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Abstract

The Shapley value – a fundamental game-theoretic
solution concept – has recently become one of
the main tools used to explain predictions of
tree ensemble models. Another well-known game-
theoretic solution concept is the Banzhaf value.
Although the Banzhaf value is closely related to
the Shapley value, its properties w.r.t. feature attri-
bution have not been understood equally well. This
paper shows that, for tree ensemble models, the
Banzhaf value offers some crucial advantages over
the Shapley value while providing similar feature
attributions.
In particular, we first give an optimal O(TL+ n)
time algorithm for computing the Banzhaf value-
based attribution of a tree ensemble model’s output.
Here, T is the number of trees, L is the maximum
number of leaves in a tree, and n is the number of
features. In comparison, the state-of-the-art Shap-
ley value-based algorithm runs in O(TLD2 + n)
time, where D denotes the maximum depth of a
tree in the ensemble. Next, we experimentally com-
pare the Banzhaf and Shapley values for tree en-
semble models. Both methods deliver essentially
the same average importance scores for the studied
datasets using two different tree ensemble models
(the sklearn implementation of Decision Trees or
xgboost implementation of Gradient Boosting De-
cision Trees). However, our results indicate that,
on top of being computable faster, the Banzhaf is
more numerically robust than the Shapley value.

1 INTRODUCTION

Tree ensembles are one of the most commonly used models
for solving practical problems [Friedman, 2001, Kaggle,
2017]. Tree ensembles are robust, easy to tune, and fast to

train. They need small computational resources and support
different types of data and missing values. Given this, tree
ensembles are often the first choice model for tabular data.

One of the key research challenges regarding tree ensemble
models (see Section 2 for a formal definition) and other
machine learning techniques, in general, is explainability.
When high-value decisions are taken, e.g., in medical diag-
nostic, understanding why a model made a specific predic-
tion is often more important than the prediction’s accuracy.
Thus we need to develop methods to interpret the model’s
results in a transparent way so that humans are willing to
follow model recommendations. And indeed, a large body
of previous work has been devoted to explaining tree mod-
els and their predictions, e.g., [Chen and Guestrin, 2016,
Breiman et al., 1984, Breiman, 2004, Brophy and Lowd,
2020, Kuralenok et al., 2019, Lundberg et al., 2020, Saabas,
2022].

Feature attribution is one of the approaches to interpret-
ing model predictions that has been recently subject to a
growing interest. In this approach, each feature’s impact,
or importance, on the model’s output f(x) is quantified us-
ing a numerical value, called the feature’s local attribution
(e.g., [Lundberg and Lee, 2017, Sundararajan et al., 2017]).
Similarly, one can attempt to quantify the individual fea-
tures’ overall impact on the model using global attributions
(e.g., [Covert et al., 2020, Lundberg et al., 2020]).

One of the most popular approaches to feature attribution
uses methods originating from cooperative game theory that
are called solution concepts or values. They measure the im-
portance of each player in, or contribution to, a coalitional
game. While there exist many ways in which the importance
of each player can be evaluated, some solution concepts
are considered more fundamental than others due to under-
lying axiom systems that uniquely determine them. One
important game-theoretic solution concept that attracted a
lot of attention in the context of explainability is the Shap-
ley value (e.g., [Lundberg et al., 2020, Lundberg and Lee,
2017, Štrumbelj and Kononenko, 2014, Sundararajan et al.,
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2017]). To formally introduce this concept, let us denote
by ⟨g, U⟩, a coalition game where g : 2U → R, g(∅) = 0,
is the set function that assigns utility to each coalition, and
U = {1, . . . , n} is the set of players (or – in our context –
features). Then, the Shapley value of the feature i ∈ U is
defined as follows [Shapley, 1953]:

ϕi =
1

n

∑
S⊆U\{i}

(
n− 1

|S|

)−1

(g(S ∪ {i})− g(S)) . (1)

To operationalize this formula in our context, we further
need to define function g that extends model f to all subsets
of features S ⊆ U , i.e., g allows us to drop features U \ S
of both the input x and the model f . There are multiple
alternatives of how this can be done proposed in the litera-
ture [Sundararajan and Najmi, 2020, Janzing et al., 2020]. In
this paper, we focus on a popular approach by Lundberg and
Lee [2017] (see Section 2 for more details). Furthermore,
it should be noted that, while the Shapley value has certain
attractive properties, it is evident from the above formula
that, in the general case, it requires the input of exponential
size (i.e., function g). However, in certain structured environ-
ments, when g is of a convenient form or is limited in size,
Shapley value can be computed in time polynomial in the
number of players (features) [Deng and Papadimitriou, 1994,
Greco et al., 2015, Michalak et al., 2013, Maafa et al., 2018],
e.g., for tree ensemble models [Lundberg et al., 2020].

The Shapley value is not the only solution concept that
has been advocated for interpreting model predictions. The
Banzhaf value [Banzhaf, 1965] is the most well-studied
alternative for Shapley value coming from the coalitional
game theory and some papers indeed suggest using it for
the purpose of interpreting model predictions [Datta et al.,
2015, Patel et al., 2020, Sliwinski et al., 2019]. This value,
also well-known and axiomatized, aggregates contributions
of individual features differently:

βi =
1

2n−1

∑
S⊆U\{i}

(g(S ∪ {i})− g(S)) . (2)

Mathematically, while the Shapley value is the weighted
average of marginal contributions of players to coalitions,
the Banzhaf value is a simple average.

