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Abstract

Pruning is a widely used technique for compress-
ing large neural networks that eliminates weights
with minimal impact on performance. Current
pruning methods, exemplified by magnitude prun-
ing, assign importance scores to weights based on
their magnitude and remove those below a certain
threshold. However, these methods introduce a
gap between the original dense and pruned sparse
models, potentially impairing performance, es-
pecially at high sparsity ratios. To address this
issue, we introduce a method that bridges this gap
through low-rank approximation of the difference
between dense and sparse matrices. Our approach
iteratively refines the sparse weight matrix with a
low-rank adjustment, capturing essential informa-
tion typically lost during pruning. We provide a
comprehensive theoretical analysis of our method,
establishing its convergence properties and effi-
cacy. Experimental results on LLaMA models
validate our method’s effectiveness across various
pruning techniques and sparsity levels. At 50%
sparsity, it reduces perplexity by 53.9% compared
to conventional magnitude pruning on LLaMA-
7B. Furthermore, our approach enables an 8.6%
reduction in model parameters while maintaining
a sparsity ratio of about 50%.
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1. Introduction
Pruning is a crucial technique in the field of model com-
pression, particularly for large language models (LLMs),
which have become the cornerstone of natural language pro-
cessing tasks (Devlin, 2018; Brown, 2020; Hoffmann et al.,
2022). Pruning involves the removal of specific weights
or parameters from the neural network that are considered
to have minimal impact on the overall performance of the
model (LeCun et al., 1989; Hassibi et al., 1993; Han et al.,
2015b; Frankle & Carbin, 2018; Frankle et al., 2020). This
technique is especially valuable for LLMs, which often
contain billions of parameters and require substantial com-
putational resources for both training and inference (Han,
2017; Touvron et al., 2023; Minaee et al., 2024).

One of the most representative pruning techniques is magni-
tude pruning, which removes weights that have the smallest
absolute values. This method is based on the assumption that
smaller weights have less effect on the network’s overall per-
formance (Han et al., 2015a). Furthermore, as model sizes
continue to grow, the number of redundant parameters also
increases. For LLMs with billions of parameters, even half
of the layers can be dropped without significantly affecting
performance (Men et al., 2024; Fan et al., 2024). However,
recent research shows that pruning can cause irreparable
loss of knowledge and performance drops, especially for
difficult tasks, a phenomenon known as the Junk DNA Hy-
pothesis (Yin et al., 2024). This consistent degradation in
performance is observed across a spectrum of pruning meth-
ods, including magnitude pruning, SparseGPT (Frantar &
Alistarh, 2023), and Wanda (Sun et al., 2023), and applies
to both unstructured pruning and structured N:M pruning.

Conventional approaches to post-pruning performance re-
covery face a three-fold challenge: (1) Computational bur-
den: Re-training (Frankle & Carbin, 2018; Xia et al., 2023;
Kim et al., 2024a) and knowledge distillation (Hinton, 2015;
Wan et al., 2024a; Muralidharan et al., 2024) methods are
computationally expensive and time-consuming. (2) Data
and model dependency: These techniques typically require
either extensive datasets or access to a high-performing
teacher model, which may not always be feasible. (3) Spar-
sity inconsistency: Recent low-rank approximation meth-
ods (Li et al., 2023b; Mozaffari et al., 2024; Zhang & Pa-

1



Targeted Low-rank Refinement: Enhancing Sparse Language Models with Precision

pyan, 2024) often fail to maintain a consistent sparsity pat-
tern, making them unsuitable for structured pruning, which
is crucial for hardware efficiency.

In this study, we address these challenges of post-pruning
performance recovery by approximating the dense matrix as
the sum of an updated sparse matrix with a maintained spar-
sity pattern and a low-rank matrix. We propose an iterative
refinement process that concurrently updates the sparse ma-
trix and the low-rank component in a data-free manner. This
approach effectively recovers crucial information typically
lost during pruning. Our method features an adaptive low-
rank approximation that dynamically adjusts to complement
the sparse matrix, enabling efficient information recovery.
Unlike traditional techniques that rely on large datasets
or high-performing teacher models, our approach operates
directly on model weights, offering a computationally effi-
cient and broadly applicable solution. This approach aims
to improve the performance of the pruned model without
significantly increasing the parameter count. Our method
combines the advantages of both sparse and low-rank ap-
proximation, ensuring the model maintains its efficiency
while enhancing its accuracy. In addition to our empirical
findings, we provide a comprehensive theoretical analysis
of the iterative refinement process, which rigorously demon-
strates the favorable convergence properties of our method.

Experimental results on the LLaMA models demonstrate the
effectiveness of our low-rank refinement approach. When
applying 50% sparsity, our method achieves a 53.9% re-
duction in perplexity compared to conventional magnitude
pruning. The benefits of our approach become increasingly
evident as sparsity increases: at 60% sparsity, we observe
a 92.0% decrease in perplexity compared to vanilla sparse
models, while at 70% sparsity, an impressive 99.6% reduc-
tion is achieved. This highlights the effectiveness of our
method, especially in scenarios of high sparsity where tradi-
tional approaches typically face considerable challenges.

To summarize, the main contributions of this paper are:

• We bridge the gap between the original dense and
pruned sparse model by leveraging a low-rank com-
ponent. This approach effectively fills the gap left
by pruning, enhancing the model’s performance with
minimal parameter increase.

• We develop an iterative algorithm that incrementally
refines the sparse weight matrix and incorporates the
low-rank approximation. By prioritizing the preser-
vation of weight components associated with larger
singular values, our method allows for a more aggres-
sive reduction of less important components, leading
to a more precise approximation.

• We provide a thorough theoretical analysis of our pro-
posed method, which offers a rigorous foundation un-

derstanding of the effectiveness, convergence, and sta-
bility of our approach.

• We evaluate our method on LLMs and show significant
perplexity improvements over baselines. This is partic-
ularly noteworthy at high sparsity levels, maintaining
robust improvements even as high as 70% sparsity.

2. Related Work
LLM compression. LLMs have become essential in nat-
ural language processing tasks, but their substantial size
poses challenges in terms of computational resources and
efficiency. Various techniques have been proposed to com-
press LLMs while maintaining their performance, including
pruning, low-rank compression, quantization, and knowl-
edge distillation (Cheng et al., 2017; Choudhary et al., 2020;
Haroush et al., 2020). In this study, we concentrate on
pruning methods and use low-rank approximations to re-
store the lost performance. Pruning LLMs with billions
of parameters differs significantly from pruning smaller
models (Gale et al., 2019; Frankle et al., 2020; Kurtic & Al-
istarh, 2022), as current pruning techniques often necessitate
extensive re-training after the pruning process, which is pro-
hibitively costly for LLMs (Komatsuzaki et al., 2022; Chung
et al., 2024; Snell et al., 2024). Pruning methods are often
categorized into unstructured and structured pruning (Liu
et al., 2017; Fan et al., 2019; He & Xiao, 2023). Structured
pruning techniques, including layer pruning (Chen & Zhao,
2018; Kim et al., 2024b), channel pruning (He et al., 2017;
Zhuang et al., 2018), and N:M pruning (Sun et al., 2021),
focus on eliminating entire neurons, layers, or N out of M
elements in a regular pattern. Unstructured pruning removes
individual weights without considering their structure, often
improving performance but making it less efficient for hard-
ware. Low-rank compression reduces the dimensions of the
weight matrix by focusing on larger singular values in both
the column and row spaces (Cheng et al., 2005; Idelbayev
& Carreira-Perpinán, 2020). While quantization (Xiao et al.,
2023; Lin et al., 2024) and knowledge distillation (Wan et al.,
2024b) have been used to compress LLMs, they are orthog-
onal to our approach. Low-rank refinement is also used to
regain performance during the quantization process (Guo
et al., 2023; Loeschcke et al., 2024; Li et al., 2023a).

