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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across various domains, yet their adaptation to specific downstream tasks remains
challenging due to limited labeled data. Although post-training methods (e.g.,
SFT, DPO) have proven effective, they face significant limitations due to the
scarcity of labeled data. In this paper, we present TwinEvol, a framework that
treats downstream task training and evaluation as complementary, co-evolving
submodules. TwinEvol introduces an evaluation agent that co-evolves with the
main model; this agent is not a static external module but rather self-iterates and
evolves through continuous interaction with the generation LLM after iterative
calibration. The agent facilitates more nuanced assessment during downstream
adaptation, incorporating hard negative mining and meta-preference optimization
to achieve comprehensive feedback and efficient knowledge transfer. Through an
iterative twin evolution process, the framework establishes a self-reinforcing cycle
that effectively propagates knowledge from labeled to unlabeled data while main-
taining task alignment. Experiments across various downstream tasks demonstrate
that TwinEvol achieves superior performance compared to existing methods. Our
code is available at https://anonymous.4open.science/r/TwinEvol/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in general do-
mains (Achiam et al., 2023; Wang et al., 2024b), yet their adaptation to specific downstream tasks
remains a critical challenge (Xie et al., 2024; Luo et al., 2024; Lin et al., 2024), particularly in
real-world scenarios where high-quality annotated data is scarce (Honovich et al., 2023; Kung et al.,
2023; Cheng et al., 2024b). Current mainstream post-training optimization approaches, such as Su-
pervised Fine-tuning (SFT) and preference optimization methods (Rafailov et al., 2024; Ethayarajh
et al., 2024), are constrained by their dependence on high-quality data (Bhatt et al., 2024; Rafailov
et al., 2024; Ethayarajh et al., 2024). In most real-world situations, we would face a mix of limited
human-response data and abundant unannotated data (Zhu, 2005; Gu et al., 2025). To overcome
these constraints, researchers have begun exploring semi-supervised approaches that leverage lim-
ited labeled data to guide learning from abundant unlabeled data (Luo et al., 2024).

Existing methods face several challenges: ❶ Traditional knowledge injection paradigms (such as
SFT-driven pseudo-labeling) (Luo et al., 2024; Wang et al., 2025; Xia et al., 2024) struggle to
fully extract and utilize complex negative feedback signals embedded in unlabeled data, limiting
the model’s ability to learn deeply from self-exploration. ❷ While preference learning methods
introduce comparative mechanisms, they become susceptible to alignment drift when relying on ex-
ternal or static evaluators disconnected from the model’s evolution (Son et al., 2024), potentially
providing delayed, ineffective, or even erroneous feedback signals (Ramé et al., 2024). The core
issue lies in the lack of organic integration between the model’s generation capability and evalu-
ation capability, which hinders efficient and reliable knowledge transfer from limited high-quality
data to vast unlabeled datasets.

To address these challenges, we propose TwinEvol, a framework that enables the co-evolution of
LLM generation and evaluation capabilities, designed to stimulate and calibrate the LLM’s inherent
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evaluation mechanism. Eliminating dependency on fixed external evaluators, TwinEvol empowers
LLMs to develop dynamic, task-aligned preference recognition abilities.

Existing Dilemma Our Method: TwinEvol

LLMStatic 
Evaluator

LLM
Static 

Evaluator
...

Alignment Drift

Calibration

Meta Reward

Figure 1: Conceptual overview of TwinEvol. (Left) Tradi-
tional methods rely on static evaluators, leading to outdated
feedback and alignment drift. (Right) TwinEvol establishes
a co-evolutionary loop to facilitate mutually improvement.

Its innovations manifest in three
dimensions: Architecturally, we
design a dual-branch co-evolutionary
architecture where the main LLM
generates diverse exploratory
responses while a co-evolving
Evaluative Agent. This Eval-
uative Agent is not a static external
module but a dynamic component
that, after initial calibration with
limited high-quality annotated data,
iteratively learns and evolves through continuous interaction with the generation module, forming
an efficient knowledge transfer and self-improvement feedback loop. Strategically, TwinEvol
establishes a composite negative feedback and multi-granular supervision system. Hard Negative
Mining enables the LLM to extract subtle yet critical differences, enhancing its discrimination
and improvement capabilities. Meanwhile, the Meta-Preference Optimization (MetaPO) algorithm
achieves efficient supervision information aggregation, with theoretical analysis demonstrating
its superior convergence properties and noise robustness. Dynamically, TwinEvol implements
a Curriculum Evolution mechanism where the LLM’s outputs train and validate the Evaluative
Agent’s judgment accuracy, while the Agent’s precise feedback continuously optimizes the LLM’s
generation strategy. This iterative, interdependent update process forms a symbiotic co-evolution
that enables synchronous enhancement of generation capabilities and internal evaluation standards,
progressively achieving higher-level task alignment and performance improvement. Experimental
validation across multiple downstream tasks demonstrates that TwinEvol significantly outperforms
existing semi-supervised methods.

Our contributions can be summarized as follows: ❶ Perspective: We conceptualize LLM generation
and evaluation capabilities as having a symbiotic relationship (Twin) and implement their iterative
self-cyclical improvement. ❷ Methodology: We design TwinEvol, a co-evolutionary framework
with MetaPO algorithm to achieve supervision information fusion and model adaptive evolution,
with theoretical guarantees. ❸ Performance: We validate our method’s effectiveness across multi-
ple datasets, demonstrating significant performance improvements.

2 PRELIMINARIES

Supervised Fine-Tuning (SFT) represents the most straightforward approach for adapting LLMs
to downstream tasks, aiming to align the model’s outputs with desired responses. Formally, given
a dataset D = {Xi, Yi}Nl

i=1, where Nl = N (D) is the number of labeled samples in D, Xi is
the input task and Yi is the corresponding expected response. SFT optimizes the model through
a token-by-token loss minimization process. This procedure effectively injects knowledge. While
traditional SFT focuses primarily on positive feedback,TwinEvol makes robustness improvement
through adding comprehensive learning from negative LLM-generated pseudo samples.

Semi-supervised Fine-Tuning addresses scenarios with both labeled and unlabeled data. Given
a labeled dataset Dlabeled = {(Xi, Yi)}Nl

i=1 and an unlabeled dataset Dunlabeled = {Xi}Nu
i=1, where

Nl ≪ Nu, the goal is to leverage limited labeled data as seeds to guide learning on unlabeled data.
While existing approaches focus on direct knowledge transfer through self-training or consistency
regularization, TwinEvol establishes a co-evolutionary mechanism between training and evaluation,
creating a self-reinforcing knowledge flywheel, enabling more effective knowledge propagation.

