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ABSTRACT

We study Markov pseudo-games, a framework that unifies Markov games and
pseudo-games by incorporating dynamic uncertainty and action-dependent feasibil-
ity. We prove the existence of equilibria and develop a first-order solution method
with polynomial-time guarantees. As an application, we show that recursive Radner
equilibria in infinite-horizon Markov exchange economies can be formulated as
equilibria of concave Markov pseudo-games, thereby establishing their existence
and enabling algorithmic approximation. Finally, we demonstrate the practical ef-
fectiveness of our method by implementing a generative adversarial policy network
and computing equilibria in a range of infinite-horizon economies.

1 INTRODUCTION

A central goal of economics is to understand how rational agents interact in dynamic, uncertain
environments and how such interactions give rise to equilibria. From Walras’ model of markets
as systems of supply and demand, to Arrow & Debreu’s competitive economies as pseudo-games,
general equilibrium theory has provided a rigorous mathematical framework for modeling economies.
Yet, classical formulations are inherently static: they capture only a single period of trade and, even
when commodities are made contingent on future states, they rely on the unrealistic assumption of a
complete set of state-contingent markets. As a result, they fail to capture the ongoing uncertainty
and dynamic decision-making that characterize real-world economies, especially those involving
sequential trade of financial assets, intertemporal borrowing and lending, and evolving shocks to
productivity or preferences.

Radner introduced stochastic exchange economies, finite-horizon models where agents trade com-
modities and assets under uncertainty, leading to the canonical notion of Radner equilibrium. Magill
& Quinzii (1994) extended this framework to infinite-horizon stochastic economies, better suited for
macroeconomic applications such as asset bubbles (Huang & Werner, 2000), growth, and persistent
shocks. Infinite horizons, however, create new difficulties, with Ponzi schemes leading to major
challenges in proving equilibrium existence under incomplete markets. Prior existence results have
been confined to stylized cases, and computational progress has been largely restricted to finite
horizons (Sargent & Ljungqvist, 2000; Taylor & Woodford, 1999; Fernández-Villaverde, 2023).
These challenges highlight the need for new computational methods and theoretical frameworks to
understand their complexity.

In this paper, we introduce Markov pseudo-games, which combine the dynamic uncertainty of
Markov games with the action-dependent feasibility of pseudo-games. This framework not only
extends Arrow & Debreu’s pseudo-games to a dynamic setting, but are also sufficiently expressive to
model infinite-horizon Markov exchange economies. In this way, our framework unifies the game-
theoretic perspective and the economic perspective: it serves as a general stochastic game model with
computable equilibria, while simultaneously capturing the structure of infinite-horizon economies
with incomplete markets.

Contributions In Section 2, we introduce Markov pseudo-games (MPGs), and we establish the
existence of (pure) generalized Markov perfect equilibria (GMPE) in concave Markov pseudo-games
(Theorem 2.1), extending Arrow–Debreu’s classical existence result for pseudo-games to dynamic
settings. This result implies the existence of pure (or deterministic) Markov perfect equilibria in a
large class of continuous-action Markov games for which existence, to the best of our knowledge, was
heretofore known only in mixed (or randomized) policies (Fink, 1964; Takahashi, 1964). Although
the computation of GMPE is PPAD-hard in general, by taking advantage of the recent progress on
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solving generative adversarial learning problems (e.g., (Lin et al., 2020; Daskalakis et al., 2020)),
we show that an approximate stationary point of the exploitability (i.e., the players’ cumulative
maximum regret) can be computed in polynomial time under mild assumptions (Theorem 2.2). This
result implies that a policy profile that satisfies necessary first-order stationarity conditions for a
GMPE in Markov pseudo-games with a bounded best-response mismatch coefficient (Lemma 4)
can be computed in polynomial time, a result which is analogous known computational results for
zero-sum Markov games (Daskalakis et al., 2020). As our theoretical computational guarantees apply
to policies represented by neural networks, we obtain the first, to our knowledge, deep multiagent
reinforcement learning algorithm with theoretical guarantees for general-sum games.

In Section 3, we introduce an extension of Magill & Quinzii (1994)’s infinite horizon exchange
economy, which we call the infinite horizon Markov exchange economy1. The Markov restriction
allows us to prove the existence of a recursive Radner equilibrium (RRE) (Theorem 3.1). Our proof
reformulates the set of RRE of any infinite horizon Markov exchange economy as the set of GMPE
of an associated Markov pseudo-game (Theorem 3.1). To our knowledge, ours is the first result of its
kind for such a general setting, as previous recursive competitive equilibrium existence proofs were
restricted to economies with one consumer (also called the representative agent), one commodity, or
one asset (Mehra & Prescott, 1977; Prescott & Mehra, 1980). The aforementioned results allow us
to conclude that an approximate stationary point of the exploitability of the Markov pseudo-game
associated with any infinite horizon Markov exchange economy can be computed in polynomial time
(Theorem 3.2).

Finally, in Section 4 we implement our policy gradient method in the form of a generative adversarial
policy network (GAPNet), and use it to search for RRE in three infinite horizon Markov exchange
economies with three different types of utility functions. Experimentally, we observe that GAPNet
finds approximate equilibrium policies that are closer to GMPE than those produced by a standard
baseline for solving stochastic economies.