Post-pruning performance recovery. To recover the per-
formance after pruning step, several post-pruning recovery
techniques have been explored such as re-training the pruned
model and using knowledge distillation (Muralidharan et al.,
2024). However, these approaches can be computationally
expensive and time-consuming. Recent research has fo-
cused on incorporating low-rank approximations to recover
the lost performance. By adding a low-rank component to
the pruned model, it is possible to approximate the origi-
nal dense model more closely with minimal computational
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(a) The general framework of neural network pruning. (b) Refine with a low-rank patch.

Figure 1: (a) An overview of the general framework of (local) layer-wise pruning, where W , M , P , and S are the
original dense weight matrix, the importance score matrix, the binary pruning mask, and the pruned sparse weight matrix,
respectively. Here we show the case of pruning using the magnitude of the weights as the importance score. (b) Our
proposed method, where S is updated and a low-rank matrix Lk is introduced to minimize the approximation error.

overhead (Chandrasekaran et al., 2009; Li et al., 2023b;
Mozaffari et al., 2024; Zhang & Papyan, 2024).

Low-rank refinement. Low-rank refinement is a technique
that has been used to recover the performance in many
scenarios. While this study concentrates on post-pruning
performance recovery, low-rank refinement has also been
utilized in other scenarios, including quantization (Guo et al.,
2023; Loeschcke et al., 2024; Li et al., 2023a; Zhang et al.,
2023). However, a key distinction of our approach is that it
is data-free and can be applied to individual layers, making
the refinement process more memory-efficient.

3. Preliminary
3.1. The General Framework of Layer-Wise Pruning

Neural network pruning is a crucial technique for model
compression, aiming to reduce parameters while preserv-
ing performance. In this section, we first present the gen-
eral framework for (local) layer-wise pruning, outlining
the key steps and components involved as illustrated in
Fig. 1(a). Let W ∈ Rm×n represent a weight matrix, and
M = M(W ,D) ∈ Rm×n denote its corresponding im-
portance score matrix. Here, M : Rm×n × D → Rm×n

is a metric function that computes the importance scores
based on the weight matrix W and an optional dataset D.
The most straightforward approach is to use the magnitude
of the weights as the importance score, i.e., Mij = |Wij |.
More sophisticated methods can be employed to capture
the importance of each weight more accurately, such as
the SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2023). Given a pruning ratio p ∈ [0, 1], we set thresh-
old h as the p-th percentile of M as the decision boundary
for pruning. Then the binary pruning mask P is obtained by
Pij = I(Mij > h). The pruned sparse weight matrix S is
obtained by S = W ⊙ P , where ⊙ denotes element-wise
multiplication. This zeroes out less important weights while
retaining significant ones. An optional weight update pro-
cedure can be applied to refine the pruned weights further.
For example, after the pruning process, a re-training phase
may be implemented to fine-tune the remaining weights and

recover some lost performance. During this process, the
pruning structure is maintained by enforcing the constraint
S(t) = S(t) ⊙ P at each iteration t. This ensures that
the pruned weights remain zero throughout the re-training
process, preserving the sparsity achieved through pruning.

3.2. Singular Value Decomposition

Here we briefly review the Singular Value Decomposition
(SVD) of a matrix. Given a matrix W ∈ Rm×n, its reduced
SVD is given by (Olver & Shakiban, 2018):

W = UΣV ⊤ =

r∑
i=1

σiuiv
⊤
i , (1)

where U ∈ Rm×r and V ∈ Rr×n are orthogonal matri-
ces, and Σ ∈ Rr×r is a diagonal matrix containing the
singular values of W . The i-th columns of matrices U
and V are represented by ui and vi, respectively. Ad-
ditionally, we use σi to denote the i-th diagonal element
of the matrix Σ. For convenience, we extend this nota-
tion to represent functions that map W to its SVD com-
ponents. This allows us to express the decomposition as
W = U(W )Σ(W )V ⊤(W ), or alternatively as a sum
of outer products: W =

∑r
i=1 σi(W )ui(W )v⊤

i (W ).
While this slightly abuses the original notation, it provides
a concise way to refer to the SVD components of a matrix.

4. Method
Low-rank approximation is a common technique for model
compression, which has been widely used in various fields
as in (Zhou & Tao, 2011; Yu et al., 2017). In this study,
we focus on the local pruning method and aim to fill the
gap between the original dense weight matrix W and the
pruned weight S by introducing a low-rank matrix Lk with
a target rank k to approximate ∆W = W−S. We illustrate
the main idea in Fig. 1(b), where the dense matrix W is
factorized into the superposition of a low-rank matrix L and
a updated sparse matrix S′:

W = S′ +L ≈ S′ +Lk. (2)
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Algorithm 1 The Proposed Iterative Weight Update Method

1: Inputs: Dense weight matrix W , binary mask P , target
rank k, number of iterations T

2: Initialize S(0) ←W ⊙ P
3: for t = 0 to T − 1 do
4: L(t) ←W − S(t)

5: Compute SVD: L(t) = U (t)Σ(t)V (t)⊤

6: r(t) ← ⌊1 + k−1
T−1 t⌋

7: S(t+1) ← S(t) + P ⊙
{
U

(t)

r(t):
Σ

(t)

r(t):
V

(t)⊤

r(t):

}
8: end for
9: L(T ) ←W − S(T )

10: Returns: S(T ), L(T )

In this formulation, S′ should maintain the same sparsity
pattern as S, ensuring that S′ = S′ ⊙ P and S = S ⊙ P
are satisfied. It’s important to note that both S′ and L can
have elements of any magnitude without restrictions. Lk is
the best rank-k approximation of L, which can be obtained
using the SVD of L as Lk = U:k(L)Σ:k(L)V ⊤

:k (L). Be-
ginning with fixed S, we have the baseline:
Baseline 1 (Zero-shot SVD). The most straightforward
method to obtain the low-rank matrix Lk is to directly per-
form the SVD on difference matrix W−S without updating
S. This can be expressed as Lk = U:k(W − S)Σ:k(W −
S)V ⊤

:k (W −S). Here, U:k(·), Σ:k(·), and V:k(·) represent
the first k columns of U(·), the top-left k × k submatrix of
Σ(·), and the first k columns of V (·), respectively.

Parameter efficiency analysis. We analyze the computa-
tional efficiency of low-rank refinement by examining its
parameter count and FLOPs (floating-point operations). We
compare these metrics with the dense model and a pruned
model, considering the impact of sparsity. For a weight
matrix W ∈ Rm×n, the dense model has mn parameters
and requires 2mn FLOPs for a forward pass. With pruning
at sparsity ratio p, these reduce to (1 − p)mn parameters
and 2(1− p)mn FLOPs. Our method introduces a low-rank
matrix Lk = BA, which introduces k(m+ n) parameters
and 2k(m+ n) FLOPs, slightly reducing the overall spar-
sity ratio by k( 1

m + 1
n ). The choice of k and p presents

a trade-off between model size, computational complexity,
and performance. In practice, using a rank k of 128 results
in only a 4.9% increase in parameters, while possibly re-
ducing perplexity by half on a LLaMA-7B model with both
unstructured 50% sparsity and structured 4:8 sparsity.