Preference Optimization aims to align LLMs with human preferences through pairwise compari-
son learning. While DPO (Rafailov et al., 2024) has shown effectiveness in preference alignment
using reference models, SimPO (Meng et al., 2024) proposes a more streamlined approach by re-
moving reference model dependencies. The key difference between TwinEvol and existing prefer-
ence optimization methods is that we use a co-evolutionary framework to optimize the preference
learning, which is more effective than traditional preference optimization methods.
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Figure 2: Overview of TwinEvol. The framework integrates a generative LLM with a co-evolved
Evaluative Agent in a symbiotic relationship. The LLM processes both labeled and unla-
beled data to generate responses, while the Evaluative Agent provides preference annotations
through hard negative mining for MetaPO optimization. This establishes a twin evolution cycle
where both components iteratively enhance each other’s capabilities.

3 METHODOLOGY

3.1 OVERVIEW

To handle hybrid data scenarios effectively, we propose TwinEvol. The core innovation of TwinEvol
lies in organically integrating the model’s generative and evaluative capabilities, forming a co-
evolving system between the generative LLM and the Evaluative Agent. This framework
creates an evolutionary flywheel that facilitates knowledge propagation from labeled to unlabeled
data. As illustrated in Figure 2, our framework comprises two principal components: the generative
LLM and the co-evolved Evaluative Agent. The framework’s operation depends on the seam-
less coordination of several critical processes: the construction and training of the Evaluative
Agent (Section 3.2), the learning of the generative LLM (Section 3.3), and our approach to Ef-
fective Meta Preference Optimization (Section 3.4), which employs hard negative mining and the
MetaPO algorithm to refine model alignment. This co-evolutionary process culminates in a curricu-
lum learning strategy (Section 3.5), enabling the system to improve continuously.

3.2 CO-EVOLVING EVALUATIVE AGENT

In semi-supervised scenarios, effectively leveraging limited labeled data to generate quality pseudo-
preference signals for abundant unlabeled data is crucial. As shown in Figure 3, the Evaluative
Agent serves as a dynamic quality assessor for model-generated responses. For a pair of responses
Y0 and Y1, the Evaluative Agent determines their preference relationship, which can be either
a tier relationship (i.e., Y0 ∼ Y1) or a strict preference (i.e., Y0 ≻ Y1).

You are a critical ranking agent. Your task is to carefully 
examine a question and its various predictions to 
determine the best prediction. 


Please analyze this carefully and predict if the response 
1 is better than response 2.

Evaluative 
Agent

Response 1

Response 2

Figure 3: Instruction of the Evaluative Agent.

The Evaluative Agent is trained through
SFT using labeled data. Specifically, for each la-
beled data pair (Qi, Yi), where Qi is the query
and Yi is the annotated response, we generate
model responses Ŷi using the LLM. We then
perform consistency checking by extracting and
comparing answers. This process leads to either
tier annotations (when responses are of similar
quality) or preference annotations (when the labeled response is deemed superior). We take the
inconsistent preference annotations as the training data for the Evaluative Agent:

Drank = {(Qi, Yi, Ŷi, ri | Yi ≻ Ŷi)} . (1)

The Evaluative Agent is then tuned by SFT on Drank. The agent is iteratively trained to
learn preference relationships on downstream tasks, providing more accurate quality assessment
for model-generated responses. Notably, after each update of the main LLM, new preference data

3
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Drank is generated to train the Evaluative Agent, a process we refer to as calibration. This
iterative calibration ensures that the Evaluative Agent continuously adapts to the evolving
capabilities of the main model.

3.3 CO-EVOLVING GENERATIVE LLM

In the TwinEvol co-evolutionary framework, the main LLM could effectively utilize indirect feed-
back signals provided by the Evaluative Agent based on its generated responses. The training
process of the LLM is as follows. As a warm-up, the LLMM first undergoes SFT using labeled
data Dlabeled to establish foundation domain adaptation capabilities.

In the adaptation process, we should make use of the unlabeled data Dunlabeled to further enhance the
LLM’s performance, which is conducted as follows. First, given an input task Xi ∈ Dunlabeled, we
generate multiple diverse responses through sampling from theM:

Ŷi = {Ŷ k
i =M(Xi; θ) | k = 1, . . . ,K} , (2)

where K is the number of generated responses, which is set to 4 by default and examined in
Section 4.3. Then, we classify the responses {Ŷi}Nu

i=1 into consistent set (Dcon) and inconsistent
set (Dincon) based on response consistency. The consistencies are derived from answer comparisons,
such as numerical values or multiple-choice options, or use LLM to judge the consistency.

The model then evolves through a two-pronged approach. For consistent responses (Dcon), we apply
standard SFT training. For inconsistent responses (Dincon), we leverage the Evaluative Agent
to obtain pseudo-preferences and conduct MetaPO training (will be discussed in Section 3.4.2). The
complete generative LLM update is as:

Mj+1 ← MetaPO(M′
j ,Dincon) ← SFT(Mj ,Dcon) , (3)

whereMj represents the model at iteration j, andM′
j is the model after SFT.

Discussion. This dual-branch architecture establishes the foundation for our co-evolution frame-
work, where the Evaluative Agent provides quality assessment for LLM outputs, while the
LLM generates diverse responses for Evaluative Agent training. This symbiotic relationship
forms the basis for the twin evolution process detailed in the following section.

3.4 EFFECTIVE META PREFERENCE OPTIMIZATION

Traditional preference optimization approaches often rely on limited negative samples, which con-
strain the model’s ability to learn from diverse error patterns. This limitation is particularly pro-
nounced in semi-supervised learning scenarios. To address this challenge and enable robust opti-
mization across the abundant unlabeled data, we introduce effective Meta Preference Optimization
to provide richer alignment signals through diversified negative feedback.

3.4.1 HARD NEGATIVE MINING

Relying solely on single or randomly generated negative samples may not provide the model with
sufficiently robust and targeted learning signals. Therefore, to fully leverage the learning po-
tential from model outputs, we utilize multiple generations Ŷi from the LLM, and employ the
Evaluative Agent to rank them for hard negative mining:

Pi = {(Ŷ j
i , Ŷ

k
i , rjk) | rjk ∈ {0, 1}, 1 ≤ j ̸= k ≤ K} , (4)

where rjk = 1 indicates Ŷ j
i is preferred over Ŷ k

i , and this preference judgment is determined by the
Evaluative Agent. Notably, as the Evaluative Agent and the model co-evolve through
iterative training, the agent becomes increasingly capable of distinguishing subtle differences be-
tween various model-generated responses, resulting in more informative preference signals.

3.4.2 META PREFERENCE OPTIMIZATION

To effectively utilize the hard negative samples {Pi}Nu
i=1 and align the model with downstream tasks,

we propose Meta Preference Optimization (MetaPO). Different from existing preference optimiza-
tion methods (Rafailov et al., 2024; Ethayarajh et al., 2024), MetaPO achieves comprehensive con-
sideration of multiple preference pairs, enabling more comprehensive preference optimization.

