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Abstract

In reinforcement learning, offline value func-
tion learning is the procedure of using an offline
dataset to estimate the expected discounted re-
turn from each state when taking actions accord-
ing to a fixed target policy. The stability of this
procedure, i.e., whether it converges to its fixed-
point, critically depends on the representations
of the state-action pairs. Poorly learned represen-
tations can make value function learning unsta-
ble, or even divergent. Therefore, it is critical
to stabilize value function learning by explicitly
shaping the state-action representations. Recently,
the class of bisimulation-based algorithms have
shown promise in shaping representations for con-
trol. However, it is still unclear if this class of
methods can stabilize value function learning. In
this work, we investigate this question and an-
swer it affirmatively. We introduce a bisimulation-
based algorithm called kernel representations for
offline policy evaluation (KROPE). KROPE uses a
kernel to shape state-action representations such
that state-action pairs that have similar immediate
rewards and lead to similar next state-action pairs
under the target policy also have similar represen-
tations. We show that KROPE: 1) learns stable rep-
resentations and 2) leads to lower value error than
baselines. Our analysis provides new theoretical
insight into the stability properties of bisimulation-
based methods and suggests that practitioners can
use these methods to improve the stability and
accuracy of offline evaluation of reinforcement
learning agents.

1. Introduction

Learning the value function of a policy is a critical com-
ponent of many reinforcement learning (RL) algorithms
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(Sutton & Barto, 2018). While value function learning algo-
rithms such as temporal-difference learning (TD) have been
successful, they can be unreliable. In particular, the deadly
triad, i.e., the combination of off-policy updates, function
approximation, and bootstrapping, can make TD-based meth-
ods diverge (Sutton & Barto, 2018; Tsitsiklis & Van Roy,
1997; Baird, 1995; Hasselt et al., 2018). Function approx-
imation is a critical component of value function learning
since it determines the representations of state-action pairs,
which in turn defines the space of expressible value func-
tions. Depending on how this value function space is rep-
resented, value function learning algorithms may diverge
(Ghosh & Bellemare, 2020). That is, the value function
learning algorithm may not converge to its fixed-point, or
may even diverge away from it. In this work, we explicitly
learn state-action representations to improve the stability of
offline value function learning.

©,® denote 4" values
d(®,9) & d(®,®) are low
d(®,®) is high

e 6 . 0o ®
(i) @ ‘3)
X ®TF7BISIM

Figure 1. The figure illustrates the native state-action represen-
tations X and m-bisimulation representations Pr_gisv. -
bisimulation algorithms use a distance function d that captures
differences between state-action pairs based on immediate rewards
and differences of next state-action pairs under 7 to shape their
representations. Ultimately, the goal of m-bisimulation methods is
to learn representations such that state-actions pairs with similar
action-values under 7 also have similar representations. The func-
tion d outputs low values within the blue (and ) state-actions
but high values between blue and state-actions. Therefore,
the blue (and ) state-actions have similar representations,
but different representations between the distinct colors.

In seeking such representations, we turn to 7-bisimulation
algorithms. These algorithms define a metric to capture
behavioral similarity between state-action pairs such that
similarity is based on immediate rewards received and the
similarity of next state-action pairs visited by 7 (Castro,
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2020). The algorithms then use this metric to learn represen-
tations such that state-action pairs that are similar under this
metric have similar representations. Ultimately, the goal of
m-bisimulation methods is to learn representations such that
state-actions pairs with similar values under 7 also have sim-
ilar representations (see Figure 1). While these algorithms
have shown promise in improving the expected return of RL
algorithms, it remains unclear whether they contribute to
stability (Castro et al., 2023; Zhang et al., 2021; Castro et al.,
2021). In this paper, we aim to understand whether the 7-
bisimulation-based representations stabilize value function
learning.

In this work, we focus on offline value function learning.
Given a fixed, offline dataset generated by unknown and pos-
sibly multiple behavior policies, the goal is to estimate the
value function of a fixed, target policy. Towards establishing
the stability properties of 7-bisimulation representations, we
introduce kernel representations for offline policy evaluation
(KROPE). KROPE defines a kernel that captures similarity
between state-action pairs based on immediate rewards re-
ceived and similarity of next state-action pairs under the
target policy. It then shapes the state-action representations
such that state-action pairs that are similar according to
this kernel have similar representations. We use KROPE as
the representative algorithm for the class of bisimulation-
based representation learning algorithms to investigate the
following question:

Can bisimulation-based representation learning stabilize
offline value function learning?

Through theoretical and empirical analysis, we answer this
question affirmatively and make the following contributions:

1. We introduce kernel representations for offline pol-
icy evaluation (KROPE) for stable and accurate offline
value function learning (Section 3).

2. We prove that KROPE’s representations stabilize least-
squares policy evaluation (LSPE), a popular value func-
tion learning algorithm (Sections 3.2).

3. We prove that KROPE representations are Bellman com-
plete, another indication of stability (Sections 3.3).

4. We empirically validate that KROPE representations im-
prove the stability and accuracy of offline value func-
tion learning algorithms on 10/13 offline datasets and
against 7 baselines (Section 4).

5. We empirically analyze the sensitivity of the KROPE
learning procedure under the deadly triad. These exper-
iments shed light on when representation learning may
be easier than value function learning (Section 4.4).

2. Background

In this section, we present our problem setup and discuss
prior work.

2.1. Problem Setup and Notation

We consider the infinite-horizon Markov decision pro-
cess (MDP) framework (Puterman, 2014), M =
(S, A,r, P,v,do), where S is the state space, A is the ac-
tion space, 7 : S x A — [—1, 1] is the deterministic reward
function, P : S x A — A(S) is the transition dynamics
function, v € [0, 1) is the discount factor, and dy € A(S) is
the initial state distribution, where A(X) represents the set
of all probability distributions over a set X. We refer to the
joint state-action space as X' := S x A. The agent acting
according to policy m : S — A(A) in the MDP generates
a trajectory: Sg, Ag, Ro, S1, A1, Ry, ..., where Sy ~ dy,
At ~ ’/T('|St), Rt = T(St,At), and St+1 ~ P(|St,At)
fort > 0.

We define the action-value function of a policy 7 for a given
state-action pair as ¢™ (s, a) := Ex[> 72 v'7(St, Ar)|So =
s,Ag = a], i.e., the expected discounted return when
starting from state s with initial action a and then fol-
lowing policy w. The Bellman evaluation operator 7™ :
RY — R?Y is defined as (T7f)(s,a) = r(s,a) +
VEs/mp([s,a), 41~ [f(S7, A)],Vf € RY. Accordingly, the
action-value function satisfies the Bellman equation, i.e.,
q(s,a) =r(s,a) +vEp . [q(S’, A")].

It will be convenient to consider the matrix notation equiv-
alents of the above functions. Since a policy 7 induces
a Markov chain on X', we can denote the transition ma-
trix of this Markov chain by P™ € RI*/*I¥I Here, each
entry P™ (i, 7) is the probability of transitioning from state-
actions ¢ to j. Similarly, we have the action-value function
¢" € RI¥l and reward vector r € RI*l, where the en-
try ¢™ (¢) and r(7) are the expected discounted return from
state-action ¢ under 7 and reward received at state-action ¢
respectively.

In this work, we study the representations of the state-action
space. We use ¢ : S x A — R? to denote the state-
action representations, which maps state-action pairs into
a d-dimensional Euclidean space. We denote the matrix
of all the state-action features as ® € RI¥!1*X¢_ where each
row is the state-action feature ¢(s,a) € R? for state-action
pair (s,a). When dealing with the offline dataset D, ®’s
dimensions are |D| x d, where |D| is the number state-
actions in the dataset D. Note that & can be the native
state-action features of the MDP, or the output of some rep-
resentation learning algorithm, or the penultimate features
of the action-value function when using a neural network.
Throughout this paper, we will view ¢ as an encoder or
state-action abstraction (Li et al., 2006). Note that the state-
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action abstraction view enables us to view ¢ as a state-action
aggregator from the space of state-actions X to the space of
state-action groups X'?.

2.2. Offline Policy Evaluation and Value Function
Learning

In offline policy evaluation (OPE), the goal is to evaluate a
fixed target policy, 7, using a fixed dataset of m transition
tuples D := {(s;, ai, s}, r;)},. In this work, we evalu-
ate m. by estimating the action-value function ¢™< using
D. Crucially, D may have been generated by a set of un-
known behavior policies that are different from 7., which
means that simply averaging the discounted returns in D
will produce an inconsistent estimate of ¢"<. In our theoreti-
cal results, we make the standard coverage assumption that
Vs € §,Va € Aif m.(als) > 0, then the state-action pair
(s, a) has non-zero probability of appearing in D (Sutton &
Barto, 2018; Precup et al., 2000).

We measure the accuracy of the value function estimate
with the mean squared value error (MSVE). Let ¢™¢ be the
estimate returned by a value function learning method using
D. The MSVE of this estimate is defined as MSVE[(7¢] :=
E(s,a)~p[(G™ (S, A) —q™ (S, A))?]. In environments with
continuous state-action spaces, where it is impossible to
compute g™ for all state-actions, we adopt a common eval-
uation procedure from the OPE literature of measuring the
MSE across only the initial state-action distribution, i.e.,
MSE[™] = Esyndy, ag~r. [(47 (S0, Ao) —q™ (So, Ao))?].
For this procedure, we assume access to dy (Voloshin et al.,
2021; Fu et al., 2021). While in practice ¢”¢ is unknown, it
is standard for the sake of empirical analysis to estimate g™
by executing unbiased Monte Carlo rollouts of 7, or com-
puting ¢™ exactly using dynamic programming in tabular
environments (Voloshin et al., 2021; Fu et al., 2021).

Least-Squares Policy Evaluation Least-squares policy
evaluation (LSPE) is a value function learning algorithm,
which models the action-value function as a linear function:
5 (s,a) := ¢(s,a) "0, where § € R? (Nedic & Bertsekas,
2003). LSPE iteratively learns 6 with the following updates
per iteration step ¢:

0141 < (BEp[®@T @) 'Epr [®7 (r +yP™00,)], (1)

where the expectations are taken with respect to the ran-
domness of the dataset D and .. Note that E[® " ®] is the
feature covariance matrix. Assuming LSPE converges, it
will converge to the same fixed-point as TD(0) (Szepesvari,
2010), which we denote as 6, spg. In this work, we follow
a two-stage approach to applying LSPE: we first obtain the
encoder ¢ either through representation learning or using
the native features of the MDP, and then feed the obtained
¢ along with D and 7. as input to LSPE, which outputs
(jgﬁ (Nedic & Bertsekas, 2003; Chang et al., 2022). This

two-stage approach of learning a linear function on top of
fixed representations is called the linear evaluation protocol
(Chang et al., 2022; Farebrother et al., 2023; 2024; Grill
et al., 2020; He et al., 2020). This protocol enables us to
cleanly analyze the nature of the learned representations
within the context of well-understood value function learn-
ing algorithms such as LSPE. In Appendix A, we include
the pseudo-code for LSPE.