This optimization problem is generally NP-hard and similar
challenges have been addressed in the fields of matrix com-
pletion (Chandrasekaran et al., 2011) and robust Principal
Component Analysis (PCA) (Candès et al., 2011; Peng et al.,
2020) by solving a Principal Component Pursuit (PCP) as:

min
L,S′
∥L∥∗ + λ∥S′∥1, s.t. L+ S′ = W . (3)

Where ∥ · ∥∗ denotes the nuclear norm and ∥ · ∥1 denotes the
ℓ1-norm, λ is a hyperparameter that controls the trade-off
between the rank of L and the sparsity of S′. The nuclear
norm serves as a convex approximation for the rank of a
matrix, while the ℓ1-norm acts as a convex proxy for the ℓ0-
norm (which represents the count of non-zero elements in a
matrix). In this convex optimization problem, the ∥L∥∗ term
promotes a low-rank solution for L, whereas the λ∥S′∥1
term promotes sparsity in S′. Nevertheless, it’s important to
note that the solution to Eq.(3) does not necessarily preserve
the fixed sparsity pattern of S′ that is required to match S
in Eq.(2). To address this issue, we propose to incorporate
the binary mask P into the optimization process to ensure
that the sparsity pattern of S′ is fixed as S. This is achieved
by rewriting Eq.(2) as follows:

W = (

S︷ ︸︸ ︷
W ⊙ P −Q⊙ P )︸ ︷︷ ︸

sparse part S′

+(W ⊙ (1− P ) +Q⊙ P )︸ ︷︷ ︸
low-rank part L

. (4)

Where Q is a learnable matrix in the same shape as W .
Baseline 2 (PCP with mask). By directly substituting the
decomposition from Eq.(4) into the optimization problem
presented in Eq.(3) yields:

min
Q
∥W ⊙(1−P )+Q⊙P ∥∗+λ∥W ⊙P −Q⊙P ∥1,

and L = W ⊙ (1− P ) +Q⊙ P . (5)

This equation represents a constrained optimization problem
where we seek to find the optimal Q. The binary mask P
plays a crucial role in maintaining the desired sparsity pat-
tern. To solve this optimization problem, we can employ it-
erative methods such as gradient descent or its variants. Fol-
lowing Candès et al. (2011), we set λ = 1/

√
max(m,n).

However, the nuclear norm minimization approach has a
limitation: it applies equal shrinkage to all rank compo-
nents (Zha et al., 2019). This uniform treatment may not
be optimal for our objective in Eq.(2), where we aim to
approximate the residual matrix W − S using a low-rank
matrix Lk with a rank lower than that of L.

To address this limitation, we propose a forward-only
method that prioritizes the preservation of low-rank compo-
nents associated with larger singular values, while allowing
for a more aggressive reduction of components with smaller
singular values. This approach offers greater flexibility and
precision in low-rank approximation compared to the PCP
baseline, aligning more closely with our goal of achieving
an efficient low-rank approximation. We begin by setting
S(0) = W ⊙ P , and then iteratively refine S(t+1) using
the following update rule:

S
(t+1)

= S
(t)

+ P ⊙


r∑

i=r(t)+1

σi

(
L

(t)
)
ui

(
L

(t)
)
v
⊤
i

(
L

(t)
) (6)

= S
(t)

+ P ⊙
{
U

r(t):

(
L

(t)
)
Σ

r(t):

(
L

(t)
)
V

⊤
r(t):

(
L

(t)
)}

. (7)
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Figure 2: Analysis of the residual matrix L = W − S′

and its low-rank approximation Lk of zero-shot SVD, PCP
baseline (T = 5000), and our method with varying k
(64, 128, 512) and T = 50. (a) Singular value spectrum
of L. (b) Proportion of total energy captured by the top k
singular values, calculated as

∑i
j=1 σ

2
j (Lk)/

∑r
j=1 σ

2
j (L).

In this equation, L(t) represents the difference W − S(t),
and r(t) is defined as ⌊1+ k−1

T−1 t⌋, where T denotes the total
number of iterations, k is the target rank of Lk, and t ranges
from 0 to T − 1. The linear schedule of r(t) serves sev-
eral important purposes: (1) starting with a low rank forces
the algorithm to first capture the most important singular
components, which typically contain the majority of the
energy, (2) each iteration then gradually incorporates more
subtle details from higher singular components, and (3) this
progressive approach helps maintain numerical stability and
accelerates convergence compared to directly optimizing
for the target rank k from the beginning. We summarize
the above algorithm in Algorithm 1. In each iteration, our
algorithm focuses on eliminating the least significant com-
ponents from the residual matrix L(t), which are associated
with smaller singular values, while preserving those with
larger singular values. This approach allows for a progres-
sive refinement of the sparse matrix S. As we advance
through the iterations, we gradually incorporate more subtle
details from the original dense weight matrix W into the up-
dated sparse term S. For detailed guidelines on selecting the
hyperparameters k and T , we refer readers to Appendix D.

Computational complexity analysis. The primary com-

putational bottleneck in our algorithm is the SVD compu-
tation performed in each iteration. For a weight matrix
W ∈ Rm×n (assuming m ≥ n), the time complexity
of SVD is O(mn2). With T iterations, the overall time
complexity is O(Tmn2). However, our method remains
significantly more efficient than comparable approaches,
which typically require thousands of iterations. While the
zero-shot SVD baseline is the fastest with only one SVD
computation, it generally yields lower-quality results as
shown in our experiments. Our method achieves substan-
tially better performance than zero-shot SVD with relatively
few iterations (T = 50). For a detailed analysis of the infer-
ence acceleration and memory usage of our method, please
refer to Appendix E.

Incrementally increasing the rank r(t) from 2 to k over T
iterations enables a more nuanced exploration of the weight
space. Furthermore, the consistent application of the binary
mask P throughout this optimization process ensures the
preservation of the desired sparsity pattern.

In Figure 2, we show the singular value spectrum of L
and the cumulative energy retention in Lk for different
methods using a 512× 512 weight block extracted from a
fine-tuned LLaMA-7B model. Subfigure 2a demonstrates
that the proposed method with different target rank values
k (64, 128, and 512), consistently produces a more pro-
nounced decay in singular values compared to both the
zero-shot SVD and the PCP baseline. Subfigure 2b shows
that the cumulative energy retention in L, calculated as
E(i) =

∑i
j=1 σ

2
j (L)/

∑i
j=1 σ

2
j (L) or ∥Li∥2F /∥L∥2F , in-

creases more rapidly with truncated rank i for the proposed
method compared to the PCP baseline 2.

