasets or predefined stages, TwinEvol demonstrates how
a system can bootstrap its own advancement, transforming limited labeled data into a catalyst for
sustained knowledge acquisition and performance gains. This culminates in a robust framework for
continuous adaptation, paving the way towards more autonomous and resource-efficient learning
models. Algorithm 1 and Appendix D.1 detail the complete training procedure.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Foundation Models. To validate the broad applicability of our approach, we conducted experiments
using foundation models with varying architectures and parameter scales. Our selection includes
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Table 1: Performance comparison across different models on various datasets. Red numbers show
improvements of our method compared to SFT baseline. Best performance is highlighted in bold.

Method ‘ MMLU MMLU Pro ARC FPB USMLE PubMedQA ConvFinQA Avg.
Vanilla ‘ 66.4 47.1 81.1 81.7 70.2 73.5 51.1 67.3
SFT 67.9 49.8 81.8 96.2 70.8 75.0 81.3 74.7
AdaptLLM - - - 49.7 31.5 27.6 30.9 -
InstructPT - - - 76.1 474 44.5 55.2 -
MemoryLLM 56.4 31.8 56.3 57.7 37.8 55.5 372 47.5
RAG (BM25) 66.6 374 80.8 83.7 69.3 69.0 63.4 67.2
RAG (FAISS) 66.5 38.8 81.3 82.5 69.1 71.5 64.6 67.8
Hermes-3 63.6 37.9 74.9 73.9 54.5 68.5 54.9 61.2
Reflection-Llama 65.5 37.5 82.2 80.8 67.4 71.5 40.8 63.7
SemiEvol 68.8 50.3 83.4 96.2 71.6 76.0 82.4 75.5
TwinEvol Iter 1 69.1+1.2 50.5+0.7 83.6+1.8 96.8+0.6 71.2+0.4 76.0+1.0 83.0+1.7 75.7+1.0
TwinEvol Iter 2 | 69.4+1.5 50.6+0.8 84.2+24 97.2+41.0 71.8+1.0 76.0+1.0 83.2+1.9 76.1+1.4
TwinEvol Iter 3 | 69.2+1.3 50.8+1.0 84.3+2.5 97.2+1.0 72.2+14 76.5+1.5 83.7+2.4 76.3+1.6
TwinEvol Iter 4 | 69.7+1.8 50.8+1.0 84.7429 97.5+1.3 72.0+1.2 77.0+2.0 84.1+2.8 76.5+1.8

Table 2: Performance comparison across different model architectures and sizes. Red numbers
indicate improvements over the SFT baseline. Best performance is highlighted in bold.

Method ‘ MMLU MMLU Pro ARC FPB USMLE PubMedQA ConvFinQA Avg.
Llama3.2 3B

Vanilla 59.2 224 68.1 62.0 40.1 59.0 28.8 48.5
SFT 61.2 41.1 73.9 92.8 63.9 71.0 65.8 67.1
TwinEvol Iter 4 | 63.1+1.9 42.3+1.2 76.5+2.6 94.1+1.3 65.8+1.9 74.0+3.0 70.2+4.4 69.4+2.3
Llama3.1 8B

Vanilla 66.4 47.1 81.1 81.7 70.2 73.5 51.1 67.3
SFT 67.9 49.8 81.8 96.2 70.8 75.0 81.3 74.7
TwinEvol Iter 4 | 69.7+1.8 50.8+1.0 84.7+2.9 97.5+1.3 72.0+1.2 77.0+2.0 84.1+2.8 76.5+1.8
Gemma?2 9B

Vanilla 72.1 43.0 87.1 73.7 58.7 64.5 459 63.6
SFT 73.7 50.0 87.6 95.2 66.6 74.5 79.8 75.3
TwinEvol lter 4 | 75.4+1.7 51.9+1.9 88.6+1.0 96.5+1.3 68.4+1.8 76.8+2.3 83.7+3.9 77.3+2.0

Llama3.1-8B (Dubey et al., 2024), Gemma2-9B (Team et al., 2024), and Llama3.2-3B (Dubey et al.,
2024), with diverse architectures and scales.

Evaluation and Implementation Details We follow (Luo et al., 2024) for model semi-supervised
fine-tuning. Our evaluation suite encompasses both general-purpose and specialized domain bench-
marks. General datasets include MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang et al., 2024d),
and ARC (Clark et al., 2018), while domain-specific evaluation includes FPB (Malo et al., 2014),
USMLE (Jin et al., 2021), PubMedQA (Jin et al., 2019), and ConvFinQA (Chen et al., 2022), which
target specialized knowledge in finance and healthcare domains. See Appendix D.2 for comprehen-
sive implementation details. Code is available at https://anonymous.4open.science/r/TwinEvol.

