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Abstract

Text classification aims to effectively cate-001
gorize documents into pre-defined categories.002
Traditional methods for text classification of-003
ten rely on large amounts of manually anno-004
tated training data, making the process time-005
consuming and labor-intensive. To address this006
issue, recent studies have focused on weakly-007
supervised and extremely weakly-supervised008
settings, which require minimal or no human009
annotation, respectively. In previous meth-010
ods of weakly supervised text classification,011
pseudo-training data is generated by assign-012
ing pseudo-labels to documents based on their013
alignment (e.g., keyword matching) with spe-014
cific classes. However, these methods ig-015
nore the importance of incorporating the ex-016
planations of the generated pseudo-labels, or017
saliency of individual words, as additional guid-018
ance during the text classification training pro-019
cess. To address this limitation, we propose020
XAI-CLASS, a novel explanation-enhanced021
extremely weakly-supervised text classifica-022
tion method that incorporates word saliency023
prediction as an auxiliary task. XAI-CLASS024
begins by employing a multi-round question-025
answering process to generate pseudo-training026
data that promotes the mutual enhancement027
of class labels and corresponding explanation028
word generation. This pseudo-training data is029
then used to train a multi-task framework that030
simultaneously learns both text classification031
and word saliency prediction. Extensive exper-032
iments on several weakly-supervised text clas-033
sification datasets show that XAI-CLASS out-034
performs other weakly-supervised text classifi-035
cation methods significantly. Moreover, experi-036
ments demonstrate that XAI-CLASS enhances037
both model performance and explainability.038

1 Introduction039

Text classification is a fundamental task in natural040

language processing (NLP), aiming to effectively041

categorize documents (e.g., news reports) into pre-042

defined categories (e.g., politics, sports, and busi-043

Figure 1: Previous weakly-supervised text classifica-
tion methods do not model salient words, potentially
leading to uncertain predictions. On the other hand,
XAI-CLASS generates pseudo-text classification and
pseudo-saliency labels by querying two pre-trained lan-
guage models (PLMs) and updating pseudo-saliency
labels by using previously generated pseudo-text classi-
fication labels and vice-versa.

ness). It has various downstream applications such 044

as information extraction (Zhang et al., 2022), sen- 045

timent analysis (Tang et al., 2015), and question 046

answering (Rajpurkar et al., 2016). 047

Traditional methods for text classification (Yang 048

et al., 2016, 2019; Zhang et al., 2015) often rely 049

on large amounts of manually annotated train- 050

ing data, making the process time-consuming and 051

labor-intensive. To address this issue, recent stud- 052

ies have focused on weakly-supervised (Chang 053

et al., 2008; Song and Roth, 2014; Gabrilovich 054

and Markovitch, 2007; Badene et al., 2019; Rat- 055

ner et al., 2017; Meng et al., 2018; Mekala and 056

Shang, 2020; Agichtein and Gravano, 2000; Shu 057

et al., 2020; Tao et al., 2018) and extremely weakly- 058

supervised (Meng et al., 2020b; Mekala and Shang, 059

2020; Wang et al., 2021; Zeng et al., 2022; Zhang 060

et al., 2021) settings, which require minimal or no 061

human annotation, respectively. In this study, we 062

focus on the extremely weakly-supervised setting 063

that utilizes only the class names as supervision. 064

Importantly, we do not assume that the class names 065

need to have appeared in the input documents. 066
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Previous methods for extremely weakly-067