Unfortunately, the difference between these two values
when applied to feature attribution has not been under-
stood well in the literature. We note that attributions based
on Shapley value have been extensively studied experi-
mentally [Lundberg et al., 2020, Lundberg and Lee, 2017,
Štrumbelj and Kononenko, 2014, Sundararajan et al., 2017],
whereas in the case of Banzhaf value, such studies have
been done only on some basic datasets [Datta et al., 2015,
Sliwinski et al., 2019, Patel et al., 2020]. Moreover, despite
very high similarity of both methods, to the best of our
knowledge, no comparison between them has been done on
real-world data-sets, e.g., Patel et al. [2020] compares on

a single depth-3 tree, whereas Patel et al. [2021] uses both
methods for vocabulary selection in different NLP tasks
without directly comparing these methods. For complete-
ness, we review other explanation methods in the supple-
mentary material.

The primary theoretical property that distinguishes the Shap-
ley value from the Banzhaf value, is that of so-called Effi-
ciency, that the individual importances ϕi sum up to pre-
cisely g(U).1 Several authors (e.g., [Aas et al., 2021, Sun-
dararajan and Najmi, 2020]) find a similar property desir-
able for attribution methods: that the attributions sum up
precisely to the difference between the output of the model
and the baseline/mean prediction of the model. However,
this does not always seem crucial e.g., if we only want to
compare impacts of individual features, and is not guar-
anteed by other attribution methods used in practice, e.g.,
LIME [Ribeiro et al., 2016]. Furthermore, it is also possi-
ble to consider the normalized Banzhaf value that satisfies
Efficiency Van den Brink and Van der Laan [1998].

Our contribution. In this paper we partially fill the gap
by providing a comprehensive analysis of the Banzhaf value,
including its comparison to the Shapley value, when applied
to explainability of tree ensemble models. In particular, our
contributions can be summarised as follows.

We first show that, for tree ensemble models, when using
the same natural set function g as in [Lundberg and Lee,
2017, Lundberg et al., 2018, 2020], Banzhaf value can be
computed in linear time, noticeably faster than the Shapley
value. Specifically, we develop an O(TL+ n) time algo-
rithm for computing the Banzhaf value-based attribution of
a tree ensemble model’s output. Here, T is the number of
trees, L is the maximum number of leaves in a tree, and n is
the number of features. In comparison, the state-of-the-art
Shapley value-based algorithm by Lundberg et al. [2018,
2020] runs in O(TLD2 + n) time, where D denotes the
maximum depth of a tree in the ensemble. We note that
recent papers [Arenas et al., 2021, den Broeck et al., 2021]
do not improve this complexity2, but extend the method to
more complex models instead.3 We stress that our algorithm
is asymptotically optimal, since even the description of a
tree ensemble has size Θ(TL), and the output size is Θ(n).

1The Shapley and Banzhaf values satisfy similar set of axioms,
except for the Banzhaf value, the Efficiency axiom is replaced with
so-called 2-Efficiency axiom.

2In fact, these papers only focus on proving polynomial time
complexity, and neither bound nor optimize the degrees of the
actual polynomials involved. Obtaining low-degree polynomial
time algorithms is crucial from the practical point of view.

3Though, not always without loss of generality with respect
to [Lundberg et al., 2018, 2020]. For example, decision trees cap-
tured by the class of boolean circuits studied in [Arenas et al.,
2021] seem to forbid using a single feature for splitting multiple
times on a root-leaf path of a decision tree.



On the technical level, the algorithm of Lundberg et al.
[2018, 2020], reduces computing (ϕi)

n
i=1 to finding indi-

vidual leaf contributions to the attribution, one per each
leaf/feature pair (l, i) such that i is used as a split feature
in some ancestor of l. This goal is achieved using a top-
down recursive algorithm whose running time is inherently
Ω(TLD) (i.e., super-linear in the input size) simply because
there can be Θ(TLD) such leaf/feature pairs. This bound
still holds even when this approach is applied to computing
a Banzhaf-value attribution. In our approach, leaf contri-
butions are aggregated using a more efficient bottom-up
dynamic programming approach, which requires only a lin-
ear number of auxiliary values to be computed.

In the experiments, our algorithm visibly outperforms all
other algorithms, and can lead to considerable time savings
when computing feature importances for decision tree-based
models in practice. Moreover, we analytically prove that
for trees of depths that commonly occur in practice, our
algorithm for the Banzhaf value delivers numerically correct
results. Similar arguments do not seem to be applicable to
the most efficient algorithms computing Shapley value based
attribution even for constant depth trees.

We also perform an experimental comparison of the Banzhaf
and Shapley values for tree ensemble models. For four stud-
ied real-world datasets and using two different approaches
to training tree models, we verify experimentally that both
methods deliver essentially the same average feature im-
portance scores (called global impacts in [Lundberg et al.,
2020]) and very close attributions of individual predictions
despite the differences in the sets of axioms the Banzhaf
and the Shapley values satisfy. However, the Banzhaf value
is more numerically robust than the Shapley value, and only
very small errors are observed in the computations. Overall,
our analysis indicates that for tree models, the Banzhaf value
has two important advantages over the Shapley value. While
both methods deliver comparable attributions, the Banzhaf
value works faster and is less prone to numerical errors.

2 PRELIMINARIES

Let U := {1, . . . , n} be a set of features. Let x be the input
to the model to be explained. For i ∈ U , we write xi to
refer to the value of the i-th feature in x. More generally,
for any subset S ⊆ U we write xS when referring to the
vector (xi)i∈S . We sometimes talk about random feature
vectors, or consider the values of individual features to be
random variables. We then write X or Xi respectively. We
write XS to denote the vector of random variables (Xi)i∈S .
Let S̄ denote the complement U \ S.