Baseline Methods. Our experimental evaluation encompasses several categories of baseline ap-
proaches: (1) Fundamental Techniques, including Vanilla inference and Supervised Fine-tuning
(SFT) methods; (2) Self-Evolution Approaches, comprising self-reflection methods like Reflection-
Llama (Li et al., 2024), and data-augmented training methods such as Hermes-3 (Teknium
et al., 2024) and Tulu-3 (Lambert et al., 2024); (3) Domain Adaptation Techniques, including
AdaptLLM (Cheng et al., 2024b) and InstructPT (Cheng et al., 2024a) for specialized domain adap-
tation; (4) Inference Enhancement Methods, such as MemoryLLM (Wang et al., 2024c) for retrieval-
augmented generation. To ensure fair comparison, all baseline methods utilize foundation models
with comparable parameter counts.
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Table 3: Ablation study demonstrating the effectiveness of key components in TwinEvol.
v'indicates the component is included in the corresponding variant. Rank: dynamic ranking via
co-evolving Evaluative Agent; MPO: Meta Preference Optimization; CONS: consistency checking
for response classification; SFT: Supervised Fine-Tuning.

Variant Rank MPO CONS SFT MMLU MMLU-Pro ARC

Full v v v v 69.7 50.8 84.7
Vi v 66.7 479 82.0
\ v v 68.9 50.2 83.3
V3 v v 67.5 50.1 82.2
V4 v v v 68.2 50.2 83.2
V5  Static v v v 67.1 49.8 82.5
Vo6 v SimPO v v 69.0 50.5 82.4
71 707 7
304 Vanilla \\ Vanilla
=70 86 =70 86 \ ~—— TwinEvol TN —— TwinEvol
gle—r—— g . —— \
269 85 269 85 AE’ \ 4§’ \
<] IS} £15 £ \
568 84 568 8e 2 g s \
267 —e— MMLU 83 267 —e— MMLU 83 k \
ARC ARC -
05 1 sz 25 1 2 3 4 5% ?.o T1 12 13 14 15 10 1112 13 14 15
MetaPO B Hard Negative Samples K MMLU Perplexity MMLU Pro Perplexity
(a) Analysis on 8 (b) Analysis on K (c) PPL on MMLU (d) PPL on MMLU-Pro

Figure 4: Sensitivity analysis of TwinEvol’s performance, demonstrating its stability to hyperpa-
rameters, and Perplexity analysis on MMLU/MMLU-Pro.

4.2 MAIN RESULT

Cross-method Comparison. As shown in Table 1, TwinEvol achieves consistent performance im-
provements across all benchmarks, demonstrating its effectiveness in leveraging both labeled and
unlabeled data. We get the following observations: @ Performance Enhancement through Su-
pervision. Table 1 shows that SFT and SemiEvol approaches yield substantial improvements by
effectively leveraging both labeled and unlabeled data. & Limitations of Post-training Methods.
Post-training techniques show marginal improvements or degradation due to distribution misalign-
ment and insufficient capability enhancement. ® Constraints of Adaptive Fine-tuning. Adaptive
fine-tuning shows limited improvement due to lower-quality data sources compromising instruction-
following capabilities. @ Consistent Improvement. TwinEvol demonstrates consistent improve-
ments through effective unlabeled data utilization and multi-model collaborative learning.

Cross-architecture Analysis. Table 2 demonstrates TwinEvol’s consistent performance gains across
diverse parameter scales and architectures, underscoring its inherent scalability. TwinEvol exhibits a
unique capability for performance equilibration, which effectively addresses architectural predispo-
sitions through reciprocal knowledge transfer. This is exemplified by its ability to enhance Gemma’s
domain-specific performance (in FPB/PubMedQA) while preserving its general capabilities.