supervised text classification usually start with068

finding initial keywords for each class to construct069

a keyword vocabulary. This vocabulary is then070

employed to assign pseudo-labels to documents,071

followed by training the model using traditional072

supervised learning techniques. For example, LOT-073

Class (Meng et al., 2020b) leverages a pre-trained074

masked language model to predict keywords that075

can replace label words. However, this method076

assumes that the class names must appear in the077

input document, which may not be feasible in078

many real-world scenarios. Recent advancements079

have relaxed this constraint and do not assume that080

the class names need to have appeared in the input081

documents. For example, X-Class (Wang et al.,082

2021) obtains the word and document representa-083

tions and employs clustering methods for keyword084

grouping and label assignment, while WDDC085

(Zeng et al., 2022) applies cloze-style prompting086

to identify keywords and assigns pseudo-labels087

based on the representation similarity between the088

keywords and the documents. However, previous089

methods ignore the importance of incorporating090

the explanations of the generated pseudo-labels,091

or saliency (Simonyan et al., 2014) of individual092

words, as additional guidance during the text093

classification training process (Figure 1). This094

oversight has limited the potential of these methods095

to fully exploit the valuable insights provided by096

explanations and word saliency that can greatly097

enhance the effectiveness and explainability of the098

text classification methods.099

To address this limitation, we propose XAI-100

CLASS, a novel explanation-enhanced extremely101

weakly-supervised text classification method that102

incorporates word saliency prediction as an aux-103

iliary task. XAI-CLASS begins by employing a104

multi-round question-answering process to gen-105

erate pseudo-training data that promotes the mu-106

tual enhancement of class labels and correspond-107

ing explanation word generation. Specifically, we108

first leverage a pre-trained multi-choice question-109

answering model (Chung et al., 2022) to query the110

predicted class labels for given documents. Using111

the predicted class labels as input, we then query112

a pre-trained extractive question-answering model113

(Devlin et al., 2018) to identify the tokens in the114

document that were most influential in predicting115

the class labels. This iterative process continues116

until the predictions remain consistent, indicating117

high confidence in both the predicted class labels 118

and the saliency words. The resulting pseudo- 119

training data incorporates both the class labels and 120

the associated explanation words. This pseudo- 121

training data is then used to train a multi-task frame- 122

work that simultaneously learns both text classifi- 123

cation and word saliency prediction. By jointly 124

optimizing both tasks, the model can effectively 125

enhance both the performance and explainability 126

of the text classification model. Our contributions 127

are summarized as follows: 128

• We propose XAI-CLASS, a novel extremely 129

weakly-supervised text classification method that 130

leverages multiple-round question answering to 131

promote mutual enhancement between text clas- 132

sification and word saliency prediction pseudo- 133

training data generation. 134

• We propose a novel explanation-enhanced text 135

classification method that trains a multi-task 136

framework to simultaneously learn both text clas- 137

sification and word saliency prediction. 138

• Experiments on several datasets demonstrate the 139

superiority of XAI-CLASS over previous weakly- 140

supervised text classification methods for both 141

performance and explainability. 142

We will open-source our code and results as a base- 143

line to facilitate future studies. 144

2 Related Work 145

2.1 Text Classification Methods 146

Traditional methods for text classification (Yang 147

et al., 2016, 2019; Zhang et al., 2015) often rely on 148

large amounts of manually annotated training data, 149

making the process time-consuming and labor- 150

intensive. To address this issue, recent work has 151

been proposed for text classification with minimal 152

human annotation. 153

Weakly-Supervised Text Classification To ad- 154

dress the above issue of manual annotation, recent 155

studies have focused on the weakly-supervised set- 156

ting that requires minimal human annotation. For 157

example, Snowball (Agichtein and Gravano, 2000) 158

combines pattern-based and distant supervision 159

techniques to extract relations. It uses patterns 160

based on syntactic dependencies and entity men- 161

tions to identify potential relations in sentences. 162

However, this pattern-based approach may struggle 163

with complex relations involving multiple entities 164
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or deeper semantic understanding. Dataless (Chang165