Tree models. Let f : RU → R be the output function of
the model to be explained. We focus on tree ensemble mod-
els (T )Ti=1 where the output f(x) of the model is simply the
average output fTi

(x) of its T individual trees. Following

Lundberg et al. [2020], we assume the individual trees to
have the number of leaves bounded by L and depth bounded
by D.4 Let us denote by ρi the root of the tree Ti.

When talking about an input decision tree T , we adopt
the notation of [Lundberg et al., 2020]. T is a binary tree
based on single-variable splits: each non-leaf node v ∈ T
is assigned a feature dv, and a threshold tv, whereas each
leaf l is assigned a real value f(l). Let av, bv denote the left
and right children of a non-leaf node v ∈ T . The output
fT (x) of the tree T is computed by following a root-leaf
path in T : at a non-leaf node v ∈ T , we descend to av if
xdv

< tv, or to bv otherwise. When a leaf is reached, its
value is returned. Denote by L(T ) the set of leaves of T .
Denote by T [v] the subtree of T rooted at v.

Set functions. We write f(xS , XS̄) when referring to a
random variable being the value of f if the values for fea-
tures in S are fixed to the respective values of x, and the
values XS̄ are random variables. Let XU be distributed5 as
in the training set of the model f . Recall that a set function
g : 2U → R with g(∅) = 0, has to be fixed to talk about the
Shapley or Banzhaf value-based attributions (ϕi)i∈U and
(βi)i∈U as defined in Equations (1) and (2), resp., Lundberg
et al. [2020] and Janzing et al. [2020] suggest using the
following idealized6 set function g∗ for feature attribution:

g∗(S) := E[f(xS , XS̄)]− E[f(XU )]. (3)

Note the term E[f(XU )] in (3) serves the purpose of having
g(∅) = 0 and cancels out when computing the Shapley value
from Equation (1). Thus, for simplicity in the following we
can redefine g∗(S) := E[f(xS , XS̄)].

Using the idealized set function g∗ would be computation-
ally too costly. Consequently, Lundberg et al. [2020] in
their TREESHAP_PATH7 algorithm considers the set func-
tion g whose purpose is to “approximate” g∗. Namely,
g(S) ≈ g∗(S) is computed as shown in Algorithm 1. This
method dates back to the classical work of Friedman [2001]
and is also implemented as a way to compute partial de-
pendence plots in the scikit-learn package [Pedregosa et al.,
2011]. Its one advantage is that it does not require access
to the training data, but merely to the “coverages” rv of all
the subtrees T [v] (for all trees T in the ensemble), i.e., the

4This is merely for clarity of the obtained time bounds. See
discussion after Theorem 1.

5In fact, here we can use any other distribution, possibly
over some different validation data, such that the expectations
E[f(xS , XS̄)] can be estimated using Algorithm 1. This allows us
to produce attributions that are contrastive to other baselines than
the mean prediction over the training data.

6It might seem that using marginal expectation instead of con-
ditional expectation here leads to inclusion of unrealistic data when
features are highly dependent. However, Janzing et al. [2020] gave
some compelling reasons why this is still a reasonable choice.

7We will sometimes use an abbreviated name TREESHAP.



Algorithm 1 Estimating E[f(xS , XS̄)]

1: function DESC(S, v)
2: if v is a leaf then
3: return f(v)

4: if dv ∈ S then
5: if xdv < tv then
6: return DESC(S, av)
7: else
8: return DESC(S, bv)

9: else
10: return rav

rv
· DESC(S, av) +

rbv
rv

· DESC(S, bv)

11: function g(S)
12: return 1

T ·
∑T

i=1 Desc(S, ρi)

numbers of training set points that fall into T [v]. It can be
proved that this method approximates E[f(xS , XS̄)] well
if the individual feature random variables Xi are indepen-
dent. With such a set function g, Lundberg et al. [2018,
2020] show how to compute the Shapley value attributions
(ϕi)i∈U exactly in O(TLD2 + n) time.

In the remaining part of the paper, we denote by g(S)
the output of Algorithm 1 for the subset S ⊆ U , i.e.,
we consider the same approximation of g∗(S) as in the
TREESHAP_PATH algorithm of Lundberg et al. [2020].

3 THE BANZHAF VALUE ALGORITHM

In this section, we introduce an optimal O(TL+ n) time al-
gorithm, called BANZHAF, for computing attributions based
on the Banzhaf value. For clarity, let us assume first that
there is just a single tree T in the model, i.e., T = 1. This is
without loss of generality, since the prediction of an ensem-
ble model is simply the average of the predictions produced
by individual trees. We describe the algorithm for arbitrary
T later on. Due to space constraints, the proofs of technical
lemmas can be found in the supplementary material.

Let ρ denote the root of T , and pv the parent of node v ∈ T ,
v ̸= ρ. Furthermore, let Fv be the set of features assigned
to the ancestors of v, i.e., Fρ = ∅, and Fv = Fpv

∪ {dpv
}

for v ̸= ρ. The value P [v] = rv/rρ can be thought as the
probability that the model returns a value from T [v].