2.3. Stable Representations and ¢"™<-Consistency

We define stability of LSPE and related TD-methods follow-
ing (Ghosh & Bellemare, 2020):

Definition 1 (Stability). LSPE is said to be stable if for any
initial 8y € R?, limy_s00 0; = Oispx When 6, is updated
according to Equation (1).

When determining the stability of LSPE, we have the follow-
ing proposition from prior work:

Proposition 1 (Asadi et al. 2024; Wang et al. 2021).
LSPE is stable if and only if the spectral radius of
(E[@T @)L (YE[® T P™®]), i.e., its maximum absolute
eigenvalue, is less than 1.

Therefore, the stability of LSPE largely depends on the rep-
resentations ® and the distribution shift between the data
distribution of D and 7. In this work, we study the stability
of LSPE for a fixed distribution of D and learn ®. If a given
® stabilizes LSPE, we say @ is a stable representation.

In addition to stability, we also want the state-action fea-
tures to be such that state-action features that are close in
the representation space also have similar g™« values (Lyle
et al., 2022; Lan et al., 2021). In this work, we call this
property q™-consistency since the learned representations
are consistent with the g™ values.

2.4. Related Works

In this section, we discuss the most relevant prior literature
on OPE and representation learning.

Representations for Offline RL and OPE. There are sev-
eral works that have shown shaping representations can be
effective for offline RL (Yang & Nachum, 2021; Islam et al.,
2023; Nachum & Yang, 2024; Zang et al., 2023a; Arora
et al., 2020; Uehara et al., 2022; Chen & Jiang, 2019; Pavse
& Hanna, 2023b). Ghosh & Bellemare (2020) presented
a theoretical understanding of how various representations
can stabilize TD learning. However, they did not discuss
bisimulation-based representations. Kumar et al. (2022);
Ma et al. (2024); He et al. (2024) promote the stability of
TD-based methods by increasing the rank of the represen-
tations to prevent representation collapse. However, as we
show in Section 4, these types of representations can still
lead to inaccurate OPE. On the other hand, KROPE mit-
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igates representation collapse and leads to accurate OPE.
Chang et al. (2022) introduced BCRL to learn Bellman com-
plete representations for stable OPE. While in theory, BC
representations are desirable, we found that BCRL is sen-
sitive to hyperparameter tuning. In contrast, we show that
KROPE is more robust to hyperparameter tuning. Pavse &
Hanna (2023a) showed that bisimulation-based representa-
tions mitigate the divergence of FQE; however, they did not
provide an explanation for divergence mitigation. Our work
provides theoretical insight into the stability properties of
bisimulation-based algorithms.

Bisimulation-based Representation Learning. Recently,
there has been lot of interest in w-bisimulation algorithms
for better generalization (Ferns et al., 2004; 2011; Ferns &
Precup, 2014; Castro, 2020; Zang et al., 2023b). These
algorithms measure similarity between two state-action
pairs based on immediate rewards received and the sim-
ilarity of next state-action pairs visited by m. These algo-
rithms first define a distance metric that captures this 7-
bisimilarity, and then use this metric to learn representations
such that 7-bisimular states have similar representations
(Castro et al., 2021; Castro, 2020; Zhang et al., 2021; Cas-
tro et al., 2023; Chen & Pan, 2022; Kemertas & Jepson,
2022). Castro (2020) introduced a 7-bisimulation learning
algorithm but assumed that the transition dynamics are deter-
ministic. Zhang et al. (2021) introduced a bisimulation algo-
rithm that allowed for Gaussian dynamics and demonstrated
its effectiveness in discarding distracting features for control.
Castro et al. (2021; 2023) introduced bisimulation-based
algorithms for control that allow for stochastic transition dy-
namics. To the best of our knowledge, there is still a gap in
the literature as to whether the general class of these learned
m-bisimulation-based representations stabilize offline value
function learning. To address this gap, we introduce KROPE,
an algorithm that leverages Castro et al. (2023)’s kernel
perspective on similarity metrics. We first explicitly define
a kernel that captures the relationship between state-action
features in latent space in terms of the m-bisimulation re-
lation. This definition allows us to immediately establish
stability since we can now analyze the spectral properties of
offline value function learning algorithms. The proofs for
KROPE’s basic theoretical properties (Section 3.1) follow
those by Castro et al. (2023). Our stability-related theoret-
ical results (Sections 3.2 and 3.3) and empirical analysis
(Section 4) are novel to this work.

3. Kernel Representations for Offline Policy
Evaluation

We now present our bisimulation-based representation learn-
ing algorithm, kernel representations for OPE (KROPE). We
present the desired KROPE kernel, prove stability properties
of KROPE representations, and present a practical learning

algorithm to learn them. We defer the proofs to Appendix B.

3.1. KROPE Kernel

Prior works typically define a distance metric to capture the
notion of 7-bisimilarity between two states: the distance
between states is in terms of the immediate rewards received
and differences of next states under 7 (see Figure 1) (Castro,
2020). In this work, we follow Castro et al. (2023) and take
a perspective of kernels instead of distances. We first define
a kernel that captures 7-bisimilarity k™ : X x X — R, but
for pairs of state-actions and under 7.:

k™ (s1,a1; 82,a2) = k1(s1,a1; 52, a2)

+ ko (k™) (P (|s1,a1), P (*[s2,a2)].  (2)
where ki(s1,a1;82,a2) = 1 W
and ko(k™)(P™(-|s1,a1), P™(-|s2,a2)) =
Esr af~Pre (-[s1,a1),55,a4~Pme (-]52,a2) [k (81, ah; 85, a5)].
Here, k1 measures short-term similarity based on rewards
received and ko, measures long-term similarity between
probability distributions by measuring similarity between
samples of the distributions according to k™ (Castro et al.,
2023). We refer to k™= as the KROPE kernel.

Remarks on k™. We now discuss the trade-offs of k™.
While k™ is different from prior work, it benefits and suffers
from the same advantages and disadvantages discussed in
Castro et al. (2023).

By definition k- is a function of independently coupling
(s},a}) and (s}, a%) (Castro et al., 2021; 2023). The ad-
vantage of this independence is that it enables a prac-
tical algorithm and is flexible as it make no assump-
tions on the nature of the transition dynamics of P™e.
While independent coupling does raise a complication with
stochastic dynamics and/or stochastic policies since self-
similarity may be lower than similarity between different
state-actions, i.e., k™ (s1,a1; s1,a1) < k™ (s1,a1; 82, az)
for some (s1,a1), (s2,a2) € X, k™ still induces a valid
m-bisimulation-based metric. To see its validity, con-
sider the induced distance function by k™, i.e., Vz,y €
X, diwore (2, y) 1= k" (@, 2)+ k" (y,y) — 2k (x,y). The
metric dggrope Satisfies continuity (see Lemma 3 in Ap-
pendix B.1), which is an important property for metrics
to satisfy (Lan et al., 2021). Lemma 3 states that the abso-
lute action-value difference between any two state-action
pairs under 7, is upper-bounded by dyrope plus an addi-
tive constant, where the additive constant arises due to the
independent coupling. Thus far, prior work has removed
the additive constant by assuming deterministic or Gaus-
sian dynamics (Castro, 2020; Zhang et al., 2021). However,
these assumptions are practically more restrictive. While
one might expect the existence of the additive constant to
hurt performance, prior work and our work (see Section 4)
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show that independent coupling actually yields strong per-
formance (Pavse & Hanna, 2023a; Castro et al., 2023). Fur-
thermore, in Section 3.2 we show that this property does not
affect the stability properties of the learned representations.
An interesting future direction will be to develop practically
feasible approaches to eliminate the additive constant.

Since Lemma 3 and the associated contraction, metric space
completeness, and fixed-point uniqueness properties are
similar to Castro et al. (2023)’s kernel, we defer these results
to Appendix B.1.

3.2. Stability of KROPE Representations

In the previous section, we defined the KROPE kernel. Ul-
timately, however, we are interested in representations
that satisfy the relationship in Equation (2). We modify
Equation (2) accordingly by giving k™ some functional
form in terms of state-action representations. We do so
with the dot product: (u,v) = u'v,Yu,v € R? ie.,
k™e(s1,a1;82,a2) = ¢(s1,a1) " ¢(s2, az). With this setup,
we write Equation (2) in matrix notation and define the
KROPE representations as follows:

Definition 2 (KROPE Representations). Consider state-
action representations ® € RI*% that are embedded in
RE with k™ (s1,a1; s2,a2) = ¢(s1,a1) " ¢(s2,az). We say
® is a KROPE representation if it satisfies the following:

Ep[®®T] = Ep[K;] + 1Ep », [P*®(P™®)T] (3)

where each entry of K1 € RIXXIX1 represents the short-
term similarity, k1, between every pair of state-actions, i.e.,
Ki(s1,a1;82,a2) =1 — —lr(sl|’zyjl);;$j’a2)l.

Given this definition, we present our novel result proving
the stability of KROPE representations:

Theorem 1. If ® is a KROPE representation as de-
fined in Definition 2, then the spectral radius of
(E[®T®])) " 'E[y® " P™®] is less than 1. That is,
® stabilizes LSPE.

By adopting the kernel perspective, Theorem 1, proved in
Appendix B.2, tells us that 7w-bisimulation-based KROPE
representations stabilize OPE with LSPE. Intuitively, they
are stable since when (E[® T ®])) "'E[y® " P™ ®]’s spectral
radius is less than 1, each update to 6; in Equation (1) is
non-expansive. That is, each update brings 6; closer to

eLSPE'

3.3. Connection to Bellman Completeness

In this section, we draw a novel connection between KROPE
representations and Bellman completeness. Chen & Jiang
(2019) proved a similar result but focused on bisimulation

representations instead of KROPE representations, which are
m-bisimulation-like representations. We say a function class
F is Bellman complete if it is complete under the Bellman
operator: 7™ f C F,Vf € F. For instance, suppose F
is the class of linear functions spanned by ®, F := {f €
RY : f := ®dw},w € RY Then if T fVf € Fis
also a linear function within the span of ®, we say ® is a
Bellman complete representation. Bellman completeness is
an alternative condition for stability and is typically assumed
to ensure to data-efficient policy evaluation (Wang et al.,
2021; Szepesvéri & Munos, 2005; Chang et al., 2022).

Recall, that the induced distance function due to k™ is

Va,y € X dgrore(x,y) := k" (x, 2)+k™ (y,y)—2k™ (z,y).

We now present our second main result. It states that KROPE
representations are Bellman complete under a reward func-
tion injectivity assumption (see proof in Appendix B.2):

Theorem 2. Let ¢ : X — X9 be the state-
action abstraction induced by grouping state-
actions x,y € X such that if dxgope(z,y) = 0,
then ¢(x) = ¢(y),Va,y € X. Then ¢ is Bellman
complete if the abstract reward function % : X% ~—
(—1,1) is injective (i.e., distinct abstract rewards).

Takeaway #1: Stability of Bisimulation-based

Representations

Under the theoretical assumptions made, KROPE
representations avoid divergence of offline value
function learning. They 1) induce non-expansive
value function updates and 2) are Bellman complete.

