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Abstract

Multiclass neural networks are a common tool in
modern unsupervised domain adaptation, yet an
appropriate theoretical description for their non-
uniform sample complexity is lacking in the adap-
tation literature. To fill this gap, we propose the first
PAC-Bayesian adaptation bounds for multiclass
learners. We facilitate practical use of our bounds
by also proposing the first approximation tech-
niques for the multiclass distribution divergences
we consider. For divergences dependent on a Gibbs
predictor, we propose additional PAC-Bayesian
adaptation bounds which remove the need for in-
efficient Monte-Carlo estimation. Empirically, we
test the efficacy of our proposed approximation
techniques as well as some novel design-concepts
which we include in our bounds. Finally, we ap-
ply our bounds to analyze a common adaptation
algorithm that uses neural networks.

1 INTRODUCTION

Multiclass neural networks are frequently used in implemen-
tation of many unsupervised domain adaptation algorithms.
For example, neural networks are often employed for invari-
ant feature learning algorithms [Ganin and Lempitsky, 2015,
Long et al., 2017, 2018, Zhang et al., 2019], importance
weighting algorithms [Lipton et al., 2018], or combinations
of both techniques [Tachet des Combes et al., 2020]. While
most of these adaptation algorithms are motivated by the-
oretical bounds, recent literature has paid close attention
to the assumptions and failure-cases of some techniques
[Zhao et al., 2019, Wu et al., 2019, Johansson et al., 2019].
Namely, some learning algorithms ignore key terms in the
adaptation bounds on which they are based, and as a result,
may output solutions (i.e., learned models) that violate as-
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sumptions and are guaranteed to fail at the adaptation task
[Zhao et al., 2019, Wu et al., 2019]. Still, the story here is
not totally complete. In particular, there has not been much
discussion of the non-uniform sample complexity of these
modern adaptation algorithms. Sample complexity, in fact,
contributes an additional “ignored” term in the theoretical
bounds on which modern adaptation algorithms are based.

In this paper, we propose the first multiclass adaptation
bounds which allow us to study this non-uniform sample
complexity. Studying sample complexity is important to our
understanding of adaptation algorithms because it describes
how “data-hungry” an algorithm is. When this sample com-
plexity is non-uniform across an algorithm’s solution space,
it allows us to study properties of a solution as a function of
its “data-hunger.” This is especially important for adaptation
algorithms, which as mentioned, can inadvertently output
poor solutions. Identifying a dynamic relationship between
the properties of solutions and their non-uniform sample-
complexity can provide insight on how to prevent these
failure-cases in practice (e.g., by collecting sufficient data
for an algorithm). Non-uniform sample complexity (rather
than uniform complexity) can also help us to better quantify
implicit regularization inherent to our algorithm [Dziugaite
and Roy, 2017, Nagarajan and Kolter, 2019]. Accurately de-
scribing implicit regularization is especially important when
using neural networks [Neyshabur et al., 2014, Neyshabur,
2017, Keskar et al., 2017, Zhang et al., 2017], since simi-
lar learning algorithms can lead to solutions with distinct
generalization performance and implicit regularization is
believed to be the cause of this phenomena.

Despite the importance of studying non-uniform sample
complexity in modern adaptation contexts, we are not aware
of any multiclass adaptation bounds with this capability. To
fill this gap, we contribute the first PAC-Bayesian adapta-
tion bound for multiclass learners (Thm. 2). While PAC-
Bayesian bounds actually control error for stochastic mod-
els, we choose this framework for its demonstrated empirical
accuracy in describing neural network sample complexity
[Dziugaite and Roy, 2017, Zhou et al., 2018, Jiang et al.,
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2019, Dziugaite et al., 2020, 2021, Pérez-Ortiz et al., 2021].
Compared to existing bounds, we design our proposals to
be more sensitive to the solution output by our learning al-
gorithm as well as the data sample available for estimating
key quantities. The former is vital in studying non-uniform
complexity of adaptation algorithms (as discussed), while
the latter is important for facilitating empirical study. To
make our bound useful in practice, we also propose the first
approximation techniques for the divergence terms in our
bound. In one case, this involves proposal of a novel surro-
gate for optimizing 01-loss (Thm. 4). In another, we show a
standard technique for computing divergence fails to gener-
alize to the mutliclass setting without additional constraints
(Thm. 5). Working in the PAC-Bayesian framework, some
divergences we study are also expressed as expectations
with no known analytic solution. For these, we propose ad-
ditional bounds (Thm. 6, Cor. 1) which allow us to avoid
inefficient Monte-Carlo estimation by introduction of a new
flatness assumption related to the well-known flat-minima
hypothesis [Hochreiter and Schmidhuber, 1997]. To con-
clude, we conduct extensive empirical study of more than
12K models learned across 5 diverse adaptation datasets.

2 BACKGROUND

2.1 NOTATION AND ASSUMPTIONS

Consider the space X × Y for some finite Y with |Y| > 2
unless otherwise noted. Colloquially, we call X the feature
space and Y the label space. For a distribution D over X×Y ,
we are interested in the risk functional RD : YX → [0, 1]

RD(h)
def
= Pr(h(X) ̸= Y ); (X,Y ) ∼ D (1)

applied to some hypothesis (i.e., model) h ∈ H ⊆ YX .
The risk functional RD precisely gives the error rate of the
hypothesis h when tasked with modelling the relationship
between X and Y described by D. In PAC-Bayes, we also
consider the risk of stochastic (Gibbs) predictors. For a dis-
tribution Q over H ⊆ YX , the Gibbs risk is the expectation

RD(Q)
def
= E[RD(H)]; H ∼ Q. (2)

For neural networks, a common stochastic formulation is to
sample weights from the distribution Q before inference –
e.g., the Bayesian neural networks of Blundell et al. [2015].