4
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For MetaPO, we first introduce the length-normalized reward function (Meng et al., 2024):

rθ(Xi, Ŷi) =
β

|Ŷi|
log πθ(Ŷi|Xi) , (5)

where β is a constant controlling the reward scale (default to 1, examined in Section 4.3), and
|Ŷi| represents the response length. For a preference pair with winner response Ŷ w

i and loser re-
sponse Ŷ l

i , their reward difference should exceed a margin γ (set to 1 following common practice):
rθ(Xi, Ŷ

w
i )− rθ(Xi, Ŷ

l
i ) > γ . The complete MetaPO objective is defined as:

LMetaPO(πθ) = −
1

N

N∑
i=1

∑
(Ŷ w

i ,Ŷ l
i )∈Bi

log σ(rθ(Xi, Ŷ
w
i )− rθ(Xi, Ŷ

l
i )) . (6)

Through MetaPO, we achieve comprehensive optimization across multiple types of negative feed-
back while maintaining stable model performance improvements. This approach enables robust
optimization against diverse pseudo-responses, leading to more consistent model enhancement.

Theoretical Analysis. We provide a comprehensive theoretical foundation for TwinEvol, establish-
ing its advantages through three complementary theoretical perspectives. ❶ We demonstrate that
MetaPO achieves significant gradient variance reduction compared to single-pair optimization ap-
proaches, leading to more stable learning dynamics (Theorem 1). ❷ We establish a generalization
error bound within the PAC-Bayes framework, quantifying how MetaPO’s multi-pair mechanism
tightens performance guarantees (Theorem 2). ❸ We analyze the convergence properties of our
co-evolutionary framework, proving exponential convergence to optimal performance under well-
defined conditions (Theorem 3). Together, these theoretical results establish a rigorous basis for
understanding TwinEvol’s empirical effectiveness in semi-supervised learning scenarios.

Theorem 1 (Stable Learning Dynamics). Denote LSimPO as the loss function of SimPO, which
only generates one pair of responses per sample. Assuming these pairs (Ŷ w

i , Ŷ l
i ) ∈ Bi are all

independent, we have:
V ar [∇LMetaPO]

V ar [∇LSimPO]
= O

(
1

K2

)
. (7)

Proof Sketch. Let Mi = |Bi| be the number of pairs of contrastive pairs (Ŷ w
i , Ŷ l

i ) for each sample
Xi. The gradient of MetaPO loss with respect to the parameters θ can be written as:

∇θLMetaPO = − 1

N

N∑
i=1

[
1

Mi

Mi∑
m=1

σ
(
rθ(Xi, Ŷ

l
m) −rθ(Xi, Ŷ

w
m )
) (
∇θrθ(Xi, Ŷ

w
m )− ∇θrθ(Xi, Ŷ

l
m)
)]

.

(8)For each sample Xi, the gradient can be viewed as the average of Mi independent gradients, which
makes the overall variance only 1/Mi of the variance of the SimPO loss gradient. Since M =
O(K2), it’s straightforward to get to the conclusion of Theorem 1. The detailed proof is provided
in Appendix B.1.

This substantial variance reduction yields multiple advantages. Firstly, it fosters smoother and
more stable learning dynamics. By framing the LLM’s learning process as a trajectory on the θ-
parameterized statistical manifold. Secondly, a more consistent gradient direction enables the model
to converge more directly and efficiently towards high-quality solution regions. This also reduces
sensitivity to hyperparameter choices, such as the learning rate, rendering the training process more
robust. Finally, by meticulously comparing multiple similar yet distinct candidate solutions and
engaging in a form of self-calibration, MetaPO can more precisely capture and learn from subtle
preference distinctions.

Theorem 2 (Generalization Error Bound). LetR(πθ) be the expected risk and R̂(πθ) the empir-
ical risk, then with probability 1− δ, we have:

R(πθ) ≤ R̂(πθ) +O

(√
KL(πθ∥πref) + ln(NK2/δ)

NK2

)
. (9)

where KL(πθ∥πref) represents the KL-divergence between πθ and base reference model πref.

5
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The proof of Theorem 2 can be found in Appendix B.2. This theorem provides theoretical guarantees
for MetaPO’s generalization performance. The bound shows the influence of the sample size N and
the number of generated responses K on the generalization error. A larger K yields up to

(
K
2

)
preference pairs per input, effectively increasing the preference information used for training. This
is reflected in the NK2 term in the denominator of the bound, indicating that increasing K generally
tends to tighten the generalization bound. This complements the stable learning dynamics achieved
with larger K, as stated in Theorem 1. We will discuss the effect of K on the generalization error
in Section 4.3. The ln(K2) factor in the numerator, relative to K2 in the denominator, suggests
that the beneficial impact of K on the error rate can be significant, assuming the KL divergence is
appropriately bounded.

In this part, we analyze the convergence properties. To better quantify the performance improve-
ments of LLM and the Evaluative Agent, we assume that after t iterations, the performance
of LLM is denoted as Mt, and the performance of the Evaluative Agent as Rt. Let M∗ and
R∗ represent their optimal performance levels, respectively. Here, R̃ signifies the baseline perfor-
mance of the Evaluative Agent. Specifically, Mt improves when Rt ≥ R̃, and declines when
Rt < R̃. The following theorem demonstrates that, under specific assumptions, the co-evolutionary
process achieves convergence with a rapid convergence rate, providing a theoretical foundation for
the consistent performance gains in Section 4.
Theorem 3 (Co-evolution Convergence). Let αM , αR be positive constants. Under the following
assumptions:

Mt+1 −Mt = αM (M∗ −Mt)(Rt − R̃) , Rt+1 −Rt = αR(R
∗ −Rt)Mt ,

0 < R̃ ≤ R0 ≤ R∗ , 0 < M0 ≤M∗ , αRM
∗ ≤ 1 , αM (R∗ − R̃) ≤ 1 ,

(10)

then there exist constants C and λ > 0 such that the following inequality holds:

∥(Mt, Rt)− (M∗, R∗)∥ ≤ Ce−λt . (11)

The proof of Theorem 3 can be found in Appendix B.3.

This theorem provides a theoretical foundation for the exponential convergence of our co-
evolutionary framework. The results directly support TwinEvol’s core design principle of symbi-
otic improvement, where the LLM benefits from increasingly accurate preference signals from the
Evaluative Agent (Rt − R̃), while the Agent’s capabilities are enhanced proportionally to
the LLM’s performance (Mt). This mathematical formulation validates our framework’s ability to
create a self-reinforcing knowledge flywheel through iterative co-evolution.