3.4. KROPE Learning Algorithm

In this section, we present an algorithm that learns the
KROPE representations from data. We include the pseudo-
code of KROPE in Appendix A. The KROPE learning al-
gorithm uses an encoder ¢,, : S x A — R¢, which
is parameterized by weights w of a function approxima-
tor. It then parameterizes the kernel with the dot product,
ie, ko (51,0a1;82,a2) := ¢y (s1,a1) " ¢ (52, az) (see Equa-
tion (3)). Finally, the algorithm then minimizes the follow-
ing loss function, which is similar to how the value function
is learned in deep RL (Mnih et al., 2015):

LkropE (W )

2
=Ep l(KQ(517 a1; s2;a2) — ko (s1,a1; 827(12)) 1 ,
4
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[r(s1,a1)—r(s2,a2)| +

‘ Tmax — "'min |

where Cg(s1,a1;82;a2) = 1 —

VE, [kz (s, al; s, ab)], the state-action pairs are sampled
from D, and @ are weights of the target network that are
periodically copied from w (Mnih et al., 2015). In this work,
we use KROPE as an auxiliary task, which introduces only
an auxiliary task weight as the additional hyperparameter.
It is critical to note that since the learning algorithm is a
semi-gradient method, it may still diverge. Nevertheless, in
Section 4 we show KROPE still improves the stability and
accuracy of OPE compared to baselines.

4. Empirical Results

In this section, we present our empirical study designed to
answer the following question: do KROPE representations
lead to stable MSVE and low MSVE?

4.1. Empirical Setup

In this section, we describe the main details of our empir-
ical setup. For further details such as datasets, policies,
hyperparameters, and evaluation protocol please refer to
Appendix C.

Baselines Our primary representation learning baseline
is fitted g-evaluation (FQE) (Le et al., 2019). FQE is the
most fundamental deep RL OPE algorithm that learns
representations of state-actions to predict the long-term
performance of a policy. While FQE is typically used as an
OPE algorithm, it can also be viewed as a value-predictive
representation learning algorithm (Lehnert & Littman,
2020). More specifically, consider its loss function:
E(s,a,5')~D {(r(s, a) +YEqy o, [Qg(s’, )] — qe(s, a))z],
where g¢(s,a) == ¢¢/(s,a) "wand € = {¢/,w}. We view
¢ as the neural network weights of an action-value neural
network and w as the linear weights of the network applied
on the output of the penultimate layer ¢¢(s,a) of the
neural network. Then minimizing this loss function shapes
the representations ¢ (s, a) to predict the expected future
discounted return. As noted in Section 2, we follow the
linear evaluation protocol where ¢¢ is shaped by different
auxiliary tasks and is then used with LSPE for OPE since it
helps us understand the properties of the representations
within the context of a well-understood value function
learning algorithm (Grill et al., 2020; Chang et al., 2022;
Farebrother et al., 2024; Wang et al., 2021). We provide
the pseudocode of this setup in Appendix A. We also note
that in Appendix C, we present results of performing OPE
using FQE instead LSPE, and find that KROPE still reliably
produces stable OPE estimates.

We consider the following three classes (and total 6) aux-
iliary representation learning algorithms that are typically
paired with FQE for stability: I) bisimulation-metric based,

IT) model-based, and III) co-adaptation penalty-based. In
class I, we consider 1) KROPE (ours), 2) deep bisimulation
for control (DBC) (Zhang et al., 2021), 3) representations for
OPE (ROPE) (Pavse & Hanna, 2023a; Castro et al., 2021); in
class II, we consider bellman complete representation learn-
ing (BCRL-EXP-NA) (Chang et al., 2022); and in class III,
we consider 1) absolute DR3 regularizer (Kumar et al., 2022;
Ma et al., 2024) and 2) BEER regularizer (He et al., 2024).
In all cases, the penultimate layer features of FQE’s action-
value encoder ¢/ are fed into LSPE for OPE. Note that
since BCRL was not designed as an auxiliary task (Chang
et al., 2022), we evaluate it as a non-auxiliary (NA) task
algorithm. We provide additional details on the baselines in
Appendix C.

Domains We conduct our evaluation on a variety of do-
mains: 1) Garnet MDPs, which are a class of tabular stochas-
tic MDPs that are randomly generated given a fixed num-
ber of states and actions (Archibald et al., 1995); 2) 4 DM
Control environments: CartPoleSwingUp, CheetahRun, Fin-
gerEasy, WalkerStand (Tassa et al., 2018); and 3) 9 D4RL
datasets (Fu et al., 2020; 2021). The first domain enables us
to analyze the algorithms’ performance across a wide range
of stochastic tabular MDPs. The second and third set of do-
mains test the algorithms in continuous higher-dimensional
state-action environments.

4.2. Analyzing Stability and ¢"*-Consistency Properties

In this set of experiments on the Garnet MDPs domain, we
analyze the stability and g™ consistency properties of the
learned representations. We present the results in Figure 2.
Our Garnet MDPs were generated with 8 states and 5 actions,
with a total of |X'| = 40 state-actions, and each native (s, a)
representation is a 1-hot vector. In these experiments, the
native representation is fed into a linear encoder with a
bias component and no activation function. All algorithms
are trained for 500 epochs and we report the results by
evaluating the final learned representations for different
latent dimensions d.

Stability. Based on Theorem 1, a representation is stable if
it induces a spectral radius of (E[® T ®])~!(yE[® " P™ ®])
that is less than 1. In Figure 2(a), we present the fraction of
runs that result in such representations. We find that up till
d = 30, 100% of KROPE and BEER runs have spectral radius
less than 1. We also find that BCRL-EXP-NA produces stable
representations up till d = 40. At d = 50, all algorithms
produce unstable representations. These results suggest that
KROPE, BEER, and BCRL-EXP-NA are reliable in producing
stable representations when projecting state-actions into low
dimensions. When d > |X|, the covariance matrix E[® " ®]
is more likely to be a singular matrix, which implies higher
chance of instability.
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Figure 2. Evaluation of basic representation properties on Garnet
MDPs with 40 state-actions vs. output dimension d. Figure 2(a):
Fractions of runs out of 30 trials that resulted in spectral radius
of (E[® T ®])~ (yE[® T P™ ®]) to be less than 1; higher is better.
Figure 2(b): Pearson correlation between orthogonality between
pairs of latent features vs. their corresponding absolute ¢"¢ action-
value difference; higher is better. All results are averaged over 30
trials and the shaded region is the 95% confidence interval.

q™<-Consistency. We say that the representations have
maintained ¢”™¢-consistency well when state-actions that
have similar ¢™¢ values are close to each other in the
representation space (Lan et al., 2021). We assess
this property by first measuring the orthogonality: 1 —

[(¢(s1,a1),0(s2,a2))|
BernliEexDI (Wang et al., 2024) between every state-

action pair, (s1,a1; Sz, az), and the absolute action-value
difference: |¢™(s1,a1) — ¢™¢(s2, a2)|. We then compute
the Pearson correlation between these values for every pair
and plot the correlation for each d in Figure 2(b). A correla-
tion coefficient close to 1 indicates that the representations
maintain ¢™¢-consistency well. We find that KROPE rep-
resentations satisfy this property almost perfectly since it
specifically tries to learn representations such that state-
action pairs with similar values under 7, are similar. We
observe that the other non-bisimulation-based algorithms
typically have zero or even negative correlation. A nega-
tive correlation indicates that state-actions with different
action-values may have similar representations in latent
space, which can complicate value function learning.

4.3. Offline Policy Evaluation

In this set of experiments, we evaluate the algorithms for
OPE on 13 datasets: 4 DM control and 9 D4RL datasets. We
also evaluate BCRL-NA, which is BCRL without the explo-
ration maximization regularizer. To stabilize training for all
algorithms, we use wide neural networks with layernorm
(Gallici et al., 2025; Ota et al., 2024). Note that while wide
networks and layernorm stabilize training, they may not
lead to stable LSPE under the linear evaluation protocol. We
report the final (normalized) squared value errors when the
learned representations are used with LSPE for OPE. The
results are presented in Table 1 (see Appendix C.3.1 for full

learning curves).

In general, we find that KROPE representations lead to low
and stable MSVE on 10/13 datasets. On the other hand, we
find that the other auxiliary tasks inconsistently produce
stable OPE estimates across all environments. Compared to
the other bisimulation-based algorithms (DBC and ROPE),
KROPE consistently achieves lower error. In all cases, DBC
seems to be unreliable for OPE. ROPE, which was the previ-
ous state-of-the-art bisimulation-based algorithm for OPE,
also achieves low error. While ROPE is competitive with
KROPE, KROPE generally outperforms ROPE and has one
less hyperparameter. The performance of the ABS-DR3 and
BEER regularizer suggests that explicitly trying to increase
the rank of the features of the penultimate layer may hurt sta-
bility, and even if the OPE error is stable, it can hurt accuracy.
We also make a similar observation for BCRL. However, in
this case, we attribute poor performance to difficulty in opti-
mizing the BCRL objective. In fact, in Figure 3(a), we will
see that BCRL is sensitive to hyperparameter tuning. We also
observe results consistent with a known result that BCRL-
EXP-NA achieves lower error than BCRL-NA indicating the
known result that exploration maximization of the covari-
ance matrix helps produce stable representations (Chang
et al., 2022). While FQE achieves low error on WalkerStand
and CheetahRun, it is very unstable on the other datasets,
which motivates the need to shape the representations for
stable and accurate OPE. Note that in practice, KROPE may
still diverge, as it did it in 3 cases, because the learning
objective in Equation (4) is still a semi-gradient learning
algorithm (see discussion in Section 5 and Section 4.4).
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Figure 3. Hyperparameter sensitivity plots on CartPoleSwingUp
and WalkerStand. Results are over 20 trials for each hyperparame-
ter configuration and shaded region is the 95% confidence interval.
Larger area under the curve is better.

Hyperparameter Sensitivity. In OPE, hyperparameter
tuning can be challenging since it may be infeasible to
get access to ground truth performance of 7. (Fu et al.,
2021). Therefore, we prefer algorithms that are robust to
hyperparameter tuning, i.e, they reliably produce accurate
OPE estimates for a wide range of hyperparameters. In Fig-
ure 3, we present the performance profile for each algorithm
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Algorithm
Dataset (DMC) FQE BCRL+EXP BCRL BEER DR3 DBC ROPE KROPE (ours)
CartPoleSwingUp  Div. 20+1.6 2.2+0.8 Div. 0.9+0.0 Div. 0.2+0.1 0.0 0.0
CheetahRun 0.0+0.0 0.3+0.2 0.8+0.3 0.0£0.0 0440.0 Div. Div. 0.0 £0.0
FingerEasy Div. 0.6+0.1 0.84+0.2 Div. 0.9+0.0 Div. 0.1 +0.0 0.6+0.0
WalkerStand 0.0+0.0 02+0.2 0.2+0.1 1.9+3.6 0.1+0.0 Div. 0.2+£0.0 0.0 £0.0
Dataset (D4RL) FQE BCRL+EXP BCRL BEER DR3 DBC ROPE KROPE (ours)
cheetah random 0.9 + 0.0 Div. Div. 0.9+0.0 0.9+0.0 0.9+0.0 1.0+0.0 1.0£0.0
cheetah medium Div. Div. 0.2+ 0.2 Div. Div. Div. 0.0 0.0 0.0=+0.0
cheetah med-expert Div. 0.24+0.1 03=£0.1 Div. Div. Div. 0.1£0.0 0.0 £ 0.0
hopper random Div. Div. Div. Div. 0.8+0.0 Div. Div. 0.1£0.0
hopper medium Div. Div. Div. Div. Div. Div. Div. Div.
hopper med-expert Div. Div. Div. Div. 0.6 0.0 Div. 0.0+ 0.0 0.0+0.0
walker random Div. Div. Div. Div. 1.0+ 0.0 Div. Div. 0.5+ 0.1
walker medium Div. Div. Div. Div. Div. Div. Div. Div.
walker med-expert Div. 1.3£04 2.6=£2.1 Div. 6.6 £11.6 Div. 0.1 0.0 Div.