Algorithm 1 computes the estimate E[f(xS , XS̄)]. Observe
that the output of this algorithm for S = ∅ is precisely equal
to

∑
l∈L(T ) P [l] · f(l). More generally, denote by P [v, S]

the weight from the ancestor recursive calls assigned to
the subtree rooted at v when running Algorithm 1 with an
arbitrary S ⊆ U . Formally, P [ρ, S] = 1, and for any v ̸= ρ,

P [v, S] =


P [pv, S] · rv

rpv
if dpv

/∈ S,

P [pv, S] · [xdpv
< tpv

] if dpv
∈ S, v = apv

,

P [pv, S] · [xdpv
≥ tpv

] if dpv
∈ S, v = bpv

.

Then, the algorithm outputs∑
l∈L(T )

P [l, S] · f(l) = g(S) ≈ g∗(S). (4)

In our approach, each of the desired attributions βi is ob-
tained by summing the contributions of each individual leaf
l ∈ L(T ) to the sum (2) with g defined as in (4). More
precisely:

βi =
∑

l∈L(T )

 f(l)

2n−1

∑
S⊆U\{i}

(P [l, S ∪ {i}]− P [l, S])

 .

We now introduce the following crucial intermediate values
that will enable us to evaluate the above formula efficiently.
For any v ∈ T , and subset G ⊆ U , let

β(v,G) :=
1

2|G|

∑
S⊆G

P [v, S]. (5)

Lemma 1. For any i ∈ U , we have:

βi =
∑

l∈L(T )
i∈Fl

2f(l) · (β(l, Fl)− β(l, Fl \ {i})) .

Lemma 1 reduces computing the Banzhaf value to comput-
ing O(L) values of the form β(l, Fl), and O(L ·D) values
of the form β(l, Fl \ {i}), for all (l, i) such that l ∈ L(T )
and i ∈ Fl. The O(L ·D) bound follows since each leaf has
no more than D ancestors, which implies |Fl| ≤ D.

In the following part of the section, we first give a recursive
formula for computing the values β(v,G) efficiently using
dynamic programming. Next, we show a simpler O(LD)
time algorithm computing all the values β(·, ·) required by
Lemma 1. As a final step, we show how to improve the
worst-case running time of the algorithm to optimal O(L).

Recurrence. To proceed, we will need the auxiliary values
∆v,y for v ∈ T and y ∈ U , defined inductively as follows:

∆v,y =



1 if v = ρ,

∆pv,y if dpv ̸= y and v ̸= ρ,

∆pv,y · [xy < tpv
] · rv

rpv

if dpv
= y and

apv
= v ̸= ρ,

∆pv,y · [xy ≥ tpv
] · rv

rpv

if dpv
= y and

bpv
= v ̸= ρ.

The above auxiliary values can be in turn used to recursively
compute the values P [·, ·].

Lemma 2. Let v ∈ T and Q ⊆ U and y ∈ U \Q. Then:

P [v,Q ∪ {y}] = P [v,Q] ·∆v,y.



Algorithm 2 Computing β[l] = β(l, Fl) for all l ∈ L(T ).

1: procedure TRAVERSE(v)
2: if dpv ∈ F then
3: present := true ▷ record that dpv in Fpv

4: b := 2
1+δ[dpv ]

· β[pv] ▷ b = β(pv, Fpv
\ dpv

)

5: else
6: present := false
7: F := F ∪ {dpv

} ▷ ensure F = Fv

8: b := β[pv] ▷ b = β(pv, Fpv
\ dpv

)

9: δold := δ[dpv ]
10: if v = apv then
11: δ[dpv

] := δ[dpv
] · [xy < tpv

] · rv
rpv

12: else
13: δ[dpv ] := δ[dpv ] · [xy ≥ tpv ] · rv

rpv

14: δ∗[v] := δ[dpv ] ▷ store ∆v,dpv
for future use

15: b := b · rv/rpv
▷ b = β(pv, Fv)

16: β[v] := b · 1
2 (1 + δ[dpv

]) ▷ Lemma 3
17: if v /∈ L(T ) then
18: TRAVERSE(av)
19: TRAVERSE(bv)

20: if present = false then ▷ revert changes to F, δ
21: F := F \ dpv

22: δ[dpv
] := δold

Lemma 2 applied to (5) allows computing the values β(v,G)
recursively, as stated in the below lemmas.

Lemma 3. Let v ∈ T and G ⊆ U . Let y ∈ U \G. Then:

β(v,G ∪ {y}) = 1

2
(1 + ∆v,y)β(v,G).

Lemma 4. Let v ∈ T , v ̸= ρ. Then, for any Q ⊆ U \{dpv},

β(v,Q) = β(pv, Q) · rv
rpv

.

3.1 BASIC ALGORITHM

Equipped with Lemmas 3 and 4, one can easily move be-
tween “nearby” values β(G, v). Namely, for any i ∈ U ,
given β(v,G) and ∆v,i, each of the values β(av, G),
β(bv, G), β(v,G ∪ {i}) can be computed in O(1) time.

Moreover, the values β(pv, G), β(v,G \ {i}) can also be
obtained in O(1) time by applying the respective “inverse”
forms of these lemmas. We now stress that being able to
compute β(v,G \ {i}) out of a value of the form β(v,G),
i.e., removing elements from the feature set G, is crucial for
two reasons. First, recall that we need to obtain values of
the form β(l, Fl \ {i}) for all leaves l and all i ∈ Fl. For
all such i, this value can be obtained using a single inverse
application of Lemma 3. Moreover, applying Lemma 4 to

obtain β(v, Fv) out of the parent value β(pv, Fpv ) requires
dpv /∈ Fpv . This may be violated if Fv = Fpv , i.e., dpv is
a feature in some other ancestors of v in the tree (which
does happen in practical models). In such a case, the inverse
Lemma 3 can be used to first compute β(pv, Fv \ {dpv

}),
then we apply Lemma 4 to obtain β(v, Fv \ {dpv

}), and
finally we again use Lemma 3 to get β(v, Fv).