3.5 CURRICULUM LEARNING IN TWINEVOL

TwinEvol introduces a curriculum learning paradigm to address the critical challenge of data scarcity
in downstream tasks. Central to this paradigm is the synergistic co-evolution of a generative LLM
and an Evaluative Agent. This dual-entity system, enhanced by hard negative mining and
Meta Preference Optimization, establishes a virtuous cycle: ❶ The LLM generates progressively
sophisticated data, ❷ Upon which the Evaluative Agent refines its evaluative acuity, ❸ In
turn providing more precise and challenging feedback. This dynamic interplay inherently cultivates
an emergent curriculum, where the system autonomously adapts its learning trajectory to its evolving
capabilities. Rather than relying on static datasets or predefined stages, TwinEvol demonstrates how
a system can bootstrap its own advancement, transforming limited labeled data into a catalyst for
sustained knowledge acquisition and performance gains. This culminates in a robust framework for
continuous adaptation, paving the way towards more autonomous and resource-efficient learning
models. Algorithm 1 and Appendix D.1 detail the complete training procedure.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Foundation Models. To validate the broad applicability of our approach, we conducted experiments
using foundation models with varying architectures and parameter scales. Our selection includes

6
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Table 1: Performance comparison across different models on various datasets. Red numbers show
improvements of our method compared to SFT baseline. Best performance is highlighted in bold.

Method MMLU MMLU Pro ARC FPB USMLE PubMedQA ConvFinQA Avg.

Vanilla 66.4 47.1 81.1 81.7 70.2 73.5 51.1 67.3

SFT 67.9 49.8 81.8 96.2 70.8 75.0 81.3 74.7
AdaptLLM – – – 49.7 31.5 27.6 30.9 –
InstructPT – – – 76.1 47.4 44.5 55.2 –
MemoryLLM 56.4 31.8 56.3 57.7 37.8 55.5 37.2 47.5
RAG (BM25) 66.6 37.4 80.8 83.7 69.3 69.0 63.4 67.2
RAG (FAISS) 66.5 38.8 81.3 82.5 69.1 71.5 64.6 67.8
Hermes-3 63.6 37.9 74.9 73.9 54.5 68.5 54.9 61.2
Reflection-Llama 65.5 37.5 82.2 80.8 67.4 71.5 40.8 63.7
SemiEvol 68.8 50.3 83.4 96.2 71.6 76.0 82.4 75.5

TwinEvol Iter 1 69.1+1.2 50.5+0.7 83.6+1.8 96.8+0.6 71.2+0.4 76.0+1.0 83.0+1.7 75.7+1.0
TwinEvol Iter 2 69.4+1.5 50.6+0.8 84.2+2.4 97.2+1.0 71.8+1.0 76.0+1.0 83.2+1.9 76.1+1.4
TwinEvol Iter 3 69.2+1.3 50.8+1.0 84.3+2.5 97.2+1.0 72.2+1.4 76.5+1.5 83.7+2.4 76.3+1.6
TwinEvol Iter 4 69.7+1.8 50.8+1.0 84.7+2.9 97.5+1.3 72.0+1.2 77.0+2.0 84.1+2.8 76.5+1.8

Table 2: Performance comparison across different model architectures and sizes. Red numbers
indicate improvements over the SFT baseline. Best performance is highlighted in bold.

Method MMLU MMLU Pro ARC FPB USMLE PubMedQA ConvFinQA Avg.

Llama3.2 3B

Vanilla 59.2 22.4 68.1 62.0 40.1 59.0 28.8 48.5
SFT 61.2 41.1 73.9 92.8 63.9 71.0 65.8 67.1
TwinEvol Iter 4 63.1+1.9 42.3+1.2 76.5+2.6 94.1+1.3 65.8+1.9 74.0+3.0 70.2+4.4 69.4+2.3

Llama3.1 8B

Vanilla 66.4 47.1 81.1 81.7 70.2 73.5 51.1 67.3
SFT 67.9 49.8 81.8 96.2 70.8 75.0 81.3 74.7
TwinEvol Iter 4 69.7+1.8 50.8+1.0 84.7+2.9 97.5+1.3 72.0+1.2 77.0+2.0 84.1+2.8 76.5+1.8

Gemma2 9B

Vanilla 72.1 43.0 87.1 73.7 58.7 64.5 45.9 63.6
SFT 73.7 50.0 87.6 95.2 66.6 74.5 79.8 75.3
TwinEvol Iter 4 75.4+1.7 51.9+1.9 88.6+1.0 96.5+1.3 68.4+1.8 76.8+2.3 83.7+3.9 77.3+2.0

Llama3.1-8B (Dubey et al., 2024), Gemma2-9B (Team et al., 2024), and Llama3.2-3B (Dubey et al.,
2024), with diverse architectures and scales.

Evaluation and Implementation Details We follow (Luo et al., 2024) for model semi-supervised
fine-tuning. Our evaluation suite encompasses both general-purpose and specialized domain bench-
marks. General datasets include MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang et al., 2024d),
and ARC (Clark et al., 2018), while domain-specific evaluation includes FPB (Malo et al., 2014),
USMLE (Jin et al., 2021), PubMedQA (Jin et al., 2019), and ConvFinQA (Chen et al., 2022), which
target specialized knowledge in finance and healthcare domains. See Appendix D.2 for comprehen-
sive implementation details. Code is available at https://anonymous.4open.science/r/TwinEvol.

Baseline Methods. Our experimental evaluation encompasses several categories of baseline ap-
proaches: (1) Fundamental Techniques, including Vanilla inference and Supervised Fine-tuning
(SFT) methods; (2) Self-Evolution Approaches, comprising self-reflection methods like Reflection-
Llama (Li et al., 2024), and data-augmented training methods such as Hermes-3 (Teknium
et al., 2024) and Tulu-3 (Lambert et al., 2024); (3) Domain Adaptation Techniques, including
AdaptLLM (Cheng et al., 2024b) and InstructPT (Cheng et al., 2024a) for specialized domain adap-
tation; (4) Inference Enhancement Methods, such as MemoryLLM (Wang et al., 2024c) for retrieval-
augmented generation. To ensure fair comparison, all baseline methods utilize foundation models
with comparable parameter counts.
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Table 3: Ablation study demonstrating the effectiveness of key components in TwinEvol.
✓indicates the component is included in the corresponding variant. Rank: dynamic ranking via
co-evolving Evaluative Agent; MPO: Meta Preference Optimization; CONS: consistency checking
for response classification; SFT: Supervised Fine-Tuning.

Variant Rank MPO CONS SFT MMLU MMLU-Pro ARC

Full ✓ ✓ ✓ ✓ 69.7 50.8 84.7

V1 ✓ 66.7 47.9 82.0
V2 ✓ ✓ 68.9 50.2 83.3
V3 ✓ ✓ 67.5 50.1 82.2
V4 ✓ ✓ ✓ 68.2 50.2 83.2
V5 Static ✓ ✓ ✓ 67.1 49.8 82.5
V6 ✓ SimPO ✓ ✓ 69.0 50.5 82.4
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Figure 4: Sensitivity analysis of TwinEvol’s performance, demonstrating its stability to hyperpa-
rameters, and Perplexity analysis on MMLU/MMLU-Pro.