Table 1. Final normalized squared value error achieved by LSPE with different representation learning algorithms. Results are averaged
over 20 trials and the variation is the 95% confidence interval. Lower and less erratic is better. Values are rounded to single place decimal.

When an algorithm’s error is > 10, we label it as diverged (Div.). Bolded and highlighted error indicates lowest error among baselines.

across all hyperparameter combinations and all trials (Agar-
wal et al., 2021). We tune the hyperparameters discussed
in Appendix C.1. We find that 100% KROPE runs across all
instances produce MSVE < 1, which is not the case with
other algorithms. This result indicates the reliability of us-
ing KROPE for OPE over other algorithms including other
bisimulation-based algorithms.

Takeaway #2: Practical Offline Policy Evalua-

tion with KROPE

KROPE can increase the stability and accuracy of
evaluation of offline RL agents.

4.4. Stability of the KROPE Learning Procedure

In this section, we compare the susceptibility of KROPE’s
and FQE’s semi-gradient learning to divergence. We refer
the reader to Appendix C.1 for more details.

We conduct our experiments on the Markov reward process
(MRP) in Figure 4(a) (see Feng et al. (2019)). The MRP
consists of 4 non-terminal states, 1 terminal state (the box),
and only 1 action. The value function estimate is linear
in the weights w = [wy,ws, w3], so, starting clockwise
from the left-most circle, the native features of the states are
[1,0,0],[0,1,0],[0,0,2],and [0,0, 1]. In this setup, we say
a transition is bad if the bootstrapping target is a moving
target for the current state. For example, the transition from

ws to 2ws is a bad transition since updates made to w3 may
move 2wsg further away. When this transition is sampled at
a frequency that is different from the on-policy distribution,
algorithms such as TD, LSPE, and FQE tend to diverge (Asadi
et al., 2024). Similarly, for KROPE, which uses its weights to
compute the latent representation of states, we would expect
that pairs of transitions that lead to moving dot product
targets are bad transition pairs.

To understand the stability of the learning procedures, we
design the following experiment when using KROPE as an
auxiliary loss function to FQE. We first create an on-policy
dataset D°". We then define off-policy datasets of the form
D?, which consists of transitions starting from the speci-
fied state s, where s = {w;, ws, w3, 2ws}. Using these
datasets, we then construct D; = D" U D%3 and four Dy
variations: 1) Dy = D°* U D¥1, 2) Dy? = D" U D¥2,
3) Dy? = D" U D2, and 4) Dg“’?’ = D" U D?¥s, There-
fore, D1, D52, D%w?’ consist of mostly bad transitions while
Dy, Dy consist of good transitions. Since KROPE sam-
ples pairs of transitions, we investigate the consequences of
pairing D; with a D, variation. We pair each of the four D,
datasets with D; and train FQE+KROPE, where FQE is fed
transition samples from D; and KROPE is fed samples from
D, and the specific Dy variation.

In Figure 4(b), we show the training loss of only KROPE
to analyze when KROPE may diverge. We find that even
though D; consists of mostly bad transitions, if KROPE sam-
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Figure 4. Figure 4(a): MRP counterexample designed to illustrate divergence; r denotes the rewards and p denotes the probability of
transition (Feng et al., 2019). Figures 4(b) and 4(c): KROPE training loss and FQE+KROPE training loss vs. epochs respectively when
different datasets are paired with Dy ; results are averaged over 20 trials, shaded region is the 95% confidence interval, and lower is better.

ples good transitions from D3 or D52, its divergence is
mitigated. However, if KROPE samples bad transitions from
D5 or Dg"“, it diverges since the pairing of samples from
(D1, DY?) and (Dy, D5"*) leads to KROPE chasing a mov-
ing bootstrapped dot product target. Therefore, sampling
pairs of bad transitions can make KROPE more likely to
diverge, while sampling a single bad transition (with a good
transition) can make it less likely to diverge.

In Figure 4(c), we plot the combined training loss of
FQE+KROPE. As expected, when FQE uses only bad transi-
tions from Dj, it diverges (No Pairing). In fact, in all cases,
the divergence is due to FQE even when the corresponding
KROPE variation is not diverging (see D5 or D5 in Fig-
ure 4(b)). For the D5 or D§w3 variations, both FQE and
KROPE diverge. Therefore, sampling single bad transitions
makes FQE more likely to diverge (Asadi et al., 2024).

While we hand-designed these datasets, in general, we
would expect that the probability of sampling a pair of
bad transitions is less than that of sampling a single bad tran-
sition'. These experiments show that while value function
learning with FQE may diverge, representation learning with
KROPE may not.

Takeaway #3: KROPE Divergence

While FQE’s divergence is due to sampling bad tran-
sitions, KROPE’s divergence is due to sampling bad
pairs of transitions. Intuitively, since the probability
of sampling a bad transition pair is less than that
of sampling a single bad transition, KROPE training
may be easier than FQE training.

5. Limitations and Future Work

In this section, we discuss limitations and future work. A
shortcoming of KROPE’s semi-gradient algorithm is its sus-

'We expect this statement to roughly hold true unless the data
consists of mostly bad transitions; see Appendix C.1

ceptibility to divergence (Sutton & Barto, 2018). While
we employed commonly-used techniques such as layer-
norm and wide neural networks to mitigate divergence (Ota
et al., 2024; Gallici et al., 2025), the consequences of a
semi-gradient method may still exist. One potential rem-
edy is to avoid semi-gradient learning. Feng et al. (2019)
suggest to replace the fixed-point loss function of semi-
gradient methods with an equivalent expression that lever-
ages the Legendre-Fenchel transformation (Rockafellar &
Wets, 1998). However, a drawback with this approach is that
the new learning objective is a minimax procedure, which
can be challenging to optimize in practice. In future work,
we will explore the viability of this approach to design a
provably convergent version of KROPE.

6. Conclusion

In this work, we tackled the problem of stabilizing offline
value function learning in reinforcement learning. We in-
troduced a bisimulation-based representation learning algo-
rithm, kernel representations for OPE (KROPE), that shapes
the state-action representations to stabilize this procedure.
Theoretically, we showed that KROPE representations are
stable from two perspectives: 1) non-expansiveness, i.e.,
they lead to value function learning updates that enable con-
vergence to a fixed-point and 2) Bellman completeness, i.e.,
they satisfy a condition for data-efficient policy evaluation.
Empirically, we showed that KROPE leads to more stable
and accurate offline value function learning than baselines.
We also demonstrated when representation learning with
KROPE may be easier than value function learning with FQE.
Our work showed that bisimulation-based representation
learning can improve the stability and accuracy of long-term
performance evaluations of offline reinforcement learning
agents.
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A. Background

In this section, we present the theoretical background.

A.1. Bisimulation Metrics

In this section, we present background information on bisimulations and its associated metrics. Our proposed representation
learning algorithm is a bisimulation-based algorithm. Bisimulation abstractions are those under which two states with
identical reward functions and that lead to identical groups of next states under any action are classified as similar (Ferns
et al., 2004; 2011; Ferns & Precup, 2014). Bisimulations are the strictest forms of abstractions. In practice, the exact
bisimulation criterion is difficult to satisfy computationally and statistically. A more relaxed version of this notion is the
w-bisimulation metrics. These metrics capture the similarity between two states such that two states are considered similar if
they have identical expected reward functions and expected transitions to identical groups of next states under a fixed policy
7 (Castro, 2020).

We first give the definition of bisimulation.

Definition 3. (Li et al., 2006) An abstraction ¢ : S — S® over the state space S is a bisimulation if for any action a and
any abstract state s® € S®, ¢ is such that for any two states s1,sa € X, ¢(s1) = ¢(s2) implies that r(s1,a) = r(s2,a)
and 3 e g0 P(5']51,0) = 3oy c 0 P(s'52, 0).

Below we define m-bisimulations for state-actions instead of states:

Definition 4. (Castro, 2020) An abstraction ¢ : X — X9 over the state-action space X is a m-bisimulation for a fixed
policy  if for any two state-actions x,y € X and abstract state-action % € X?, ¢ is such that ¢(x) = $(y) implies that

r(@) =r(y) and 3, oo PT(2|2) = X picpo PT(2']Y).

The above definitions are based on exact groupings between state-actions. This strictness motivates the use of bisimulation
and m-bisimulation metrics, which we define below.

Theorem 3. (Ferns et al., 2004) Let M(S) be the space of bounded pseudometrics on the state-space S. Then define
B : M(S) — M(S) such that for each d € M(S):

B(d)(s1, 52) = max(|r(s1, a) = 7(s2,a)| + YW(d)(P([s1,a), P("]s2,a)),

where W is Wasserstein distance between the two distributions under metric d. Then BB has a unique fixed point, d*, and d*
is a bisimulation metric.

Similarly, we have the 7-bisimulation metric:

Theorem 4. (Castro, 2020) Let M(X) be the space of bounded pseudometrics on the state-action space X and 7 be a fixed
policy. Then define B : M(X) — M(X) such that for each d € M(S):

B(d)(x,y) = [r(z) —r(y)| + yW(d) (P (-]x), P"(-|y)),

where VWV is Wasserstein distance between the two distributions under metric d. Then B has a unique fixed point, d*, and d*
is a w-bisimulation metric.

Using the above metrics, prior works have introduced several representation learning algorithms to learn representations
such that the distance between representations in latent space model the above distance metrics (Castro et al., 2021; 2023;
Zhang et al., 2021; Kemertas & Aumentado-Armstrong, 2021; Pavse & Hanna, 2023a).

A.2. Reproducing Kernel Hilbert Spaces

Let X be a finite set and define a function &k : X x X — R to be a positive semidefinite kernel if it is symmetric and positive
semidefinite. We then have for any {z1, s, ...,x,} € X and {c1,c2,...,c,} € R:

iici,cjkz(xi,xj) > 0

i=1j=1
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Note that if the above inequality is strictly greater than zero whenever {c;, ..., ¢, } has at least one nonzero, we say the
kernel is positive definite. Given a kernel k£ on A’ with the reproducing property, we can construct a space of functions #y,
referred to as a reproducing kernel Hilbert space (RKHS) with the following steps:

1. Construct a vector space of real-valued functions on X of the form {k(x,-) : z € X'}.
2. Equip this space with an inner product given by (k(z, ), k(y,))n, = k(z,y).
3. Take the completion of the vector space with respect to the above inner product.