For readability, we defer detailed notation and technical assumptions to Appendix A.

2 MARKOV PSEUDO-GAMES

We begin by developing our formal game model. The games we study are stochastic, in the sense of
Shapley (1953), Fink (1964), and Takahashi (1964). Further, they are pseudo-games, in the sense of
Arrow & Debreu (1954a), as the players’ feasible action sets are determined by other players’ choices.
We model stochastic pseudo-games, and dub them Markov pseudo-games (MPGs); the games are
Markov in that the stochastic transitions depend only on the most recent state and player actions.

Model An (infinite horizon discounted) Markov pseudo-gameM .
= (n,m,S,A,X, r, p, γ, µ) is

an n-player dynamic game played over an infinite discrete time horizon. The game starts at time
t = 0 in some initial state S(0) ∼ µ ∈ ∆(S) drawn randomly from a set of states S ⊆ Rl. At
this and each subsequent time period t = 1, 2, . . ., the players encounter a state s(t) ∈ S, in which
each i ∈ [n] simultaneously takes an action a

(t)
i ∈ Xi(s(t),a(t)

−i) from a set of feasible actions

Xi(s(t),a(t)
−i) ⊆ Ai ⊆ Rm , determined by a feasible action correspondence Xi : S × A−i ⇒ Ai,

which takes as input the current state s(t) and the other players’ actions a(t)
−i ∈ A−i, and outputs a

subset of the ith player’s action space Ai. We define X(s,a) .=×i∈[n]
Xi(s,a−i).

Once the players have taken their actions a(t) .
= (a

(t)
1 , . . . ,a

(t)
n ), each player i ∈ [n] receives a

reward ri(s
(t),a(t)) given by a reward function r : S ×A → Rn, after which the game either ends

with probability 1− γ, where γ ∈ (0, 1) is called the discount factor, or continues on to time period
t + 1, transitioning to a new state S(t+1) ∼ p(· | s(t),a(t)), according to a transition probability
function p : S × S × A → R+, where p(s(t+1) | s(t),a(t)) ∈ [0, 1] denotes the probability of
transitioning to state s(t+1) ∈ S from state s(t) ∈ S when action profile a(t) ∈ A is played.

Our focus is on continuous-state and continuous-action MPGs, where the state and action spaces are
non-empty and compact, and the reward functions are continuous and bounded in each of s and a.

1On the one hand, our model generalizes Magill & Quinzii’s to a setting with arbitrary, not just financial
assets; on the other hand, we restrict the transition model to be Markov.
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A history h = ((s(t),a(t))τ−1
t=0 , s

(τ)) ∈ Hτ .
= (S × A)τ × S of length τ ∈ N is a sequence of

states and action profiles. Overloading notation, we define the history space H .
=
⋃∞
τ=0Hτ . For

any player i ∈ [n], a policy πi : H → Ai is a mapping from histories of any length to i’s space
of (pure) actions. We define the space of all (deterministic) policies as Pi

.
= {πi : H → Ai}. A

Markov policy (Maskin & Tirole, 2001) πi is a policy s.t. πi(s
(τ)) = πi(h), for all histories h ∈ Hτ

of length τ ∈ N+, where s(τ) denotes the final state of history h. As Markov policies are only
state-contingent, we can compactly represent the space of all Markov policies for player i ∈ [n] as
Pmarkov
i

.
= {πi : S → Ai}.

Fixing player i ∈ [n] and π−i ∈ P−i, we define the feasible policy correspondence Fi(π−i)
.
=

{πi ∈ Pi | ∀h ∈ H,πi(h) ∈ Xi(s(τ),π−i(h))}, given history h ∈ Hτ , and the feasible subclass
policy correspondence F sub

i (π−i)
.
= {πi ∈ Psub

i | ∀s ∈ S,πi(s) ∈ Xi(s,π−i(s))}, for any
Psub ⊆ Pmarkov. Of particular interest is Fmarkov

i (π−i) itself, obtained when Psub = Pmarkov.

Given a policy profile π ∈ P and a history h ∈ Hτ , we denote the discounted history distribution
that originates at state s and given initial state distribution µ by νπ ,τs and νπ ,τµ respectively. Next,
we define the set of all realizable trajectories of length τ under policy π as Hπ ,τ

µ
.
= supp(ν

π ,τ
µ ).

Moreover, given a policy profile π ∈ P , we denote the state-value function by vπ : S → Rn and
the action-value function by qπ : S ×A → Rn. Finally, we denote the discounted state-visitation
distribution by δπµ and the (expected) payoff of policy profile π by u(π). The precise definitions are
included in Appendix A.2.
Solution Concepts and Existence Having defined our game model, we now define two natural
solution concepts, and establish their existence. The first applies the usual notion of Nash equilibrium
(1950b) to MPGs. The second is based on the notion of subgame-perfect equilibrium in extensive-
form games, a strengthening of Nash equilibrium with the additional requirement that an equilibrium
be Nash not just at the start of the game, but at all states encountered during play.

