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Abstract

Inferring causal relationships from observational
data is rarely straightforward, but the problem is
especially difficult in high dimensions. For these
applications, causal discovery algorithms typically
require parametric restrictions or extreme sparsity
constraints. We relax these assumptions and fo-
cus on an important but more specialized problem,
namely recovering the causal order among a sub-
graph of variables known to descend from some
(possibly large) set of confounding covariates,
i.e. a confounder blanket. This is useful in many
settings, for example when studying a dynamic
biomolecular subsystem with genetic data provid-
ing background information. Under a structural as-
sumption called the confounder blanket principle,
which we argue is essential for tractable causal
discovery in high dimensions, our method accom-
modates graphs of low or high sparsity while main-
taining polynomial time complexity. We present
a structure learning algorithm that is provably
sound and complete with respect to a so-called
lazy oracle. We design inference procedures with
finite sample error control for linear and nonlinear
systems, and demonstrate our approach on a range
of simulated and real-world datasets. An accompa-
nying R package, cbl, is available from CRAN.

1 INTRODUCTION

Discovering causal relationships between variables is a vital
first step in any effort to understand complex systems or
design effective interventions. In principle, such relation-
ships can be established through sufficient experimentation;
in practice, we must often make do with observational data
due to logistical or ethical constraints. Causal discovery
algorithms have been in use for decades—see [Glymour
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Figure 1: Visual depiction of our setup, which includes a
large collection of background variables Z (blue nodes)
with arbitrary structure, followed by a relatively small set
of foreground variables X (orange nodes). The goal is to
learn causal relationships among X variables by exploiting
signals from Z.

et al., 2019] for a recent review—but the task is notoriously
difficult and error-prone, especially in high-dimensional set-
tings. Moreover, many of these methods, for computational
or statistical tractability, assume scale-free sparsity—i.e.,
that the number of adjacencies for each vertex in the true
graph does not grow with the dimensionality of the problem.

In many cases, researchers are interested primarily in the
causal relationships between just a subset of observed vari-
ables. Attempting to learn an entire directed acyclic graph
(DAG) in such cases is inefficient and unstable, especially
when error rate control is a concern and unmeasured con-
founders cannot be ruled out. Suppose, however, that we
have access to a large tier of background factors Z that may
potentially deconfound our target system X . This stratifi-
cation could be due to temporal ordering or physical laws.
For example, we know that genotypes precede phenotypes,
even though it may be impossible to completely characterize
the relationship between the two, let alone links among the
genotypes themselves. We argue that many practical prob-
lems of interest exhibit such a two-tier structure, with our
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foreground variables X causally preceded by some large
background set Z, whose internal structure is not relevant
or even well-defined.

We propose a novel structure learning algorithm designed
for such setups. Our method leverages “pre-system” back-
ground covariates Z to establish causal relationships among
foreground variables X without making any assumptions
about the sparsity of connections between the two tiers.
The trade-off is that it will not attempt to discover every
possible structural signature that a typical causal discov-
ery method can in theory resolve [Spirtes et al., 2000]. In-
stead, we limit ourselves to what can be derived from the
background-foreground interaction. In particular, we posit
that background variables can act as a confounder blanket,
which, as a whole, either blocks unmeasured confounding or
not. This amounts to a bet that we can avoid combinatorial
search over subsets of Z and still get informative results.

Our main contributions are threefold. (1) We derive a sound
and complete set of rules for inferring causal order in sub-
graphs with background variables, as well as identifiability
conditions for causal discovery in such settings. Complete-
ness is derived with respect to a so-called lazy oracle, which
we argue is of greater practical relevance in many settings
than the classical independence oracle, especially when we
are concerned about statistical and computational feasibil-
ity. (2) We design an algorithm that implements these rules
with finite sample error control, making a further assump-
tion about how to test for statistical independencies based
on regression models. The method is efficient and flexible,
avoiding the combinatorial search associated with alterna-
tive methods and accommodating both linear and nonlinear
systems. (3) We test our approach against a range of alter-
natives on simulated and real-world data, confirming that
the method recovers ancestral relationships in the target
subgraph with high power and bounded error.

2 BACKGROUND AND NOTATION

We assume that causal relationships can be encoded as a
DAG G. Each vertex in G represents a random variable in a
distribution with density/mass function p(·). We make use
of the following common terminology in causal discovery:
parent, child, ancestor, descendant, mediator, collider, (ac-
tive/backdoor) path, d-separation, and Markov equivalence
class. We omit formal definitions due to space constraints.
For details, see [Spirtes et al., 2000, Pearl, 2009a].

We use X ⊥⊥G Y | Z to denote that set X is d-separated
from set Y given set Z in G. The notation is deliberately
similar to that of conditional independence in probability
theory [Dawid, 1979]. We stipulate that the joint distribution
of the data is Markov with respect to G, i.e. X ⊥⊥G Y |Z ⇒
X ⊥⊥Y | Z. When the distribution is faithful to the graph,
the converse holds as well, upgrading the relationship to a

biconditional: X ⊥⊥G Y | Z ⇔X ⊥⊥Y | Z.