From Algorithm 1 and observations from Figure 2, we
can summarize the technical contributions of our proposed
method as follows: (1) Iterative refinement with adaptive
rank increase. Our method progressively refines the sparse
matrix S while gradually increasing the rank r(t) from 2 to
k over T iterations, prioritizing the most significant singu-
lar components of the residual matrix L first and gradually
incorporating more subtle details. (2) Sparsity preservation.
Throughout the optimization process, our method strictly
maintains the binary mask P , ensuring complete preserva-
tion of the desired sparsity pattern. This enables compatibil-
ity with both unstructured and structured pruning techniques
for hardware-efficient implementations. This flexibility ex-
tends beyond the N:M structured sparsity patterns discussed
in our experiments to other hardware-efficient patterns such
as block sparsity (e.g., 4×4 blocks) and channel pruning
since Theorem 4.1 guarantees that our method preserves any
arbitrary sparsity pattern defined by the mask. (3) Efficient
information capture. By focusing on preserving compo-
nents with larger singular values first, our approach creates
low-rank approximations that more efficiently capture the es-
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sential information of the original weight matrix compared
to alternative methods.

4.1. Theoretical Analysis

In this section, we delve into the theoretical underpinnings
of our proposed method, offering a more rigorous analysis
of its properties and performance. We present key theorems
that elucidate the behavior of our algorithm, focusing on
two critical aspects: sparsity preservation and convergence.

First, we demonstrate that our method maintains the de-
sired sparsity pattern throughout the iterative process, en-
suring that the final solution adheres to the specified binary
mask. This property is crucial for applications where spe-
cific weight connections must remain zero.

Theorem 4.1 (Sparsity Preservation, Proof. A.2.). For all
iterations t, the sparsity pattern of S(t) is preserved and
matches the binary mask P , i.e., S(t) = S(t) ⊙ P for all t.

Second, we prove the convergence of our algorithm, show-
ing that it approaches a well-defined solution as the number
of iterations increases. This convergence guarantee provides
theoretical justification for the stability and reliability of our
method.

Theorem 4.2 (Convergence). For any weight matrix W ∈
Rm×n and binary mask P ∈ {0, 1}m×n, the iterative
weight update algorithm converges to a solution (S∗,L∗)
as T →∞, such that W = S∗+L∗, S∗ = S∗⊙P . More-
over, limT→∞ ∥S(T ) − S∗∥F = 0 and limT→∞ ∥L(T ) −
L∗∥F = 0.
Theorem 4.3 (Asymptotic Convergence). There exists a
time step T0 such that for all t > T0, the Frobenius norm of
the error decreases monotonically, i.e., for some∥∥∥W −

(
S(t+1) +L

(t+1)
k

)∥∥∥
F
≤

∥∥∥W −
(
S(t) +L

(t)
k

)∥∥∥
F
.

(8)

A corollary of Theorem. 4.3 is that if we fix r(t) = k for
all t, the Frobenius norm of the error decreases monotoni-
cally. In this case, the term ∥P ⊙ L

(t)

r(t):k
∥2F vanishes, and

Eq.(44) becomes
∥∥E(t+1)

∥∥2
F
≤

∥∥E(t)
∥∥2
F
−
∥∥P ⊙E(t)

∥∥2
F

.
Formally, we have the following corollary:

Corollary 4.4 (Monotonic Improvement). If we choose
to fix r(t) = k for all t, the Frobenius norm of the error
decreases monotonically, i.e.,∥∥∥E(t+1)

∥∥∥
F
−
∥∥∥E(t)

∥∥∥
F
≤ −

∥∥∥P ⊙E(t)
∥∥∥
F
≤ 0, (9)

where the equality holds if and only if E(t) = 0.

However, our empirical observations suggest that fixing
r(t) = k throughout the process is not optimal in practice,
and gradually increasing r(t) as the iterations progress leads
to faster convergence.

Theorem 4.5 (Error Bound). At each iteration t, the Frobe-
nius norm of the difference between the original weight
matrix W and its approximation S(t) + L

(t)
k is bounded

by:

∥∥∥W −
(
S(t) +L

(t)
k

)∥∥∥
F
=

√√√√ r∑
i=k+1

σ2
i (L

(t)) (10)

≤
√

(r − k)σk+1

(
L(t)

)
, (11)

where σi

(
L(t)

)
are the singular values of L(t) = W −

S(t), and r = rank
(
L(t)

)
.

For a more comprehensive treatment, including detailed
proofs of these theorems and additional supporting lemmas,
we direct the reader to Appendix A. This appendix contains
the full mathematical derivations and supplementary results
that underpin our theoretical analysis.

5. Experiment
5.1. Experimental Setup

We conducted our experiments using LLaMA models, eval-
uating their performance on the WikiText-2 (Merity et al.,
2016) and standard benchmarks including TruthfulQA (Lin
et al., 2021), GSM8K (Cobbe et al., 2021), ARC-C (Clark
et al., 2018) and MMLU (Hendrycks et al., 2020). We report
perplexity on WikiText-2, where lower values indicate better
performance. We evaluate various sparsity levels, including
unstructured sparsity and structured N:M sparsity.

It is important to note that our proposed iterative refinement
method is entirely data-free and does not require calibration
data, as shown in Algorithm 1. We consistently use T = 50
across all experiments, which is sufficient for achieving most
of the potential error reduction while maintaining computa-
tional efficiency. When implementing Wanda pruning (Sun
et al., 2023) and our method combined with Wanda (Wanda
+ Ours), we use 128 sequences from the ‘allenai/c4’ dataset
as calibration data. For evaluation, we use 128 sequences
from WikiText-2 dataset for perplexity evaluation.

5.2. Effectiveness of Low-Rank Refinement

Low-rank refinement advantage. First, we aim to examine
the benefits of low-rank refinement on WikiText-2. In Fig-
ure 3, we show the perplexity evaluation for various sparsity
levels using magnitude pruning and low-rank refinement
methods, with the target rank k set to 128. In subfigure 3a,
we compare the perplexity of sparsity-only pruning and
zero-shot SVD refinement to highlight the low-rank refine-
ment advantage. By incorporating a low-rank structure into
the pruned weights, the parameter count increases. The x-
axis represents the parameter reduction relative to the dense
model instead of the sparsity level, and we use a dashed

6
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Table 1: Comparison of WikiText validation perplexity (↓ is better) across various sparsity levels on LLaMA-7B. All
methods and sparsity levels use a target rank of k = 128 (4.9% more parameters).

SPARSITY LEVEL (LLaMA-7B)

METHOD 50% 60% 70% 4:8 2:4

Dense 5.68

Magnitude 17.29 (0%) 152.36 (0%) 48427.85 (0%) 16.83 (0%) 42.53 (0%)
w/ Zero-shot SVD 8.06 (-53.4%) 13.59 (-91.1%) 283.74 (-99.4%) 9.29 (-44.8%) 12.72 (-70.0%)
w/ PCP with mask 8.70 (-49.7%) 16.67 (-89.1%) 727.54 (-98.5%) 10.60 (-37.0%) 16.62 (-60.9%)
w/ Ours 7.97 (-53.9%) 12.14 (-92.0%) 200.09 (-99.6%) 8.86 (-47.4%) 10.74 (-74.7%)

Wanda 7.26 (0%) 10.69 (0%) 84.69 (0%) 8.57 (0%) 11.53 (0%)
w/ Zero-shot SVD 7.09 (-2.3%) 9.60 (-10.2%) 35.65 (-57.9%) 8.14 (-5.0%) 10.48 (-9.1%)
w/ PCP with mask 7.28 (+0.3%) 10.19 (-4.7%) 47.11 (-44.4%) 8.63 (-0.7%) 11.22 (-2.7%)
w/ Ours 6.92 (-4.7%) 8.97 (-16.1%) 32.90 (-61.2%) 7.74 (-9.7%) 9.18 (-20.4%)

Table 2: Comparison of WikiText validation perplexity (↓ is better) across various sparsity levels on LLaMA-13B. All
methods and sparsity levels use a target rank of k = 128 (3.8% more parameters).