et al., 2008) proposes a classification method us-166

ing semantic representation. It leverages external167

knowledge sources to capture the semantic infor-168

mation in the text. However, the limitation is its169

dependence on the availability and quality of ex-170

ternal knowledge sources. Doc2cube (Tao et al.,171

2018) clusters similar documents and assigns them172

to text cubes. It leverages the inherent structure and173

patterns within the collection for guidance. How-174

ever, the effectiveness of Doc2Cube depends on175

the quality of document similarity measures used176

for clustering. Inaccurate or inadequate similarity177

metrics can impact document allocation accuracy.178

Extremely Weakly-Supervised Text Classifica-179

tion Compared with weakly-supervised text clas-180

sification, extremely weakly supervised text classi-181

fication goes a step further by using even weaker182

supervision or no labeled data during training. For183

example, LOTClass (Meng et al., 2020b) consists184

of three steps: substituting label names to enable185

the model to understand the meaning of each label,186

identifying category-relevant words for word-level187

classification, and finally conducting generalized188

self-training. Conwea (Mekala and Shang, 2020)189

utilizes contextualized word representations gener-190

ated by PLMs to capture the rich semantic infor-191

mation of words in context for label assignment.192

XClass (Wang et al., 2021) expands label words193

and generates document representations based on194

BERT (Devlin et al., 2018) for clustering and the195

best documents are selected to train the classifier.196

WDDC (Zeng et al., 2022) uses cloze-style comple-197

tion to generate summary text words, which serve198

as supervised signals for training the document199

classifier. However, these methods all have high200

requirements for the frequency of occurrence of201

labels and their closely related words in the text.202

ClassKG (Zhang et al., 2021) constructs a keyword203

graph by extracting important keywords from the204

documents, which serves as a representation of205

the document collection. Then ClassKG utilizes206

the connectivity and similarity of keywords in the207

graph to train the model. However, the efficiency208

and scalability of the method can be a concern209

when dealing with large-scale datasets.210

2.2 Explainable Text Classification211

Explainable text classification methods can be de-212

composed into two categories: post-hoc explain-213

ability and intrinsic explainability.214

Post-hoc Explainability Post-hoc explainabil- 215

ity explain inputs after a model has already been 216

trained. This category consists of perturbation 217

methods, such as LIME (Ribeiro et al., 2016), 218

which learns an interpretable model of points in 219

the neighborhood of a given input. Post-hoc ex- 220

plainability techniques can also be categorized by 221

backpropagation-based methods. For example, Si- 222

monyan et al. attempts to explain instances by 223

introducing the concept of saliency maps, which 224

calculate gradients of inputs with respect to the in- 225

puts’ features. Kindermans et al. extends this idea 226

by computing the partial derivatives of the predic- 227

tion with respect to the input and multiplies them 228

with the input (Ancona et al., 2017). 229

Intrinsic Explainability In contrast to post-hoc 230

explainability, intrinsic explainability methods at- 231

tempt to create models that offer explanations. This 232

has been accomplished through a handful of mea- 233

sures, one of which being constraining features 234

(Freitas, 2014) to be sparse and by measuring fea- 235

ture sensitivity (Simonyan et al., 2014). XAI- 236

CLASS aligns with this class of explainable text 237

classification, as we generate and inject saliency 238

information in our framework directly. 239

3 Methodology 240

We propose XAI-CLASS, an explanation-enhanced 241

extremely weakly-supervised text classification 242

method. The XAI-CLASS framework (Figure 2) 243

consists of two major steps: (1) iterative pseudo- 244

label generation, and (2) explainable multi-task 245

learning. In this section, we describe XAI-CLASS 246

framework in detail. 247

3.1 Preliminaries 248

Problem Formulation Our framework operates 249

under the extremely weakly supervised text clas- 250

sification scenario, whose goal is to predict the 251

correct class of a document with only its contents 252

and the possible classes it could be categorized into. 253

Mathematically, we represent a corpus as X which 254

contains documents D = {ti|∀i ∈ [1, |D|]} made 255

up of tokens ti. The set of all labels is denoted by 256

Y = {yi|∀i ∈ [i, |Y|]}. 257

Saliency Representation XAI-CLASS employs 258

salient tokens of a given document to identify 259

which parts of the input should be attended to. We 260

represent the set of all salient tokens of an input 261
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Figure 2: XAI-CLASS architecture. (Left) Given an input document D ("I really don’t like The Green Bay packers"),
we first query the class prediction from a PLM T C (FLAN-T5) and then query the indicative words (highlighted in
red) from another PLMs T E (BERT), forming our initial setup. We introduce the notion of a round, where we once
again query T C using the queried indicative words and use this more confident prediction to query the salient words
from T E once more. We repeat this operation until a variable number of rounds. (Right) We then tokenize D and
feed this along with the salient tokens into our BERT-based multi-task learning model, learning to predict both text
classification and saliency labels using the contextualized representations.

document as E = {ti|∀i ∈ [1, |E|]} (Simonyan262

et al., 2014), where token ti is salient.263

The XAI-CLASS framework is depicted in Fig-264

ure 2, which incorporates both input text and265

saliency representations to learn contextualized266

mappings that are mapped to both text and saliency267

classifiers.268

3.2 Iterative Pseudo-Label Generation269

Pseudo-Text Classification Label Generation270

Using a PLM T C , we first derive pseudo-text clas-271

sification labels automatically using only input text.272

For example, given the sentence "I really don’t like273

The Green Bay packers" in Figure 2, we feed this274

sentence through T C to determine the appropri-275

ate classification label (in this case, negative senti-276

ment). We formally define this query process using277

D as the input document to generate a pseudo-text278

classification label yT below:279

ŷC = T C(D). (1)280

Pseudo-Explanation Label Generation It is281

possible that T C may not produce confident pre-282

dictions. For instance, T C may classify the exam-283

ple sentence in Figure 2 as positive sentiment be-284

cause of the words "really" and "like", disregarding285

the phrase "don’t like". To further enhance these286

pseudo-text classification label predictions, we uti- 287

lize another PLMs T E that captures the reasoning 288

of T C ; namely, identifying the salient tokens in 289

the input that were responsible for the pseudo-text 290

classification label. 291

Formally, for a given input document D and pre- 292

viously generated pseudo-text classification label 293

ŷC , we query T E to determine the salient tokens 294

based on the predicted label: 295

ŷE = T E(D, ŷC), (2) 296

where ŷEi is a binary vector with cardinality |D| 297

that’s formulated based on the following equation: 298{
Di is salient, ŷEi = 1

Di is not salient, ŷEi = 0.
(3) 299

The generation of pseudo-label text classification 300

and explanation labels, respectively, form one 301

round. 302

Iterative Mutual Enhancement Using the 303

pseudo-text classification and explanation labels 304

generated, we once again query T C , but now we 305

additionally provide the pseudo-explanation labels 306

as input. For example, the sentence in round 1 307

of Figure 2 and the salient tokens (highlighted in 308
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red) are used as input to the classification prompt,309