Throughout this paper, we assume a source distribution S
over X × Y and a target distribution T over X × Y . We
assume observation of an i.i.d. random sample S ∼ Sn and
an i.i.d. random sample TX ∼ Tm

X where the subscript X
denotes the X -marginal of a distribution. In this context,
an algorithm for the unsupervised adaptation problem we
study is a function (S, TX) 7→ h ∈ H. We are interested in
bounds on RT(h) for such algorithms.

Interchangeably, we think of the sample S as both a random
variable with distribution Sn and a (random) distribution

itself, since any observation of a sample S uniquely defines
its own empirical distribution over X × Y by the pmf

(x, y) 7→ n−1
∑n

i=1
1{(xi,yi)}{(x, y)} (3)

where 1 is the indicator function. So, RS is well-defined
by this identification. RS(Q) = EH∼Q[RS(H)] is also
defined – the observation of S is used, not integrated out.

Finally, we also use distribution divergences based on the
H-divergence proposed by Ben-David et al. [2007]. This
divergence is a specification of the A-distance [Kifer et al.,
2004] which relaxes the total variation distance by consid-
ering only a subset A of measurable sets when taking the
supremum. In particular, the H-divergence considers sets
identifiable by a class H ⊆ {0, 1}X

dH(D1,D2)
def
= suph∈H

∣∣E[h(X1)]−E[h(X2)]
∣∣ (4)

where Xi ∼ Di. While it is typically defined with a factor
of 2, we omit this for convenience. Given a class H ⊆ YX ,
we first study the H∆H-divergence based on the class

H∆H def
=

{
x 7→ 1− 1{h(x)}{h′(x)} | (h, h′) ∈ H2}. (5)

This is a multiclass generalization, which simplifies to the
original binary definition of Ben-David et al. when |Y| = 2.

2.2 SOME EXISTING ADAPTATION BOUNDS

In this section, we discuss two adaptation bounds. More
detailed knowledge of these bounds will be useful later
for comparison with our proposed bounds. First, we dis-
cuss the seminal uniform convergence bound proposed by
Ben-David et al. [2007, 2010]. Second, we discuss a PAC-
Bayesian bound proposed by Germain et al. [2020].

2.2.1 Adaptation Based on Uniform Convergence

Theorem 1. [Ben-David et al., 2010] Let Y be binary. For
all δ > 0, w.p. at least 1− δ, for all h ∈ H

RT(h) ≤ λ+RS(h) + dH∆H(SX , TX)

+ 4

√
4ν ln(2m)−ln(δ/4)

m
+ 2

√
8ν ln(em/ν)−2 ln(δ/4)

m

(6)

where λ = minη∈H RS(η) +RT(η) and ν = VCDim(H).

The seminal result above is the standard adaptation bound
on which many newer results are based. Still, this uniform
convergence bound is not well-suited for every application.
We discuss some limitations below.

Uniform Sample Complexity Simply put, uniform con-
vergence is too conservative: it assigns the same sample
complexity to each outcome of our learning algorithm, re-
gardless of the solution quality. As discussed in Section 1,
this prevents us from studying important properties of a
model as a function of its sample complexity.



Model-Independent Divergence In general, divergence
is meant to characterize the similarity in feature distributions
under the source S and the target T. Similar to above, inde-
pendence of the divergence dH∆H and the model h is overly
conservative and makes this term insensitive to changes in
the outcome of our learning algorithm. For example, when
H is fixed, this divergence cannot distinguish between a
random initialization and a carefully trained solution.

Sample-Independent Adaptability The term λ is often
called the adaptability. It is a measure of similarity in the
labeling functions of S and T, characterizing the extent to
which one hypothesis in H can do well on both of these
distributions. When no such hypothesis exists, it is unclear
how a learner could successfully adapt by minimizing risk
on the source distribution [Ben-David et al., 2010]. Impor-
tantly, this term has been central to the theoretical discussion
of failure-cases in widely used DA algorithms [Johansson
et al., 2019, Zhao et al., 2019]. Meanwhile, estimation of λ
remains an under-studied research area [Redko et al., 2020].
One problem, which we observe, is independence of λ from
the samples S and T . In particular, one cannot directly
compute the population statistic λ in typical circumstances.
Instead, one might estimate using minη RS(η) + RT (η),
but this requires verifying generalization of a learned model
h∗ ∈ argminη RS(η)+RT (η) using a holdout set or some
other descriptor of generalization performance (e.g., such as
a learning bound). This is undesirable when, as in this paper,
we wish to study adaptability in an empirical context. As we
show in later experiments (Section 4), the extra generaliza-
tion requirement typically inflates our estimation of λ, and
subsequently, mars the results we would like to interpret.

Binary Label Space It is also important to note that this
bound was designed for binary learners. Computation of
the H∆H-divergence is the most concerning issue, since
existing algorithms for computation rely on symmetry of H
and ERM over the class H∆H. In Section 3.2, we discuss
these issues in detail and present some solutions.