SPARSITY LEVEL (LLaMA-13B)

METHOD 50% 60% 70% 4:8 2:4

Dense 4.57

Magnitude 5.98 (0%) 9.91 (0%) 408.75 (0%) 6.76 (0%) 8.32 (0%)
w/ Zero-shot SVD 5.73 (-4.2%) 8.83 (-10.9%) 163.96 (-59.9%) 6.58 (-2.7%) 8.86 (-6.5%)
w/ Ours 5.65 (-5.5%) 8.83 (-10.9%) 99.27 (-75.7%) 6.40 (-5.3%) 7.76 (-6.7%)

black arrow to indicate the correspondence between the
pruned model and the model with refinement of the same
sparsity level. The results indicate that we gain 8.6% param-
eter reduction at approximately 50% sparsity, highlighting
the superiority of low-rank refinement compared to sparsity-
only pruning techniques. In subfigure 3b, we compare our
method with other baseline methods. Our method consis-
tently outperforms the baseline methods, with the benefits
becoming more pronounced at higher sparsity levels. It is
evident that PCP with mask under-performs compared to
zero-shot SVD and our iterative weight update method, al-
though it still surpasses sparsity-only pruning. This can be
attributed to PCP’s uniform shrinkage of all singular values,
including smaller ones, and our choice of a very low target
rank k = 128. To better understand the performance of
PCP, we visualize the singular value spectrum of PCP in
Figure 4a, Appendix B. PCP yields larger singular values
for indices ranging from 102 to nearly 103, demonstrating
its less discriminative approach to value reduction.

Comparison across different sparsity types and levels. To
delve deeper into the effectiveness of low-rank refinement
across varying sparsity types and levels, we offer a com-
prehensive comparison of WikiText-2 validation perplexity
using LLaMA-7B and 13B. The results are presented in
Tables 1 and 2 respectively. Where we show the experimen-

tal results for different sparsity levels, ranging from 50%
to 70%, as well as structured sparsity patterns like 4:8 and
2:4. For each sparsity level, we compare the performance of
low-rank refinement incorporated with magnitude pruning
and Wanda pruning (Sun et al., 2023). At 50% sparsity, our
method reduces perplexity by 53.9% compared to sparse-
only magnitude pruning. This improvement becomes more
significant at higher sparsity levels, reaching a 92.0% reduc-
tion at 60% sparsity and a 99.6% reduction at 70% sparsity.
Our proposed method consistently achieves lower perplexity
values across all sparsity levels. This detailed comparison
highlights the effectiveness of our method in maintaining
low perplexity even at higher sparsity levels, demonstrating
its robustness and superiority over other baseline methods.

Benchmark results. In Table 3, we evaluate the perfor-
mance of our method on several benchmark datasets. We
compare the performance of our method with that of dense
models, sparsity-only pruned models, and low-rank refined
using zero-shot SVD. Our method consistently outperforms
both magnitude pruning and zero-shot SVD across most
tasks and model sizes. For the 7B model, it achieves a 13.2%
reduction in average performance compared to 22.1% for
magnitude pruning and 18.5% for zero-shot SVD.

We further validate our approach on the more recent

7



Targeted Low-rank Refinement: Enhancing Sparse Language Models with Precision

Table 3: Performance comparison on LLaMA models across several benchmark datasets (k = 128).

METHOD TruthfulQA GSM8K ARC-c MMLU AVG.

7B

Dense 34.1 10.3 44.7 32.1 30.3 (0%)

Magnitude 50% 35.3 1.0 33.5 24.6 23.6 (-22.1%)
w/ Zero-shot SVD 34.3 1.5 36.9 26.0 24.7 (-18.5%)
w/ Ours 34.2 3.4 41.5 26.0 26.3 (-13.2%)

SparseGPT 2:4 36.5 2.0 33.1 25.4 24.3 (-19.8%)
w/ Ours 33.8 2.7 36.1 29.1 25.4 (-16.2%)

13B

Dense 36.9 23.4 49.1 52.1 40.4 (0%)

Magnitude 2:4 38.4 1.7 34.9 27.8 25.7 (-36.4%)
w/ Zero-shot SVD 37.6 1.8 32.2 27.0 24.7 (-38.9%)
w/ Ours 36.9 9.4 36.7 41.9 31.2 (-22.8%)

LLaMA-3.1-8B model, which has enhanced reasoning and
mathematical capabilities compared to LLaMA-2. Detailed
results are presented in Table 4 in Appendix C. On this fron-
tier model, our method significantly improves performance
over magnitude pruning across most benchmarks. Notably,
on GSM8K, which tests mathematical reasoning, the dense
model achieves 49.8% accuracy while magnitude unstruc-
tured pruning at 50% sparsity reduces this to just 1.3%.
Our low-rank refinement method improves this to 6.5%,
showing substantial recovery of the mathematical reason-
ing capabilities. Similar improvements are observed across
other benchmarks, with our method recovering more than
10 percentage points on HellaSwag, WinoGrande, ARC-e,
ARC-c, and MMLU compared to magnitude pruning alone.

5.3. Iterative Weight Update Analysis

In this section, we examine the performance of our proposed
Algorithm 1 to empirically confirm the theoretical properties
outlined in Section 4, specifically regarding convergence
properties, error reduction, and the lower bound of rank(L).

Convergence and error analysis. In Figure 4, we visualize
several key properties of the residual matrix L = W − S′

and its low-rank approximation Lk, we use a log scale
for the x-axis to better visualize the decay of singular val-
ues at low ranks. Throughout the analysis, we use mag-
nitude pruning with a sparsity level of 50%. (a) Singu-
lar Value Spectrum. We first visualize the singular value
spectrum of L for different methods and hyperparameter
configurations for our method. It is clear that the itera-
tive weight update method exhibits a more pronounced de-
cay in singular values compared to both zero-shot SVD
and the PCP baseline. (b) Energy Retention. Here we
show the cumulative energy retention of L, calculated as∑i

j=1 σ
2
j (Lk)/

∑r
j=1 σ

2
j (L) = ∥Li∥2F /∥L∥2F . Across var-

ious target rank values, our method captures a higher propor-
tion of energy within the top k singular values, suggesting

that our low-rank approximations preserve more information
from the original matrix, thereby enhancing performance.
(c) Error Analysis. This subfigure presents the Frobenius
norm of the error Ei = W − (S(t) + L

(t)
i ), noting that

Ei = L − Li as well. It is observed that at the desired
target rank, our method achieves a lower Frobenius norm
error than both zero-shot SVD and the PCP baseline. (d)
Convergence Analysis. We illustrate how the approxima-
tion error between the dense matrix W and the combined
approximation S(t) + L

(t)
k diminishes over iterations, as

predicted by Theorem 4.2 and Theorem 4.3. Specifically, it
shows the Frobenius norm ∥E(t)

i ∥F = ∥L(t) − L
(t)
i ∥F at

various iterations for k = 512 and T = 50.