Given two vertices X and Y in G, we use X ≺ Y to denote
that X is an ancestor of Y . Equivalently, Y ≻ X denotes
that Y is a descendant of X . We write X ⪯ Y if X is
not a descendant of Y , in which case X may or may not
be an ancestor of Y . (Note that X ̸≺ Y implies Y ⪯ X .)
We write X ∼ Y when neither variable is an ancestor of
the other, i.e. X ̸≺ Y and Y ̸≺ X . In acyclic graphs, the
ancestry relation imposes a strict partial order characterized
by the following three properties:

• Irreflexivity: X ≺ X ⊢ FALSE.
• Asymmetry: X ≺ Y ⊢ Y ̸≺ X .
• Transitivity: X ≺ Y ∧ Y ≺ Z ⊢ X ≺ Z.

Relations ≺ and ⪯ can be applied to pairs of sets, implying
that the relation holds between each pair of elements from
the Cartesian product of the respective sets.

Let E[Y | do(X = x)] denote the expected outcome Y
under an intervention that fixes the treatment X to level x.
Covariate adjustment postulates that

E[Y | do(X = x)] =

∫
E[Y | x, z] p(z) dz

for a set of vertices Z in G. It holds if Z satisfies the back-
door criterion with respect to (X,Y ) [Pearl, 2009a, Ch. 3],
in which case we say that Z is a valid adjustment set for
(X,Y ). Complete graphical criteria for covariate adjustment
can be found in [Shpitser et al., 2010, Perković et al., 2018].

Finally, we define minimal (de)activators, originally high-
lighted by Claassen and Heskes [2011]:

Definition 1 (Minimal activator). Variable D is a minimal
activator of the relationship between A and B given C iff:
(1) A⊥̸⊥B | C ∪ D; and (2) A⊥⊥B | C. In this case, we
write A⊥̸⊥B | C ∪ [D]. □

Definition 2 (Minimal deactivator). VariableD is a minimal
deactivator of the relationship between A and B given C
iff: (1) A⊥⊥B | C ∪ D; and (2) A⊥̸⊥B | C. In this case,
we write A⊥⊥B | C ∪ [D]. □

3 PROBLEM STATEMENT

Assume a DAG G contains observable vertices Z ∪ X ,
consisting of background variables Z and foreground vari-
ables X . Let |Z| = dZ and |X| = dX , with poten-
tially dZ ≫ dX . G may have unobserved vertices U with
more than one descendant in Z ∪ X (i.e., unmeasured
confounders). We construct the latent projection of G by
marginalizing over hidden variables, replacing any path
Xi ← Uij → Xj with a bidirected edge Xi ↔ Xj to form
an acyclic directed mixed graph (ADMG) with vertex set
Z ∪X . The symbol G\U will denote the ADMG of G.



The goal is to infer as much as possible about the causal
structure of GX ⊂ G, which consists of vertices X and
the edges with endpoints in X . We make the following
assumptions:

(A1) G is acyclic.
(A2) p(z,x) is faithful to G\U .
(A3) Z contains no descendant of X in G, i.e. Z ⪯X .

The first assumption can be relaxed—GZ may contain cycles
under some conditions—but we adopt it here to avoid fur-
ther technicalities. Faithfulness is a common yet somewhat
controversial starting point for many causal discovery proce-
dures (more on this in Sect. 7). The ordering assumption ap-
plies in many settings where background knowledge permits
a categorical distinction between upstream and downstream
variables, e.g. when data are recorded at different times.

For any pair of variables X,Y ∈ X , exactly one of three
possibilities obtains: (G1) X ≺ Y ; (G2) X ≻ Y ; or (G3)
X ∼ Y . Our discovery problem is defined as deciding
which relationship holds for each pair of vertices in GX . A
similar goal motivates Magliacane et al. [2016], who derive
a general algorithm called ancestral causal inference (ACI).
ACI does not exploit the the background-foreground split
and does not scale to high dimensionality. It also comes with
no theory about the error control of its inferences. Note that
some relationships in GX may be only partially identifiable,
e.g. if all we can determine is that X ⪯ Y . Others may be
entirely unidentifiable, e.g. if latent confounding is present.

In the next section, we describe a causal discovery algorithm
that assumes we have an oracle capable of returning exact
information about which conditional independencies hold
in the population. This is so that we can more easily discuss
the limits of what can in principle be discovered from the
assumptions provided. In Sect. 5, we present a practical
statistical algorithm with error control guarantees.

4 CONFOUNDER BLANKETS AND THE
ORACLE ALGORITHM

There are sound and complete procedures, based on the fast
causal inference (FCI) algorithm of Spirtes et al. [2000],
which return all and only those graphs that are Markov
equivalent to the true G [Zhang, 2008].1 Such methods scale
poorly with data dimensionality, as they must query for
conditional independence over an exponentially increas-
ing number of candidate conditioning sets. For tractability,
sometimes it is assumed that G is sparse or small [e.g.,
Magliacane et al., 2016], an unrealistic assumption if we

1FCI returns a partial ancestral graph (PAG), an equivalence
class of maximal ancestral graphs (MAGs) [Richardson and Spirtes,
2002]. By contrast, the PC algorithm, which assumes causal
sufficiency, returns a completed partially directed acyclic graph
(CPDAG), an equivalence class of DAGs [Spirtes et al., 2000].