2.2.2 A PAC-Bayesian Bound for Binary Learners

We give Thm. A in Appendix A.2, which is one of the
first PAC-Bayesian adaptation bounds. While Germain et al.
[2013, 2016, 2020] propose other bounds, we focus on
Thm. A because it is easiest to compare to the proposal
of Ben-David et al. [2010]. While tailored to Thm. A, the
weaknesses discussed below are generally applicable to
other bounds of Germain et al.

Benefits Compared to Thm. 1 One benefit of Thm. A
is that the divergence employed in this bound is model-
dependent (rather than independent); namely, it depends
on the Gibbs predictor Q, whose target error we bound. As
mentioned, model-independence is an overly conservative

quality and Germain et al. [2020] show this formally by
proving their divergence actually lowerbounds dH∆H for all
Q and H. Another primary benefit is that Thm. A employs
a non-uniform sample complexity. Specifically, complexity
is measured through a KL-divergence KL(Q || P), which
explicitly depends on the outcome of the learning algorithm
Q. Simply put, a model is complex if it deviates much from
our prior knowledge, which is captured in the prior P.

Weaknesses Shared with Thm. 1 Despite its benefits
over Thm. 1, Thm. A also shares some weaknesses. First,
the proposed adaptability term is also sample-independent.
Second, the bound is still designed for a binary label space
Y . Unlike the case of Thm. 1, it is not computation of the
bound that causes concern, but the validity of the bound in
mutliclass settings. In particular, the problem arises because
the proof of Thm. A relies on a decomposition of the risk
which assumes |Y| = 2. This decomposition does not hold,
in general, when Y is larger. In fact, Germain et al. [2020],
themselves, observe Thm. A is not easily extended to multi-
class settings, leaving the investigation of such PAC-Bayes
bounds as an open problem. For some additional empirical
study of Thm. A, see Appendix D.3.

2.3 OTHER RELATED WORKS

Besides those works discussed above, there are some addi-
tional works, which propose alternate theories of adaptation.
Some theories of adaptation use distinct integral probability
metrics in place of the H-divergence [Redko et al., 2017,
Shen et al., 2018, Johansson et al., 2019], while others have
sought to generalize and modify the H-divergence [Man-
sour et al., 2009, Kuroki et al., 2019, Zhang et al., 2019].
Meanwhile, others focus on assumptions distinct from small
adaptability. These include covariate shift [Sugiyama et al.,
2007, You et al., 2019], label shift [Lipton et al., 2018] and
generalized label shift [Tachet des Combes et al., 2020].
The DA problem can also be modeled through causal graphs
[Zhang et al., 2015, Magliacane et al., 2018] and some ex-
tensions to DA consider a meta-distribution over targets
[Blanchard et al., 2021, Albuquerque et al., 2020, Deng
et al., 2020]. Notably, most assumptions are untestable in
practice and not many works consider such testing, even in
controlled research settings where it might be possible. As
we are aware, we are the first to use a sample-dependent
adaptability, which improves estimation in empirical study.

In adaptation, PAC-Bayesian results are almost exclusively
due to Germain et al. [2013, 2016, 2020]. Albeit, in transfer
learning some work does exist [Li and Bilmes, 2007, McNa-
mara and Balcan, 2017]. Most directly, our work employs
the PAC-Bayes bound of Maurer [2004] in proofs as well as
some techniques of Langford and Caruana [2001], Dziugaite
and Roy [2017], and Pérez-Ortiz et al. [2021] in empirical
study. Most notably, ours is the only PAC-Bayesian work to



propose multiclass adaptation bounds. A more in depth cov-
erage of relevant literature – for adaptation and PAC-Bayes
– is available in Appendix B.

3 PROPOSED BOUNDS

In this section, we give the proposed adaptation bounds for
multiclass learners. We also provide novel algorithms for
computing two multiclass divergence terms and compare
these to existing approaches. Lastly, we give a second adap-
tation bound which removes the need for inefficient Monte-
Carlo estimation of divergences dependent on a Gibbs pre-
dictor. Proof of all results is given in Appendix A.

3.1 A PAC-BAYESIAN ADAPTATION BOUND FOR
MULTICLASS LEARNERS

We begin by introducing a model-dependent class of hy-
potheses similar to H∆H. Precisely, for h ∈ H,

h∆H def
=

{
x 7→ 1− 1{h(x)}{h′(x)} | h′ ∈ H

}
. (7)

With it, we propose to use the h∆H-divergence dh∆H in our
adaptation bounds. This divergence is a model-dependent
extension of the H∆H-divergence, applicable in multiclass
settings. It is easy to observe from the definitions that this
new divergence lowerbounds the H∆H-divergence for all
H and all h. Both Zhang et al. [2019] and Kuroki et al.
[2019] study similar divergences for bounding 01-loss in the
binary case, but we are first to use this divergence with non-
uniform sample complexity, and also, the first to use this
divergence in an adaptation bound for multiclass learners.1

Our full proposal requires novel technique and theoretical
study to compute this divergence (see Section 3.2).

Next, we give the proposed adaptation bound. As alluded,
the bound has a number of notable features and we expand
on these in comparison to Thms. 1 and A after its statement.

Theorem 2. For any P over H, all δ > 0, w.p. at least 1−δ,
for all Q over H

RT(Q) ≤ λ̃S,T +RS(Q) +EH∼Q[dCH (SX , TX)]

+

√
KL(Q||P)+ln

√
4m−ln(δ)

2m

(8)

where λ̃S,T = minη∈H RS(η)+RT (η) and we may choose
either Ch = H∆H for all h as before or Ch = h∆H.