An ε-generalized Markov perfect equilibrium (ε-GMPE) π∗ ∈ Fmarkov(π∗) is a Markov policy

profile s.t. for all states s ∈ S and players i ∈ [n], vπ
∗

i (s) ≥ maxπi∈Fi(π
∗
−i)

v
(πi,π

∗
−i)

i (s)− ε. An
ε-generalized Nash equilibrium (ε-GNE) π∗ ∈ F (π∗) is a policy profile s.t. for all states s ∈ S and
players i ∈ [n], ui(π

∗) ≥ maxπi∈Fi(π
∗
−i)

ui(πi,π
∗
−i) − ε. We call a 0-GMPE (0-GNE) simply a

GMPE (GNE). As GMPE is a stronger notion than GNE, every ε-GMPE is an ε-GNE.

To establish existence of GMPE, we introduce two assumptions: the first is the standard convexity and
continuity assumption (see Assumption 1 in Appendix D.1); the second, introduced as Condition 1 in
Bhandari & Russo (2019), ensures that the policy class under consideration (e.g., Psub ⊆ Pmarkov)
is expressive enough to include best responses (see Assumption 2 in Appendix D.1).
Theorem 2.1. IfM is a MPG for which Assumption 1 holds, and Psub ⊆ Pmarkov is a subspace of
Markov policy profiles that satisfies Assumption 2, then ∃ π∗ ∈ Psub s.t. π∗ is an GMPE ofM.

Equilibrium Computation Our approach to computing a GMPE in a MPGM is to minimize a
merit function associated withM, i.e., a function whose minima coincide with the pseudo-game’s
GMPE. Our choice of merit function, a common one in game theory, is exploitability i.e., the sum of
the players’ maximal unilateral payoff deviations. Exploitability, however, is a merit function for
GNE, not GMPE; state exploitability at all states s ∈ S is a merit function for GMPE. Nevertheless,
as we show in the sequel, for a large class of MPGs, namely those with a bounded best-response
mismatch coefficient, the set of Markov policies that minimize exploitability equals the set of GMPE,
making our approach a sensible one.

We are not out of the woods yet, however, as exploitability is non-convex in general, even in one-
shot finite games (Nash, 1950a). Although MPGs can afford a convex exploitability (see, for
instance Flam & Ruszczynski (1994)), it is unlikely that all do, as GNE computation is PPAD-hard
(Chen et al., 2009; Daskalakis et al., 2009). Accordingly, we instead set our sights on computing a
stationary point of the exploitability, i.e., a policy profile π∗ ∈ Fmarkov(π∗) s.t. for any other policy
π ∈ Fmarkov(π∗), it holds that minh∈Dφ(π∗)⟨h,π∗ − π⟩ ≤ 0. Under suitable assumptions, such a
point satisfies the necessary conditions of a GMPE.

In this paper, we study MPGs with possibly continuous state and action spaces. As such, we can only
hope to compute an approximate stationary point of exploitability in finite time. Defining a notion of
approximate stationarity for exploitability is, however, a challenge.
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Given an approximation parameter ε ≥ 0, a natural definition of an ε-stationary point might be
a policy profile π∗ ∈ Fmarkov(π∗) s.t. for any other policy π ∈ Fmarkov(π∗), it holds that
minh∈Dφ(π∗)⟨h,π∗ − π⟩ ≤ ε. Exploitability is not necessarily Lipschitz-smooth, however, so
in general it may not be possible to compute an ε-stationary point in poly(1/ε) evaluations of the
(sub)gradient of the exploitability.

To address, this challenge, a common approach in the optimization literature (see, for instance
Definition 19 of Liu et al. (2021)) is to consider an alternative definition known as (ε, δ)-stationarity.
Given ε, δ ≥ 0, an (ε, δ)-stationary point of exploitability is a policy profile π∗ ∈ Fmarkov(π∗)
for which there exists a δ-close policy π† ∈ P with ∥π† − π∗∥≤ δ s.t. for any other policy
π ∈ Fmarkov(π†), it holds that minh∈Dφ(π†)⟨h,π† − π⟩ ≤ ε. The exploitability minimization
method we introduce can indeed compute such an approximate stationary point in polynomial time:
i.e., a point in the neighborhood of an approximate stationary point of exploitability. Furthermore,
asymptotically, our method is guaranteed to converge to an exact stationary point of exploitability.
Exploitability Minimization Given an MPG M and two policy profiles π ,π′ ∈ P , we de-

fine the state cumulative regret at state s ∈ S as ψ(s,π ,π′) =
∑
i∈[n]

[
v
(π′

i,π−i)

i (s)− vπi (s)
]
;

the expected cumulative regret as ψ(υ,π ,π′) = ES∼υ [ψ(S,π ,π
′)], for an arbitrary state

distribution υ ∈ ∆(S), and the cumulative regret as Ψ(π ,π′) = ψ(µ,π ,π′). Addition-
ally, we define the state exploitability of a policy profile π at state s ∈ S as ϕ(s,π) =∑
i∈[n] maxπ′

i∈Fmarkov
i (π−i)

v
(π′

i,π−i)

i (s)− vπi (s); the expected state exploitability of a policy pro-
file π as ϕ(υ,π) = ES∼υ [ϕ(S,π)], for an arbitrary state distribution υ ∈ ∆(S), and the (global)
exploitability as φ(π) =

∑
i∈[n] maxπ′

i∈Fmarkov
i (π−i)

ui(π
′
i,π−i).

With these definitions in hand, we can reformulate the problem of computing a GMPE as the quasi-
minimization problem of minimizing state exploitability, i.e., minπ∈Fmarkov(π) ϕ(s,π), at all states
s ∈ S simultaneously. The same is true of computing a GNE and exploitability.