which is fed into T C . This extension of equation 1310

is defined below:311

ŷC = T C(D, ŷE). (4)312

We repeat equations 4 and 2, respectively, to ensure313

high confidence in both T C and T E predictions,314

i.e., the predictions from both PLMs do not further315

change after one round.316

3.3 Explainable Multi-Task Architecture317

Once T C and T E have generated confident labels,318

we then input both of these into a multi-task text319

classification model. In Figure 2 for example, we320

take the "negative" text classification label and the321

"really don’t like" salient labels as input.322

Specifically, we first tokenize the input docu-323

ment D using a BERT-based tokenizer. We then324

pass this tokenized document into our BERT-based325

multi-task model and extract the following infor-326

mation from the model:327

lC ,A = T (D), (5)328

where lC is the loss of the text classification task329

and A ∈ RL×H×|D|×|D| is the multi-head attention330

tensor. L is the number of layers, and H is the331

number of attention heads in A from the BERT-332

based model. We extract the attention matrix Ã ∈333

R|D|×|D| from the last layer and the last attention334

head of A. We then apply a linear classifier W ∈335

R|D|×1 to this attention matrix Ã:336

ŷ = ÃW + b (6)337

where b ∈ R|D|×1 is the bias vector. We apply a338

sigmoid layer σ(·) on top of a binary cross-entropy339

loss function to get the attention-based loss lE of340

the saliency word prediction task:341

lE = −w[y · logσ(ŷ) + (1− y) · log(1− σ(ŷ)], (7)342

Our multi-task loss function is thus a linear com-343

bination of the aforementioned loss as well as the344

loss lC from the text classification task:345

l = lC + λlE , (8)346

where λ ∈ [0, 1] is a hyper-parameter controlling347

the performance balance between the text classifi-348

cation and saliency word prediction.349

4 Experiments 350

4.1 Experimental Setup 351

Datasets We conducted experiments across 10 352

datasets. Dataset statistics and statistics are shown 353

in Table 1 and listed below, respectively. 354

• AGNews (Zhang et al., 2015) consists of news 355

articles collected from the AG’s online news cor- 356

pus, with articles from four different categories. 357

• 20News (Lang, 1995) consists of documents 358

from 20 different news groups, covering a wide 359

range of topics. 360

• UCINews (Gasparetti, 2016) has a substantial 361

number of news articles covering four categories: 362

entertainment, technology, business, and health. 363

• NYT-Topic (Meng et al., 2020a) is a collection 364

of New York Times articles whose labels corre- 365

spond to an article’s topic. 366

• NYT-Location (Meng et al., 2020a) uses the 367

same articles as NYT-Topic but the label space 368

corresponds to locations. 369

• Yelp (Zhang et al., 2015) is a sentiment analysis 370

dataset consisting of reviews on restaurants, bars, 371

and other businesses. 372

• Books (Wan and McAuley, 2018) is a corpus 373

of book titles and their descriptions, originating 374

from Goodreads1, which is used for book genre 375

classification. 376

• IMDB (Zaidan et al., 2007) contains movie re- 377

views from IMDB, where each review is consid- 378

ered to be either of positive or negative sentiment. 379

• Twitter2 is a collection of tweets that have been 380

labeled or annotated with sentiment labels, in- 381

dicating whether the sentiment expressed in the 382

tweet is positive, negative, or neutral. 383

• MIMIC-III (Johnson et al., 2018) is a public 384

electronic health record (EHR) database with pa- 385

tient discharge summaries as text and diagnostic- 386

related group (DRG) codes as class labels used 387

in our experiments. 388

Baselines Our baselines include both fully su- 389

pervised and weakly supervised text classification 390

methods below. 391

1https://www.goodreads.com/
2https://www.kaggle.com/competitions/tweet-sentiment-

extraction
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Table 1: Dataset statistics, depicting the sizes of the
training, testing, and development set as well as the
total number of classes.

Datasets # Train # Dev # Test # Class

AGNews 108,000 12,000 7,600 4

20News 14,609 1,825 1,825 6

UCINews 26,008 2,560 27,556 4

NYT-Topic 19,197 6,400 6,400 9

NYT-Location 19,197 6,400 6,400 10

Yelp 22,800 7,600 7,600 2

Books 20,165 6,719 6,719 8

IMDB 1,600 200 200 2

Twitter 21,983 2,747 2,748 3

MIMIC-III 20,266 2,252 2,252 369

• BERT (Devlin et al., 2018) is a fully supervised392

baseline that trains a transformer model using393

labeled data.394

• Clinical-BERT (Alsentzer et al., 2019) is a su-395

pervised baseline that trains the BERT model on396

the clinical text.397

• ConWea3 (Mekala and Shang, 2020) expands398

the keyword vocabulary based on contextual rep-399

resentations of the labels and the corpus.400

• LOTClass4 (Meng et al., 2020b) Constructs a401

keyword vocabulary for pseudo-label generation.402

• X-Class5 (Wang et al., 2021) uses clustering to403

choose the representative documents for each404

class.405

• ClassKG6 (Zhang et al., 2021) iteratively con-406

structs keyword sub-graphs consisting of key-407

words across data points and derives pseudo-408

labels by annotating the corresponding sub-409

graphs.410

• WDDC-MLM7 (Zeng et al., 2022) employs a411

masked language model to generate signal words.412

They combine the generated words with category413

names and utilize them for training.414

• NPPrompt8 (Zhao et al., 2022) is a zero-shot415

technique that identifies similar words via non-416

3https://github.com/dheeraj7596/ConWea
4https://github.com/yumeng5/LOTClass
5https://github.com/ZihanWangKi/XClass
6https://github.com/zhanglu-cst/ClassKG
7https://github.com/HKUST-KnowComp/WDDC
8https://github. com/XuandongZhao/NPPrompt