Comparison to Thms. 1 and A By design, the bound
proposed above resolves the weaknesses mentioned in Sec-
tion 2.2. First and foremost, we remove the requirement that
Y is binary. Second, we use a non-uniform notion of sam-
ple complexity; i.e., KL(Q || P). Third, Thm. 2 allows for

1We discuss a multiclass proposal of Zhang et al. [2019] later,
but it is based on margin loss and used for uniform convergence.

either a model-dependent or model-independent notion
of data-distribution divergence. While model-independent
divergences do have some weaknesses, we retain them in
our bound since, as discussed later, they can be more effi-
cient. Lastly, Thm. 2 employs a sample-dependent notion
of adaptability. Compared to λ, the new adaptability λ̃S,T

is the smallest error achievable on the samples. In research
contexts wherein we assume access to target labels for pur-
pose of studying our assumptions, we later show that this
quantity is fairly easy to empirically bound.

3.2 APPROXIMATING MULTICLASS
DIVERGENCE

3.2.1 The Multiclass H∆H-divergence

First, since the H∆H-divergence is model-independent, the
expectation with respect to the Gibbs predictor Q simplifies
significantly. In particular, if Ch = H∆H, we have

EH∼Q[dCH (SX , TX)] = dH∆H(SX , TX). (9)

Thus, computation of this divergence simplifies to comput-
ing the H∆H-divergence for multiclass learners.

Summary of Approach In general, we take inspiration
from the proposal of Ben-David et al. [2010] who compute
H∆H-divergence when models in H have binary output.
Namely, we frame computation as minimization of error in a
specific classification problem. To adapt this strategy to the
multiclass setting, we do two primary things. First, we re-
move the assumption that H is symmetric. This is important
for multiclass settings since we have no reason to believe
H∆H is typically symmetric. We replace the symmetry
in H∆H with a symmetry in our classification problems.
Second, for score-based classifiers such as neural networks,
we give an optimization procedure for approximating ERM
over this class based on a surrogate loss function. As we
are aware, this is the first algorithm for approximating ERM
over H∆H when models in H have multiclass output.

Reduction to ERM

Theorem 3. Let C = H∆H. Almost surely,

dC(SX , TX) = max


1−min

φ∈C
RP (φ) +RQ(φ),

1−min
φ∈C

RU (φ) +RV (φ)

 (10)

where

P =
(
(Xi, 1) | Xi ∈ SX

)
, Q =

(
(X̃i, 0) | X̃i ∈ TX

)
,

U =
(
(Xi, 0) | Xi ∈ SX

)
, V =

(
(X̃i, 1) | X̃i ∈ TX

)
.

(11)

Notice, pooled samples P +c Q and U +c V define binary
classification problems (+c is concatenation). Namely, they
represent an identification problem wherein the learner must



distinguish between the samples SX and TX . To compute
divergence as above, we need only select φ to minimize
the sum of class-conditional error rates for these problems.
Even in simple cases, risk-minimization can be computa-
tionally hard [Shalev-Shwartz and Ben-David, 2014]. Thus,
we instead select φ by optimizing a surrogate loss.

Approximate Minimization via Surrogate WLOG, Y =
{1, . . . , C}. We consider a score-based class S written

S def
=

{
Ψf | f ∈ F

}
; Ψf (x)

def
= argmaxℓ∈[C] fℓ(x) (12)

with F ⊆ {f | fℓ : X → R, ℓ ∈ [C]} a class of scoring-
functions. In case of ties, suppose argmax returns the least
label. Using the naïve definition in Eq. (5),

S∆S def
=

{
x 7→ 1− 1{Ψf (x)}{Ψg(x)} | (f ,g) ∈ F2}. (13)

At first glance, it is unclear how to pick φ ∈ S∆S to mini-
mize error on a given dataset. So, in place of this obscure
definition, the following result gives a surrogate loss which
upperbounds the 01-loss on the original problem. Thus, we
indirectly reduce the error by minimizing the surrogate.

Theorem 4. Suppose τ : R → R≥0 is differentiable and
monotone increasing. Let A =

(
τ ◦ g(x)

)
·
(
τ ◦ f(x)T

)
with τ applied element-wise and f ,g ∈ F . Set

z(x)
def
= max(j,k)∈[C]2 Ajk −maxi∈[C] Aii,

L(z, y) def
= ln(1 + exp(−(2y − 1) · z))/ ln(2).

(14)

Then, if φ(x) = 1− 1{Ψf (x)}{Ψg(x)}, we have

RD(φ) ≤ E(X,Y )∼D L(z(X), Y ) (15)

for any distribution D s.t. f(X) has no repeated scores and
g(X) has no repeated scores, almost surely.2

We point out the log loss L(z, y) is differentiable with re-
spect to z and z(x) is differentiable with respect to f and g.
In practice, functions in F – such as f and g – are typically
differentiable with respect to a real-parameter vector, which
also defines the function. For example, this is precisely the
case for neural networks. In these contexts, since composi-
tion preserves differentiability, the output of the surrogate L
is differentiable with respect to the real-parameter vector. So,
the RHS of Eq. (15) may be approximately minimized using
batch SGD. At this point, the proposed algorithm should
be familiar to the typical practitioner. It is equivalent to
the manner in which we usually optimize a neural network,
except for the new surrogate (f ,g, x, y) 7→ L(z(x), y).