Lemma 1. Given an MPGM, a Markov policy profile π∗ ∈ Fmarkov(π∗) is a GMPE iff ϕ(s,π∗) =
0, for all states s ∈ S. Similarly, a policy profile π∗ ∈ F (π∗) is an GNE iff φ(π∗) = 0.

This straightforward reformulation of GMPE (resp. GNE) in terms of state exploitability (resp.
exploitability) does not immediately lend itself to computation, as exploitability minimization is
non-trivial, because exploitability is neither convex nor differentiable in general. Following (Goktas &
Greenwald, 2022), we can reformulate these problems yet again, this time as coupled quasi-min-max
optimization problems (Wald, 1945). We proceed to do so now; however, we restrict our attention
to exploitability, and hence GNE, knowing that we will later show that minimizing exploitability
suffices to minimize state exploitability, and thereby find GMPE.

Observation 1. Given an MPGM, minπ∈F (π) φ(π) = minπ∈F (π) maxπ′∈Fmarkov(π) Ψ(π ,π′).

While the above observation makes progress towards our goal of reformulating exploitability mini-
mization in a tractable manner, the problem remains challenging to solve for two reasons: first, a
fixed point computation is required to solve the outer player’s minimization problem; second, the
inner player’s policy space depends on the choice of outer policy. We overcome these difficulties by
choosing suitable policy parameterizations.
Policy Parameterization In a coupled min-max optimization problem, any solution to the inner
player’s maximization problem is implicitly parameterized by the outer player’s decision. We
restructure the jointly feasible Markov policy class to represent this dependence explicitly.

Define the class of dependent policies R .
= {ρ : S × A → A | ∀(s,a) ∈ S × A, ρ(s,a) ∈

X(s,a)} =×i∈[n]
{ρi : S ×Ai → A−i | ∀(s,a−i) ∈ S ×A−i, ρi(s,a−i) ∈ Xi(s,a−i)}. With

this definition in hand we arrive at an uncoupled quasi-min-max optimization problem:

Lemma 2. Given an MPGM,
minπ∈F (π) maxπ′∈Fmarkov(π) Ψ(π ,π′) = minπ∈F (π) maxρ∈R Ψ(π ,ρ(·,π(·))).

It can be expensive to represent the aforementioned dependence in policies explicitly. This situation
can be naturally rectified, however, by a suitable policy parameterization. A suitable policy parame-
terization can also allow us to represent the set of fixed points s.t. π ∈ Fmarkov(π) more efficiently
in practice (Goktas et al., 2023a).
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Define a parameterization scheme (π ,ρ,RΩ,RΣ) as comprising a unconstrained parameter space
RΩ and parametric policy profile function π : S×RΩ → A for the outer player, and an unconstrained
parameter space RΣ and parametric policy profile function ρ : S×A×RΣ → A for the inner player.
Given such a scheme, we restrict the players’ policies to be parameterized: i.e., the outer player’s
space of policies PRΩ

= {π : S × RΩ → A | ω ∈ RΩ} ⊆ Pmarkov, while the inner player’s space
of policiesRRΣ

= {ρ : S ×A × RΣ → A | σ ∈ RΣ} 2.

Assuming a policy parameterization scheme that embodies this dependence between policies by
satisfying Assumption 3 in Appendix D.1, we restate our goal, state exploitability minimization,
one last time as the following min-max optimization problem: minω∈RΩ maxσ∈RΣ Ψ(ω ,σ)

.
=

Ψ(π(·;ω),ρ(·,π(·;ω);σ)) .

In summary, by choosing a suitable parameterization scheme, we resolve the two challenges high-
lighted in Observation 1. First, the unconstrained parameter space facilitates an efficient representation
of the outer player’s policy space, i.e., the set of fixed points {π ∈ Pmarkov | π ∈ Fmarkov(π)}.
Second, the parameterization provides an explicit representation of the class of dependent policies,
thereby eliminating the dependence of the inner player’s policy space on the outer player’s policy.

Now, given an unconstrained parameter space, we are able to simplify our definition of (ε, δ)-
stationary point of exploitability, namely, a policy parameter ω∗ ∈ RΩ for which there exists a
δ-close policy parameter ω† ∈ RΩ with ∥ω∗ − ω†∥≤ δ s.t. minh∈Dφ(ω†)∥h∥≤ ε.
State Exploitability Minimization Returning to our objective, namely state exploitability mini-
mization, we now turn our attention to obtaining a tractable characterization of this goal. Specifically,
we argue through two lemmas that it suffices to minimize exploitability, rather than state exploitabil-
ity, as any policy profile that is a stationary point of exploitability is also a stationary point of state
exploitability across all states simultaneously, under suitable assumptions.

Our first lemma (Lemma 3, Appendix D.1) states that a stationary point of exploitability is almost
surely also a stationary point of state exploitability at all states. Our second lemma (Lemma 4,
Appendix D.1) upper bounds gradient of state exploitability in terms of gradient of exploitability,
when the best-response mismatch coefficient is bounded. GivenM with initial state distribution µ and
alternative state distribution υ ∈ ∆(S), and letting Φi(π−i)

.
= argmaxπ′

i∈Fmarkov
i (π−i)

ui(π
′
i,π−i)

denote the set of best response policies for player i when the other players play policy profile
π−i, we define the best-response mismatch coefficient for policy profile π as Cbr(π , µ, υ)

.
=

maxi∈[n] maxπ′
i∈Φi(π−i)

(1/1−γ)
2 ∥δ

(π′
i,π−i)

υ /µ∥∞∥δ
π
υ/µ∥∞.