parametric prompts and uses them as pseudo- 417

labels. 418

• MEGClass9 (Kargupta et al., 2023) generates 419

pseudo-training labels by iteratively estimating 420

class distribution and contextualized document 421

embeddings. 422

Evaluation Metrics We use micro-F1 and 423

macro-F1 as the evaluation metrics to compare 424

the performance of the text classification methods. 425

More details can be found in Appendix A. 426

Parameter Settings For each baseline method, 427

we use the default parameter settings as reported 428

in the original papers. More details about the pa- 429

rameter settings of XAI-CLASS can be found in 430

Appendix C. 431

4.2 Main Results 432

Our main results are displayed in Table 2. XAI- 433

CLASS outperforms all other baselines on the Yelp, 434

NYT-Topic, Books, and UCINews datasets while 435

providing comparable results on AGNews. We hy- 436

pothesize our SOTA performance on Yelp is primar- 437

ily due to its sentimental nature (as it is a polarity 438

dataset) and the label space being distinct (posi- 439

tive or negative sentiment), allowing for there to be 440

more salient words XAI-CLASS can identify com- 441

pared to other types of datasets used. We provide 442

results on two other polarity datasets, IMDB and 443

Twitter, in Table 3. Our hypothesis is validated by 444

XAI-CLASS outperforming baselines on Yelp and 445

IMDB but not on the Twitter dataset, due to the 446

introduction of the "neutral" class in Twitter. 447

XAI-CLASS’s performance on the Books 448

dataset drastically outperforms all other baselines. 449

We believe this is the result of the indicative and 450

sentiment words that often appear in the descrip- 451

tion of many books. For example, words commonly 452

found in book descriptions such as "seduce", "mur- 453

der", and "paranormal" clearly indicate the genres 454

are "romance", "thriller", and "fantasy", respec- 455

tively. 456

We believe much of the performance drop-off 457

in 20News is due to labels not being completely 458

disjoint (Zeng et al., 2022). For example, the "elec- 459

tronics" fine-grained class is categorized under the 460

"science" class, although one could argue it would 461

be more appropriate to classify instances of type 462

"electronics" in the "computer" class (Lang, 1995). 463

9https://github.com/pkargupta/MEGClass
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Table 2: Micro/macro F1 scores of baseline methods compared with XAI-CLASS. XAI-CLASS results are based on
the optimal number of rounds associated with each dataset. Bolded results correspond to the best-performing model.

Model Yelp 20News NYT-Topic NYT-Loc Books AGNews UCINews

BERT (Supervised) 95.70/95.70 96.60/96.60 95.98/95.01 96.00/95.00 81.00/81.00 93.05/93.06 93.13/93.15

ConWea 71.40/71.20 75.73/73.26 81.67/71.54 85.31/83.81 52.30/52.60 74.43/74.01 32.93/32.69
LOTClass 87.40/87.20 73.78/72.53 67.11/43.38 58.49/58.96 19.90/16.10 86.59/86.56 73.20/72.36
X-Class 86.80/86.80 73.17/73.07 79.01/68.62 89.51/89.68 53.60/54.20 85.74/85.66 68.85/69.62
ClassKG 91.20/91.20 81.00/82.00 72.06/65.76 86.84/83.35 55.00/54.70 88.80/88.80 N/A

WDDC-MLM 81.20/81.10 81.21/68.82 81.50/69.20 88.84/86.91 53.86/53.75 88.26/88.25 81.50/81.34
NPPrompt 81.20/81.10 68.90/68.80 64.60/64.20 53.90/53.80 49.60/49.70 85.20/85.20 N/A
MEGClass 87.41/87.41 81.72/80.63 85.42/68.03 93.06/91.93 56.35/55.71 N/A N/A

XAI-CLASS 95.45/95.45 75.29/71.30 88.39/80.35 82.50/86.52 70.56/70.67 88.20/88.15 83.95/83.87

Figure 3: Micro F1 and macro F1 scores of two rounds
of XAI-CLASS on 20News, Books, and IMDB test sets.