2This stipulation on D is not too strict. It only assumes ties in
the scores of f or g are very unlikely, so these ties can be ignored.

3.2.2 The Multiclass h∆H-divergence

When Ch = h∆H the divergence term is model-dependent
and the expectation with respect to the Gibbs predictor Q be-
comes a challenge. For neural networks, even the Gibbs risk
RS(Q) does not have a known analytic solution. Instead,
it is common to approximate using Monte-Carlo sampling
[Langford and Caruana, 2001, Dziugaite and Roy, 2017, Dz-
iugaite et al., 2021, Pérez-Ortiz et al., 2021]. By Hoeffding’s
Inequality, w.p. at least 1− δ, we approximate

E
H∼Q

[dCH (SX , TX)] ≤ 1

k

k∑
i=1

dCHi
(SX , TX) +

√
ln 2/δ
2k

(16)

where (Hi)
k
i=1 ∼ Qk. Using the RHS as an approximation,

our computation reduces to computing dCh
for any deter-

ministic h ∈ H. Upon sampling from Q, we can apply the
algorithm for computing dCh

to each point in the sample. In
light of this, the next part focuses on computing dCh

for de-
terministic h. We proceed as before, reducing computation
to risk-minimization for a specific classification problem.

Reduction to ERM with Constrained Labeling Function

Theorem 5. Almost surely, for all h ∈ H

dCh(SX , TX) = max


1− min

φ∈H,

h̄∈Υ

RP (φ) +RQ(φ),

1− min
φ∈H,

h̄∈Υ

RU (φ) +RV (φ)

 (17)

where Ch = h∆H and

P (h̄) =
(
(Xi, h̄(Xi)) | Xi ∈ SX

)
,

Q =
(
(X̃i, h(X̃i)) | X̃i ∈ TX

)
,

U =
(
(Xi, h(Xi)) | Xi ∈ SX

)
,

V (h̄) =
(
(X̃i, h̄(X̃i)) | X̃i ∈ TX

) (18)

and Υ = {h̄ ∈ YX | h̄(x) ̸= h(x), ∀x ∈ X}.

As before, the result describes two classification problems.
This time, the learner’s goal is to agree with h on one sample,
while disagreeing with h (in the way specified by h̄) on the
other sample. We minimize the class-conditional error rates
by selecting from the class H used for the original prediction
task, rather than H∆H. So, we make the obvious proposal:
re-use whichever approximation technique we used to select
h in the first place. In our experiments, since H is a space
of neural networks, we use batch SGD on an NLL loss.

A Heuristic for Selecting from Υ Reduction to ERM
in the multiclass setting also requires specification of
h̄ ∈ Υ. Specifically, h̄ should aid in minimizing the class-
conditional error rates. In our experiments, we found a sim-
ple strategy to be fairly effective. Namely, we specify h̄
by always picking the label with the second-highest confi-
dence according to h. So, h̄ disagrees with h on all of X ,



but does so in the “most reasonable” way according to the
probabilities output by h. This approach uses the probabili-
ties output by h to rank similarity of labeling functions and
supposes the most “similiar” labeling function in Υ will be
easiest for another hypothesis in H to simultaneously learn.
Mathematically, our solution satisfies

h̄ ∈ argmaxυ∈Υ

∑
x∈X

hυ(x)(x) (19)

where hℓ(x) is the score assigned to the label ℓ. This heuris-
tic is a practical solution that avoids search over Υ, which
will typically be unknown, unless we inefficiently enumer-
ate using membership constraints. As we are aware, there is
no known algorithm to efficiently select minimizers from Υ
and H, simultaneously, as called for by Thm. 5. Besides the
heuristic, we leave this problem as future work.

Comparison to Some Related Approaches Considering
a binary label space Y , Kuroki et al. [2019] propose a similar
algorithm. The multiclass setting we consider does require
some differences, primarily, related to the distinct degrees
of freedom in multiclass and binary classification. First, our
proposal removes the requirement that H is symmetric since,
as we are aware, this concept is not well-defined for hypothe-
ses with multiclass output. Similar to before, we replace the
symmetry required of H with symmetry in our classification
problems. Second, in multiclass settings, the reduction strat-
egy necessitates a new parameter to optimize: the labeling
function h̄. Besides our proposed heuristic for optimization,
proof of this fact is not a straightforward extension of the
work of Kuroki et al. [2019]. In fact, it requires a different
proof-technique (see Appendix A.6). In a multiclass setting,
Zhang et al. [2019] also propose an approach for approximat-
ing a mutliclass divergence. In general, our two techniques
require different consideration because their divergence is
based on a margin loss, rather than 01-loss. Notably, the
multiclass bounds of Zhang et al. [2019] use uniform sam-
ple complexity, unlike our proposed non-uniform approach.
Further, working directly with 01-loss, as we do, avoids any
loosening of the bound via the margin penalty.