Investigating the lower bound of rank(L) Following pre-
vious analysis, an intriguing question arises: Is it possible to
fully compress the information contained in W ⊙ (1− P )
into S′? In other words, does the rank of L have a lower
bound? To address this, we conduct an empirical investiga-
tion by applying our method to various target ranks k, using
both synthetic matrices and real-world weight matrices ex-
tracted from the LLaMA-7B model. We first construct a
series of synthetic matrices W of known rank r by mul-
tiplying two Gaussian random matrices: U ∈ Rm×r and
V ∈ Rn×r, such that W = UV T . Here, m = n = 512.
We subsequently apply our method along with zero-shot
SVD to W , varying the rank r and sparsity level p, and
visualize the spectrum of L = W − S′ in Figure 5

In both subfigures in Figure 5, Appendix B, the solid lines
represent the zero-shot SVD baseline method (L = W ⊙
(1 − P )), while the dashed lines represent the proposed
method. The proposed method consistently shows a steeper
decay in singular values compared to the zero-shot SVD
method, indicating better compression of information. In
subfigure 5a, we observe that for diverse ranks of W and
a constant sparsity level p = 0.5, the rank of L remains
invariant. Conversely, subfigure 5b shows that fixing the
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Figure 3: Perplexity evaluation for different sparsity levels
and methods, k = 128 for low-rank refinement. (a) Low-
rank refinement advantage over sparsity-only pruning. To
ensure fair comparison between methods, in this plot, we
report results based on total parameter count rather than
just sparsity level. (b) Comparison of our proposed iterative
weight update method with other baseline methods.

rank of W at r = 512 and varying the sparsity level p from
0.3 to 0.7, reveals a positive correlation between the rank
of L and increasing sparsity. More specifically, the rank of
L is around p ×min(m,n). Empirically, we come to the
conclusion that the rank of L is independent of rank(W )
but dependent on the sparsity level p. This is consistent with
the intuitive explanation that as the sparsity level increases,
the pruned matrix contains more information, and thus the
rank of L is higher. Similar observations can be made in the
LLaMA-7B model, as shown in Figure 2.

6. Conclusion
In this work, we present an iterative weight update algo-
rithm for low-rank refinement of sparse-pruned models. Our
approach aims to bridge the performance gap between dense
and pruned sparse models in large language models. The
proposed method offers a computationally efficient solution
that does not rely on extensive datasets or high-performing
teacher models, making it a practical choice for improv-
ing sparse model performance. A notable advantage of our
method is its sparsity-preserving property, which allows for
the concurrent update of the sparse matrix while maintaining

its sparsity pattern and incorporating a low-rank component.
This approach effectively recovers crucial information lost
during pruning, leading to performance recovery, especially
at high sparsity ratios.

These experimental results highlight the potential of com-
bining low-rank and sparsity in LLMs. Future work could
explore methods for automatically determining the optimal
rank for the low-rank component based on the specific char-
acteristics of each layer or the overall model architecture.
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A. Theoretical Analysis
In this section, we provide the proofs for the theorems presented in the main text and additional lemmas.

A.1. Additional Lemmas

In this subsection, we present additional lemmas that are useful for the proofs of the theorems in the main text.
Lemma A.1 (Mask Norm Inequality I). For any matrix M ∈ Rm×n and binary mask P ∈ {0, 1}m×n, the following
inequality holds:

∥P ⊙M∥F ≤ ∥M∥F (12)

Proof of Lemma A.1. Let mij and pij be the elements of M and P respectively. By definition of the Frobenius norm and
element-wise multiplication:

∥P ⊙M∥2F =

m∑
i=1

n∑
j=1

(pijmij)
2 =

m∑
i=1

n∑
j=1

p2ijm
2
ij (13)

Since P is a binary mask, pij ∈ {0, 1}, which means p2ij = pij . Therefore:

∥P ⊙M∥2F =

m∑
i=1

n∑
j=1

pijm
2
ij ≤

m∑
i=1

n∑
j=1

m2
ij = ∥M∥2F (14)

Taking the square root of both sides preserves the inequality:

∥P ⊙M∥F ≤ ∥M∥F (15)

Lemma A.2 (Mask Norm Inequality II). For any matrix M ∈ Rm×n and binary mask P ∈ {0, 1}m×n, the following
inequality holds:

⟨M ,P ⊙M⟩F ≤ ⟨M ,M⟩F (16)

Proof of Lemma A.2. Let mij and pij be the elements of M and P respectively. By definition of the Frobenius inner
product and element-wise multiplication:

⟨M ,P ⊙M⟩F =

m∑
i=1

n∑
j=1

mij(pijmij) =

m∑
i=1

n∑
j=1

pijm
2
ij ≤

m∑
i=1

n∑
j=1

m2
ij = ⟨M ,M⟩F (17)
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Lemma A.3 (Mask Norm Equality I). For any matrix M ∈ Rm×n and binary mask P ∈ {0, 1}m×n, the following equality
holds:

⟨M ,P ⊙M⟩F = ∥P ⊙M∥2F (18)

Proof of Lemma A.3. Because P is a binary mask, we have p2ij = pij . Therefore, we can rewrite the Frobenius inner
product as:

⟨M ,P ⊙M⟩F =

m∑
i=1

n∑
j=1

mij(pijmij) =

m∑
i=1

n∑
j=1

p2ijm
2
ij = ∥P ⊙M∥2F (19)

Lemma A.4 (Mask Norm Equality II). For any matrix A,B ∈ Rm×n and binary mask P ∈ {0, 1}m×n, the following
equality holds:

⟨P ⊙A,P ⊙B⟩F = ⟨A,P ⊙B⟩F = ⟨P ⊙A,B⟩F (20)

Proof of Lemma A.4. By definitions of Frobenius inner product and element-wise multiplication, we have:

⟨P ⊙A,P ⊙B⟩F =

m∑
i=1

n∑
j=1

(pijaij)(pijbij) =

m∑
i=1

n∑
j=1

p2ijaijbij (21)

⟨A,P ⊙B⟩F =

m∑
i=1

n∑
j=1

aij(pijbij) =

m∑
i=1

n∑
j=1

pijaijbij (22)

⟨P ⊙A,B⟩F =

m∑
i=1

n∑
j=1

(pijaij)bij =

m∑
i=1

n∑
j=1

pijaijbij (23)

For binary mask, p2ij = pij , so the three expressions are equivalent.

A.2. Proofs of Theorems

Proof of Theorem 4.1. We prove this by induction. For t = 0, S(0) = W ⊙ P , so the property holds. Assume the property
holds for iteration t, i.e., S(t) = S(t) ⊙ P . We need to prove that it holds for iteration t+ 1, i.e., S(t+1) = S(t+1) ⊙ P .
Therefore, we have:

S(t+1) = S(t) + P ⊙
{
Ur(t):

(
L(t)

)
Σr(t):

(
L(t)

)
V ⊤
r(t):

(
L(t)

)}
= (S(t) ⊙ P ) + P ⊙ (SVD terms) (applying induction hypothesis)

= P ⊙ (S(t) + SVD terms) = P ⊙ S(t+1)

Thus, we have shown that if the property holds for t, it also holds for t+ 1. Combined with the base case, this completes the
induction proof, showing that S(t) = S(t) ⊙ P for all t.