think each element of X should be directly connected to
a substantive fraction O(dZ) of background variables—a
type of structure taken for granted in most methods that
estimate causal effects by covariate adjustment [Hernán and
Robins, 2009]. Instead, this work is based on the following
principle:

Definition 3 (The Confounder Blanket Principle, CBP). In
the presence of a large set of background variables Z, where
it is believed that each element of X may be adjacent to
O(dZ) elements of Z in G\U , do not attempt to test for
conditional independencies using arbitrary subsets of Z. In
particular, work under the expectation that if some A ⊂
Z ∪X is a valid adjustment set for any ordered pair Xi ≺
Xj , then A ∪Z is also valid. We call a set of background
variables with this property a confounder blanket. □

A failure of CBP does not compromise the soundness of the
algorithms presented in the sequel, but it may affect their
completeness. In particular, under CBP, we are exposed to
the problem of M-structures [Pearl, 2009b], where some
Z ∈ Z is a collider on a path Xi ← · · · → Z ← · · · → Xj .
Without searching through subsets of Z, it may be difficult
or impossible to infer the causal order of GX in this setting.

M-structures can indeed make a substantive impact to the
bias of an adjustment set. However, Ding and Miratrix
[2015] have shown that, at least at under some reasonable
distributions of parameters in some parametric models, their
impact may be negligible with high probability, and hence,
statistically hard to detect in a causal discovery method.
Instead of proposing yet another derivative of FCI, we be-
lieve that practitioners with access to a large set of back-
ground variables—which may be required in order to stand a
chance against unmeasured confounding—are better served
by methods grounded in the CBP.

4.1 STRUCTURAL SIGNATURES AND
ALGORITHM

Our algorithm will be based on the following inference rules,
adapted from Entner et al. [2013] and Magliacane et al.
[2016]. In what follows, let A and {X,Y } be two sets of
observable vertices in a DAG G, where A ⪯ {X,Y }, and let
A\W := A\{W} for some vertex W . Our first rule detects
(indirect) causes via relations of minimal independence:

(R1) If ∃W ∈ A :W ⊥⊥Y |A\W ∪ [X], then X ≺ Y .

The soundness of (R1), and (R2) below, follows immedi-
ately from Lemma 1 of Magliacane et al. [2016], combined
with the partial order A ⪯ {X,Y }. (R1) applies when X
deactivates all paths from W to Y . When this structure ob-
tains, causal effects can be estimated using the backdoor
adjustment with admissible sets A and A\W .

Our second inference rule eliminates (indirect) causes via



Algorithm 1 CBL-ORACLE

Input: Background set Z, foreground set X , oracle I
Output: Ancestrality matrix M

Initialize: converged← FALSE, M← [NA]
while not converged do
converged← TRUE
for Xi, Xj ∈X such that i > j, Mij = [NA] do

A← Z ∪
{
X ∈X\{Xi, Xj} : X ⪯M {Xi, Xj}

}
if I(Xi⊥⊥Xj |A) then
Mij ← i ∼ j, converged← FALSE

else
for W ∈ A do

if I(W ⊥⊥Xj |A\W ∪ [Xi]) then
Mij ← i ≺ j, converged← FALSE

else if I(W ⊥⊥Xi |A\W ∪ [Xj ]) then
Mij ← j ≺ i, converged← FALSE

else if I(W ⊥̸⊥Xj |A\W ∪ [Xi]) then
Mij ←Mij ∧ j ⪯ i, converged← FALSE

else if I(W ⊥̸⊥Xi |A\W ∪ [Xj ]) then
Mij ←Mij ∧ i ⪯ j, converged← FALSE

end if
end for

end if
end for
M← CLOSURE(M)

end while

relations of minimal dependence:

(R2) If ∃W ∈ A :W ⊥̸⊥X |A\W ∪ [Y ], then X ⪯ Y .

(R2) applies when Y activates some path from W to X .
This means that Y must be a (descendant of a) collider on
that path, and cannot be a non-collider on any other path
active under A\W .

Our third rule establishes causal independence via separat-
ing sets, and follows immediately from faithfulness:

(R3) If X ⊥⊥Y |A, then X ∼ Y .

These building blocks are the basis for our confounder
blanket learner (CBL), outlined in Alg. 1. CBL-ORACLE
outputs a square, lower triangular ancestrality matrix M,
with Mij representing the partial order between vertices
(Xi, Xj). The subscript M on a partial ordering relation
indicates that it is already encoded in the matrix, which
evolves with each pass through the for loop. The oracle I
is an indicator function over conditional independencies on
p(z,x). Note that inferences derived via (R2) are recorded
as conjuncts, since they are consistent with multiple struc-
tures. The CLOSURE operation, fully articulated in Appx.
A, ensures that M satisfies the characteristic properties of
a strict partial order, thereby reducing conjunctions to their
most informative implication.

4.2 PROPERTIES

Proofs for all theorems are given in Appx. A.