3.3 EFFICIENCY THROUGH FLAT-MINIMA

In full view of Section 3.2.2, the reader may rightfully be
concerned about the efficiency of the proposed technique for
approximating EH [dCH

(·, ·)]. In particular, the suggestion
requires training k distinct neural networks: one for each
Hi ∼ Q. Typically, k will be large – e.g., larger than 100 –
to control the size of the upperbound in Eq. (16), so this is
not computationally feasible for practical applications. This
problem is not totally unique to the model-dependent h∆H-
divergence, either. Common invariant feature-learning algo-
rithms – e.g., DANN [Ganin and Lempitsky, 2015] – actu-
ally modify the feature distribution over which the classifier
learns. In these cases, even the H∆H-divergence becomes

dependent on the model [Johansson et al., 2019]. In particu-
lar, supposing every model h ∈ H is the composition ch◦fh
of a classifier ch and a feature extractor fh, the modified
H∆H-divergence results from the following restriction

[H∆H]h
def
= {1−1{cp◦fh(·)}{cq ◦fh(·)} | (p, q) ∈ H2}. (20)

A similar restriction can be defined for the class h∆H

[h∆H]h
def
= {1− 1{ch◦fh(·)}{cq ◦ fh(·)} | q ∈ H}. (21)

In both cases, due to the dependence on h, the expectation
over Q cannot be avoided as in Section 3.2.1. To resolve this
frequent issue, we propose a new adaptation bound, which
relies on an assumption related to flatness of the 01-loss
over a (weighted) region in parameter space defined by Q.
Flatness assumptions are not unusual in PAC-Bayes and we
develop this connection next.

3.3.1 Flat-Minima and PAC-Bayes

An SGD solution lies in a flat-minimum if its parameters are
robust to perturbation: changing the parameters (slightly)
does not change the trained network’s already low error rate.
To put it another way, all parameter configurations near the
SGD solution have identically low error. So, flatness here is
an absence of “elevation” in error as our model moves about
some region of parameter space. Hochreiter and Schmidhu-
ber [1997] first discussed “flatness” as it relates to neural
network generalization, hypothesizing that models lying in a
large flat-minimum generalize well. More recently, the idea
has been validated empirically at large scale. In particular,
notions of the sharpness of minima are often good empirical
descriptors of an SGD-trained neural network’s generaliza-
tion performance [Jiang et al., 2019, Dziugaite et al., 2020].
The motivation for using PAC-Bayes bounds is very often
based on the hypothesis that flat-minima generalize well.
This is because PAC-Bayes bounds implicitly encode the
existence of flat-minima [Neyshabur et al., 2017, Dziugaite
and Roy, 2017]. In details, for a bound to be small for some
predictor Q, both its Gibbs risk and its KL-divergence with
the prior P must be small. Because the prior P typically has
some variance, we know Q should have variance too, or else
the KL-divergence will be large. Further, the variance of
Q ensures a region of non-zero probability away from the
mean. Thus, if the Gibbs risk is also small, it is required that
models in this region away from the mean all have identi-
cally low error (i.e., form a flat-minimum). Otherwise, the
Gibbs risk would be inflated by probable parameter config-
urations with high error as illustrated in Figure 1. In this
sense, PAC-Bayes bounds and flat-minima go hand-in-hand.
If the former is small, we know the latter exists.3

3This argument fails for some pathological cases. It works best
with unimodal continuous Q; e.g., the Gaussians used in Section 4.



Figure 1: Informal illustration of flat-minimum (right) and sharp-
minimum (left). For “flat” regions in parameter space, a unimodal
Gibbs predictor Q with some variance has consistently low error
across probable samples from Q. Otherwise, when a region is
“sharp”, there is non-negligible likelihood of sampling a hypothesis
from Q with high error. The expected error over Q is thus inflated
by these likely regions of high error.

3.3.2 A More Efficient Adaptation Bound

Definition 1. Let D(H) be the space of distributions over H
and fix a function µ : D(H) → H. The Gibbs predictor Q
is ρ-flat on the distribution D if |RD(Q)−RD(µ(Q))| ≤ ρ.

We call the function µ : D(H) → H a summary function
and call the image of µ a summary. When Q is implied, we
typically abuse notation by writing µ = µ(Q). Often, as
in the definition above, we will refer to the “flatness” of a
Gibbs predictor Q when it would be more precise to refer to
the flatness of the (weighted) region in parameter space that
this predictor defines (i.e., a around the summary µ). In this
sense, the above definition quantifies the flatness of a region
in parameter space by the ability of the error in this region
to be represented by a single hypothesis µ from that region.
Intuitively, this echoes physical properties of flatness: a
topographic map requires many more numbers to describe a
mountainous terrain than a flat prairie. That is, each change
in elevation for the mountainous terrain must be demarcated
by individual numbers, while the flat prairie may only need
one number to summarize the elevation. Similarly for the
region around µ defined by the predictor Q, a region is only
“flat” if the error at µ is a good representative of the error
across the whole region. Next, we give the proposed bound.

Theorem 6. For any P over H, all δ > 0, w.p. at least 1−δ,
for all Q over H s.t. Q is ρS-flat on S and ρT -flat on T

RT(Q) ≤ ρ+ λ̃S,T +RS(Q) + dCµ(SX , TX)

+

√
KL(Q||P)+ln

√
4m−ln(δ)

2m

(22)

where µ is the summary of Q, ρ = ρS+ρT , and Cµ = µ∆H.