The basic algorithm (which is similar in its essence to
TREESHAP_PATH), computes all the values β(v, Fv) for
v ∈ T – as explained above – using a simple recursive
tree traversal in O(L) time. In particular, this also gives all
the values β(l, Fl) that we need when invoking Lemma 1.
Afterwards, for each leaf l ∈ T , the remaining (again, re-
quired by the formula in Lemma 1) |Fl| values of the form
β(l, Fl \{i}) for i ∈ Fl can be computed in O(1) extra time
each using Lemma 3. As a result, through all pairs (l, i),
this takes O

(∑
l∈L(T ) |Fl|

)
= O(LD) time.

The above analysis silently assumed that all the needed
auxiliary values ∆v,y can be accessed in O(1) time. We now
justify this assumption. During the tree traversal we store
a global array δ indexed with the features U . We maintain
an invariant that δ[y] equals ∆pv,y when the processing of a
vertex v starts and also when it finishes. By (3), to guarantee
the invariant is satisfied upon the recursive traversals of the
subtrees rooted at av or bv , we may possibly need to update
only the value δ[dv] according to (3), because ∆v,y ̸= ∆av,y

or ∆v,y ̸= ∆bv,y may only happen when y = dv. When a
recursive traversal returns, we revert that change to δ[dv].

The pseudocode of a recursive procedure TRAVERSE com-
puting all the values β(l, Fl), which we also require in our
optimal algorithm, is given as Algorithm 2. In this proce-
dure, each of the computed values β(v, Fv) is recorded in a
global array as β[v]. The auxiliary global variable F stores
the set Fv when node v is processed; F can be implemented
using a bitmap of size n.

3.2 THE OPTIMAL ALGORITHM

The high-level idea behind our improved algorithm is to
avoid computing all the leaf contributions to the individual
components βi of the Banzhaf value separately. Instead, for
every node v ∈ T , v ̸= ρ, such that dpv

= i, we compute
the total contribution to βi of all the leaves Lv ⊆ T [v],
defined to be the subset of leaves for which v constitutes
the nearest weak ancestor (i.e., a node is considered its own
ancestor) with dpv = i, at once.

Note that for a given i ∈ U , the sets Lv for v ∈ T satisfying
dpv

= i, are pairwise disjoint, and in fact form a partition
of the set {l ∈ L(T ) : i ∈ Fl} through which summation
in Lemma 1 is performed. Additionally, observe that the
values ∆l,dpv

are equal to ∆v,dpv
for all leaves l in Lv .



Algorithm 3 Computing the values B(v) for all v ∈ T .

1: procedure FAST(v)
2: H[dpv ].PUSH(v)
3: if v ∈ L(T ) then
4: S[v] := f(v) · β[v]
5: else
6: FAST(av)
7: FAST(bv)
8: S[v] := S[av] + S[bv]

9: z := 0 ▷ z stores the sum
∑

w∈Qv
S(w)

10: while H[dpv ].TOP() ̸= v do
11: z := z + S[H[dpv ].TOP()]
12: H[dpv

].POP()

13: B[v] := S[v]− z
14: if |H[dpv ]| = 1 then ▷ empty H[dpv ] if gv =⊥
15: H[dpv

].POP()

Consider the following values for all v ∈ T , v ̸= ρ:

B(v) =
∑
l∈Lv

f(l) · β(l, Fl).

The below lemma shows that computing the Banzhaf value
β can be reduced, in linear time, to computing all the values
B(v), v ∈ T \ {ρ}: indeed, each B(v) appears in the sum
below for precisely one i ∈ U .

Lemma 5. For any i ∈ U , we have:

βi =
∑

v∈T \{ρ}
dpv=i

2(∆v,i − 1)

1 + ∆v,i
·B(v).

We have previously showed that the values β(l, Fl) can
be computed in linear time. We now describe a recursive
procedure FAST(u), where u ̸= ρ, computing B(v) for all
v ∈ T [u] in a bottom-up manner. Let

S(v) =
∑

v∈L(T [v])

f(l) · β(l, Fl),

that is, S(v) sums the values f(l) · β(l, Fl) in T [v]. Clearly,
for each l ∈ L(T ), we have S(l) = f(l) · β(l, Fl), and for
a non-leaf v ∈ T , S(v) = S(av)+S(bv) holds. As a result,
all the values S(v) can be computed in linear time using a
bottom-up computation over the tree.

Given the sums S(v), we proceed as follows. For v ∈ T , let
Qv be the set of non-leaf nodes w ∈ T [v] with dpw

= dpv

and v is the nearest ancestor of w with dpw
= dpv

. We have:

Lv = L(T [v]) \
(⋃

w∈Qv
L(T [w])

)
, and thus

B(v) = S(v)−
∑

w∈Qv

S(w).

Algorithm 4 Computing the attributions (βi)
n
i=1 of the tree

ensemble model’s (Tj)Tj=1 prediction f(x).