4.3 ANALYSIS

Ablation Study. We conducted ablation experiments to evaluate TwinEvol’s components, with re-
sults shown in Table 3, which reveals: (1) Full Model Performance. The complete TwinEvol
framework achieves optimal performance across all benchmarks, demonstrating effective compo-
nent synergy. (2) SFT Impact. The performance gap between V1 (SFT-only) and baseline high-
lights supervised fine-tuning’s crucial role, particularly evident in MMLU improvements. (3) Con-
sistency Selection. V2’s improvement over V1 demonstrates the effectiveness of consistency-based
data filtering, with notable gains in MMLU-Pro and consistent improvements in other metrics. (4)
Preference Ranking. The comparison between V4 and V3 shows the ranking model’s contribution,
yielding improvements. (5) Co-evolution Necessity. To validate the effectiveness of the dynamic
Evaluative Agent, we design V5. V5’s performance degradation demonstrates that co-evolution be-
tween generator and evaluative agents is critical, as the static evaluative agent’s feedback becomes
progressively outdated. Additionally, as shown in V6, MetaPO is better than SimPO in our tasks,
corroborating our theoretical analysis.
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Sensitivity Analysis We conducted sensitivity analysis of the TwinEvol framework on MMLU and
ARC datasets, focusing on the MetaPO coefficient 8 and the number of hard negative samples K.
As shown in Figure 4a and 4b, the model demonstrates robust performance across different values
of B and K. Performance improves with increasing K before stabilizing at X' = 4. Based on these
observations, we set 5 = 1 and K = 4 as default configurations. The analysis reveals that TwinEvol
exhibits low sensitivity to hyperparameter variations, demonstrating its stability.

Perplexity Analysis. Figure 4c and 4d illustrate the perplexity distribution of TwinEvol compared
to vanilla models. Our approach substantially reduces perplexity on both MMLU and MMLU-Pro,
indicating enhanced model calibration and decision confidence. The consistent reduction across
diverse benchmarks suggests effective knowledge integration rather than task-specific overfitting.

[ Vanilla

Statability Analysis. Figure 5 presents our ... 1 o]
analysis of model inference stability. We
employed GPT-40 to rephrase test instruc- ]
tions and conducted 5 independent evalua- ]
tions, reporting both mean performance and |
standard deviation. The results demonstrate s o~
that TwinEvol maintains comparable stabil- ]

ity to the original model.Details on the sta- ™" I

bility analysis are provided in Appendix C.2. % O ceuracy o) % 100

Computational Efficiency Despite introduc-
ing a dual-branch architecture, TwinEvol
maintains competitive computational efficiency while delivering consistent performance improve-
ments. Detailed computational efficiency analysis is provided in Appendix C.1.

Figure 5: Stability analysis of TwinEvol.

5 RELATED WORK

LLM Post-training is crucial for unlocking their domain adaptation capabilities and task general-
ization potential (Wang et al., 2024e; Jeong et al., 2024; Wang et al., 2024a). This stage effectively
enhances model performance across multiple dimensions, including long-context reasoning (Ze-
likman et al., 2022), human alignment (Kaufmann et al., 2023; Rafailov et al., 2024), instruction
following (Zhang et al., 2023), and domain-specific adaptation (Cheng et al., 2024b). Through post-
training, LLMs can be effectively deployed in specialized domains such as healthcare (Jin et al.,
2019), finance (Chen et al., 2022), and legal applications (Izzidien et al., 2024), making it a criti-
cal step in realizing their practical value. However, the scarcity of domain-specific data presents a
significant challenge in real-world applications, leading to data efficiency concerns in LLM post-
training (Tan et al., 2024; Xu et al., 2024b; Kundu et al., 2024).

Data-efficient LLM Post-training aims to address real-world data scarcity, including data selec-
tion (Tsai et al., 2024; Zhou et al., 2024; Kim & Baek, 2024; Lu et al., 2024), data synthesis (Xu
et al., 2024c;a; Dai et al., 2025), and model self-evolution (Madaan et al., 2024; Chen et al., 2024;
You et al., 2024; Dong et al., 2024). While these methods have been extended to semi-supervised
learning scenarios (Luo et al., 2024) with limited labeled and abundant unlabeled data. Existing
semi-supervised post-training methods face critical challenges: the accumulation of pseudo-labeling
errors, insufficient negative feedback mechanisms, and static paradigms lack continuous evolution
capabilities. In this work, TwinEvol leverages collaborative learning with MetaPO and curriculum
learning for a self-reinforcing cycle of knowledge transfer.

6 CONCLUSION

In this paper, we present TwinEvol, a novel semi-supervised co-evolutionary framework for LLM
adaptation that addresses the challenge of limited high-quality annotated data. Through its unique
dual-branch architecture incorporating a generative LLM and a co-evolving Evaluative Agent, along
with Hard Negative Mining and MetaPO optimization algorithm, TwinEvol effectively facilitates
knowledge transfer and capability amplification from limited labeled data to abundant unlabeled
data. Both theoretical analysis and extensive experimental results validate that TwinEvol signifi-
cantly enhances model performance, offering a promising direction for LLM adaptation.
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Appendix

In this Appendix, we present comprehensive supplementary materials that underpin the results dis-
cussed in the main text. Section A provides a detailed reproducibility statement, Section B contains
rigorous proofs of all theorems, Section C offers additional analyses on computational efficiency,
stability, and further discussion, and Section D delivers full algorithmic and implementation details.
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