Our resulting vector space Hj, is then an RKHS.

It is often convenient to write ¢ (z) := k(z, ) € Hy, which is called the feature map and is an embedding of x in Hj,. One
can also embed probability distributions into Hy,. That is, & : P(X) — Hj, which maps probability distributions over X" to
M. We define ® (1) = Ex~,[¢(X)], which is the mean embedding in #;, under .

Given these embeddings in the Hilbert space, we can quantify the distances between elements in X’ and P(X’) in terms of
the embeddings.

Definition 5. Given a positive semidefinite kernel k, define py. as its induced distance:

pr = 9 (@) = ()l

By expanding the inner product, the squared distance can be written in terms of k:

Similarly, we have distances on P(X) using ®:

Definition 6. (Gretton et al., 2012) Let k be a kernel on X and ® : P(X) — Hy, be as defined above. Then the Maximum
Mean Discrepancy (MMD) is a pseudo metric on P(X) defined by:

MMD(k)(p,v) = [|D(1) = D) |34,

The core usage of the RKHS is to precisely characterize the nature of the KROPE kernel. In practice, we deal with neural
network representations, which are embedded in Euclidean space. Therefore, our goal is to learn representations in Euclidean
space that approximate the properties of representations in the RKHS. For more details on the RKHS, we refer readers to
(Castro et al., 2023) and (Gretton et al., 2012).

A.3. Algorithm Pseudocode

In this section, we present the pseudocode for LSPE and for our FQE + auxiliary task with LSPE for OPE setup.

Algorithm 1 LSPE

1: Input: policy to evaluate ., batch D, fixed encoder function ¢ : S x A — RY,
Initialize 6y € R? randomly.
Apply ¢ to D to generate P.
fort=0,1,2,... T —1do
01 < (E[®T D) E[®T (1 + P 20,)]
end for
Return 61

A A R
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Algorithm 2 FQE + representation learning auxiliary task with LSPE for OPE

1: Input: policy to evaluate 7., batch D, encoder parameters class €2, encoder function ¢ : S x A — R, action-value
linear function ¢ : RY — R, a € [0, 1].
2: forepoch=1,2,3,... Tdo

L(w) := aAux-Task(¢y,, D, me) + (1 — @)E¢sq,6)D [(r(&a) +VEa/mom, [qg(@;,(s’,a’))] — qg(gzﬁ(;)(s,a)))ﬂ
{where the penultimate features ¢ are fed into an auxiliary representation learning algorithm such as KROPE,
DR3, BEER etc.}
@y = argmin,eq L(w)
Periodically run LSPE, 0 := LSPE(7e, D, ¢y, ).
Compute estimated action-values, § := @, 0. {where ¢, is applied to D to get P, }

end for

Return ¢ := ®,.0. {Estimated action-value function of 7., ¢™.}

RN A

B. Theoretical Results

In this section, we present the proofs of our main and supporting theoretical results. The first set of proofs in Section B.1
show that KROPE is a valid operator. While new to our work, the proofs follow those by (Castro et al., 2023). The next set of
proofs in Section B.2 prove the stability of KROPE representations and are novel to our work. For presentation purposes, it
will often be convenient to refer to a state-action pair as « € X instead of (s, a).

B.1. KROPE Operator Validity

Given the definition of the KROPE kernel, we now present an operator that converges to k7<:

Definition 7 (KROPE operator). Given a target policy ., the KROPE operator F™e : R¥** — RYXX js defined as follows:
foreach kernel k : X x X — R, V(s1,a1;892,a3) € X X X,

FTe(k)(s1,a15 52, a2) := k1(s1,a15 82, 02) +7Egt o Pt apor, [K(5], 015 85, a5)] Q)

short-term similarity long-term similarity

_Ir(s1,a1)—7(s2,a2)|

Tmax —T'min

where s ~ P(s}|s1,a1), sh ~ P(sh|s2,a2),a} ~ me(-|s)),a ~ we(-|sh), and k1(s1, a1; s2,a2) :=1
is a positive semidefinite kernel.

We now present the proofs demonstrating the validity of the KROPE operator. All the proofs in this sub-section model those
by (Castro et al., 2023). The primary difference is that our operator is for state-actions instead of states.

Lemma 1. Let K(X) be the space of positive semidefinite kernels on X. The KROPE operator F™< is a contraction with
modulus v in || - ||co-

Proof. Let k1, ky € K(X). We then have:

|F7 (k1) = FT (ko) o

= e k . o Te k
o max FT (k) (@, y) = F7 (k) (@, )]

== E '~PTe (.| I'noPTe (. k X/,Y/ —]E '~PTe ( |z ' PTe (. k X/7Y/
V(I,ﬁaﬁxﬂ X/ Pre (-]2), Y/~ Pre (o) [F1 ( ) = Exrpre (o), v~ Pre (y) [F2( )|

= E 'nPTe (-2 I PTe (. k X/,Y/ _ ,ZC X/’Y,
W(x,zﬁlea;(xx| XinPre ()Y /e (ly) R ) — ka i

This completes the proof of the lemma. O

Lemma 2. Let K(X') be the space of positive semidefinite kernels on X. Then the metric space (IC(X), || - ||oo) is complete.

Proof. To show that IC(X') is complete it suffices to show that every Cauchy sequence {k,, },>0 has a limiting point in
KC(X). Since X is a finite, the space of function R**? is a finite-dimensional vector space, which is complete under || - || .
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Thus, the limiting point k € RY*¥ of the Cauchy sequence {k;, },>0 lies in R***. Moreover, since we are considering
only positive semidefinite kernel elements in the Cauchy sequence and they uniformly converge to k& € R***, k& must also
be positive semidefinite. Thus, KC(X) is complete under || - ||oo- O

Proposition 2. The KROPE operator F™¢ has a unique fixed point in IC(X). That is, there is a unique kernel k™ € IC(X)
satisfying

[r(s1,a1) — (52, 02)|

k™ (817 ai; S2, a2) =1- + ryES,l,SlQNPJlll,aéNﬂ'e [kjﬂ—e (S/la (1/1; 3/27 a/2)]

|Tmux - Tmin|

Proof. Due to Lemmas 1 and 2, 7™ is a contraction in a complete metric space. Therefore, by Banach’s fixed point
theorem, the unique fixed point k™ exists. O

Proposition 3. The KROPE similarity metric dygropg satisfies:

Vr,y € X, dirore (€, y) = |r(z) — r(y)| + YMMD? (k™) (P™ (-|z), P™*(-|y)).

Proof. To see this fact, we can write out the squared Hilbert space distance:

diwore (2, y) = [[¥7 (2) — ¥ () |3,
= k™ (z,x) + k™ (y,y) — 2k™ (2, y)
= [r(z) = r@)] + (2P ([x)), P(P™(|2))) e + (LT ([y)), PP (-[y)))nre
—29(Q(P7(-|z)), R(P™ (-|y)))are
= [r(z) = r(y)| + YMMD? (k™) (P™(-|z), P™ (-]y)),

where the third line uses
ke (2, ) = YEx; xpopre (o) K7 (X1, X3)] = Y(@(P7e(-[z), P™(:|2))pre -

This completes the proof. O

Before presenting Lemma 3, we define the distance metric dggope : X X X — R induced by the KROPE kernel k™ as
follows:

vxay S X : dKROPE(xvy) = kﬂc($7x) + kﬂe(yay) - 2]{:77@(3372/).

Lemma 3. We have |q™(z) — ¢™(y)| < dyrors(2,y) + C, where C = > ons0 Y (AT () + ATe(y)) and ATe(z) =
Ex/(pre(-|z))n [Exf,xgkpw(.m/) [‘T(Xl ) — (X )m

Proof. We will prove this with induction. We first define the relevant terms involved. We consider the sequences of
functions {k., }m>0 and {¢m }m>0, where ko,qo = 0. Since F7¢ and 7™ are contraction mappings, we know that
lim,,— 00 by, = k™ and lim,,, o0 ¢y = g™ as F7e and T ™= are applied respectively at each iteration m. At the mth
application of the operators, we have the corresponding kernel function k,, along with its induced distance function
A (2, y) = km (2, 2) + kn(y, y) — 2k (2, y). We will now prove the following for all m:

m

4m(2) — G| < ) + 5 DA AT (@) + AT (1) ©)

n>0

where AT¢(z) = ]EX/N(P"SHI))"[EX1/7X§~P"6(-|X’)Hr(Xi/) — (X))
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The base case m = 0 follows immediately since the LHS is zero while the RHS can be non-zero. We now assume the
induction hypothesis in Equation (6) is true. We then consider iteration m + 1:

|gm+1(2) = gm+1(y)]

= [r(2) + VExwpre (2 [am (X )] = 7(y) = VEy s pre (1) [0 (V)]
< Ir(@) = r(W)] + VExrpre o),y mPre (g [lgm (X)) = @ (V)]

< |r(@) = r(@)| + VExmpre (o), v mpre (Jy) | dm (X, Y7) Z’Y (AT(X") + AT (Y"))

m+1

(X', Y) 27 (AR (x AZ‘”‘(@/))}

= |7’(IL’) — T(y)| + ’}/]EX/Np-ne(“x)7y/NPﬂ-e(.‘y)

where we have used the fact that Ex/. pr. (.|o)[A7°(X")] = A7< 1 (7). We can then proceed from above as follows:

m+1

(X V)4 5 30 )+ 87 >>]

<[r(@) = r(y)| + YEx o pre (o), vy~ Pre (fy) [dim (X, V)]

1

+ 5 Exs xgapre (o [Ir(X7) = r(X)| + [r(Y)) = r(¥2)]]
Y], Yy~ P7e(|y)

m+1

32 7AT @)+ AT W)

= [r(@) = ()| + VEx'~pre (|2), vy ~Pre ()

m+1
= r(@) = ()| + YEx'~pre (o), v/ ~mPre () [dm (X, Y) Z V(AR (@) + AF (y))

m+1
= dpmi1(z,y) + Zv (A7 () + AT (y))

We thus have |¢y11(2) — @mt1(¥)| < dingr(z,y) + 3 an+01 " (ATe(x) + AT<(y)), which completes the proof. O

Lemma 3 tells us that the KROPE state-actions that are close in latent space also have similar action-values upto a constant
C = %ZTTJF(} Y (ARe(z) + ATe(y)). Intuitively, AT(x) is the expected absolute reward difference between two
trajectories at the nth step after . is rolled out from z. If the transition dynamics and 7. are deterministic, we have C' = 0
(Castro, 2020; Zhang et al., 2021). Note that while the deterministic transition dynamics assumption is eliminated, the bound
suggests that KROPE may hurt accuracy of ¢™ since when dygope (2, y) = 0, we get |¢™ () — ¢™(y)| < C. This indicates
that two state-actions that may have different action-values are considered the same under KROPE. This implies that while
and y should have different representations, they actually may have the same representation.