Corollary 1. To study algorithms like DANN, we can in-
stead choose Cµ = [H∆H]µ or Cµ = [µ∆H]µ in Thm. 6.
The adaptability λ̃S,T is then dependent on µ as below

λ̃µ
S,T = ming∈H

{
RS(cg ◦ fµ) +RT (cg ◦ fµ)

}
. (23)

The main bound is identical to Thm. 2 except that we as-
sume Q is flat on both S and T , then use this assumption

to introduce a deterministic summary µ in the divergence.
This deterministic summary replaces the expectation over Q
whose estimation was inefficient, but the new cost is infla-
tion of the bound by ρ. Unfortunately, similar to adaptability
terms, we cannot expect to compute ρ outside of controlled
research contexts, since labels are required to estimate the
flatness of Q on T (according to Def. 1). Instead, for the
bound to be practically useful, we propose to assume ρ is
small. This, for example, is often the suggestion when it
comes to adaptability as well. Albeit, the caveats of care-
lessly making assumptions on adaptation problems should
be noted [Zhao et al., 2019, Johansson et al., 2019].

We argue the assumption of small ρ is not an overly strong
(or careless) assumption to make. To begin with, PAC-Bayes
bounds and flat-minima are already related. The only addi-
tion we make to the usual connection (see Section 3.3.1) is
that flat regions remain flat when we transfer across data
distributions (or, samples). Note, we do not even require the
transferred region to remain a minimum, since the size of ρ
is only dictated by the difference in the Gibbs risk and the
summary risk: the Gibbs risk can be high on T as long as the
summary risk is as well. Thus, if one is willing to accept the
usual assumptions, then our additional assumption merely
begs the question: Do flat regions transfer?

In the next section, empirically, we test this question along
with the other proposals given in this text.

4 EXPERIMENTS

4.1 SETUP

Datasets We use a wide-array of datasets from vision and
NLP: Digits [Ganin and Lempitsky, 2015], PACS [Li et al.,
2017], Office-Home [Venkateswara et al., 2017], Amazon
Reviews [Blitzer et al., 2007], and Discourse sense classifi-
cation datasets [Prasad et al., 2008, Ramesh and Yu, 2010,
Zeyrek et al., 2020]. For Digits, we use the image as feature,
while for Amazon Reviews, we use uni-gram and bi-gram
features. For other datasets, we use pre-trained ResNet-50
[He et al., 2016] or BERT [Devlin et al., 2019] features.

Models For Digits, we use a 4-layer CNN. For all other
datasets, we use both a linear model and a 4-layer fully-
connected network. For simplicity, our larger scale exper-
iments use a simple adaptation algorithm (SA) which op-
timizes models to minimize risk on S. On Digits, we also
study the DANN algorithm proposed by Ganin and Lempit-
sky [2015], modified to train Gibbs predictors with varied
regularization using PBB [Pérez-Ortiz et al., 2021]. We pick
Digits, specifically, because it exhibits shift in the marginal
label distributions, which can cause DANN to fail [Zhao
et al., 2019]. More training details are given in Appendix C.



Figure 2: Adaptability (left) and dependent/independent divergences (right) for DANN on Digits. Solid line is median. Scatter describes
unique (S, T,Q), limited to 95% or more data to filter extreme values. Q is a multivariate Gaussian and µ is its mean.

Figure 3: Histogram of ρ estimates. Rug plot above 0.04 displays
infrequent occurrences. Each datum describes unique (S, T,Q).
Q, µ are defined as in Figure 2. See Appendix C.7 for details.

Figure 4: Sample-dependent (left) and independent adaptability.
Each datum is for unique (S, T,H). See Appendix C.5 for details.

Experiments The data points in our results are each in-
dividual experiments done on a source dataset S and target
dataset T using a classifier h or Gibbs predictor Q. The
pair S and T are taken from a set of data splits using the
datasets discussed above (details in Appendix C). Across
these splits, we consider various scenarios including: single-
source, multi-source, and within-distribution adaptation
(i.e., S = T) using multiple random data splits. On Digits,
we also consider natural shifts (i.e., noise and rotation) and
unnatural shifts (i.e., transfer to random data). In general,
we restrict the pair (S, T ) to have a common label space.

4.2 RESULTS

Sample-Dependent Adaptability As mentioned, estima-
tion of sample-independent adaptability (e.g., λ in Thm. 1)
requires verification of generalization. In particular, to esti-
mate λ one can learn η ∈ H which has small sum of risks
over the observed samples S and T . In our experiments,
we do so using batch SGD on a weighted NLL loss – a
common surrogate. Because λ is a population statistic for
S and T, we cannot directly report the errors on S and T
– this is incorrect, like using training error as a validation

Table 1: Correlation of h-dependent and -independent divergence
with |Rh(S) − Rh(T )|. Columns delineate data subsets. Each
datum describes unique (S, T, h). See Appendix C.6 for details.

All Digi. Disc. PACS+OH Amaz.
model-ind. 0.54 0.15 0.70 0.41 -0.05
model-dep. 0.58 0.23 0.78 0.14 0.41

metric. Instead, we should check the performance of η on a
heldout data subset (for example). This is the strategy we
take in Figure 4, using Hoeffding’s Inequality to produce
a valid upperbound on λ. Comparably, estimating sample-
dependent adaptability is much easier. By design, we can
report error on the samples S and T used for training η.
Doing so, produces a valid upperbound:

∀η ∈ H : λ̃S,T ≤ RS(η) +RT (η) (by definition). (24)

As is visible in Figure 4, this strategy for estimating λ̃ is
much more effective than the sample-independent strategy
in revealing important information. We see from the his-
togram of upperbounds on λ̃ that adaptability is very often
small and concentrated near 0, although this is not always
the case. Comparatively, upperbounds for λ are spread out
with notable mass at large values; we miss out on the inter-
pretation that adaptability very often is small (as we might
like to assume, in practice). In the rest of our discussion,
all adaptability will be sample-dependent. Note, additional
experiments on adaptability are available in Appendix D.1.