Theorem 1 (Soundness). All ancestral relationships re-
turned by CBL-ORACLE hold in the true GX . Moreover,
if Mij = i ≺ j, then the set of shared non-descendants
A = Z ∪

{
X ∈ X\{Xi, Xj} : X ⪯M {Xi, Xj}

}
is a

valid adjustment set for (Xi, Xj).

By design, CBL-ORACLE can be uninformative where a
method like FCI will provide a causal order. One of the
simplest examples is the so-called Y-structure [Mani et al.,
2006], {X1 → X3, X2 → X3, X3 → X4}, where FCI
discovers X3 → X4. By contrast, with an empty Z, CBL-
ORACLE cannot infer any causes (though it may still infer
X1 ∼ X2 via (R3)). However, the presence of a single edge
from a background variable Z intoX1, X2, orX3 will allow
for the discovery that X3 ≺ X4, while an edge from Z into
X4 will allow for the discovery that X3 ⪯ X4.

We characterize full identifiability conditions for Alg. 1 as
follows, with X⪯i standing for the set of allXi’s observable
non-descendants in G, including Xi itself. Without loss of
generality, assume that sets are indexed such that no Xi is a
descendant of some Xj for j > i.

Theorem 2 (Identifiability). The following conditions are
sufficient for CBL-ORACLE to learn the total causal order
of GX . If Xi ∼ Xj , then either (i) there is no active back-
door path between Xi and Xj given Z and their common
ancestors in X; or (ii) some Vi ∈X⪯i is d-connected toXj

given X⪯i\{Vi}, and some Vj ∈X⪯j is d-connected toXi

given X⪯j\{Vj}. If Xi ≺ Xj , then either (iii) some V ∈
X⪯i is d-separated from Xj given X⪯i\{V }; or (iv) there
exists a nonempty set of mediators along a unidirectional
path Xi ≺ Xi+1 ≺ · · · ≺ Xj−1 ≺ Xj such that condition
(iii) applies to each pair {Xk, Xk+1}, k ∈ {i, . . . , j − 1}.

Condition (i) above motivates the name confounder blanket.

One of the key points, however, is the completeness of our
algorithm. In the nonparametric causal discovery literature,
this is usually defined with respect to an oracle that delivers
true answers to all conditional independence queries over ob-
servable variables. We define a new scope for completeness
that places some reasonable limits on oracular omnipotence.
First, we introduce the following definitions:

Definition 4 (Iteration-t known non-descendant). Given an
algorithm A, we call vertex W an iteration-t known non-
descendant of a vertex X if either (i) W ∈ Z; or (ii) after t
modifications to M by A, we have W ⪯M X . □

Definition 5 (Lazy oracle algorithm). Let Xt
⪯i be the set

of all iteration-t known non-descendants of Xi according to
some algorithmA. A lazy oracle algorithm is one that starts
with an uninformative ancestrality matrix M and updates at
each round t with answers to queries of just two types:



(i) W ⊥⊥Xi | Stij\W ∪ ϕ(Xj), such that W ∈ Stij and
ϕ(Xj) ∈

{
∅, {Xj}

}
; and

(ii) Xi⊥⊥Xj | Stij ,

where {Xi, Xj} ⊆X and Stij := Xt
⪯i ∩Xt

⪯j . □

Our oracle may be clairvoyant when it comes to probabilis-
tic relationships, but she is not quite as accommodating as
her classical counterpart. In particular, she refuses to mar-
shal her powers in service of combinatorial search strategies,
which she considers tedious and inelegant. Instead she be-
stows her favor upon us only when we limit ourselves to a
more restrictive class of queries pertaining to independence
relationships conditioned on the complete set of (known)
non-descendants for any given pair of foreground variables.

Observe that inferences about ancestral relationships are
fully ordered with respect to their information content:
{NA} ≺ {i ⪯ j} ≺ {i ≺ j} ∼ {i ∼ j}. This motivates the
following optimality target:

Definition 6 (Dominance). Among the set of all sound
procedures for learning ancestral relationships, we say that
algorithm A dominates algorithm B iff A is strictly more
informative than B. That is, (i) there exists no pair of ob-
servable vertices in any DAG G such thatA’s output for that
pair is less informative than B’s; and (ii) there exists some
pair of observable vertices in some DAG G such that A’s
output for that pair is more informative than B’s. □

Finally, we may state our completeness result.

Theorem 3 (Completeness). No lazy oracle algorithm dom-
inates CBL-ORACLE. That is, inferences returned by CBL-
ORACLE are always at least as informative as those of any
lazy oracle algorithm.

An immediate corollary of Thm. 3 is that the identifiability
conditions of Thm. 2 are not just sufficient but also neces-
sary with respect to a lazy oracle algorithm.

Of course, relationships of conditional independence are
estimated from finite samples in practice. In the sequel, we
consider practical methods for implementing an algorithm
that is pointwise consistent under further assumptions about
the nature of conditional independencies in p(z,x).

5 STATISTICAL INFERENCE

In this section, we describe a practical method based on
the oracle algorithm, called CBL-SAMPLE, or simply CBL.
Our main assumption to help bridge the gap between theory
and practice is the following:

(A4) We have access to a regression algorithm by which
we can test any pairwise conditional independence
statement X ⊥⊥Y | S by regressing Y on S ∪ {X}.