1: function BANZHAFATTRIBUTION(n, (Tj)Tj=1)
2: for i ∈ U do ▷ initialize global data
3: βi := β[i] := 0 ▷ (βi)

n
i=1 stores the result

4: δ[i] := 1
5: H[i] = empty stack
6: F := ∅
7: for j = 1, . . . , T do
8: ρ := the root node of Tj
9: for v ∈ {aρ, bρ} do

10: TRAVERSE(v)
11: FAST(v)

12: for v ∈ Tj \ {ρ} do
13: βdv := βdv + 2(δ∗[v]−1)

1+δ∗[v] ·B[v] ▷ Lemma 5

14: return (βi/T )
n
i=1 ▷ average through the T trees

Observe that the total size of sets Qv (over all v ∈ T ) is
O(L), so if we are allowed to iterate through Qv whenever
we wish to compute B(v), the computation of B(v) takes
O(L) time as well. We now explain how to accomplish
this. Let gw denote the nearest ancestor of w ∈ T with
dpw

= dpgw
. One way to enable iterating through Qv when

v is processed bottom-up, is to maintain, for each feature
j ∈ U , a global stack H[j] containing all the nodes w
such that dpw

= j and that the computation for w (i.e., the
call FAST(w)) has already been started or completed, but
the computation for gw has not yet completed. The stack
elements are sorted using the pre-order of the nodes of v, so
that the node w with the highest pre-order is at the top of
H[dpw ]. The stack can be updated in O(1) time whenever a
recursive call starts. Observe that v ∈ H[dpv

] when FAST(v)
has started but has not yet finished. Now, given H[dpv

], it is
enough to note that Qv equals precisely the set of elements
of H[dpv

] closer to the top of the stack than v. Thus, one
can indeed iterate through Qv in O(|Qv|) time as desired.
Moreover, Qv constitutes precisely the set of elements that
have to be popped from H[dpv

] when FAST(v) returns. The
asymptotic cost of popping stack elements can charged to
the corresponding pushes and thus can be neglected.

A pseudocode of the procedure FAST computing all the val-
ues B(v) given the values β(l, Fl) is given in Algorithm 3.
In Algorithm 4 we give a pseudocode of the full algorithm
computing the Banzhaf value-based attributions for a tree
ensemble model (Tj)Tj=1. Since the value of such a model is
defined to be the average prediction over all the individual
tree predictions, the final attribution is simply the average
of the individual attributions. We have thus proved:

Theorem 1. Let n = |U |. The Banzhaf value-based at-
tribution (β)i∈U of a prediction of a tree ensemble model
consisting of T trees with at most L leaves each, can be
computed in optimal O(TL+ n) time.



We remark that if the ensemble contains T trees of very
different sizes, the time can be more precisely bounded by
O
(∑T

i=1 |Ti|+ n
)

, i.e., remains optimal in the input size.

Finally, it is worth noting that the above approach to
speeding-up the basic algorithm can be also success-
fully applied to reduce the time complexity of the
TREESHAP_PATH attribution algorithm of Lundberg et al.
[2020] from O(TLD2+n) to O(TLD+n). This is desribed
in detail in the supplementary material,

4 EXPERIMENTAL ANALYSIS

The goals of our experiments are threefold:

• Time performance — first, we test the performance
of the BANZHAF algorithm proposed in the previ-
ous section and compare it to the performance of
the TREESHAP_PATH algorithm by Lundberg et al.
[2020]—the state-of-the-art algorithm for the Shapley
value attributions for tree models.

• Qualitative differences — next, we investigate whether
the Banzhaf value returns qualitatively different results
than the Shapley value for tree models.

• Numerical accuracy — finally, we compare numerical
accuracy of both algorithms.

4.1 EXPERIMENTAL SETUP AND DATASETS

In our experiment we use both the sklearn implementation of
Decision Trees (DT) or xgboost implementation of Gradient
Boosting Decision Trees (GBDT). These are some of the
most popular algorithms for generating decision trees and
are quite often used for large depths of trees. Using large-
depth trees is particularly beneficial for datasets with many
features and complex relationship between them (see e.g.,
[Bordag et al., 2021, Pham et al., 2019] for a usage of trees
of depth 100). Let us emphasize that large depth of a tree,
e.g. depth 100, does not mean the size of the tree is 2100,
because trees might be (and usually are) unbalanced. To
simplify the experiments and reduce the their running times,
we trained the DT algorithm to generate only one tree. We
use four “real-world” datasets (see Table 1 for key details):

1. BOSTON (abbr. BS). [BS]. This small prediction
dataset contains information concerning housing in the
area of Boston Massachusetts. The task is to predict
the price of the house.

2. NHANES (NH). The same dataset that was used in pre-
vious work on tree model interpretability [Lundberg
et al., 2020] which our work most closely relates to.
The parameters used for training were the same as in
[Lundberg et al., 2020].

name rows cols tree iter. max learning
depth depth rate

BOSTON 506 13 10 100 6 0.01
NHANES 8023 79 40 250 4 0.2
VEH.INS. 304887 14 60 250 4 0.2
FLIGHTS 1543718 647 100 250 10 0.2

Table 1: The sizes of datasets and parametrisation of the
experiments. The “tree depth” column reports tree_depth of
the decision tree (DT) with all the other parameters set to
default values. The “iterations”, “max depth” and “learning
rate” columns are the parameters used for training xgboost.

BANZHAF TREESHAP BANZHAF TREESHAP

BS_GB 0.48 s 0.70 s BS_DT 0.41 s 0.41 s
VI_GB 23.63 s 35.32 s NH_DT 3.57 s 42.87 s
NH_GB 50.20 s 1 m 28 s VI_DT 4 m 55 s 30 m 55 s
FL_GB 13 m 18 s 48 m 8 s FL_DT 14 m 28 s 5 h 9 m

Table 2: Running times of the two attribution algorithms on
the entire dataset. We observe that BANZHAF is substantially
faster than TREESHAP_PATH on each instance.