Algorithm and Convergence In this section, we present our algorithm for computing an approx-
imate stationary point of exploitability, and thus state exploitability. The algorithm we use is two
time-scale stochastic simultaneous gradient descent-ascent (TTSSGDA)(Appendix D.1, Algorithm 1),
first analyzed by (Lin et al., 2020; Daskalakis et al., 2020), which typically requires that the objec-
tive be Lipschitz smooth in both decision variables, and gradient dominated in the inner one for
polynomial-time convergence. Therefore, we need to impose regularity assumptions to ensure these
conditions.

In particular, Ψ(ω ,σ) being Lipschitz smooth in (ω ,σ) is ensured by the assumption that policy
parameterization, reward function, and transition function are all twice continuously differentiable
(Assumption 4); while Ψ(ω ,σ) being gradient dominated in σ is ensured by assumption that
parametrized policy classes are closed under policy improvement, and each player’s action value
function is concave in σ (Assumption 5).

As the gradient of cumulative regret involves an expectation over histories, we assume that we can
simulate trajectories of play h ∼ νπµ according to the history distribution νπµ , for any policy profile
π , and that doing so provides both value and gradient information for the rewards and transition
probabilities along simulated trajectories. That is, we rely on a differentiable game simulator (see, for
instance, Suh et al. (2022)), meaning a stochastic first-order oracle that returns the gradients of the
rewards and transition probabilities, which we query to estimate deviation payoffs, and ultimately
cumulative regrets.

2Using these parameterizations, we redefine vω .
= vπ(·;ω), qω .

= qπ(·;ω), u(ω) = u(π(·;ω)), and
ν
ω
µ = ν

π(·;ω)
µ ; and vσ(ω) .

= vρ(·,π(·;ω);σ); qσ(ω) .
= qρ(·,π(·;ω);σ); u(σ(ω)) = u(ρ(·,π(·;ω);σ));

ν
σ(ω)
µ = ν

ρ(·,π(·;ω);σ)
µ ; and so on.

5
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Under this assumption, we estimate these values using realized trajectories from the history dis-
tribution h ∼ ν

ω
µ induced by the outer player’s policy, and the deviation history distribution

hσ ∼×i∈[n]
ν
(σi(ω−i),ω−i)
µ induced by the inner player’s

Our main theorem requires one final definition: the equilibrium distribution mismatch coefficient
∥∂δπ

∗
µ /∂µ∥∞, defined as the Radon-Nikodym derivative of the state-visitation distribution of the GNE

π∗ w.r.t. the initial state distribution µ. This coefficient, which measures the inherent difficulty of
visiting states under the equilibrium policy π∗—without knowing π∗—is closely related to other
distribution mismatch coefficients used to analyze policy gradient methods (Agarwal et al., 2020).

We now state our main theorem, namely that, under the assumptions outlined above, Algorithm 1
computes values for the policy parameters that nearly satisfy the necessary conditions for an MGPNE
in polynomially many gradient steps, or equivalently, calls to the differentiable simulator.

Theorem 2.2. Given an MPG M and a parameterization scheme (π ,ρ,RΩ,RΣ), assume As-
sumptions 1, 4, and 5 hold. For any δ > 0, set ε = δ∥Cbr(·, µ, ·)∥−1

∞ . If Algorithm 1 is run
with inputs that satisfy ηω , ησ ≍ poly(ε, ∥∂δπ

∗
µ /∂µ∥∞, 1

1−γ , ℓ
−1
∇Ψ, ℓ

−1
Ψ ), then there exists T ∈

poly
(
ε−1, (1− γ)−1, ∥∂δπ

∗
µ /∂µ∥∞, ℓ∇Ψ, ℓΨ, diam(RΩ × RΣ), η−1

ω

)
and k ≤ T s.t. ω(T )

best = ω(k)

is an (ε, ε/2ℓΨ)-stationary point of exploitability, i.e., there exists ω∗ ∈ RΩ s.t. ∥ω(T )
best −ω∗∥≤ ε/2ℓΨ

and minh∈Dφ(ω∗)∥h∥≤ ε. And, for any distribution υ ∈ ∆(S), if ϕ(υ, ·) is differentiable at ω∗, then

∥∇ωφ(υ,ω
∗)∥≤ δ, i.e., ω(T )

best is an (ε, δ)-stationary point of expected state exploitability ϕ(υ, ·).

In other words, by running Algorithm 1 onM, we compute a policy profile ω(T )
best in the neighborhood

of ω∗, an approximate stationary point of exploitability. By Lemma 4, ω∗ is also an approximate
stationary point of state exploitability at all states inM simultaneously, and therefore approximately
satisfies the necessary conditions of a GMPE. Therefore, Algorithm 1 converges to a point ω(T )

best in
the neighborhood of a point ω∗ that approximately satisfies the necessary conditions of an GMPE.
While arguably a relatively weak theoretical conclusion, our experiments demonstrate that in practice
our method succeeds at approximating GMPE in exchange economy MPGs. Moreover, in the limit,
Algorithm 1 converges to a point that exactly satisfies the necessary conditions of an GMPE.