Proof of Theorem 4.2. Let S∗ and L∗ be the limits of S(T ) and L(T ) as T → ∞, respectively. We will show that these
limits exist and satisfy the stated properties. First, note that for any t, S(t) = S(t) ⊙P by construction of the algorithm. Let
ϵt = ∥S(t+1) − S(t)∥F . We need to show that limT→∞ ϵT−1 = 0. At each iteration t, we have:

S(t+1) = S(t) + P ⊙
{
Ur(t):

(
L(t)

)
Σr(t):

(
L(t)

)
V ⊤
r(t):

(
L(t)

)}
(24)

= S(t) + P ⊙
(
W − S(t)

)
r(t):

(25)
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where (·)r(t): denotes the truncated SVD reconstruction from r(t) onwards. From the properties of SVD, we can express the
difference between the truncated SVDs as:(

W − S(t)
)
r(t):
−
(
W − S(t)

)
k:
=

k∑
i=r(t)+1

σ
(t)
i u

(t)
i v

(t)
i

⊤
, (26)

where σ
(t)
i , u(t)

i , and v
(t)
i are the i-th singular value and corresponding left and right singular vectors of W − S(t). The

Frobenius norm of this difference is: ∥∥∥∥∥∥
k∑

i=r(t)+1

σ
(t)
i u

(t)
i v

(t)
i

⊤

∥∥∥∥∥∥
2

F

=

k∑
i=r(t)+1

σ
(t)
i

2
. (27)

While we cannot directly guarantee that this sum approaches zero as t increases, we can bound it as:

k∑
i=r(t)+1

σ
(t)
i

2
≤

(
k − r(t)

)(
σ
(t)

r(t)+1

)2

. (28)

As t → T − 1, r(t) → k, so k − r(t) → 0. Thus, for any ϵ > 0, there exists a T0 such that for all t > T0, we have(
k − r(t)

) (
σ
(t)

r(t)+1

)2

< ϵ2. Now, considering the effect of the binary mask P , according to Lemma. A.1, we have:∥∥∥P ⊙ ((
W − S(t)

)
r(t):
−
(
W − S(t)

)
k:

)∥∥∥
F
≤

∥∥∥(W − S(t)
)
r(t):
−

(
W − S(t)

)
k:

∥∥∥
F
< ϵ (29)

Setting δ = ϵ, we have shown that for any δ > 0, there exists a T0 such that for all t > T0:∥∥∥P ⊙ (
W − S(t)

)
r(t):
− P ⊙

(
W − S(t)

)
k:

∥∥∥
F
< δ (30)

This implies that for t > T0:
ϵt = ∥S(t+1) − S(t)∥F < δ (31)

Since δ can be arbitrarily small, we conclude that limT→∞ ϵT−1 = 0. This shows that the sequence {S(T )} is Cauchy and
therefore converges to some limit S∗. Since W = S(t) + L(t) for all t, and S(T ) converges to S∗, it follows that L(T )

must converge to L∗ = W − S∗. Finally, since S(t) = S(t) ⊙ P for all t, we have S∗ = S∗ ⊙ P . Thus, the algorithm
converges to the solution (S∗,L∗) as T →∞, satisfying all the stated properties.

Proof of Theorem 4.3. Let E(t) = W −
(
S(t) +L

(t)
k

)
=

(
L(t)

)
k:

be the error at iteration t. From the update rule in
Eq.(7), we have:

E(t+1) = W −
(
S(t+1) +L

(t+1)
k

)
(32)

= W −
(
S(t) + P ⊙

(
L(t)

)
r(t):

+L
(t+1)
k

)
(33)

= L(t) − P ⊙
(
L(t)

)
r(t):
−L

(t+1)
k (34)

Let’s denote A = P ⊙
(
L(t)

)
r(t):

. Then E(t+1) = (L(t) − A) − L
(t+1)
k . By construction, L(t+1)

k is the best rank-k
approximation of L(t+1) = L(t) −A. Therefore:∥∥∥E(t+1)

∥∥∥
F
=

∥∥∥(L(t) −A
)
−L

(t+1)
k

∥∥∥
F
≤

∥∥∥(L(t) −A
)
−L

(t)
k

∥∥∥
F

(35)

Now, L(t) −L
(t)
k = E(t), so we have:∥∥∥E(t+1)

∥∥∥2
F
≤

∥∥∥(L(t) −A
)
−L

(t)
k

∥∥∥2
F
=

∥∥∥(L(t) −L
(t)
k )−A

∥∥∥2
F

(36)

=
∥∥∥E(t) −A

∥∥∥2
F
=

∥∥∥E(t)
∥∥∥2
F
+ ∥A∥2F − 2

〈
E(t),A

〉
F

(37)
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According to Lemma A.2 and A = P ⊙
(
L

(t)

r(t):k
+E(t)

)
, we have:〈

E(t),A
〉
F
=

〈
E(t),P ⊙

(
L

(t)

r(t):k
+E(t)

)〉
F

(38)

=
〈
E(t),P ⊙L

(t)

r(t):k

〉
F
+
〈
E(t),P ⊙E(t)

〉
F

(39)

=
〈
E(t),P ⊙L

(t)

r(t):k

〉
F
+

∥∥∥P ⊙E(t)
∥∥∥2
F

(40)

The last equality follows from Lemma A.3. Substituting this back into our earlier inequality Eq.(37):∥∥∥E(t+1)
∥∥∥2
F
≤

∥∥∥E(t)
∥∥∥2
F
+ ∥A∥2F − 2

〈
E(t),A

〉
F

(41)

≤
∥∥∥E(t)

∥∥∥2
F
+ ∥A∥2F − 2

〈
E(t),P ⊙L

(t)

r(t):k

〉
F
− 2

∥∥∥P ⊙E(t)
∥∥∥2
F

(42)

=
∥∥∥E(t)

∥∥∥2
F
+
∥∥∥P ⊙L

(t)

r(t):k

∥∥∥2
F
+
∥∥∥P ⊙E(t)

∥∥∥2
F
+
hhhhhhhhhhhh
2
〈
P ⊙L

(t)

r(t):k
,P ⊙E(t)

〉
F

hhhhhhhhhhh
−2

〈
E(t),P ⊙L

(t)

r(t):k

〉
F
− 2

∥∥∥P ⊙E(t)
∥∥∥2
F

(by Lemma. A.4) (43)

=
∥∥∥E(t)

∥∥∥2
F
+
∥∥∥P ⊙L

(t)

r(t):k

∥∥∥2
F
−
∥∥∥P ⊙E(t)

∥∥∥2
F

(44)

As t → T − 1, r(t) → k, so
∥∥∥P ⊙L

(t)

r(t):k

∥∥∥2
F
→ 0. Therefore, there exists a time step T0 such that for all t > T0,∥∥E(t+1)

∥∥2
F
−
∥∥E(t)

∥∥2
F
≤ −

∥∥P ⊙E(t)
∥∥2
F
≤ 0.

Proof of Theorem 4.5. At iteration t, we have W = S(t) +L(t) by construction. Let L(t) = UΣV ⊤ be the SVD of L(t).
Then L

(t)
k = U:kΣ:kV

⊤
:k is the best rank-k approximation of L(t). The error can be expressed as:∥∥∥W −

(
S(t) +L

(t)
k

)∥∥∥
F
=

∥∥∥(S(t) +L(t)
)
−
(
S(t) +L

(t)
k

)∥∥∥
F

(45)

=
∥∥∥L(t) −L

(t)
k

∥∥∥
F
= ∥Uk:Σk:V

⊤
k: ∥F (46)

=

√√√√ r∑
i=k+1

σ2
i

(
L(t)

)
≤

√
(r − k)σk+1

(
L(t)

)
(47)

B. Additional Experimental Results of Iterative Weight Update Analysis
In this section, we provide additional experimental results of iterative weight update analysis.