4.2 MAIN RESULT

Cross-method Comparison. As shown in Table 1, TwinEvol achieves consistent performance im-
provements across all benchmarks, demonstrating its effectiveness in leveraging both labeled and
unlabeled data. We get the following observations: ❶ Performance Enhancement through Su-
pervision. Table 1 shows that SFT and SemiEvol approaches yield substantial improvements by
effectively leveraging both labeled and unlabeled data. ❷ Limitations of Post-training Methods.
Post-training techniques show marginal improvements or degradation due to distribution misalign-
ment and insufficient capability enhancement. ❸ Constraints of Adaptive Fine-tuning. Adaptive
fine-tuning shows limited improvement due to lower-quality data sources compromising instruction-
following capabilities. ❹ Consistent Improvement. TwinEvol demonstrates consistent improve-
ments through effective unlabeled data utilization and multi-model collaborative learning.

Cross-architecture Analysis. Table 2 demonstrates TwinEvol’s consistent performance gains across
diverse parameter scales and architectures, underscoring its inherent scalability. TwinEvol exhibits a
unique capability for performance equilibration, which effectively addresses architectural predispo-
sitions through reciprocal knowledge transfer. This is exemplified by its ability to enhance Gemma’s
domain-specific performance (in FPB/PubMedQA) while preserving its general capabilities.

4.3 ANALYSIS

Ablation Study. We conducted ablation experiments to evaluate TwinEvol’s components, with re-
sults shown in Table 3, which reveals: (1) Full Model Performance. The complete TwinEvol
framework achieves optimal performance across all benchmarks, demonstrating effective compo-
nent synergy. (2) SFT Impact. The performance gap between V1 (SFT-only) and baseline high-
lights supervised fine-tuning’s crucial role, particularly evident in MMLU improvements. (3) Con-
sistency Selection. V2’s improvement over V1 demonstrates the effectiveness of consistency-based
data filtering, with notable gains in MMLU-Pro and consistent improvements in other metrics. (4)
Preference Ranking. The comparison between V4 and V3 shows the ranking model’s contribution,
yielding improvements. (5) Co-evolution Necessity. To validate the effectiveness of the dynamic
Evaluative Agent, we design V5. V5’s performance degradation demonstrates that co-evolution be-
tween generator and evaluative agents is critical, as the static evaluative agent’s feedback becomes
progressively outdated. Additionally, as shown in V6, MetaPO is better than SimPO in our tasks,
corroborating our theoretical analysis.
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Sensitivity Analysis We conducted sensitivity analysis of the TwinEvol framework on MMLU and
ARC datasets, focusing on the MetaPO coefficient β and the number of hard negative samples K.
As shown in Figure 4a and 4b, the model demonstrates robust performance across different values
of β and K. Performance improves with increasing K before stabilizing at K = 4. Based on these
observations, we set β = 1 and K = 4 as default configurations. The analysis reveals that TwinEvol
exhibits low sensitivity to hyperparameter variations, demonstrating its stability.

Perplexity Analysis. Figure 4c and 4d illustrate the perplexity distribution of TwinEvol compared
to vanilla models. Our approach substantially reduces perplexity on both MMLU and MMLU-Pro,
indicating enhanced model calibration and decision confidence. The consistent reduction across
diverse benchmarks suggests effective knowledge integration rather than task-specific overfitting.

0 20 40 60 80 100
Accuracy (%)

MMLU

MMLU_pro

ARC

FPB

PubMedQA
Vanilla
TwinEvol

Figure 5: Stability analysis of TwinEvol.

Statability Analysis. Figure 5 presents our
analysis of model inference stability. We
employed GPT-4o to rephrase test instruc-
tions and conducted 5 independent evalua-
tions, reporting both mean performance and
standard deviation. The results demonstrate
that TwinEvol maintains comparable stabil-
ity to the original model.Details on the sta-
bility analysis are provided in Appendix C.2.

Computational Efficiency Despite introduc-
ing a dual-branch architecture, TwinEvol
maintains competitive computational efficiency while delivering consistent performance improve-
ments. Detailed computational efficiency analysis is provided in Appendix C.1.

5 RELATED WORK

LLM Post-training is crucial for unlocking their domain adaptation capabilities and task general-
ization potential (Wang et al., 2024e; Jeong et al., 2024; Wang et al., 2024a). This stage effectively
enhances model performance across multiple dimensions, including long-context reasoning (Ze-
likman et al., 2022), human alignment (Kaufmann et al., 2023; Rafailov et al., 2024), instruction
following (Zhang et al., 2023), and domain-specific adaptation (Cheng et al., 2024b). Through post-
training, LLMs can be effectively deployed in specialized domains such as healthcare (Jin et al.,
2019), finance (Chen et al., 2022), and legal applications (Izzidien et al., 2024), making it a criti-
cal step in realizing their practical value. However, the scarcity of domain-specific data presents a
significant challenge in real-world applications, leading to data efficiency concerns in LLM post-
training (Tan et al., 2024; Xu et al., 2024b; Kundu et al., 2024).

Data-efficient LLM Post-training aims to address real-world data scarcity, including data selec-
tion (Tsai et al., 2024; Zhou et al., 2024; Kim & Baek, 2024; Lu et al., 2024), data synthesis (Xu
et al., 2024c;a; Dai et al., 2025), and model self-evolution (Madaan et al., 2024; Chen et al., 2024;
You et al., 2024; Dong et al., 2024). While these methods have been extended to semi-supervised
learning scenarios (Luo et al., 2024) with limited labeled and abundant unlabeled data. Existing
semi-supervised post-training methods face critical challenges: the accumulation of pseudo-labeling
errors, insufficient negative feedback mechanisms, and static paradigms lack continuous evolution
capabilities. In this work, TwinEvol leverages collaborative learning with MetaPO and curriculum
learning for a self-reinforcing cycle of knowledge transfer.

6 CONCLUSION

In this paper, we present TwinEvol, a novel semi-supervised co-evolutionary framework for LLM
adaptation that addresses the challenge of limited high-quality annotated data. Through its unique
dual-branch architecture incorporating a generative LLM and a co-evolving Evaluative Agent, along
with Hard Negative Mining and MetaPO optimization algorithm, TwinEvol effectively facilitates
knowledge transfer and capability amplification from limited labeled data to abundant unlabeled
data. Both theoretical analysis and extensive experimental results validate that TwinEvol signifi-
cantly enhances model performance, offering a promising direction for LLM adaptation.
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Appendix

In this Appendix, we present comprehensive supplementary materials that underpin the results dis-
cussed in the main text. Section A provides a detailed reproducibility statement, Section B contains
rigorous proofs of all theorems, Section C offers additional analyses on computational efficiency,
stability, and further discussion, and Section D delivers full algorithmic and implementation details.
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A REPRODUCIBILITY

To increase reproducibility, we have provided all the details of TwinEvol in the Appendix. Our
code is available at https://anonymous.4open.science/r/TwinEvol/ anonymously. We also commit to
making our code and data publicly available.