B.2. KROPE Stability

In this section we present our main results. We present supporting theoretical results in Section B.2.1 and main theoretical
results in Section B.3. To the best of our knowledge, even the supporting proofs in Section B.2.1 are new.

B.2.1. SUPPORTING THEORETICAL RESULTS

We present the following definitions that we refer to in our proofs.

Definition 8 (Bellman completeness (Chen & Jiang, 2019)). The function class F is said to be Bellman complete if V' f € F,
it holds that T™ f € F. That is supsc 7 infger [|g — T™ flloc = 0, where F C X — [, {24 ], and T™ is the Bellman
operator.

Definition 9 (Piece-wise constant functions (Chen & Jiang, 2019)). Given a state-action abstraction ¢, let F® C X —
[{—77’ fﬁ—v] Then f € F? is said to be a piece-wise constant function if Yx,y € X where ¢(x) = ¢(y), we have

f(@) = f(y).
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Proposition 4. If a state-action abstraction function ¢ : X — X? is a w.-bisimulation abstraction, then F? is Bellman
complete, that is, Sup ;¢ o inf e o || f* — T7 flloo = 0.

Proof. We first define m.-bisimulation (Castro, 2020). Note that (Castro, 2020) considered only state abstractions, while we
consider state-action abstractions. ¢ is considered a ,-bisimulation abstraction if it induces a mapping between X and X'¢
such that for any z,y € X such that z, y € ¢(x), we have:

2. Vz? e X9, Y oweae PTe(@[2) =30 s P (2'|y)

Given our m.-bisimulation abstraction function ¢, we can group state-actions actions according to its definition above. Once
we have this grouping, according to Definition 9, ¢ induces a piece-wise constant (PWC) function class F¢. Note that by
definition of ¢ we have:

€y 1= max r(z - _ O
" zl,xzw(zl):(ﬁ(@)‘ (1) = r(z2)|

€p 1= max z P (2! |z1) — z P (z'|z2)| = 0,Vz? € X?.
o1,72i¢(21)=¢(w2) ' ex® ' ex®

Once we have ¢, we consider the following to show Bellman completeness. Our proof closely follows the proof of Proposition
20 from (Chen & Jiang, 2019). First recall the definition of Bellman completeness from Definition 8: Vf € F VT ™ f € G,
sup e 7 infyeg [|g — T flloo = 0. Given that the smallest value Vf € F,VT7f € G, sup;crinfyeg |9 — T flloo
can take on is zero, we will prove our claim by showing that Vf € F VT f € G, supscrinfgeg |lg — T™ fl|oo is
upper-bounded by zero when ¢ is a 7.-bisimulation.

We will prove the upper bound by showing that there exists a function f’ € F% such that || f' — 7™ f| s < 0, which implies
thatinf e 7o | f — T fl oo < 0.

We now construct such a f/ € F®. We first define the following terms for a given abstract state-action % € X'?¢:
Ty o= argmax,e -1 (o) (77 f)(x) and x := argming ¢ ,—1(,0) (77 f)(2). We can then define f” as follows:

F(w) = ST F)ay) + (T f)(w)), Va € 2.

And since this holds true for Vz € x%, f] is piece-wise constant function. We can then upper bound || f' — 7™ f|| o as
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follows:

fil@) = (T f)(x)

< ST ) + (T )~ (T )z
= (T ) — (T Pla-))
= 2@ ) + B e (o ™ @] = 7(20) = 7By o) [ @1))
< % B, wpre @) L7 (2] = Bor pre @) [f7 (xl*)]‘ M
= 2 P @) - P <x’|x_>>}‘
z'eEX
1IN DRGSR E S COT AT
zPeXx® \z'c€x? x'ex®
- % ST | Y Pr@ey) - Y Pe(an) 2
= % Z fre(2?) (Pr(z?|2y) — Pr(z?|z_)) 3
zPex?®
< LPr(e?ley) = Pra?le )|, - 17 @)l @
<0 e =0

where Pr denotes probability, (1) is due to max,, ;,.¢(z1)=é(zs) |7(21) —7(22)| = 0, (2)is due to f™ () = f™(z),Vx €
2% since PWC, (3) is due to Pr(z?|z) = >, .6 P™(2|2), and (4) is due to Holder’s, || f(9)g(x)[l1 < || f(2)]l1]9(%)]|so-

Similarly, we can show the other way around: (7™ f)(z) — fi(z) < 0 by giving the symmetric argument starting with
(T f)(@) — fi(z) < (T f)(@s) — (T f)(24) + (T f)(z_)). Therefore, when ¢ is a m-bisimulation, we have
sup e o inf przo || 1 = T7 flloo = 0. O

Lemma 4. Define the matrix K, € RI¥XIX| such that each entry is the short-term similarity, k1, between every pair of
state-actions, i.e., K1(s1,a1; $2,a2) :=1— r(s1,a1) — r(s2, a2)|- Then K1 is a positive semidefinite matrix.

| 7 max —Tmin|

Proof. Proposition 2.21 from (Paulsen & Raghupathi, 2016) states that any kernel & is positive semidefinite if it takes the
form: k(a,b) = min{a, b} where a,b € [0, c0).

First, recall that r(s,a) € [—1, 1], we then have each entry in the K matrix of the following kernel form K (z,y) =
1 — 2|z — y|. We can then re-write k; as follows:

1
ki(z,y) =1-5lz—yl
1 1 .
=1+ 5 min{—x, —y} + 3 min{z, y}

1 1
:imin{l—x,l—y}+§min{1+x,1+y}.

ka ky
That is,

kl(a:?y) = ka(l‘vy) + kb(xvy)'

Since x € [—1, 1], each term in the min function is non-negative. Thus, k, and k; are both positive semidefinite kernels,
which means k; is also a positive semidefinite kernel. We then have that K is a positive semidefinite matrix. O
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Lemma 5. Given a finite set X and a kernel k defined on X, let K = (k(z,y))z yex € RIXIXI¥l e the corresponding
kernel matrix. If K is full-rank and MMD(k)(p, q) = 0 for two probability distributions p and q on X, then p = q.

Proof. From (Gretton et al., 2012), we have the definition of MMD between two probability distributions p, g given kernel
k:

MMD (k) (p; 4) = [Eanp k(2 )] = Eong[k(z, )]l
Now when MMD(k)(p, ¢) = 0, we have:

0= [[Eonp[k(z, )] = Bonglk(@, )]ll9,
which implies
0= [Eznplk(z, )] = Exnglk(z,)][l2

since all norms are equivalent in a finite-dimensional Hilbert space. With p and ¢ viewed as vectors in R, the above
equality means

0=[|Kp—Kqllz.
Hence, K (p — ¢) = 0. Since K is full rank by assumption, we conclude that p = q. O

Lemma 6. Suppose we have a reproducing kernel k defined on the finite space X, which produces a reproducing kernel
Hilbert space (RKHS) Hy, with the induced distance function d such that d(x,y) = k(z,x) + k(y, y) — 2k(z,y),Va,y € X.
When d(z,y) = 0, then k(z, ) = k(y, -).

Proof. When d(z,y) = 0, we have 2k(z,y) = k(z,z) + k(y, y). Therefore, we the following equalities:

k(z,z) + k(y, y) = 2k(z,y)
k(z, ) — k(z,y) = k(z,y) — k(y,y)
(k@) k()3 — k(@) k(s N = k(@) k(Y D)o, — Ry, k(Y ) w0, (1)
(k(x,), k() = k(y, Nwp = (k(2,) = k(y, ), k(y, ) 2)
(k(z, ), k() = k(y, N = Ry, ), k2, -) = k(y, ) 3)
= k(z,") = k(y,")

where (1), (2), and (3) are is due to RKHS definition, linearity of inner product, and symmetry of inner product respectively.
O

Proposition 5. Let x1,...,x, € (0,00) be n distinct and strictly positive numbers. Let K € R™*" be the matrix with
entries K;j = min{x;, z;}. Then K is a positive definite matrix.

Proof. By Proposition 2.21 in (Paulsen & Raghupathi, 2016), the matrix K is positive semidefinite, so we only need to
show that K is full rank. WLOG assume that 0 < z; < 22 < --- < z,,. We prove by induction on n. The base case with
n = 1 clearly holds. Suppose the claim holds for n — 1 numbers. Now consider n numbers. Let & = (aq,...,a,) " € R™,
It suffices to show that Ko = 0 implies av = 0. We write K in block matrix form as

0 0 0
0 zo—m1 - mp—1 1 1 --- 1 0 0 --- 0

K=o+t |, ) I TR L [
0 zo0—x1 -+ Zp—a1

where .J,, is the n-by-n all one matrix, 1 € R"~! the all one vector, 0 € R"~! the all zero vector, and u; € R" "1 i =

2,...,n. It follow that
Ty Qi
0=Ka= n i=1 n 5
“ {m S )1+ 300, aiuj
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that is,

T Z Q; = 0, (7)
=1

(ml E": ai> 1+ En: o;u; = 0. (8)
i=1 i=2

Plugging equation (7) into equation (8), we get >, o;u; = 0. By the induction hypothesis, the (n — 1)-by-(n — 1) matrix

[u2 un] = [mln{xl —l’l,l'j —1’1}]1”.:27“.7”
has full rank since the (n — 1) numbers o — 1, ..., z, — 2 are distinct and strictly positive. Therefore, we must have
ag = -+ = a, = 0. Plugging back into equation (7) and using z; > 0, we obtain o1 = 0. O

B.3. Main KROPE Theoretical Results

We now present the main theoretical contributions of our work.

Theorem 1. If ® is a KROPE representation as defined in Definition 2, then the spectral radius of (E[® T ®])) "1E[y® T P™ @]
is less than 1. That is, ® stabilizes LSPE.

Proof. Recall from Definition 2, we have:
E[®® ] = K| + YE[P™®(P™®) ],
where K; € RIXIXIXT guch that each entry is the short-term similarity, ki, between every pair of state-actions i.e.

= 1 _ lr(snan)=r(sa,a2)|

I"'max —Tmin ‘

Ki(s1,a15 82, a2)
From this definition, we can proceed by left and right multiplying ® " and ® respectively to get:
E[®T0d ") = E[®T K 8] +AE[® T P™d(P™d)' @].

Notice that B := E[® " ®] is the feature covariance matrix and C' := E[® " P ®] is the cross-covariance matrix. By making

the appropriate substitutions, we get:
BB =E[®"K,®] +yCC.