In Figure 4, we present a comprehensive analysis of the residual matrix L = W − S′ and compare various methods for
computing its low-rank approximation Lk. The figure illustrates four key aspects: (a) the distribution of singular values of
L, (b) the cumulative energy retention across different singular values, calculated as

∑k
i=1 σ

2
i (Lk)/

∑r
i=1 σ

2
i (L) (c) the

approximation error in terms of Frobenius norm, ∥L−Li∥F , and (d) the convergence behavior across iterations.

In Figure 5, we analyze how the singular value spectrum of L varies under different experimental conditions using synthetic
weight matrices W . We compare our proposed method against the zero-shot SVD baseline (L = W ⊙ (1− P )) in two
scenarios: (a) varying the rank of the original weight matrix W (64, 128, 256, 512), and (b) different sparsity levels (0.3,
0.5, 0.7) achieved through magnitude pruning. This analysis helps us understand how the structural properties of the residual
matrix are affected by these key parameters.
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Figure 4: Analysis of the residual matrix L = W −S′ and its low-rank approximation Lk using different methods. Results
are shown for zero-shot SVD, PCP baseline (T = 100), and our proposed method with varying k (64, 128, 512) and T = 50.
We show the x-axis in log scale and vertical dashed lines at i = 64, 128, 512 for better visualization. Subfigures (a), (b), and
(c) have a shared legend. (a) Singular value spectrum of L. (b) Proportion of total energy captured by the top k singular
values, calculated as

∑k
i=1 σ

2
i (Lk)/

∑r
i=1 σ

2
i (L). (c) Frobenius norm of the dropped matrix ∥L−Li∥F . (d) ∥L−Li∥F at

different number of iterations t. Here T = 50 and k = 512 and the vertical dashed line at i = 512 indicates the target rank.
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Figure 5: Singular value spectrum analysis of L across different conditions. We compare our method with the zero-shot
SVD method L = W ⊙ (1− P ). (a) This subfigure shows the spectrum of L across different ranks of the original weight
matrix W (64, 128, 256, 512). (b) This subfigure shows the spectrum of L across different sparsity levels (0.3, 0.5, 0.7) of
magnitude pruning.
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C. Experiments with Llama-3.1-8B
We also conducted additional experiments with more recent frontier models to verify our method’s effectiveness on state-of-
the-art architectures. Specifically, we used Llama-3.1-8B, which represents a significant improvement over the Llama-2
series used in our main experiments, particularly in reasoning and mathematical abilities.

Table 4: Evaluation results on Llama-3.1-8B across various benchmarks.

Model HellaSwag WinoGrande ARC-e TruthfulQA GSM8K ARC-c MMLU

Dense baseline 78.9 73.6 81.1 45.2 49.8 53.4 63.5

Pruning Method
Magnitude 50% 56.4 57.6 56.7 42.9 1.3 35.8 35.3
Magnitude 50% with Ours 66.8 67.8 68.7 38.9 6.5 42.6 45.7

As shown in Table 4, our method significantly improves the performance of the magnitude-pruned model across most
benchmarks. Notably, on GSM8K, which tests mathematical reasoning abilities, the dense model achieves 49.8% accuracy,
while magnitude pruning at 50% sparsity drastically reduces this to 1.3%. Our low-rank refinement method recovers the
performance to 6.5%, representing a substantial improvement over basic magnitude pruning. These results demonstrate that
our approach is effective even on frontier models with enhanced reasoning capabilities. While there remains a performance
gap compared to the dense model, especially on complex reasoning tasks like GSM8K, our method consistently provides
substantial recovery of capabilities lost through pruning.

D. Guidelines for Hyperparameter Selection
The proposed algorithm introduces two key hyperparameters: the target rank k and the number of iterations T . For the
target rank k, we consistently use k = 128 across our experiments, which offers a good balance between performance
improvement and computational overhead. As shown in Figure 2, larger values of k (e.g., 512) allow the method to retain
more information but with diminishing returns relative to the increased computational cost. The optimal choice of k should
consider both the model size and the desired performance-efficiency trade-off. Regarding the number of iterations T , the
primary computational bottleneck is the SVD computation in each iteration, with a time complexity of O(Tmn2) for
a weight matrix W ∈ Rm×n (assuming m ≥ n). We find that T = 50 provides sufficient convergence while keeping
computational costs reasonable. As demonstrated in Figure 4(d) in Appendix B, further iterations yield diminishing returns
in terms of error reduction, a behavior also supported by Theorem 4.5.

E. End-to-End Inference Acceleration and Memory Usage
In this section, we present a comprehensive analysis of the end-to-end inference acceleration achieved by our method
compared to both dense and sparse models.

E.1. Evaluation without Sparse Matrix Formats

For a fair comparison with the dense baseline model, we first took a conservative approach in our evaluation. We stored all
matrices in their full dense format and kept all zero elements (the weight matrices as torch.Tensor objects), without
leveraging any sparse matrix formats or hardware-specific optimizations for acceleration. Table 5 shows the parameter count
and evaluation time for the complete ARC-Challenge benchmark across different model configurations.

As shown in the table, without specialized formats, our method maintains computational efficiency comparable to the dense
baseline, with only a marginal increase in relative time (∼1.06×) for the largest model configuration.

E.2. Evaluation with Sparse Matrix Formats and Hardware Acceleration

To fully exploit the potential efficiency gains from our method, we also evaluated performance when using sparse matrix
formats and hardware acceleration. We converted the weight matrices to their sparse format using torch.sparse.to -
sparse semi structured to create torch.sparse.SparseSemiStructuredTensor objects. Table 6 com-
pares the memory usage of our proposed method with and without sparse matrix formats.
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Table 5: Parameter count and evaluation time for the complete ARC-Challenge benchmark (without sparse matrix formats).

Model Configuration Non-Zero Parameter Count Parameter Count ARC-C Relative Time

Llama-2-7B
Dense baseline 50.5s 1.0x
Magnitude 50% sparse 3.5B 6.7B 50.7s ∼1.0x
Proposed Method (k=128, 50%) 3.8B 7.1B 50.5s ∼1.0x

Llama-2-13B
Dense baseline 13.0B 13.0B 73.2s 1.0×
Magnitude 2:4 sparse 6.7B 13.0B 73.9s ∼1.01×
Proposed Method (k=128, 2:4) 7.2B 13.5B 77.9s ∼1.06×

Table 6: A comparison of memory usage with and without end-to-end inference acceleration.

Model Configuration Memory Usage Relative Memory Usage

Llama-2-13B
Proposed Method (k=128, 2:4), dense format 2×14.6GB 1.0x
Proposed Method (k=128, 2:4), sparse format 2×9.1GB ∼0.62x

When using sparse matrix formats, we observed a significant reduction in memory usage (approximately 38% reduction).
The actual inference speedup varies based on factors like batch size and input sequence length. With hardware-accelerated
N:M structured pruning (on NVIDIA Ampere GPUs and newer), we observed approximately ∼1.1× faster inference in
wall-clock time compared to dense models. It’s important to note that for unstructured pruning patterns or on GPUs without
dedicated sparse acceleration support, pruning can actually result in slower inference times compared to dense computation.
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