B PROOF OF THEOREMS

B.1 PROOF OF THEOREM 1

Theorem 4. Denote LSimPO as the loss function of SimPO, which only generates one pair of re-
sponses per sample. Assume that each Y k

i is generated independently, we have
V ar[∇LMetaPO]

V ar[∇LSimPO]
= O( 1

K2
) (12)

Proof. Let’s analyze this step by step:

1) First, let’s consider SimPO which only uses a single preference pair per sample. For each input
task Xi, let Bi = {(Ŷ w

m , Ŷ l
m)}Mi

m=1 be Mi preference pairs, where Mi = O(K2).

2) For SimPO with only a single pair (Ŷ w, Ŷ l) per sample Xi, the gradient is:

∇θLSimPO = − 1

N

N∑
i=1

[
σ(rθ(Xi, Ŷ

l)− rθ(Xi, Ŷ
w)) (∇θrθ(Xi, Ŷ

w)−∇θrθ(Xi, Ŷ
l))
]

(13)

14
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3) To simplify notation, let’s denote:

gi(Ŷ
w, Ŷ l) = σ(rθ(Xi, Ŷ

l)− rθ(Xi, Ŷ
w))(∇θrθ(Xi, Ŷ

w)−∇θrθ(Xi, Ŷ
l)) (14)

and its variance σ2
g = V ar(gi(Ŷ

w, Ŷ l)).

4) For SimPO, the gradient variance can be calculated as:

V ar(∇θLSimPO) =
1

N2

N∑
i=1

σ2
g =

σ2
g

N
(15)

5) For MetaPO, which utilizes multiple preference pairs, the gradient is:

∇θLMetaPO = − 1

N

N∑
i=1

[
1

Mi

Mi∑
m=1

σ(rθ(Xi, Ŷ
l
m)− rθ(Xi, Ŷ

w
m )) (∇θrθ(Xi, Ŷ

w
m )−∇θrθ(Xi, Ŷ

l
m))
]

= − 1

N

N∑
i=1

[
1

Mi

Mi∑
m=1

gi(Ŷ
l
m, Ŷ w

m )

]
(16)

6) Due to the independence assumption of generated responses, the gradient variance of MetaPO is:

V ar(∇θLMetaPO) =
1

N2

N∑
i=1

1

M2
i

M∑
m=1

σ2
g = O

(
σ2
g

NK2

)
(17)

7) Therefore, the ratio of variations is:

V ar[∇LMetaPO]

V ar[∇LSimPO]
= O

(
1

K2

)
(18)

This result demonstrates that MetaPO significantly reduces gradient variance compared to SimPO
by a factor of O( 1

K2 ). This reduction in variance leads to more stable training and potentially faster
convergence. The quadratic relationship with K suggests that even a modest increase in the number
of generated responses can substantially improve training stability.

B.2 PROOF OF THEOREM 2

Theorem 5. Let R(πθ) be the expected risk and R̂(πθ) the empirical risk, then with probability
1− δ, we have

R(πθ) ≤ R̂(πθ) +O

√KL(πθ∥πref) + ln(NK2

δ )

NK2

 (19)

where KL(πθ∥πref) represents the KL-divergence between πθ and base reference model πref.

Proof. First, we define the dataset D̃ = {(Xi, Ŷ
w
m , Ŷ l

m)}1≤i≤n,1≤m≤Mi and the loss function

ℓ(θ;Xi, Ŷ
w
i , Ŷ l

m) = − log σ
(
rθ(Xi, Ŷ

w
m )− rθ(Xi, Ŷ

l
m)
)

. Let D be the distribution of the input

X . Then we can calculate the empirical risk R̂(πθ) = 1
N

N∑
i=1

1
Mi

Mi∑
m=1

ℓ(θ;Xi, Ŷ
w
i , Ŷ l

m) and the

expected riskR(πθ) = EX∼D,Ŷ w,Ŷ l∼πθ
[ℓ(θ;X, Ŷ w, Ŷ l)].

Under the PAC-Bayes Framework, using McAllester’s bound (McAllester, 2003), with probability
1− δ, we have

R (πθ) ≤ R̂ (πθ) +

√√√√KL(πθ∥πref) + log Ñ
δ

2(Ñ − 1)
(20)

where Ñ =
N∑
i=1

Mi is the total amount of data (Xi, Ŷ
w
m , Ŷ l

m) we used and πref is the reference policy.

15
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Since Mi = O(K2), we can get that with probability 1− δ, the following inequality holds.

R(πθ) ≤ R̂(πθ) +O

√KL(πθ∥πref) + ln(NK2

δ )

NK2

 . (21)

Theoretical Implications. This generalization bound provides several key insights into MetaPO’s
behavior. First, the error decreases at rate O(1/

√
N), which achieves the optimal convergence rate

in statistical learning theory. This indicates MetaPO’s strong statistical efficiency in utilizing training
samples.

Trade-offs in Response Generation. The O(
√
K logK/N) term reveals an important trade-off

in the number of generated responses K. While Theorem 1 shows that larger K reduces gradient
variance quadratically, the generalization bound suggests a mild increase in error with K. The
logarithmic dependence on K indicates this trade-off favors moderate values that balance variance
reduction and generalization.

Model Complexity Considerations. The bound’s implicit dependence on model dimension d
through the covering number illustrates the relationship between model complexity and the theo-
retical guarantees. This provides a formal characterization of how model architecture choices affect
the learning process.

B.3 PROOF OF THEOREM 3

Theorem 6 (Co-evolution Convergence). Let αM , αR be positive constants. Under the following
assumptions:

Mt+1 −Mt = αM (M∗ −Mt)(Rt − R̃)

Rt+1 −Rt = αR(R
∗ −Rt)Mt

0 < R̃ ≤ R0 ≤ R∗ , 0 < M0 ≤M∗

αRM
∗ ≤ 1 , αM (R∗ − R̃) ≤ 1

(22)

then there exist constants C and λ > 0 such that the following inequality holds:

∥(Mt, Rt)− (M∗, R∗)∥ ≤ Ce−λt . (23)

Proof. The given system is a discrete-time dynamical system, and its fixed point is (M∗, R∗).