We can then left and right multiply by B~ and B~ to get the following where L := yB~1C:
1
I=B'E[®"K\®|B~" +-LL".
8l
Rearranging terms gives

1
I—-=-LL" =B 'E[®"K,®|B~ .
gl

From Lemma 4, we know that K; is positive semidefinite, which means that B’lE[(I)TK 19]B —T is also positive semidefi-
nite. Therefore, the eigenvalues of LHS above must also be greater than or equal to zero. Letting A be the eigenvalue of L,
we know that that the following must hold:

)\2
1-—2>0 = [N <.
Y

Since y < 1, the spectral radius of L = (E[®T ®])~1(yE[® " P™®]) is always less than 1. Thus, KROPE representations are
stable. Finally, since KROPE representations are stable and due to Proposition 1, KROPE representations stabilize LSPE. [

Theorem 2. Let ¢ : X — X? be the state-action abstraction induced by grouping state-actions x,y € X such that if
dyrore (7, y) = 0, then ¢(x) = ¢(y),Vx,y € X. Then ¢ is Bellman complete if the abstract reward function r® : X®
(—1,1) is injective (i.e., distinct abstract rewards).
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Proof. Our proof strategy is to show that the abstraction function ¢ due to KROPE is a 7.-bisimulation, which implies it is
Bellman complete due to Proposition 4.

According to Propsition 3, dggeps(, y) = |r(x) — r(y)| + YMMD(k™ ) (P™ (-|z), P™(-]y)). When dgrope(z, y) = 0 for
any two state-actions, it implies that r(z) = r(y) and MMD (k7 )(P™ (-|x), P™(-|y)) = O.

For ¢ to be a m.-bisimulation, we need Va? € X >, , P™(a/|z) = Y .0 P™(2/|y) to be true for any
x,y € X such that ¢(z) = ¢(y). While MMD (k7<) (P (-|x), P™(-|y)) = 0, it is possible that P7<(-|x) # P7<(-|y).
However, as we will show, under the assumption that the abstract rewards r® are distinct V¢ € X¢, we do have
Va? € X930 cpe P (2! |2) =3, cpo P™ (2'|y). Before we proceed, we make the following technical assumption on
the reward function: r(z) € (—1,1),Va € X. The exclusion of the rewards —1 and 1 allows us to use Proposition 5 to show
that the KROPE kernel is positive definite instead of positive semi-definite.

Once we group state-actions z,y € X together such that dxrope (2, y) = 0, we have the corresponding abstraction function
¢ : X — X?. Accordingly, ¢ induces a Markov reward process, M? := (X? r? P? ~) where r? is the abstract reward
function ® : X — (—1,1) and P? is the transition dynamics on the abstract MRP i.e. P?(-|x?). We can also consider the
abstract KROPE kernel, k% (z?, ), which measures the KROPE relation on X'®. Note that all these quantities are a function
of m.. We drop the notation for clarity. By this construction, we have:

r®(x?) = r(x),Va € ? Since all rewards are equal within ¢

E®(z?,.) = k(z, "),V € z* Lemma 6

Now, under the assumption that all abstract rewards r?(z?) are distinct Vo € X'®, we have that the kernel matrix
K? € RY**X” where each entry k?(z?, y?) is positive definite. To see this fact, consider that:

(2%, %) = k7 (22, 4%) + YExo 0 po(-fot), v ompo (y) K (X2, Y ), ©)

where & (2%, y?) := 1 — ———|r®(2?) — r*(y®)|. From Lemma 4, we know that k? is positive semidefinite. However,

7
Tmax — Tmin

under the assumption that all abstract rewards r® are distinct, Proposition 5 tells us that kf is positive definite. Given

that k% (2%, y®) (Equation (9)) is just a summation of positive definite kernels, k? is positive definite, which means K¢ is

positive definite.

We now consider when the MMD is zero. Again, by construction, we have the following when
MMD (k™) (P™(-|x), P™(-|y)) = 0. For clarity, we use k instead of k™.

0= [Ex/npre (2) [F(X', )] = Exrpre () [B(XT, )]l 74,
= [|Exsnpre (o) [R (X', )] = Exropre () [R(X, )] ll2

= > P )k, ) = > P |y)k(a, )2

r'eXx r'eX
= > > Pe@lk, )~ Y Y Pk,
z¢eX® x’'ex?® z¢eX® x'ex® 9
= D0 K@) Y Pe@ ) = D Kt Y Py (1)
zbeX? z'ex? zPeX? ' ex? 9
= Z E?(x?,) Pr(z?|z) — Z k?(z?,-) Pr(z®]y) Pr denotes probability
zPeX? zPeX? 9

where (1) is due to k?(2?,-) = k(z,-), Vo € 2% From above, we can see that the kernel and probability distributions are
over X'®. In matrix notation, we can write the above as follows where p? := Pr(-|z) and ¢® := Pr(-|y) are viewed as
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probability distribution vectors in RI% “l

0= | = K,

= pd) = q¢ since K? is positive definite, from Lemma 5.

We thus have Vo? € X3, , P™(a'|z) = Y, .0 P™(2'|y) to be true for any z,y € X such that ¢(z) = ¢(y).
Given this condition holds true and r(z) = r(y),Vz,y € X such that ¢(x) = ¢(y), ¢ is a m.-bisimulation. From
Proposition 4 we then have that ¢ is Bellman complete.

O

Remark on the injective reward assumption. The injective reward assumption simply means that each abstract state-action
group will have a distinct associated reward from every other abstract state-action group. This assumption comes as a
trade-off. Chen & Jiang (2019) proved that bisimulation abstractions are Bellman complete. Instead of assuming injective
rewards, they assumed that two states were grouped together if each state’s transition dynamics led to next states that are
also grouped together (one of the conditions for exact bisimulations). This condition is also considered strict and inefficient
to compute (Castro, 2020).

In our work, we relax this exact transition dynamics equality by considering independent couplings between next state
distributions, thereby making the KROPE algorithm efficient to compute. However, the drawback of this relaxation is that
preserving distinctness between abstract state-actions may be lost (see remarks on k7 in Section 3.1). To ensure the
distinctness between state-action abstractions, we assumed that the reward function is injective. This then allowed us to
show Bellman completeness in a similar way to that shown in Chen & Jiang (2019).

C. Empirical Details

In this section, we provide specific details on the empirical setup and additional results.

C.1. Empirical Setup

General Training Details. In all the continuous state-action experiments, we use a neural network with 1 layer and 1024
neurons using RELU activation function and layernorm to represent the encoder ¢ : X — R (Gallici et al., 2025). We use
mini-batch gradient descent to train the network with mini-batch sizes of 2048 and for 500 epochs, where a single epoch is a
pass over the full dataset. We use the Adam optimizer with learning rate {1e=5,2¢=5, 5¢7°} and weight decay 1e~2. The
target network is updated with a hard update after every epoch. The output dimension d is {|X|/4, |X|/2,3|X|/4}, where
| X is the dimension of the original state-action space of the environment. All our results involve analyzing this learned ¢.
Since FQE outputs a scalar, we add a linear layer on top of the d-dimensional vector to output a scalar. The entire network is
then trained end-to-end. The discount factor is v = 0.99. The auxiliary task weight with FQE for all representation learning
algorithms is & = 0.1. When using LSPE for OPE, we invert the covariance matrix by computing the pseudoinverse.

In the tabular environments, we use a similar setup as above. The only changes are that we use a linear network with a bias
component but no activation function and fix the learning rate to be 1e 2. For the experiment in Section 4.4, o = 0.8. We
refer the reader pseudo-code in Appendix A.

Evaluation Protocol: OPE Error . As noted earlier, we measure OPE error by measuring MSVE. To ensure comparable
and interpretable values, we normalize the MSVE by dividing with MSVE[¢**™?] := E g 4)~p[(¢** (S, A) — ¢™ (S, A))?],
where ¢®**"P is the action-value function of a random-policy. Similarly, in the continuous state-action environments,
we normalize by MSVE[¢*™P] := Eg,mdy. Ao~ [(¢¥*NP (S0, Ag) — ¢™(So, Ag))?]. Values less than one mean that the
algorithm estimates the true performance of 7. better than a random policy.

Evaluation Protocol: Realizability Error. In tabular experiments, we normalize the realizability error. After solving the
least-squares problem € := ||®w — ¢™||3, where 1 := arg min,, ||®w — ¢™<||3. We divide € by ﬁ > lg™ (x;)| and plot
this value.

wl
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Pearson Correlation. The formula for the Pearson correlation used in the main experiments is:

_ E?:1(xi —Z)(yi — 7)
Vi (@ = )2/ (i — 9)?

where ¥ and ¢ are the means of all the x;’s and y;’s respectively.

r

Custom Datasets. We generated the datasets by first training policies in the environment using SAC (Haarnoja et al., 2018)
and recording the trained policies during the course of training. For each environment, we select 3 policies, where each
contributes equally to generate a given dataset. We set 7. to be one of these policies. The expected discounted return of the
policies and datasets for each domain is given in Table 2 (y = 0.99). In all environments, 7, = Wg (see Table 2). The values
for the evaluation and behavior policies were computed by running each for 300 unbiased Monte Carlo rollouts, which
was more than a sufficient amount for the estimate to converge. This process results in total of 4 datasets, each of which
consisted of 100K transitions.

Environments ‘ Te ‘ s ‘ 2 ‘
CartPoleSwingUp | 50 |20 |5
FingerEasy 100| 71 |32
HalfCheetah 51 |27 |2
WalkerStand 90 |55 (40

Table 2. Policy values of the target policy and behavior policy on DM-control (Tassa et al., 2018).

D4RL Datasets. Due to known discrepancy issues between newer environments of gym?, we generat our datasets instead
of using the publicly available ones. To generate the datasets, we use the publicly available policies . For each domain, the
expert (and target policy) was the 10th (last policy) from training. The medium (and behavior policy) was the 5th policy. We
added a noise of 0.1 to the policies. The values for the evaluation and behavior policies were computed by running each for
300 unbiased Monte Carlo rollouts , which was more than a sufficient amount for the estimate to converge. We set v = 0.99.
We evaluate on the Cheetah, Walker, and Hopper domains. This generation process for three environments, led to 9 datasets,
each of which consisted of 100K transitions.

Toy Divergence Example We set v = 1. The sampled state-actions are fed into a linear network encoder with a bias
component and no activation function which outputs a d = 3 representation. This representation is shaped by KROPE and
this representation is then fed into a linear function to output the scalar value for FQE. D°" is a dataset of 2000 on-policy
transitions. D? is an off-policy dataset with 5000 transitions starting from the specified state s, where s = {wy, ws, w3, 2ws },
where the next state is sampled according to the transition dynamics of the MRP.

Regarding the statement of, “we would generally expect that the probability of sampling a bad transition pair is less than
that of sampling a single bad transition”, we make the following simplistic and rough calculation. For a given a dataset,
assume that the probability of choosing a bad transition is p and a good transition is 1 — p. Then sampling a pair of bad
transitions versus sampling a single bad transition involves comparing the probabilities of p? and 2p(1 — p), respectively. In
general, we would expect 2p(1 — p) > p?, unless p > 0.66, i.e., the dataset starts to overflow with bad transitions. Roughly,
we would expect FQE to diverge when p > 0.5, but we would expect KROPE to diverge when p > 0.66, which suggests that
KROPE is less prone to divergence than FQE.

C.2. Baselines

We provide details of the 6 baselines in this section.