3 INCOMPLETE MARKOV ECONOMIES

Having developed a mathematical formalism for MPGs, along with a proof of existence of GMPE as
well as an algorithm that computes them, we now move on to our main agenda, namely modeling
incomplete stochastic economies in this formalism. We establish the first proof, to our knowledge, of
the existence of recursive competitive equilibria in standard incomplete stochastic economies, and we
provide a polynomial-time algorithm for approximating them.
Infinite Horizon Markov Exchange Economies Classical Arrow–Debreu economies provide
the static foundation for our framework; full details are given in Appendix C.2. Building on these
static models, we now introduce our infinite-horizon model. An infinite horizon Markov exchange
economy (MEE) I .

= (n,m, l, d,S,X ,Y, E, T , r, γ, p,R, µ), comprises n ∈ N consumers who,
over an infinite discrete time horizon t = 0, 1, 2, . . ., repeatedly encounter the opportunity to buy a
consumption of m ∈ N commodities and a portfolio of l ∈ N assets, with their collective decisions
leading them through a state space S .

= O× (E ×T ). This state space comprises a world state space
O and a spot market space E × T . The spot market space is a collection of spot markets, each one a
static exchange market (E ,Θ) ∈ E × T ⊆ Rm × Rd.

Each asset k ∈ [l] is a generalized Arrow security, i.e., a divisible contract that transfers to its owner
a quantity of the jth commodity at any world state o ∈ O determined by a matrix of asset returns
Ro

.
=
(
ro1, . . . , rol

)T ∈ Rl×m s.t. rokj ∈ R denotes the quantity of commodity j transferred at
world state o for one unit of asset k. The collection of asset returns across all world states is given by
R .

= {Ro}o∈O . At any time step t = 0, 1, 2, . . ., a consumer i ∈ [n] can invest in an asset portfolio
yi ∈ Yi from a space of asset portfolios (or investments) Yi ⊂ Rl that define the asset market, where
yik ≥ 0 denotes the units of asset k bought (long) by consumer i, while yik < 0 denotes units that are
sold (short). Assets are assumed to be short-lived (Magill & Quinzii, 1994), meaning that any asset
purchased at time t pays its dividends in the subsequent time period t+ 1, and then expires.Assets
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allow consumers to insure themselves against future realizations of the spot market (i.e., types and
endowments), by allowing it to transfer wealth across world states.

The economy starts at time period t = 0 in an initial state S(0) ∼ µ determined by an initial
state distribution µ ∈ ∆(S). At each time step t = 0, 1, 2, . . ., the state of the economy is s(t) .

=
(o(t),E(t),Θ(t)) ∈ S. Each consumer i ∈ [n], observes the world state o(t) ∈ O, and participates
in a spot market (E(t),Θ(t)), where it purchases a consumption x

(t)
i ∈ Xi at commodity prices

p(t) ∈ ∆m, and an asset market where it invests in an asset portfolio y
(t)
i ∈ Yi at assets prices

q(t) ∈ Rl. Every consumer is constrained to buy a consumption x
(t)
i ∈ Xi and invest in an

asset portfolio y
(t)
i ∈ Yi with a total cost weakly less than the value of its current endowment

e
(t)
i ∈ Ei. Formally, the set of consumptions and investment portfolios that a consumer i can afford

with its current endowment e(t)i ∈ Ei at current commodity prices p(t) ∈ ∆m and current asset
prices q(t) ∈ Rl, i.e., its budget set Bi(e(t)i ,p(t), q(t)), is determined by its budget correspondence
Bi(ei,p, q)

.
= {(xi,yi) ∈ Xi × Yi | xi · p + yi · q ≤ ei · p}.

After the consumers make their consumption and investment decisions, they each receive reward
ri(x

(t)
i ;θ

(t)
i ) as a function of their consumption and type, and then the economy either collapses

with probability 1− γ, or survives with probability γ, where γ ∈ (0, 1) is called the discount rate. If
the economy survives to see another day, then a new state is realized, namely (O′, E′,Θ′) ∼ p(· |
s(t),Y (t)), according to a transition probability function p : S × S × Y → [0, 1] that depends on
the consumers’ investment portfolio profile Y (t) .= (y

(t)
1 , . . . ,y

(t)
n )T ∈ Y, after which the economy

transitions to a new state S(t+1) .= (O′, E′ +Y (t)RO′ ,Θ′), where the consumers’ new endowments
depends on their returns Y (t)RO′ ∈ Rn×m on their investments.

A history h = ((s(t),X(t),Y (t),p(t), q(t))τ−1
t=0 , s

(τ)) ∈ Hτ is a sequence of tuples comprising
states, consumption profiles, investment profiles, commodity price, and asset prices . . Overloading
notation, we define the history spaceH .