From the assumptions, we have

M∗ −Mt+1 = (M∗ −Mt)(1− αM (Rt − R̃))

R∗ −Rt+1 = (R∗ −Rt)(1− αRMt)
(24)

Denote At = 1− αM (Rt − R̃), Bt = 1− αRMt for t ∈ N. Then we have 0 ≤ At, Bt ≤ 1, and for
any t > s > 0,

M∗ −Mt+1 = (M∗ −Mt) ·At = · · · = (M∗ −Ms) ·AtAt−1 · · ·As

R∗ −Rt+1 = (R∗ −Rt) ·Bt = · · · = (R∗ −Rs) ·BtBt−1 · · ·Bs
(25)

Then, we can obtain that R̃ ≤ Rt ≤ R∗, 0 < Mt ≤ M∗, At < µ,Bt < µ(t ≥ t0) for some
0 < µ < 1 and t0, which is not hard to prove by induction from Equation 25. Therefore, we have

M∗ −Mt ≤ (M∗ −Mt0)µ
t−t0 , R∗ −Rt ≤ (R∗ −Rt0)µ

t−t0 (26)
which implies

∥(Mt, Rt)− (M∗, R∗)∥ =
√

(Mt −M∗)2 + (Rt −R∗)2

≤
√

(Mt0 −M∗)2 + (Rt0 −R∗)2 · µt−t0

= Cµt = C ′e−λt

(27)

for some constant C,C ′ and λ > 0.
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C ADDITIONAL ANALYSIS

C.1 COMPUTATIONAL EFFICIENCY ANALYSIS

To assess computational overhead and scaling, we conducted supplementary experiments across two
model sizes (Llama3.2-3B and Llama3.1-8B), comparing per-iteration training time against standard
SFT and a memory-augmented baseline.

Table 4: Computational resource analysis for SFT, MemoryLLM, and TwinEvol across model sizes.

Method Llama3.2-3B Llama3.1-8B
SFT 0.62 1.50
MemoryLLM 1.39 3.02
TwinEvol 0.80 1.98

As shown in Table 4, the overhead of TwinEvol does not increase substantially with parameter count
and remains well below MemoryLLM, indicating practical efficiency at larger scales.

Three design choices contribute to this efficiency. First, shared parameter initialization: both the
LLM and the Evaluative Agent reuse the same foundation architecture, enabling efficient initial-
ization and optimization. Second, selective preference optimization: MetaPO is applied only to
inconsistent preference pairs, avoiding computation on already well-aligned data. Third, iterative
co-evolution: as both models improve, later iterations learn more efficiently, partially amortizing the
initial overhead.

Overall, the overhead is comparable to common alignment methods such as SFT/DPO, while
TwinEvol delivers consistent gains in semi-supervised settings. The favorable scaling profile makes
TwinEvol viable for real-world deployment at scale.

C.2 STABILITY ANALYSIS

Table 5: Stability Analysis Results (Mean± Std).

Model MMLU MMLU_pro ARC FPB PubMedQA
Vanilla 66.4± 1.50 47.1± 1.70 81.1± 0.90 81.7± 0.65 73.5± 0.50
TwinEvol 69.7± 1.70 50.8± 1.27 84.7± 0.90 97.5± 1.25 76.5± 0.50

To thoroughly evaluate the stability of TwinEvol, we conducted a comprehensive analysis comparing
it with the vanilla model across five standard benchmarks. Table 5 presents detailed results showing
both models’ performance with standard deviations across 5 independent runs. The data reveals that
TwinEvol maintains comparable or better stability than the vanilla model while achieving higher
accuracy across all benchmarks.

The analysis demonstrates that TwinEvol’s improvements are statistically significant and robust.
The standard deviations remain comparable to or lower than the baseline model, indicating that
our approach enhances performance without sacrificing stability. This is particularly noteworthy in
specialized domains like FPB and PubMedQA, where TwinEvol shows substantial improvements
while maintaining low variance. The consistent performance across multiple runs suggests that
the twin evolution mechanism effectively stabilizes the learning process, likely due to the mutual
reinforcement between the LLM and Evaluative Agent components.

C.3 ROBUSTNESS UNDER NOISY UNLABELED DATA

We evaluate robustness to systematic noise in unlabeled data on ConvFinQA. To simulate semantic
noise, we obfuscate and paraphrase a fraction (10%, 20%, 30%) of unlabeled queries using GPT-4o,
and train all models on these noisy unlabeled sets while keeping the evaluation on the original test
set. This setup tests stability under distribution corruption without changing the gold evaluation
protocol.
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Table 6: Robustness to semantic noise on ConvFinQA (Accuracy, %). Unlabeled queries are
paraphrase-obfuscated at the indicated rates; evaluation is on the original test set.

Method 0% 10% 20% 30%
SFT 81.3 - - -
SFT+SelfLabel 81.9 80.9 79.5 77.8
SemiEvol 82.4 82.0 81.3 79.6
TwinEvol 84.1 83.6 83.1 82.9

The baseline methods degrade notably as noise increases, reflecting error accumulation in self-
labeling. In contrast, TwinEvol exhibits graceful degradation, attributed to the Evaluative
Agent and Meta Preference Optimization jointly suppressing error propagation. Under 30% noise,
TwinEvol still surpasses the SFT model trained only on clean data, indicating robust extraction of
signal from noisy unlabeled corpora.

C.4 FURTHER DISCUSSION

Overfitting. A potential concern is whether training the Evaluative Agent using only labeled data
might lead to overfitting, given the typically small size of such datasets. However, the Evaluative
Agent in our TwinEvol framework is designed to mitigate this risk. Firstly, each labeled example
generates multiple preference pairs through comparisons with model-generated responses, which
effectively expands the training set for the Evaluative Agent. Secondly, the iterative co-evolution
process of TwinEvol continuously exposes the Evaluative Agent to new and evolving response pat-
terns from the LLM. This dynamic training environment helps the Evaluative Agent to generalize
better. Our empirical results, which demonstrate consistent performance improvements across di-
verse benchmarks, validate this approach and indicate effective generalization rather than overfitting
of the Evaluative Agent.

Comparison with Traditional SFT+PO Pipelines. It is crucial to highlight that traditional SFT+PO
pipelines operate under significantly different data paradigms. These methods typically neces-
sitate substantial volumes of human-annotated preference pairs for effective alignment. In con-
trast, TwinEvol is specifically engineered for semi-supervised learning scenarios characterized by
a scarcity of labeled data and, importantly, the absence of human-generated preference feedback.
This fundamental divergence in data availability and assumptions makes a direct, equitable com-
parison challenging. TwinEvol’s primary contribution lies in its efficacy within these low-resource,
semi-supervised contexts, where access to extensive preference datasets is not feasible.

Robustness to Noisy Hard Negatives. In scenarios involving low-quality or noisy initial data, the
risk of unreliable negative samples impacting preference optimization is a valid concern. TwinEvol
incorporates several mechanisms to enhance robustness against such challenges. Firstly, an initial
SFT phase on available labeled data establishes a foundational level of response quality. Secondly,
the Evaluative Agent, trained on clean labeled examples, provides a more reliable source
for preference judgments, guiding the LLM even when its own initial generations might be noisy.
Thirdly, MetaPO’s design, which aggregates signals from multiple preference pairs, inherently offers
a degree of resilience against individual noisy or misleading negative samples. Finally, the iterative
co-evolutionary process itself fosters a curriculum effect: as both the LLM and the Evaluative
Agent improve, the quality of generated responses progressively refines, creating a virtuous cycle
that mitigates the early-stage impact of noise. While no system is entirely immune to noise, these
integrated strategies collectively contribute to TwinEvol’s ability to navigate and improve even in
imperfect data environments.