DBC. It is a bisimulation-based metric learning algorithm that learns 7-bisimilar representations by ensuring the L1
distance between the latent representations approximates the 7-bisimulation metric (Zhang et al., 2021). During the learning

Mttps://github.com/Farama-Foundation/D4RL/tree/master
*https://github.com/google-research/deep_ope
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process, it also learns a model of the environment. Its additional hyperparameters are the learning rate of model learning
(which we set to 1e~?) and the output dimension of ¢.

ROPE. It is a bisimulation-based metric learning algorithm that is off-policy evaluation variant of MICO (Castro et al.,
2021; Pavse & Hanna, 2023a). It learns representations directly such that the 7-bisimulation metric is satisfied and makes no
assumptions on the transition dynamics. Its additional learning rate is the output dimension of ¢. Furthermore, we provide
additional details on our experimental setup is different from that in (Pavse & Hanna, 2023a). The main differences are:

1. The original ROPE used ROPE as a pre-training step, fixed the representations, and then fed them into FQE for OPE. In
our case, we also pre-train the representations but with FQE as a representation learning algorithm (for value predictive
representations (Lehnert & Littman, 2020)) along with other representation learning algorithms as auxiliary tasks. The
fixed learned representations are then fed into LSPE for OPE.

2. The original ROPE encoder architecture had a TANH activation function on the output layer, which we effectively serves
a clipping mechanism to the features, which is similar to how public implementations of FQE clip the return to avoid

divergence*.

We opted to use our alternative setup for two reasons: 1) By using LSPE as the OPE algorithm, instead of FQE, we can
precisely quantify the stability properties of the representations in terms of the spectral radius (Theorem 1), which is harder
to do when using FQE as the OPE algorithm; 2) while a valid architectural choice, for this current work, we viewed the use of
the tanh function as obfuscating the true stability properties of the representations and so opted to avoid it. More practically,
it is reasonable to use the TANH as part of the architecture.

BCRL. Unlike the other algorithms, BCRL is not used as an auxiliary loss with FQE (Chang et al., 2022). We use the same
learning rates as mentioned above for {1e=>,2¢=5 575} when training ¢. As suggested by prior work, self-predictive
algorithms such BCRL work well when network that outputs the predicted next state-action is trained at a faster rate (Tang
et al., 2023; Grill et al., 2020). Accordingly, we set its learning rate to be le—*%. For BCRL-EXP, which involves the log
determinant regularizer, we set this coefficient to le~2. BCRL’s hyperparameters are: the learning rates for ¢, M, and p; the
output dimension of ¢; and the log determinant coefficient (see Equation (10)).

DR3. The DR3 regularizer minimizes the total feature co-adaptation by adding the term 3=, , 1\ cp i, D(5,a) T G(s',a')
as an auxiliary task to the main FQE loss (Kumar et al.,, 2022). (Ma et al., 2024) introduced an improve-
ment to this auxiliary loss by suggesting that the absolute value of the feature co-adaptation be minimized, i.e.,
> (s.0,5)€D,a o, |O(S, a)T ¢(s',a’)|. We use v = 0.1 as its auxiliary task weight. Absolute DR3’s only hyperparameters
are the auxiliary task weight « and the ¢ output dimension.

BEER. (He et al., 2024) introduced an alternative regularizer to DR3 rank regularizer since they suggested that the
minimization of the unbounded feature co-adaptation can undermine performance. They introduced their bounded rank
regularizer BEER (see Equation (12) in (He et al., 2024)). BEER introduces only the auxiliary task weight « as the additional
hyperparameter.

KROPE. KROPE’s only hyperparameters are the output dimension of ¢ and the learning rate of the KROPE learning
algorithm.

C.3. Additional Results

In this section, we include additional empirical results.

Realizability. In addition to stability, we also care about the realizability of ®. We say ® is a realizable representation if

g™ € Span(®), where Span(®) is the subspace of all expressible action-value functions with ®. Note that even if ® is a
realizable and stable representation, LSPE may not recover the g™ solution (Sutton & Barto, 2018).

A basic criterion for learning ¢™ is realizability. That is, we want € := ||®w — ¢™<||3, where @ := arg min,, ||[®Pw — ¢™||3,
to be low. In our experiments, we compute € and plot it as a function of d in Figure 5(a). A critical message from our

4https ://github.com/google-research/google-research/blob/master/policy_eval/q fitter.py
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Figure 5. Evaluation of basic representation properties on Garnet MDPs with 40 state-actions vs. output dimension d. Figure 5(a):
Realizability error; lower is better. All results are averaged over 30 trials and the shaded region is the 95% confidence interval.

results is that stability and realizability do not always go hand-in-hand. While BCRL-EXP-NA has favorable spectral radius
properties (Figure 2(a)), it has poor realizability, which will negatively affect its OPE accuracy. KROPE, on the other hand,
has favorable stability and realizability properties up till d = 30. When d > 40, the realizability error is O for all algorithms
since the subspace spanned by ® is large enough to contain the true action-value function (Ghosh & Bellemare, 2020).
While the realizability error is O for d > 40, the representations can be unstable (Figure 2(a)).

C.3.1. LEARNING GRAPHS FOR OFFLINE POLICY EVALUATION ON DMC AND D4RL DATASETS

In this section, we present the offline policy evaluation results on the DMC and D4RL datasets. We present the results in
Figures 6 and 7.
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Figure 6. Normalized squared value error achieved by LSPE when using a particular representation vs. representation training epochs on
the custom DMC datasets. LSPE estimates are computed every 10 epochs. Results are averaged over 20 trials and the shaded region is the
95% confidence interval. Lower and less erratic is better.

On the DMC dataset, we find that KROPE reliably produces stable and low MSVE during the full course of training.

On the D4RL dataset, we reach the similar conclusions: KROPE is effective in producing stable and accurate OPE estimates.
However, in 3/9 instances, KROPE does diverge. This divergence is likely related to the discussion in Section 5 and
Section 4.4. Recall that KROPE is a semi-gradient method, which does not optimize any objective function and is susceptible
to divergence (Feng et al., 2019; Sutton & Barto, 2018). So while KROPE representations stabilize value function learning,
KROPE’s learning algorithm may diverge and not converge to KROPE representations. However, regardless of this result,
KROPE does improve the stability and accuracy of FQE in all cases.

C.3.2. STABILITY-RELATED ANALYSIS ON CUSTOM DATASETS

In this section, We include the remaining stability-related metric analysis that was deferred from the main paper.

Hyperparameter Sensitivity. In this subsection, we include all the remaining results related to the stability metrics for all
environments.
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Figure 7. Normalized squared value error achieved by LSPE when using a particular representation vs. representation training epochs on
the D4RL datasets. LSPE estimates are computed every 10 epochs. Results are averaged over 20 trials and the shaded region is the 95%
confidence interval. Lower and less erratic is better.
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Bellman completeness. Another metric that is associated with stability is Bellman completeness (BC) (Chang et al., 2022;
Wang et al., 2021). We find that KROPE is approximately Bellman complete even though it does not explicitly optimize for it;
this finding aligns with our Theorem 2. While BC is difficult to approximate, we can minimize the proxy metric introduced
given in Equation (10) (Chang et al., 2022):

L(M,p) :=Ep (10)

|:%:| QZS(S,a) _ |:’7ES’NP(~|s,a),a’~7re(~s’)[d)(slaa/)]:l

r(s,a)

2

where (p, M) € R%¥4, ¢ is fixed, and L(M, p) = 0 indicates Bellman completeness. Given the final learned representation,
we compute and report the BC error in Table 3. We find that KROPE is approximately Bellman complete even though it does
not explicitly optimize for it; this finding aligns with our Theorem 2. We note that BCRL-EXP is less Bellman complete since
it also includes the exploratory objective in its loss function, which if maximized can reduce the Bellman completeness.
While BCRL is more BC than BCRL-EXP, we found that it is less BC in general. We attribute this finding due to the difficulty
in explicitly optimizing the BCRL objective which involves multiple neural networks (M, p, ¢) and multiple loss functions
on different scales (reward, self-prediction, log determinant regularization losses). KROPE can achieve approximate Bellman
completeness without these optimization-related difficulties.

Algorithm
Domain BCRL + EXP BCRL BEER DR3 FQE KROPE (ours)
CartPoleSwingUp 0.4 + 0.1 0.2+0.1 0.1£+£0.0 0.0£0.0 0.1+0.0 0.0£0.0
CheetahRun 3.3+0.6 24+05 0.7£0.0 00£0.0 0.7+£0.0 0.24£0.0
FingerEasy 1.3+0.6 0.7+0.2 0.94+0.0 137.0£4.4 0.9+0.0 0.24+0.0
WalkerStand 104+20 03+0.1 0.5+0.1 66.1+0.6 0.6+0.0 0.14+0.0

Table 3. Bellman completeness measure for all algorithms across all domains. Results are averaged across 20 trials and the deviation
shown is the 95% confidence interval. Values are rounded to the nearest single decimal.

C.3.3. USING FQE DIRECTLY FOR OPE

In our main empirical section (Section 4), we used FQE as a representation learning algorithm on our custom datasets. We
adopted the linear evaluation protocol, i.e., an approach of analyzing the penultimate features of the action-value function
network and applied LSPE on top of these features for OPE. This protocol enabled us to better understand the nature of the
learned features.

For the sake of completeness, we present results of FQE as an OPE algorithm where the action-value network is directly
used to estimate the performance of m.. We present the results in Figures 9 and 10. As done in Section 4, we evaluate the
performance of FQE and KROPE based on how they shape the penultimate features of the action-value network. However,
when conducting OPE, we evaluate two variants: 1) using LSPE (-L) and 2) using the same end-to-end FQE action-value
network (-E2E).

From Figure 9, we find that there are hyperparameter configurations that can outperform the KROPE variants. However,
based on Figure 10, we find both KROPE variants are significantly more robust to hyperparameter tuning. This latter result
suggests that KROPE does improve stability with respect to the hyperparameter sensitivity metric as well.

Regardless of FQE’s hyperparameter sensitivity, it is still interesting to observe that when FQE is used as an OPE algorithm, it
produces reasonably accurate OPE estimates. It even outperforms the FQE+KROPE combination. The primary difference
between using FQE for OPE vs. FQE features and LSPE for OPE is in how the last linear layer is trained. The former is trained
by gradient descent while the latter is trained with the iterative LSPE algorithm on the fixed features. An interesting future
direction will be to explore the learning dynamics of these two approaches.

On a related note, we point out that the training dynamics of FQE are still not well-understood. For example, (Fujimoto
et al., 2022) show that the FQE loss function poorly correlates with value error. That is, the FQE loss can be high but value
error (and OPE error) can be low.
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Figure 9. Normalized squared value error achieved by LSPE (-L) and FQE (-E2E) evaluated every 10 epochs of training. Results are
averaged over 20 trials and the shaded region is the 95% confidence interval. Lower and less erratic is better.
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Figure 10. Hyperparameter sensitivity on different environments as a function of training epochs; larger area under the curve is better. All
results are averaged over 10 trials for each hyperparameter configuration and shaded region is the 95% confidence interval. We tuned the
hyperparameters discussed in Appendix C.1. KROPE-FE2E overlaps with KROPE-L.
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