3. VEHICLE_INSURANCE (VI). [VI]. A medium size
dataset for predicting who might be interested in vehi-
cle insurance based on health insurance data.

4. FLIGHTS (FL). [FL]. A large dataset for predicting
the flights’ delays. A large number of columns was
caused by one-hot encoding ’UniqueCarrier’, ’Origin’,
’Dest’, ’CancellationCode’ in a standard way, i.e., for
each possible value v of a given column c we created
additional categorical column c_v (v ∈ {0, 1}) indi-
cating that the value of c equals v iff the value of c_v
equals 1.

We will refer to the above datasets by adding “DT” and “GB”
suffixes (for DT and GBDT algorithms, resp.) to the ordinal
name of the prediction dataset. Note that the parameters
were not extensively tuned since our main goal here centers
around interpreting models and not optimizing them.

All our experiments were performed using Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz with 512 Gb of RAM using
only one thread for computation. The operating system was
Ubuntu 18.04.2 LTS. Our linear-time BANZHAF algorithm
was implemented in C++, whereas for TREESHAP_PATH,
we used to original C language implementation from the
SHAP package [SHAP]. The binaries were compiled using
clang version 6.0.0-1ubuntu2 with -O3 optimization.

4.2 COMPARISON OF RUNNING TIMES

In this section, we compare the running times of the algo-
rithms. For each of the instances, the task was to compute the
attributions of all individual data points. In Table 2 we show



the running times for different examples. We conclude that
BANZHAF is consistently faster than TREESHAP_PATH,
and using it can lead to considerable time savings for larger
data-sets. As anticipated by the theoretical worst-case time
complexity analysis, the observed speed-up increases with
the depth of trees in the model.

4.3 COMPARISON OF FEATURE SCORES

We test whether the Banzhaf value assigns qualitatively
different importance to features than the Shapley value. The
comparison is performed from two viewpoints.

Global importance. First, we compare the global impor-
tances of individual features for the model. To this end, we
apply the same measure of global impact of a feature as in
[Lundberg et al., 2020]. Let D be some dataset. Suppose
for each i ∈ U we have some feature attribution function
γi : D → R. Let us consider the global impact of the fea-
ture over dataset D measured as Γi =

∑
x∈D |γi(x)|. For

example, we can set γi = ϕi to get a Shapley global impact
Φi, or γi = βi to get a Banzhaf global impact Bi.

For each of the datasets and algorithms we computed and
plotted the Shapley and Banzhaf global impacts. The ob-
tained plots can be found in the supplementary material.

For NHANES, BOSTON, and VEHICLE_INSURANCE
datasets, the obtained plots of Banzhaf/Shapley global im-
pacts, computed using BANZHAF and TREESHAP_PATH
respectively, are virtually indistinguishable. For the larger
instance based on the dataset FLIGHTS, only very small
differences in the ordering of features by importance can be
observed for both FLIGHTS_GB and FLIGHTS_DT.

Specific data points. We now turn to describing how
much the obtained Banzhaf and Shapley attributions de-
viate from each other for specific data points. To measure
the difference between the feature orderings produced by
both methods, we computed the modified Cayley distance
between the respective orderings of n ∈ {3, 10, 20} most
important features for each data point, and took the aver-
age over all data points. The Cayley distance measures the
number of swaps needed to switch from one permutation to
another. In our modified version, we also support the case
where the sets of considered most important features in the
respective permutations are different. For a missing feature,
we add it at the end of the permutation. The results are pre-
sented in Table 3. They confirm that the differences are on
average small; in particular for the instances BOSTON_GB,
NHANES_GB, and VEHICLE_INSURANCE_GB, for 98%
of the data points, the respective 3 top features and their
order matched. The orderings deviation was generally larger
for DT instances where larger tree depths were allowed.

We also studied per-feature average differences between
the values of Banzhaf and Shapley attributions for each

Ins/n 3 10 20 Ins/n 3 10 20
BOS_GB 0.02 1.05 BOS_DT 0.08 1.7
NH_GB 0.01 0.34 1.53 NH_DT 0.29 3.69 10.79
VI_GB 0.02 0.73 VI_DT 0.13 2.60
FL_GB 0.4 3.08 8.63 FL_DT 0.18 3.38 10.59

Table 3: The average modified Cayley distance for the n
most important features for n ∈ {3, 10, 20} produced by
BANZHAF and TREESHAP_PATH algorithms.

of the datasets. We consider both MAD (Mean Aver-
age Difference) and RMSD (Root Mean Square Differ-
ence). The relevant plots can be found in the supple-
mentary material. Formally, for each dataset D out of
those and each feature i used therein, these are defined
as: MADi = 1

|D|
∑

x∈D |ϕi(x) − βi(x)| and RMSDi =√
1

|D|
∑

x∈D(ϕi(x)− βi(x))2. Here, ϕi(x) denotes the

Shapley attribution of f(x) for data point x ∈ D, as com-
puted by TREESHAP_PATH. Similarly, βi(x) denotes the
Banzhaf attribution as computed by BANZHAF.