=
⋃∞
τ=0Hτ , and then consumption, investment, commodity

price and asset price policies as mappings xi : H → Xi, yi : H → Yi, p : H → ∆m, and
q : H → Rl from histories to consumptions, investments, commodity prices, and asset prices,
respectively, s.t. (xi,yi)(h) is the consumption-investment decision of consumer i ∈ [n], and
(p, q)(h) are commodity and asset prices, both at history h ∈ H. A consumption policy profile
(resp. investment policy profile) X (h)

.
= (x1, . . . ,xn)(h)

T (resp. Y (h)
.
= (y1, . . . ,yn)(h)

T ) is
a collection of consumption (resp. investment) policies for all consumers. A consumption policy
xi : S → Xi is Markov if it depends only on the last state of the history, i.e., xi(h) = xi(s

(τ)), for
all histories h ∈ Hτ of all lengths τ ∈ N. An analogous definition extends to investment, commodity
price, and asset price policies.

Given π
.
= (X ,Y ,p, q) and a history h ∈ Hτ , we denote the discounted history distribution

assuming initial state distribution µ by νπ ,τµ . Overloading notation, we define the set of all realizable
trajectoriesHπ ,τ of length τ under policy profile π asHπ ,τ .

= supp(ν
π ,τ
µ ).

Solution Concepts and Existence An outcome (X ,Y ,p, q) : H → X × Y × ∆m × Rl of
an infinite horizon MEE is a tuple consisting of a commodity prices policy, an asset prices policy,
a consumption policy profile, and an investment policy profile. An outcome is Markov if all its
constituent policies are Markov.

While Radner equilibrium is the canonical solution concept for finite-horizon stochastic economies,
its history dependence becomes infinite-dimensional in infinite-horizon settings, rendering equilibria
analytically and computationally intractable. Following standard practice in macroeconomics, we
therefore restrict our attention to Markov outcomes.

Given a Markov consumption and investment profile (X ,Y ), the consumption state-value
function v

(X ,Y ,p,q)
i : S → R for consumer i is defined as: v

(X ,Y ,p,q)
i (s)

.
=

EH∼ν(X ,Y ,p,q)
s

[∑∞
t=0 γ

tri
(
xi(s

(t)); Θ(t)
)]

. A Markov outcome (X∗,Y ∗,p∗, q∗) is Markov per-
fect for i if i maximizes its consumption state-value function over all affordable consumption and in-
vestment policies, i.e., (x∗

i ,y
∗
i ) ∈ argmax (xi,yi):S→Xi×Yi:∀s∈S,

(xi,yi)(s)∈Bi(ei,p
∗(s),q∗(s))

{
v
(xi,x

∗
−i,yi,y

∗
−i,p

∗,q∗)
i (s)

}
∀s ∈

S .
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A Markov consumption policy X is said to be feasible iff for all time horizons τ ∈ N and state
s(τ),

∑
i∈[n] xi(s

(τ)) −
∑
i∈[n] e

(τ)
i ≤ 0m, where e

(τ)
i ∈ Ei is consumer i’s endowment at state

s(τ). Similarly, an investment policy is feasible if
∑
i∈[n] yi(s

(τ)) ≤ 0l. If all the consumption and
investment policies associated with an outcome are feasible, we say the outcome is feasible as well.

An Markov outcome (X ,Y ,p, q) is said to satisfy Walras’ law iff for all time horizons τ ∈ N
and state s(τ) ∈ S, p(s(t)) ·

(∑
i∈[n] xi(s

(t))−
∑
i∈[n] e

(τ)
i

)
+ q(s(τ)) ·

(∑
i∈[n] yi(s

(τ))
)
= 0,

where, as above, e(τ)i ∈ Ei is consumer i’s endowment at state s(τ).

A refinement of Radner equilibrium in the infinite horizon setting is recursive Radner equilibrium.
Definition 1 (Recursive Radner Equilibrium). A recursive Radner (or Walrasian or competitive)
equilibrium (RRE) (Mehra & Prescott, 1977; Prescott & Mehra, 1980) of an infinite horizon MEE I
is a Markov outcome (X∗,Y ∗,p∗, q∗) that is 1. Markov perfect for all consumers, i.e., Section 3 is
satisfied, for all consumers i ∈ [n]; 2. feasible; and 3. satisfies Walras’ law.

We establish the existence of RRE in infinite horizon MEEs under standard economic assumptions:
convexity, boundedness, and no-satiation (see, for example, Geanakoplos (1990)). To do so, we first
associate an exchange economy MPGM with a given infinite horizon MEE I.
Definition 2 (Exchange Economy Markov Pseudo-Game). Let I be an infinite horizon MEE.
The corresponding exchange economy MPG M = (n + 1,m + l,S,×i∈[n]

(Xi × Yi) × (P ×
Q),B′, r′, p′, γ′, µ′) is defined as

• The n+ 1 players comprise n consumers, players 1, . . . , n, and one auctioneer, player n+ 1.
• The set of states S = O × E × T . At each state s = (o,E ,Θ) ∈ S,
– each consumer i ∈ [n] chooses an action ai = (xi,yi) ∈ B′i

(
s,a−i

)
⊆ Xi × Yi

from a set of feasible actions B′i(s,a−i) = Bi(ei,an+1) ∩ {(xi,yi) |
∑
i∈[n] xi ≤∑

i∈[n] ei,
∑
i∈[n] yi ≤ 0m, (X ,Y ) ∈ X ×Y} and receives reward r′i(s,a)

.
= ri(xi;θi);

– the auctioneer n+1 chooses an action an+1 = (p, q) ∈ B′n+1

(
s,a−(n+1)

)
.
= P ×Q where

P .
= ∆m and Q ⊆ [0,maxE∈E

∑
i∈[n]

∑
j∈[m] eij ]

l, and receives reward r′n+1(s,a)
.
=

p ·
(∑

i∈[n] xi −
∑
i∈[n] ei

)
+ q ·

(∑
i∈[n] yi

)
.