Divergence and Approximation In Table 1, we give re-
sults for our approximation techniques applied to the model-
dependent h∆H-divergence and the model-independent
H∆H-divergence. The models used in these experiments
are trained using SA. Since there is actually no ground-truth
to compare too, we report performance of our approxima-
tions on a ranking task. That is, we compare our approxima-
tions to absolute difference in risks on the source and target
and compute the Spearman rank correlation. According
to our adaptation bounds, smaller divergence should pre-
dict smaller difference in risk and larger divergence should
predict larger difference in risk as in the ranking task we
study. Any effective approximation of divergence should
also mimic this behavior, allowing us to conduct an indirect
evaluation. In aggregate, we observe both divergences are



capable of ranking performance similarity on the source and
target, which validates our approximations to some extent.
For reference, a recent statistic designed for shift-detection
[Rabanser et al., 2019] achieves correlation 0.29 on all data.
We also observe the model-dependent divergence typically
ranks “better” than the model-independent divergence. This,
also, is to be expected according to our theory, since the
model-independent divergence does not account for varia-
tion in h and should thus perform worse. Overall, the nu-
anced agreement of our approximations with our theoretical
expectations is suggestive that these techniques are effective.

Do Flat Regions Transfer? As noted, one stipulation of
practical use for Thm. 6 is a small flatness value ρ. This
is not unlike the common assumption that λ is small and,
as discussed, is related to the flat-minma hypothesis. To
estimate ρ and test our assumption, we select ρS and ρT
to be the smallest values so that Def. 1 is satisfied on S
and T using a Monte-Carlo estimate for the Gibbs Risk.4

We train Q using a variant of SA based on the technique of
Pérez-Ortiz et al. [2021]. Our results indicate ρ is typically
small as desired with mean 0.007 and SD 0.01 across 4K+
experiments. See Figure 3 for a visualization.

Analysis of Assumptions after DANN Our results in Fig-
ure 2 show an interesting relationship between the sample
complexity of Q – as measured by KL(Q || P) – and our as-
sumption on adaptability. Namely, we can be more confident
in the assumption λ̃ is small when the sample complexity
of our solution increases. A similar observation holds for
the flatness term ρ (see Appendix D.4 Figure 8). Our analy-
sis suggests DANN may be a data-hungry algorithm, since
solutions with properties we desire have large sample com-
plexity. The practical suggestion is to use large quantities of
unlabeled data when applying DANN, which is reasonable
since unlabeled data can be “cheap” to acquire.

Analysis of Divergence after DANN In Figure 2, accord-
ing to the (more sensitive) model-dependent divergence,
DANN reduces data-distribution divergence as it is designed
to do. Still, it does not reduce divergence to the degree one
might expect and, as the sample complexity of the solu-
tion increases, the gap between divergences – before and
after DANN – begins to wane. This is interesting because it
shows reduction of divergence and reduction of adaptability
/ flatness may be competing objectives. Further, this find-
ing echoes theoretical hypotheses in recent literature [Zhao
et al., 2019, Wu et al., 2019, Johansson et al., 2019], while
also revealing the role of sample complexity in this story.
To meet our assumptions when using DANN, we should use
large amounts of unlabeled data and allow an unconstrained
solution, but to ensure DANN reduces distribution diver-

4A penalty based on Hoeffding Inequality could be added to
this estimate to create a valid upperbound. We do not consider this
since a penalty is also added if we use the strategy in Eq. (16).

gence significantly, we should instead constrain our solution
to lower complexity (e.g., via regularization). Depending on
problem context, there may be some optimum between these
extremes, but in any case, these opposing relationships are
an interesting take-away from the application of our theory.

5 CONCLUSION

In this work, we proposed the first adaptation bounds ca-
pable of studying the non-uniform sample complexity of
adaptation algorithms using multiclass neural networks. Em-
pirically, we validated the novel design-concepts in our adap-
tation bounds and showed our approximation techniques for
some multiclass divergences were effective. In culmination,
we applied our bounds to study sample complexity of a
common domain-invariant learning algorithm. Our findings
revealed unexpected relationships between sample complex-
ity and important properties of the algorithm we studied.
Code for reproducing our experiments is publicly avail-
able at https://github.com/anthonysicilia/
pacbayes-adaptation-UAI2022.

Besides what has been done in this work, we also identify
some areas of potential future work:

Assumptions and Heuristics As with previous adapta-
tion bounds, the nature of the adaptation problem requires
us to be imprecise in some cases. For one, we make a num-
ber of assumptions on adaptability and flatness. Also, our
divergence computation does require some heuristics. While
we study these imperfections empirically with promising
results, we anticipate both shortcomings can be improved.
In particular, restriction of scope to specific domains or hy-
pothesis classes should reveal exploitable problem structure.

Generalized Loss While we have focused on multiclass
learners in this work, a PAC-Bayesian adaptation bound for
general learners (e.g., with bounded loss functions) remains
an open-problem. Possibly, applying our strategies to the
more general framework of Mansour et al. [2009] would be
fruitful. Albeit, since algorithms for computing divergence
have traditionally been loss-specific, we expect additional
theoretical derivation to be required for each new loss.
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