Mitigation of Pseudo-Label Error Propagation. While pseudo-labeling inherently bears the risk
of propagating erroneous signals, TwinEvol employs a multi-faceted defense strategy. First, the
Evaluative Agent is initially trained on clean, human-annotated data (Eq. 1), establishing a
robust foundation before generating pseudo-preferences. Second, the iterative co-evolution of the
LLM and Evaluative Agent creates a virtuous cycle: as the LLM’s outputs improve in qual-
ity, the Evaluative Agent receives more reliable training signals, progressively curbing error
amplification. Third, MetaPO’s aggregation over multiple diverse response pairs dilutes the impact
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of any single incorrect annotation, as formalized in Theorem 1. Finally, the emergent curriculum
effect from this co-evolutionary process ensures that both models naturally transition from simpler
to more complex data, further containing noise. Empirical results across benchmarks consistently
validate the efficacy of these safeguards, demonstrating stable performance even under ambiguous
or noisy conditions.

Algorithm 1 Algorithm of TwinEvol

Require: Labeled dataset Dlabeled, Unlabeled dataset Dunlabeled, LLMM, Evaluative
Agent (denoted as A), Number of responses K, Number of iterations T ;
Ensure: Fine-tuned LLMM′

1: InitializeM and A with pre-trained weights
2: M← SFT(M,Dlabeled)
3: for iteration t = 1 to T do
4: // Evaluative Agent Training Step
5: Initialize Drank = ∅
6: for each labeled sample (Xi, Yi) in Dlabeled do
7: Generate response Ŷi =M(Xi)

8: if Yi ≻ Ŷi then
9: Add (Xi, Yi, Ŷi) to Drank

10: end if
11: end for
12: Update Evaluative Agent: A ← SFT(A,Drank)
13: // LLM Training Step
14: Initialize Dcon = ∅
15: Initialize Dpref_pairs = ∅
16: for each sample Xi in Dunlabeled do
17: Generate K diverse responses: {Ŷ k

i }Kk=1 =M(Xi)

18: Identify consistent responses Ŷi,cons from {Ŷ k
i }

19: if such Ŷi,cons exists for Xi then
20: Add (Xi, Ŷi,cons) to Dcon

21: end if
22: Construct preference pairsPi = {(Ŷ w

i , Ŷ l
i )} from all K responses {Ŷ k

i } using the updated
Evaluative Agent A

23: Add all pairs from Pi to Dpref_pairs
24: end for
25: Update LLM via SFT:M← SFT(M,Dcon)
26: Update LLM via MetaPO:M← MetaPO(M,Dpref_pairs)
27: end for
28: returnM′ =M

D ADDITIONAL DETAILS

D.1 ALGORITHM DETAILS

Algorithm 1 presents the complete training procedure of TwinEvol. The algorithm consists of three
main components that operate in an iterative manner. First, Hard Negative Mining (lines 4-7) gen-
erates K diverse responses for each input and constructs preference pairs, providing comprehensive
supervision signals. Second, the Evaluative Agent Training Step (lines 8-12) leverages la-
beled data to create ranking annotations, enabling the Evaluative Agent to learn preference
relationships. Finally, the LLM Training Step (lines 13-17) updates the model through both SFT on
consistent responses and MetaPO on inconsistent ones, forming a twin evolution cycle. This iterative
process naturally implements curriculum learning as both models progressively improve, where en-
hanced model capabilities lead to better quality training signals, which in turn enable further model
improvements in subsequent iterations.
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D.2 IMPLEMENTATION DETAILS

We provide comprehensive implementation details to ensure reproducibility of our experiments. All
experiments were conducted on NVIDIA Hopper GPUs with 80GB memory. The implementation
leverages PyTorch with CUDA and mixed precision training (FP16/BF16).

For the foundation models, we employed different sequence length configurations to accommodate
model architectures. Llama3.1-8B and Llama3.2-3B operate with a maximum sequence length of
4096 tokens, while Gemma2-9B extends to 8192 tokens to leverage its enhanced context handling
capabilities.

The training process utilizes a carefully tuned set of hyperparameters optimized for model perfor-
mance. We employ a learning rate of 2e-5 with a cosine decay schedule, complemented by 100
warmup steps. The optimization process incorporates weight decay of 0.01 and gradient clipping at
1.0. To balance computational efficiency and training stability, we set gradient accumulation steps
to 4 and run the training for 3 epochs. For MetaPO optimization, we set β = 1.0 and K = 4
based on our sensitivity analysis (Section 4.3). The Evaluative Agent model follows identical
hyperparameters except for an increased learning rate of 5e-5 to facilitate faster adaptation. In the
decoding process, we use temperature sampling with temperature 1.

Our data processing pipeline implements several key optimizations. Input sequences are tokenized
using model-specific tokenizers with the aforementioned maximum sequence lengths. The clean set
uses an entropy-based filtering with a ratio of 50% following previous work.

For consistent and fair comparison, our data partitioning follows the established protocol from
SemiEvol (Luo et al., 2024), with a ratio of 2:6:2 for labeled data, unlabeled data, and test data,
respectively.

Consistency Check Procedure. As described in Section 3.3, we generate multiple candidate re-
sponses for each unlabeled data point and apply consistency validation. For structured tasks, we use
predefined rules to extract core answers and perform direct comparison. When the majority answers
reach consensus, we treat this as a valid pseudo-label. For open-ended generation, we leverage
external LLMs for consistency judgment between candidate responses.

Generation LLM Instruction, we follow a standardized instruction template as shown in Table 7
to ensure consistent model responses across all benchmarks. This template enforces a structured
format for both questions and answers, with explicit markers for answer boundaries to facilitate
accurate evaluation. All evaluations utilize the official benchmark scripts to maintain consistency
with published results.

Evaluation Agent Instruction, we provide the instruction of the Evaluative Agent as shown in
Table 8. This provides the Evaluative Agent with a clear directive: given the context of a question
and two candidate responses (Response 1 and Response 2), determine if the first is superior to the
second and output a simple Y or N. This feedback is the cornerstone that enables our MetaPO
algorithm to learn effectively.

Table 7: iInstruction template for Generative LLMs.

Query Template
Answer the following {question_type} question.
Your answer must be on a new line starting with "Answer: ".
{additional_prompt}

Question:
{question}
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Table 8: iInstruction template for the Evaluative Agent ranking task.

Evaluative Agent Prompt Template
You are a critical ranking agent. Your task is to carefully examine a question and its various
predictions to determine the best prediction.

Question: {question}

Response 1: {response_1}
Response 2: {response_2}

Please analyze this carefully and predict if the response 1 is better than response 2.

Your Options:
- Y: Response 1 is better.
- N: Response 2 is better.

Your response must follow this format:

Answer: [Y/N]

LLMS USAGE

We adhere to the ICLR Code of Ethics. We use large language models to polish the text and also
fetch the relevant references and the latest related works. The scientific contributions remain entirely
our own.
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