4.3 Ablation Study464

Iterative Mutual Enhancement Effectiveness465

To determine the effectiveness of iterative mu-466

tual enhancement, we identify the performance of467

datasets across multiple rounds. Figure 3 shows468

these results, clearly indicating that the perfor-469

mance increases when iterating up to a specified470

number of rounds. It should be noted that the opti-471

mal number of rounds is dependent on the dataset,472

with datasets that have high performance without473

many rounds most likely requiring fewer rounds474

than otherwise.475

Analyzing Salient Token Utility To analyze476

the utility of incorporating salient tokens in XAI-477

CLASS, we conduct experiments on the IMDB and478

Twitter datasets (Table 3) as they have ground truth479

salient labels available. Results on both datasets480

indicate the XAI-CLASS-FS, a variant of XAI-481

CLASS that includes ground truth saliency labels482

during training, outperforms XAI-CLASS. This483

performance increase when utilizing ground truth484

saliency tokens justifies utilizing salient tokens as it485

shows that the gold-standard ground-truth saliency486

Table 3: F1 scores of BERT baseline against XAI-
CLASS variants. XAI-CLASS-FS is the fully super-
vised version (with respect to saliency labels) of XAI-
CLASS, consisting of ground truth salient labels.

Model Dev Test

Dataset: IMDB
BERT (Supervised) 85.90 85.60

XAI-CLASS-FS 89.50 87.80
XAI-CLASS 91.50 86.40

Dataset: Twitter
BERT (Supervised) 77.20 78.10

XAI-CLASS-FS 78.40 79.20
XAI-CLASS 61.20 63.40

labels are being incorporated. The dramatic perfor- 487

mance increase when incorporating ground truth 488

salient tokens for Twitter leads us to hypothesize 489

that there’s more of a need for proper pseudo- 490

salient representation for datasets that have labels 491

with limited salient words, as the majority of XAI- 492

CLASS misclassifications on the Twitter dataset are 493

on data points whose ground truth is the "neutral" 494

class, which doesn’t have many indicative salient 495

words. 496

Backbone Pre-trained Langauge Models In 497

our experiments, we compared multiple pre-trained 498

language models and chose FLAN-T5 (Chung et al., 499

2022) as T C for the text classification label gener- 500

ation, and BERT (Devlin et al., 2018) as T E for 501

the explanation label generation. More information 502

regarding our justification for our choice of T C 503

and T E can be found in Appendix B. 504

4.4 Explainability Study 505

To evaluate the explainability of XAI-CLASS over 506

baseline methods, we qualitatively assess the ex- 507

plainability of Clinical-BERT and XAI-CLASS 508

using six explanation techniques: Saliency (Si- 509
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Table 4: Explainability of Clinical-BERT and XAI-CLASS using six explanation techniques on five explanation
evaluation metrics (HA, CI, F, RC, DC) on MIMIC-III. Results are in Clinical-BERT/XAI-CLASS format.

Method F HA DC RC CI

Random 38.45/38.56 0.21/0.24 0.02/0.03 0.06/0.06 0.13/0.13
ShapSampl 29.43/29.28 0.56/0.61 0.23/0.25 0.21/0.23 0.13/0.14

LIME 38.00/37.89 0.31/0.33 0.36/0.39 0.61/0.61 0.12/0.14
Occlusion 23.00/25.02 0.55/0.56 0.19/0.21 0.34/0.41 0.12/0.14
Saliencyµ 51.01/49.23 0.57/0.59 0.34/0.32 0.26/0.36 0.14/0.19
SaliencyL2 44.30/44.30 0.31/0.37 0.33/0.39 0.24/0.31 0.15/0.13

InputXGradµ 20.20/28.73 0.53/0.57 0.41/0.42 0.19/0.18 0.15/0.17
InputXGradL2 48.72/49.54 0.22/0.24 0.41/0.43 0.22/0.21 0.15/0.16

GuidedBPµ 36.66/35.76 0.37/0.34 0.40/0.43 0.02/0.04 0.13/0.12
GuidedBPL2 49.31/48.38 0.45/0.43 0.40/0.43 0.19/0.19 0.14/0.11

Table 5: Sample of instances with incorrect/ambiguous ground truths in the 20News dataset.

Input Text Class Prediction Ground Truth Salient Word Prediction

72 Chevelle SS for sale. [...] I need money for college. [...] 1972
chevelle super sport rebuilt 402 [...] $ 5995. Sale Sports sale, money, sport

[...] key would appear to be cryptographically useless. [...] The
same key is used for both encryption and decryption. Computer Science crypto-graphically, encryp-

tion, key

What exactly is an IBM 486 SLC processor? Could someone
please tell me if the 486 SLC and 486 SLC2 processors IBM is
putting in their Thinkpad 700’s.

Computer Science IBM, processor, 486

Cultural enquiries more like those who use their backs instead
of their minds [...] intolerant of anything outside of their group
[..] there is no justification for taking away individuals freedom.