For the “smaller” instances BOSTON_GB, NHANES_GB,
and VEHICLE_INSURANCE_GB and all features, the ob-
served MAD and RMSD differences did not exceed 5%
of the corresponding global impacts. For the remaining
larger models, the MAD difference did not exceed 20%
for the top features. On the other hand, for the large-
depth FLIGHTS_DT model, the RMSD difference reached
around 50% even for the top features, which suggests there
were data points with very big absolute differences in the
produced attributions. These differences indicate that when
looking at specific data points one should expect only small
differences in the ordering of features and only for features
with similar scores. The differences are expected to be larger
for larger models.

The average error statistics also show an interesting phe-
nomenon that, for the studied datasets and models, the per-
feature Banzhaf and Shapley attributions are very close to
each other even though the Banzhaf value does not satisfy
the Efficiency axiom (in contrast to the Shapley value) and
thus the sum of the produced feature scores does not typi-
cally sum up to the difference between the prediction and
the “baseline” mean prediction E[f(XU )].

4.4 NUMERICAL ACCURACY

The fact that the more significant differences between
the obtained importances arised for large models sug-
gested that the compared attribution algorithms might
suffer numerical problems. To investigate this possibil-
ity and compare numerical stability of BANZHAF and
TREESHAP_PATH, we considered a simple artificially pre-
pared instance SYNTHETIC_SPARSE for which we know
the answer for both the Shapley value and the Banzhaf value.



Figure 1: The numerical error for SYNTHETIC_SPARSE.

In the SYNTHETIC_SPARSE instance, the set of features is
U = {1, . . . , d}, where d is a depth parameter. The instance
contains one tree and one data point x = [1, . . . , 1] ∈ Rd.
The tree consists of two subtrees of the same shape and
depth d− 1. All values f(l) in the leaves are equal to 0 and
777 in the left and the right subtree of the root, resp. All
leaves l have coverages equal to 33. Every internal node of
depth i has one leaf child, and one non-leaf child, whose
(inductively defined) subtree has depth i− 1. The split con-
dition in an internal node at depth i is xd−i < 1. In this
instance, the only feature with a nonzero Shapley/Banzhaf
importance, equal to 388.5, is the feature d used to split at
depth 0. All other features have importances equal to 0.8

We have observed that for trees of depth d ≈ 50,
errors dominate the results, i.e., the relative error ex-
ceeds 1. In Figure 1 we visualise the mean absolute
errors for TREESHAP_PATH and BANZHAF for the
SYNTHETIC_SPARSE instance.

We now give a potential reason why the Banzhaf value-
based implementations may be much more stable in terms
of the produced relative errors. Recall that the values β(l, Fl)
for all l ∈ L(T ), i ∈ Fl are computed via dynamic pro-
gramming using Lemmas 3 and 4. Hence, they are all com-
puted via multiplications and divisions on positive numbers
roughly between 0.5 and rρ. In fact, the intermediate values
β(v, Fv) can be obtained via O(1) applications of Lem-
mas 3 and 4 from the “parent” value β(pv, Fpv ). Such a
computation can be proven to introduce a multiplicative
error between 1/(1 + ϵ)O(1) and (1 + ϵ)O(1), where ϵ is the
machine epsilon. This in turn implies a relative error bound
of (1+ ϵ)O(1)−1. Moreover, by induction on the tree depth,
we can easily obtain (see the suppl. material for a proof):

Lemma 6. The leaf values β(l, Fl) can be computed with
relative error at most (1 + ϵ)O(D) − 1.

This bound is quite pessimistic and at the same time not
very large if double precision is used and the tree depth

8This follows by the sensitivity axiom (see, e.g., [Janzing et al.,
2020]) that both Banzhaf and Shapley values satisfy.

D is small enough. On the other hand, if one considers
computing the Shapley value attributions, if one wants to
retain the O(LD2) time bound of the TREESHAP_PATH
algorithm [Lundberg et al., 2020], then it seems that subtrac-
tions of intermediate values are inherent. Roughly speaking,
this is because for Shapley-based attributions, if one ap-
plies an analogous dynamic programming approach, then
the Shapley-analogue of Lemma 3 involves a recursive for-
mula that is a sum of two “earlier” dynamic programming
cells.9 Recall, however, that our (and also Lundberg et al.’s)
approach also required inverse applications of Lemma 3,
especially when a single feature may appear multiple times
on a root-leaf path. For Shapley value such an inverse appli-
cation involves subtraction of equally-signed numbers.10

It is unclear if a similar (to Lemma 6) relative error bound
can be proven in presence of such subtractions, which in
general may lead to so-called catastrophic cancellations.

5 CONCLUSIONS

The contribution of this paper is twofold. First, we have
developed an efficient algorithm for computing feature im-
portance measures for tree ensemble models that is based
on the Banzhaf value. This result improves the running time
of previous state of the art. Second, we have presented the
first extensive comparison between the Shapley and Banzhaf
values in this context. We observe that both methods deliver
attributions of essentially the same strength by returning
almost the same ordering of features. However, these ex-
perimental results indicate that the Banzhaf value has an
important advantage over the Shapley value, i.e., it allows
for faster algorithms as well as these algorithms make much
lower numerical errors.

We stress that this work identifies some computa-
tional/practical advantages of using the Banzhaf value com-
pared to the Shapley value for feature attribution in tree
ensemble models (in particular, the algorithm by Lundberg
et al. [2020] that is commonly used by the practitioners). It
would be also very interesting to compare the Shapley-based
and Banzhaf-based attributions qualitatively. We believe that
such a comparison requires a much more exhaustive study
and is beyond the scope of this paper. However, it is, in our
opinion, a very a compelling direction for future research.
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