The regression is implemented with a variable selection
strategy which will, in the limit of infinite data, remove
X from the regression equation iff X ⊥⊥Y | S.

Statistical error control techniques are presented under this
assumption. We will not discuss its validity for the spe-
cific sparse regression engines exploited here. This is well-
understood in, for example, the case of Gaussian linear
regression and a z-test of the coefficient for X . In other
scenarios, due to computational or statistical reasons, this is
less straightforward (e.g., lasso is “sparsistent” only under
restrictive assumptions, and it is possible to have a covariate
dropping out of a population regression function even if
the corresponding conditional independence does not hold
[Hastie et al., 2015]). Instead, we take this foundational
assumption as an idealization that simplifies analysis, being
open about the fact that, in practice, such assumptions may
only be approximately satisfied.

Constraints like W ⊥⊥Xj |A\W ∪ [Xi] suggest two regres-
sion models per triplet (Xi, Xj ,W ): one for the regression
of Xj on W , A\W and Xi, and another for the regression
of Xj on W and A\W only. In the algorithm that follows,
we simplify this by using a single model to simultaneously
test for all W , fitting a regression for Xj on A and Xi,
and another regression for Xj on A only. These are clearly
mathematically equivalent (as A = A\W ∪ {W}), so long
as the variable selection procedure in the regression model
can be computed exactly, for instance when using z-tests
for a Gaussian regression model or when lasso sparsistency
conditions are satisfied. This will not necessarily be the case
when an intractable combinatorial search underlies variable
selection, or when conditions for a continuous relaxation
do not hold. The safer alternative is, just like in the oracle
algorithm, to perform individualized model selection for
each W , without any concern for simultaneously selecting
variables within A\W .

Nevertheless, for simplicity we rely on a joint variable se-
lection procedure that uses all elements of A when fitting
each regression model, and empirically show that bundling
individual covariate tests achieves better results than exist-
ing alternatives. We emphasize that combinatorial search
can be avoided altogether by separating selection on each
W from any sort of sparse regularization or search among
the other covariates, if so desired.

Bipartite Subgraphs. We begin with the simplest case, in
which we have just two foreground variables X = {X,Y }.
We fit a quartet of models to estimate the following condi-
tional expectations:

f0Y : E[Y | Z]

f1Y : E[Y | Z, X]

f0X : E[X | Z]

f1X : E[X | Z, Y ],

where subscripts index outcome variables and superscripts
differentiate between full and reduced conditioning sets.



Assume, for concreteness, that all structural equations are
linear. Since some elements of Z may not influence X , we
estimate the members of this quartet using lasso regression,
which performs automatic feature selection. This results
in four different active sets of predictors. For instance, the
active set Ŝ0

Y (λ) ⊆ Z picks out just those background vari-
ables that receive nonzero weight in the model f̂0Y at a given
value of the regularization parameter λ (though we generally
suppress the dependence for notational convenience).

Our basic strategy is to refit the model quartet some large
number of timesB, taking different training/validation splits
to get a sampling distribution over active sets. (The exact re-
sampling method is described in more detail below.) This al-
lows us to test the antecedent of (R3) by evaluating whether
X ∈ Ŝ1

Y and Y ∈ Ŝ1
X with sufficient frequency. If the con-

junction occurs fewer than γB times (with the convention
that γ = 1/2) we conclude that X ∼ Y . Because we seek to
minimize errors of commission, we are more conservative
in our inference procedures for ≺ and ⪯ relations. From
our distribution of active sets we calculate the (de)activation
rate of each non-descendant with respect to a given causal
ordering. This gives four unique rates per non-descendant,
representing the (de)activation frequencies when treating ei-
ther X or Y as the candidate cause. High rates are evidence
that the corresponding inference rule applies.

What is a reasonable threshold for drawing such an infer-
ence? It is not immediately obvious how to specify an ex-
pected null (de)activation rate without further assumptions
on the data generating process. Rather than introduce some
ad-hoc prior or sparsity constraint, we take an adaptive
approach inspired by the stability selection procedure of
Meinshausen and Bühlmann [2010]. Specifically, we use
a variant of complementary pairs stability selection [Shah
and Samworth, 2013], which guarantees an upper bound
on the probability of falsely selecting a low-rate feature at
any given threshold τ . The method is so named because, on
each draw b, we partition the data into disjoint sets of equal
size. Rates are estimated over all 2B subsamples.

Stability selection was originally conceived for controlling
error rates in feature selection problems, primarily lasso re-
gression. We adapt the procedure to accommodate our mod-
ified target, which is a conjunction of inclusion/exclusion
statements rather than a single selection event. Specifically,
we are interested in the probability of (de)activation under
some fixed feature selection procedure Ŝ. We write:

rd(Z)X⪯Y := P(Z ∈ Ŝ0
Y ∧ Z ̸∈ Ŝ1

Y )

to denote the probability that feature Z is deactivated w.r.t.
X ⪯ Y . Activation rates are analogously defined:

ra(Z)X⪯Y := P(Z ̸∈ Ŝ0
X ∧ Z ∈ Ŝ1

X).