Politics Sports cultural, freedom

monyan et al., 2014), InputXGradient (Kinder-510

mans et al., 2016), Guided Backpropagation511

(Springenberg et al., 2014), Occlusion (Zeiler and512

Fergus, 2014), Shapley Value Sampling (Castro513

et al., 2009), and LIME (Ribeiro et al., 2016)514

over five explanation evaluation metrics (Atanasova515

et al., 2020) Agreement with Human Rationales516

(HA), Confidence Indication (CI), Faithfulness517

(F), Rationale Consistency (RC), and Dataset518

Consistency (DC) on the MIMIC-III dataset. De-519

tails of the above explanation evaluation metrics520

can be found in a previous study of explanation521

techniques in text classification (Atanasova et al.,522

2020). The results in Table 4 demonstrate that523

XAI-CLASS improved the model explainability by524

capturing the saliency information during the train-525

ing process for all explanation evaluation metrics526

excluding faithfulness. More results on the explain-527

ability case study can be found in Appendix D.528

4.5 Case Study529

We further explore some cases with incor-530

rect/ambiguous ground truths for multiple reasons,531

depicted in Table 5. The text in the first row of Ta-532

ble 5 is most likely supposed to be assigned to the533

"sale" class but is instead labeled with the "sports"534

class as ground truth, most likely because the word535

"sport" appears in the text. XAI-CLASS predicted 536

the "sale" class, even though it determined that 537

"sport" was a salient token. This suggests that the 538

model is robust to a small number of words dictat- 539

ing the classification prediction. The second row 540

in Table 5 coincides with the cryptograph example 541

in section 4.2, where one could argue all salient 542

words picked up by the model could be categorized 543

under the term "computer", instead of the ground 544

truth "science". The last two rows of Table 5 ap- 545

pear to be mislabelled, as the third row’s text talks 546

exclusively about processors and the fourth exam- 547

ple talks only about political issues, yet they are 548

labeled as "science" and "sports", respectively. 549

5 Conclusion 550

We propose XAI-CLASS, a novel extremely 551

weakly-supervised text classification method that 552

employs a multi-round question-answering process 553

to generate pseudo-training data and trains a multi- 554

task framework that simultaneously learns both text 555

classification and word saliency prediction. XAI- 556

CLASS has superior performance over baselines 557

for both model performance and explainability. Fu- 558

ture work includes extending XAI-CLASS to the 559

multi-label setting. 560
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Limitations561

XAI-CLASS, although effective, operates under562

the assumption of a disjoint label space and is563

not specifically tailored for fine-grained or multi-564

label text classification tasks. As a result, it may565

not perform optimally on datasets like 20News,566

where there are instances where ground truth labels567

have some degree of overlap. However, exploring568

weakly-supervised methods for fine-grained, multi-569

label text classification is an intriguing direction570

for future research. Furthermore, it’s important571

to note that XAI-CLASS requires careful consid-572

eration when selecting the number of rounds of573

question answering. It is not designed to scale to574

a large number of rounds, and typically, no more575

than three rounds are used. This limitation arises576

because each round involves two queries for the577

question answering models: one for generating text578

classification labels and the other for saliency word579

generation. This process can be computationally580

expensive, necessitating a mindful balance between581

computational resources and desired performance.582

Ethics Statement583

Given our current methodology, we do not antic-584

ipate any significant ethical concerns. We have585

utilized datasets and models from open-source586

domains, promoting transparency and accessibil-587

ity of information. Text classification is a well-588

established task in natural language processing,589

widely studied and applied in various domains.590

However, we acknowledge that our architecture591

relies on PLMs, which may make decisions based592

on biases present in the training data. Although593

our experiments have not revealed any apparent594

performance issues related to bias, it is important595

to recognize that this observation may be limited596

to the datasets we have used. It is crucial to remain597

vigilant and continue exploring ways to mitigate598

and address biases that may arise from the use of599

pre-trained models.600
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A Evaluation Metrics824