• The transition probability function is defined as p′(s′ | s,a) .= p(s′ | s,Y ).
• The discount rate γ′ = γ and the initial state distribution µ′ = µ.

Our existence proof reformulates the set of RRE of any infinite horizon MEE as the set of GMPE of
the exchange economy MPG.
Theorem 3.1. Consider an infinite horizon MEE I. Under Assumption 6, the set of RRE of I is
equal to the set of GMPE of the associated exchange economy MPGM.

We can define the exploitability (resp. expected state exploitability) of any infinite horizon MEE I
satisfying Assumption 6 as the exploitability (resp. expected state exploitability) of its associated
exchange economy MPGM. By Theorem 3.1, an outcome that minimizes the exploitability of the
economy I is a Radner equilibrium (RE), while an outcome that minimizes state exploitability at all
states simultaneously is an RRE. The following corollary now follows from Theorem 2.1.
Corollary 1. Under Assumption 6, the set of RRE of an infinite horizon MEE is non-empty.

Equilibrium Computation Since an RRE is infinite-dimensional when the state space is continuous,
its computation is FNP-hard (Murty & Kabadi, 1987). As such, it is generally believed that the
best we can hope to find in polynomial time is a solution that approximately satisfies the necessary
conditions of an RRE. Since the set of RRE of any infinite horizon MEE I is equal to the set of
GMPE of the associated exchange economy MPGM (Theorem 3.1), we can apply Theorem 2.2 to
compute a policy profile with the following computational complexity guarantees for Algorithm 1,
when run on the exchange economy MPG associated with an infinite horizon MEE.
Theorem 3.2. Given an infinite horizon MEE I for which Assumption 6 holds, and the associated
exchange economy MPG M. If (π ,ρ,RΩ,RΣ) is a parametrization scheme for M such that
Assumptions 4 and 5 hold, then the convergence results in Theorem 2.2 hold, meaning Algorithm 1
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converges to a point in the neighborhood of a point that approximately satisfies the necessary
conditions of an GMPE inM, which is likewise a point that approximately satisfies the necessary
conditions of an RRE of I. Moreover, beyond its finite-time guarantees, in the limit, Algorithm 1
converges to a point that satisfies these conditions exactly.

4 EXPERIMENTS

Given an infinite horizon MEE I, we associate with it an exchange economy MPG M, and we
then construct a deep learning network to solveM. To do so, we assume a parametrization scheme
(π ,ρ,RΩ,RΣ), where the parametric policy profiles (π ,ρ) are represented by neural networks with
(RΩ,RΣ) as the corresponding network weights. Computing an RRE via Algorithm 1 can then
be seen as the result of training a generative adversarial neural network (Goodfellow et al., 2014),
where π (resp. ρ) is the output of the generator (resp. adversarial) network. We call such a neural
representation a generative adversarial policy network (GAPNet).

Figure 1: Economies with Stochastic Transition Func-
tions

Following this approach, we built GAPNet to
approximate the RRE in two types of infinite-
horizon MEEs: one with a deterministic and
another with a stochastic transition probability
function. Within each type, we experimented
with three randomly sampled economies, each
with 10 consumers, 10 commodities, 1 asset,
5 world states, and characterized by a distinct
class of reward functions, which imparts dif-
ferent smoothness properties on the state-value
function: linear, Cobb-Doublas, and Leontief.3.

We compare our results with a classic neural pro-
jection method (also known as deep equilibrium
nets (Azinovic et al., 2022)), which macroe-
conomists and others use to solve stochastic
economies. In this latter method, one seeks a
policy profile that minimizes the norm of the
system of first-order necessary and sufficient
conditions that characterize RRE (see for in-
stance, Fernández-Villaverde (2023)). We use
the same network architecture for both methods,

and select hyperparameters through grid search. In all experiments, we evaluate the performance of
the ensuing policy profiles using three metrics: total first-order violations, average Bellman errors,4
and exploitability.

Experiments on economies with deterministic transition functions appear in Section E. While the
neural projection method (NPM) performs well under metrics it is specifically designed to minimize,
GAPNet’s exploitability is near 0 in all three economies, highlighting its ability to approximate the
necessary conditions of an RRE. Moreover, stochasticity hinders NPM’s performance (see Figure 1),
while GAPNet successfully minimizes all three metrics across all economies.

5 CONCLUSION

In this paper, we tackled the problem of computing general equilibrium in dynamic stochastic
economies. We showed that the computation of a recursive Radner equilibrium in an infinite
horizon Markov exchange economy can be reduced to the computation of a generalized Markov
perfect equilibrium in an associated Markov pseudo-game. This reduction allowed us to develop a
polynomial-time algorithm to approximate recursive Radner equilibria. Perhaps more importantly,
our work connects recent developments in deep reinforcement learning to macroeconomics, thereby
uncovering myriad potential new research directions.

3Our code can be found here.
4The definitions of these two metrics can be found in Section E.1.
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