For the opposite ordering, we simply swap active sets, using
Ŝ0
X , Ŝ

1
X for deactivation, and Ŝ0

Y , Ŝ
1
Y for activation w.r.t.

X ⪰ Y .

Definition 7 (Complementary pairs stability selection). Let
{(D2b−1,D2b) ⊆ [n] : b ∈ [B]} be randomly chosen in-
dependent pairs of sample subsets of size ⌊n/2⌋ such that
D2b−1 ∩ D2b = {∅}. For τ ∈ [0, 1], ϕ ∈ {a, d}, and ψ ∈
{X ⪯ Y,X ⪰ Y }, the complementary pairs stability selec-
tion (CPSS) procedure is Ĥτ,ϕ,ψ := {k : r̂ϕ(Zk)ψ ≥ τ},
with estimated rates given by:

r̂d(Z)X⪯Y := #{b : Z ∈ Ŝ0
Y (Db) ∧ Z ̸∈ Ŝ1

Y (Db)}/2B

for deactivation w.r.t. X ⪯ Y , and

r̂a(Z)X⪯Y := #{b : Z ̸∈ Ŝ0
X(Db) ∧ Z ∈ Ŝ1

X(Db)}/2B

for activation w.r.t. the same ordering. Again, to estimate
rates for the opposite ordering, we simply swap active sets
as described above. □

For some θ < τ , let Lθ,ϕ,ψ := {k : rϕ(Zk)ψ ≤ θ} denote
the set of low-rate variable indices for some ϕ, ψ. Our goal is
to bound the expected number of low-rate features selected
at a given threshold τ , i.e. E[|Ĥτ,ϕ,ψ ∩ Lθ,ϕ,ψ|]. Methods
for doing so rely on certain assumptions about the distribu-
tion of rates for features within Lθ,ϕ,ψ . Shah and Samworth
[2013]’s tightest bound is achieved under r-concavity, for-
mally defined in Appx. B. Roughly, r-concave distributions
describe a continuum of constraints that interpolate between
unimodality and log-concavity for r ∈ [−∞, 0]. Simulation
results suggest that (de)activation rates for low-rate features
exhibit the following property (see Appx. B):

(A5) For all Z ∈ Lθ,ϕ,ψ, empirical rates r̂ϕ(Z)ψ are ap-
proximately −1/4-concave.

We now have the following error control guarantee:

Theorem 4 (Error control). The expected number of low-
rate features selected by the CPSS procedure is bounded
from above:

E[|Ĥτ,ϕ,ψ ∩Lθ,ϕ,ψ|] ≤ min{D(θ2, 2τ − 1, B,−1/2),
D(θ, τ, 2B,−1/4)}|Lθ,ϕ,ψ|,

where D(θ, τ, B, r) is the maximum of P(X ≥ τ)
over all r-concave random variables supported on
{0, 1/2B, 1/B, . . . 1} with E[X] ≤ θ.

This is a direct application of Shah and Samworth [2013]’s
Eq. 8. Though the bound is valid for all τ ∈ (θ, 1], we apply
an adaptive lower bound ϵ > θ, which denotes the minimum
rate such that no conflicting inferences emerge, e.g. different
ancestors deactivating for opposite causal orderings (see Alg.
5, Appx. C). We follow the authors’ recommendations for
default values of B and θ (see Appx. B). We note that there
is no closed form solution for D(θ, τ, B, r), but the quantity
is easily computed with numerical methods. If the number
of (de)activations detected via this procedure exceeds the



maximum error bound of Thm. 4, we infer that at least one
must be a true positive. Since even a single (de)activation is
sufficient to partially order variable pairs, this licenses the
corresponding inference.

General case. Our method can be expanded to accom-
modate larger sets of foreground variables and nonlinear
structural equations. When dX > 2, we simply loop through
all dX(dX−1)/2 unique pairs of variables and record any in-
ferences made at time t = 1. Like in the oracle algorithm, as
the set A grows for t > 1, we continue cycling through pairs
that have yet to be unambiguously decided until no further
inferences are forthcoming. Though we use lasso regression
for linear systems in our experiments, stepwise regression or
even best subset selection may be viable alternatives [Hastie
et al., 2020]. For nonlinear systems, we use gradient boosted
regression trees with early stopping, which automatically
adapt to signal sparsity [Friedman, 2001, Bühlmann and
Yu, 2003]. Any function s : Rd × R 7→ 2d from input vari-
ables and outcome to an active set of predictors will suffice.
Such feature selection subroutines may be consistent estima-
tors for the Markov blanket of a given variable under fairly
minimal conditions [see, e.g., Candès et al., 2018, Prop. 1].

In the worst case, CBL requiresO(Bd3X) operations per fea-
ture selection subroutine s, the complexity of which itself
presumably depends on n, dZ and dX . For example, with
n > d = dZ+dX , the least angle regression implementation
of lasso takesO(d3+nd2) computations [Efron et al., 2004],
resulting in overall complexity of O

(
B(d6X + nd5X + d3Z)

)
.

More generally, if s executes in polynomial time, then CBL
is of complexity order P. Since constraint-based graphical
learning without sparsity restrictions is NP-hard [Chickering
et al., 2004], this represents a major computational improve-
ment. The procedure can be further sped up by parallelizing
over subsamples, as these are independent. For pseudocode
summarizing CBL-SAMPLE, see Alg. 4 in Appx. C.