We report performance based on the micro and825

macro F1 scores, which are defined below.826

F1 = 2
Precision ∗ Recall
Precision + Recall

F1 macro =
1

n

n∑
i=1

F1,i

F1 micro =
2
∑n

i=1 TPi

2
∑n

i=1 TPi +
∑n

i=1 FPi +
∑n

i=1 FNi

where TP is true positive, FP is false positive, and827

FN is false negative. We use the sklearn10 library828

to obtain these metrics.829

B Pseudo-Label and Text Classification830

Backbone Analysis831

We conduct experiments to identify the most ap-832

propriate PLMs for T C and T E . To identify the833

most appropriate T E , we conduct zero-shot text834

classification on 7 datasets (Table 6). Flan-T5 per-835

forms better than all other models across the seven836

datasets, indicating why we chose Flan-T5 as the837

backbone PLM for T C .838

We perform a similar experiment to identify the839

most appropriate backbone for T E . Concretely,840

we perform zero-shot salient label prediction using841

the IMDB and Twitter datasets, as these are the842

only datasets we’ve experimented with that have843

ground truth saliency labels (Table 7). The results844

show that BERT and Unified-QA (Khashabi et al.,845

2020) should be the T E backbone of choice when846

using the IMDB and Twitter datasets for training,847

respectively.848

C Parameter Settings849

Runtime Analysis We conduct all of our experi-850

ments on an NVIDIA DGX A100 GPU (640GB).851

The run times for optimal configurations across all852

datasets can be found in Table 8.853

Hyper-parameters The optimal hyper-854

parameters for our results in Tables 2 and 3 are855

listed in Table 9. The possible values each of the856

hyper-parameters can take are listed below:857

• T C ∈ {FLAN-T5-SMALL, FLAN-T5-BASE,858

FLAN-T5-LARGE, FLAN-T5-XL, FLAN-T5-859

XXL}860

10https://scikit-learn.org/stable/

– PLM for psuedo-text classification label 861

generation 862

• T E ∈ {BERT-BASE, BERT-LARGE, UNIFIED- 863

QA-LARGE, UNIFIED-QA-3B} 864

– PLM for psuedo-saliency label generation 865

• λ ∈ {0.5, 0.7, 0.9} 866

– Hyper-parameter for determining how much 867

of the saliency loss should be incorporated 868

• Round # ∈ {0, 1, 2, 3} 869

• Learning Rate ∈ {2e− 04, 2e− 05, 5e− 05} 870

• Dropout ∈ {0.1, 0.2, 0.3, 0.4} 871

• Number of Epochs ∈ {1, 2, 3} 872

We implement the PLMs in Python using the Hug- 873

gingFace Transformer library11. 874

D Explanability Case Study 875

To further evaluate the explainability of XAI- 876

CLASS over the baseline methods, we qualitatively 877

assess the explainability of Clinical-BERT and 878

XAI-CLASS using attention distribution (heatmap). 879

The results in Figure 4 demonstrate that XAI- 880

CLASS improved the model explainability by cap- 881

turing the saliency information during the training 882

process, particularly in all evaluation metrics ex- 883

cluding faithfullness. The results align well with 884

human-given ICD-9 codes as the explanation for 885

the DRG code prediction. 886

11https://github.com/huggingface/transformers
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Table 6: Zero-shot text classification label generation micro/macro F1-scores across multiple T C models. Flan-T5
outperforms all other models across all datasets used, thus serving as our backbone for T C .

Model Yelp 20News NYT-Topic NYT-Loc Books AGNews UCINews

GPT-2 50.74/42.88 13.97/9.74 7.58/2.72 4.02/2.64 9.88/4.89 26.30/20.16 25.57/11.85
BERT 49.63/39.38 24.99/11.40 31.77/5.58 19.31/4.04 12.56/12.06 26.07/13.18 24.92/11.72

Unified-QA 95.66/95.66 69.75/66.10 76.17/67.30 72.38/75.11 48.13/48.64 86.21/86.12 80.88/80.67
Flan-T5 97.42/97.42 75.34/72.15 87.53/78.87 81.36/85.90 72.03/72.45 88.51/88.48 84.27/84.16

Table 7: Zero-shot salient label generation micro/macro
F1-scores across multiple T E models on the IMDB and
Twitter datasets. We report on these datasets as these
are the only datasets with salient labels.

Model IMDB Twitter

BERT 12.26/10.92 67.56/40.32
Flan-T5 11.26/10.12 69.31/40.94
GPT-2 9.25/8.47 72.16/41.92

Unified-QA 11.57/10.37 73.8/42.47

Table 8: Average run time for each dataset for best
hyper-parameter configuration.

Dataset Runtime (hours)

AGNews 10
20News 4

UCINews 4
IMDB 1
Twitter 3

(a) Clinical-BERT

(b) XAI-CLASS

Figure 4: The attention distribution (heatmap) of of
Clinical-BERT and XAI-CLASS. A darker red color
indicates that the model assigns higher importance to
that particular word for explaining the prediction of the
DRG code.
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Table 9: Optimal hyper-parameters for XAI-CLASS’s results in Tables 2 and 3.

Dataset T C T E Round # λ Learning Rate Dropout # Epochs

Books FLAN-T5-XXL BERT-BASE 2 0.5 2e− 05 0.3 3

NYT-Topic FLAN-T5-XXL BERT-BASE 1 0.5 2e− 05 0.3 1

NYT-Location FLAN-T5-XXL BERT-BASE 2 0.5 2e− 05 0.3 3

Yelp FLAN-T5-XXL BERT-BASE 1 0.5 2e− 05 0.3 1

AGNews FLAN-T5-XXL BERT-BASE 1 0.5 2e− 05 0.3 1

20News FLAN-T5-XL BERT-BASE 2 0.7 2e− 05 0.3 3

UCINews FLAN-T5-XL BERT-BASE 1 0.5 2e− 05 0.3 1

IMDB FLAN-T5-XL BERT-BASE 1 0.9 2e− 05 0.4 3

Twitter FLAN-T5-XL BERT-BASE 0 0.7 2e− 05 0.1 3
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