6 EXPERIMENTS

Full details of our simulation experiments are described in
Appx. D. Briefly, we vary the sample size and dimensional-
ity of the data, as well as graph structure and sparsity. Linear
and nonlinear structural equations are applied at a range of
different signal-to-noise ratios (SNRs).

Bipartite subgraphs. We benchmark against a constraint-
based method proposed by Entner et al. [2013] and a score-
based alternative similar in spirit to many causal discovery
algorithms. We highlight two key differences between our
proposal and Entner et al. [2013]’s: (1) Their method as-
sumes a partial order on foreground variables upfront. With
the prior knowledge that X ⪯ Y , it tests whether X → Y
or X ∼ Y , with the possibility that the disjunction is unde-
cidable from the observational distribution. It therefore has

an advantage in the following experiment, where the partial
ordering assumption is satisfied, but competitors still con-
sider the possibility thatX ← Y . (2) The original version of
Entner et al. [2013]’s method performs combinatorial search
through the space of non-descendants, which is infeasible in
our setting. Following the authors’ advice, we simplify the
procedure by sampling random variable-subset pairs from
Z, evaluating conditional independence either via partial
correlation (for linear data) or the generalized covariance
measure [Shah and Peters, 2020] with gradient boosting
subroutine (for nonlinear data).

For our score-based benchmark, we train a series of models
to evaluate three different structural hypotheses, correspond-
ing to (G1) X → Y ; (G2) X ← Y ; and (G3) X ∼ Y . We
use lasso for linear data and gradient boosting for nonlinear
data. We calculate the proportion of variance explained on
a test set for all settings. If (G3) scores highest, we return
X ∼ Y . Otherwise, we test whether out-of-sample residuals
for the top scoring model are correlated with the foreground
predictor. If so, we return NA; if not, we return whichever
of (G1) or (G2) scored highest.

We visualize results for the setting with 100 background
variables and expected sparsity 1/2 (see Fig. 2). Data are
simulated from 100 random graphs drawn under three dif-
ferent structural constraints: (a) X → Y ; (b) X ⊥⊥G Y | S,
for some S ⊆ Z; and (c) X ⊥⊥G Y | S ∪ [U ], where U
denotes a set of latent confounders. The first two are identi-
fiable, while the third is not. Linear and nonlinear structural
equations are applied with SNR = 2.

We find that CBL fares well in all settings. Constraint-based
methods show less power to detect edges when present
in this experiment, especially in nonlinear systems, while
score-based methods incur higher error rates when edges are
absent. We also observe that the constraint-based procedure
requires considerable tuning—we had to experiment with a
five-dimensional grid of decision thresholds to get reason-
able results—and is by far the slowest to execute, taking
about five times longer than CBL even with the random
subset approach.

Larger subgraphs. We benchmark against two popular
causal discovery algorithms: really fast causal inference
(RFCI), a constraint-based method proposed by Colombo
et al. [2012] as a more scalable version of the original FCI
algorithm [Spirtes et al., 2000]; and greedy equivalence
search (GES), a score-based alternative due to Meek [1997]
and Chickering [2003]. Both algorithms can be computed
with background information to encode our partial ordering
assumption, and restricted to focus on the subgraph GX .
Despite its name, RFCI struggles to converge in reasonable
time (< 24 hours) when n = 1000 and dZ is on the order of
100, so we limit comparisons here to smaller datasets and
run fewer replications for this method (5) than we do for
GES (20). This illustrates how the assumption of extreme
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Figure 2: Simulation results at varying sample sizes for three different structures: (a) X → Y ; (b) X ⊥⊥G Y | S; and (c)
X ⊥⊥G Y | S ∪ [U ]. We compare our CBL method to constraint- and score-based benchmarks. Expected results of an
independence oracle are included at the far right.
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Figure 3: Simulation results for our multivariate experiment,
benchmarking against RFCI and GES. Whiskers represent
standard errors.

sparsity is necessary for RFCI to work in practice.

For this simulation, we draw random graphs of varying
sample size with low (0.25) and high (0.75) sparsity, dZ ∈
{50, 100}, and dX = 6. Relationships are linear through-
out, with RFCI using partial correlation tests for conditional
independence and GES scoring edges according to BIC.
Accuracy is measured with respect to all pairwise relation-
ships for which a decision is reached. We find that CBL is
more accurate on average in nearly all settings, with espe-
cially strong results in the high-sparsity, high-dimensionality
regime. However, our method can be less stable than GES,
as illustrated by the greater variance of results, particularly
in dense networks where CBL outputs a relatively large
number of NAs.

SNR = 0.5 SNR = 1 SNR = 2

DML IPW TMLE DML IPW TMLE DML IPW TMLE
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E

Figure 4: Average treatment effects estimated by combining
CBL with three different algorithms at varying SNRs.

Causal effects. Since our method identifies admissible
sets for all detected edges, we may estimate the average
treatment effect (ATE) via backdoor adjustment. For this
experiment, we simulate data from a partially linear model
as originally parametrized by Robinson [1988]:

X = f(Z) + ϵX ,

Y = βX + g(Z) + ϵY ,

E[ϵX | Z] = 0,

E[ϵY | Z, X] = 0,

with X ∈ {0, 1} and Y ∈ R. The goal is to estimate β,
which corresponds to the ATE. We run our pipeline with
three different estimators: double machine learning (DML)
[Chernozhukov et al., 2018], inverse propensity weighting
(IPW) [Rosenbaum and Rubin, 1983], and targeted max-
imum likelihood estimation (TMLE) [van der Laan and
Rose, 2011]. For all three methods, models are fit with gra-
dient boosting and parameters estimated via cross-fitting to
avoid regularization bias. We simulate 1000 datasets with
β = 1, dZ = 100, n = 10000, and SNR ∈ {1/2, 1, 2}.
We find that all three methods provide consistent ATE es-
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Figure 5: Estimated phosphocoline subnetwork in S. cere-
visiae. Nodes are genes, edges denote ancestral relations.

timates, with TMLE generally performing best in terms of
bias and variance (see Fig. 4). This illustrates how CBL can
be combined with existing algorithms to go beyond causal
discovery and into causal inference.

Biological data. As a final example, we consider regula-
tory mechanisms in Saccharomyces cerevisiae. Our back-
ground variables are single nucleotide polymorphism (SNP)
markers, with transcriptomic profiles serving as foreground
variables. Such setups are common in expression quantita-
tive trait loci (eQTL) studies, where the goal is to identify ge-
netic sources of variation in mRNA expression. Our dataset
spans 112 F1 segregants, a cross of parental strains BY4716
and the wild isolate RM11-1a [Brem and Kruglyak, 2005].
This dataset has been analyzed by several groups, who have
identified numerous regulatory mechanisms through a com-
bination of statistical and experimental methods [Brem et al.,
2005, Storey et al., 2005, Chen et al., 2007].

We focus on the six genes that comprise the phosphocoline
subnetwork, which regulates metabolic processes. The full
set of background variables includes 3244 SNP markers,
covering over 99% of the genome. We examine cis-eQTL
candidates for each pair of genes—here defined as markers
within 5 kilobases of either on the same chromosome—
meaning dZ is usually on the order of 500. We use lasso
for feature selection. Results are visualized in Fig. 5, where
edges denote relations of ancestry rather than direct causa-
tion. These findings corroborate those of Chen et al. [2019],
who recently examined regulatory mechanisms in yeast, and
inferred a phosphocoline subgraph that includes each ances-
tral relationship depicted above. Our method is conservative
by comparison, perhaps due to the acyclicity assumption.
Chen et al. [2019] infer several cycles (e.g., between ITR1
and MHO1) where CBL withholds judgment.

7 DISCUSSION

We have proposed a novel method for learning ancestral
relationships in downstream subgraphs based on the con-
founder blanket principle, which advises against combina-

torial search for conditioning sets in cases where scale-free
sparsity cannot be safely assumed. Our CBL algorithm is
provably sound and lazy oracle-complete. Our sample ver-
sion controls errors of commission with high probability
and compares favorably to constraint- and score-based alter-
natives in a range of trials. In addition to accurately learning
ancestral relationships, CBL identifies valid adjustment sets
for causal effect estimation.

Completeness in causal discovery has traditionally been
defined with respect to a classical independence oracle. In
the context of statistical inference, this idealization serves
a clear purpose, since there exists no uniformly valid test
of conditional independence [Robins et al., 2003, Shah and
Peters, 2020]. Yet if our goal is simply to avoid the messi-
ness of probabilistic reasoning in finite samples, then such
oracles may overshoot the mark, for not only are they omni-
scient about conditional independence relations—they are
also omnipotent with respect to computational complexity,
able to scan through arbitrary subsets at no cost. We believe
there are theoretical and practical advantages to decoupling
these superpowers. Our lazy oracle is one example of how
this may look, but others are also worth exploring.

We note several limitations of our method. First, CBL will
struggle in the presence of weak edges. For instance, if the
true graph is Z → X → Y and I(X;Y )≫ I(X;Z), then
conditioning on Y in finite samples could deactivate some
path(s) from Z to X , leading to the erroneous inference
Y → X . We observe that weak edges pose problems for
all causal discovery procedures. Indeed, one motivation for
taking an inclusive approach to background variables is the
hope that a sufficiently large confounder blanket should
include at least some strong edges that can be exploited to
learn structural information about GX .

CBL relies on the faithfulness assumption, which has been
challenged by numerous authors [Zhang and Spirtes, 2008,
Andersen, 2013, Uhler et al., 2013]. Several weaker variants
have been proposed, including SGS-minimality [Spirtes
et al., 2000], P-minimality [Pearl, 2009a], and 2-adjacency
faithfulness [Marx et al., 2021]. One direction for future
work is to extend CBL under these relaxed assumptions.

The current implementation of CBL is order-dependent, in-
somuch as estimated subgraphs for the same dataset may
vary if columns are reordered. This can be addressed us-
ing methods previously devised for constraint-based causal
discovery [Colombo and Maathuis, 2014].
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