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Abstract

Despite their superior performance, Deep Neu-
ral Networks (DNNs) are often vulnerable to
adversarial attacks. Neural Architecture Search
(NAS), a method for automatically designing the
architectures of DNNs, has shown remarkable
performance across various machine learning ap-
plications. However, the adversarial robustness of
architectures learned by NAS against adversarial
threats remains under-explored. By integrating
a robust teacher, we examine whether NAS can
yield a robust neural architecture by inheriting
robustness from the teacher. In this paper, we
propose Robust Neural Architecture Search by
Cross-Layer Knowledge Distillation (RNAS-CL),
a novel NAS algorithm that enhances the robust-
ness of architectures learned by NAS through
employing cross-layer knowledge distillation
from a robust teacher. Distinct from previous
knowledge distillation approaches that only align
student-teacher outputs at the final layer, RNAS-
CL dynamically searches for the optimal teacher
layer to guide each student layer. Our experimental
findings validate the effectiveness of RNAS-CL,
demonstrating that it can generate both compact
and adversarially robust neural architectures. Our
results pave the way for developing new strategies
for compact and robust neural architecture design
applicable across various fields. The code of
RNAS-CL is available at https://github.
com/Statistical-Deep-Learning/
RNAS-CL.

1 INTRODUCTION

Neural Architecture Search (NAS) has emerged as a vital
tool for fostering advancements in deep neural networks,

enhancing state-of-the-art (SOTA) performance across var-
ious fields, such as computer vision and natural language
processing. NAS methods automate the search for neural ar-
chitectures based on predefined criteria, eliminating the need
for labor-intensive and time-consuming manual architecture
design. Early works on NAS utilized Evolutionary Algo-
rithms (EA) (Real et al., 2017) and Reinforcement Learning
(RL) (Zoph and Le, 2017; Tan et al., 2019). Despite their ef-
fectiveness, these methods require substantial computational
resources. For example, some of these approaches require
up to thousands of GPU days to reach SOTA performance
for the image classification task on the ImageNet dataset. To
overcome these challenges, recent works (Liu et al., 2019;
Cai et al., 2019; Wu et al., 2019; Wan et al., 2020; Nath
et al., 2020) represent architectures with a shared-weight
supernet and refine the weights through gradient descent.
The architectures identified by the architecture parameters
in the supernet through NAS deliver two key benefits. First,
they are optimized for both speed and size, enhancing their
practical utility. Second, the searched architectures set new
SOTA performance for a variety of computer vision tasks.
Both advantages make NAS incredibly useful for real-world
applications. Nonetheless, most NAS methods focus pri-
marily on optimizing accuracy, parameters, or FLOPs, and
the performance of searched architectures under adversarial
attacks remains underexplored, which is crucial for imple-
menting secure and resilient machine learning systems. Few
studies (Yue et al., 2022; Ning et al., 2020; Xie et al., 2023)
have examined NAS with the aim of enhancing both adver-
sarial robustness and efficiency. In this paper, we introduce
RNAS-CL, a NAS methodology that concurrently optimizes
for accuracy, latency, and defense against adversarial attacks,
without the need for robust training.

Adversarial examples are created by altering the inputs,
typically by introducing small, intricate disturbances into
a clean image, causing the model to incorrectly classify
it. It is well-known that almost all deep neural networks
are vulnerable to these adversarial attacks (Szegedy et al.,
2014). Consequently, assessing the resilience of models to
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Figure 1: The figure compares various SOTA efficient and
robust methods on CIFAR-10. Clean Accuracy represents
top-1 accuracy on clean images. Adversarial Accuracy rep-
resents top-1 accuracy on images perturbed by PGD attack.
Larger marker size indicates larger architecture. The num-
bers in brackets represent the number of parameters and
MACs, respectively.

adversarial attacks is of paramount importance. Models that
can withstand adversarial attacks are essential for critical
applications such as autonomous driving, healthcare, and
physical security systems.

Adversarial training is a well-established strategy to enhance
the defense mechanisms of models against adversarial at-
tacks (Goodfellow et al., 2015; Madry et al., 2018; Kannan
et al., 2018; Tramèr et al., 2018; Zhang et al., 2019a). Ap-
proaches in this category usually train the models on adver-
sarial examples, typically generated using techniques such
as the fast gradient sign method (FGSM) (Goodfellow et al.,
2015) or projected gradient descent (PGD) (Madry et al.,
2018). Other defense strategies include training models with
specialized loss functions or regularization (Cissé et al.,
2017; Hein and Andriushchenko, 2017; Yan et al., 2018;
Pang et al., 2020), preprocessing inputs prior to model input
(Dziugaite et al., 2016; Guo et al., 2018; Xie et al., 2019),
and employing model ensembles (Kurakin et al., 2018; Liu
et al., 2018).

Recent studies have also highlighted the role of network
architecture in influencing adversarial robustness (Madry
et al., 2018; Guo et al., 2020; Su et al., 2018; Xie and Yuille,
2020; Huang et al., 2021). Inspired by these insights, we
introduce Robust Knowledge Distillation for Neural Archi-
tecture Search (RNAS-CL). To the best of our knowledge,
our work is among the first method that employs knowledge
distilled from a robust teacher model to discover a robust
architecture. Knowledge distillation traditionally involves
transferring knowledge from a complex teacher model to a
simpler student model using the teacher’s outputs as "soft
labels" (Hinton et al., 2015). However, beyond the outputs,
the teacher’s intermediate layers offer valuable attention
information, where each layer focuses on different aspects

of the input (Zagoruyko and Komodakis, 2017).

The central question of our investigation is: can a robust
teacher improve the robustness of the student model by
providing information about where to look, i.e., where to
pay attention? The proposed RNAS-CL method confirms
this, enabling the student model to learn not only from the
teacher’s outputs but also "where to look" from the teacher’s
layers. Given the disparity in the number of layers between
the teacher and student models, it is crucial for the student
to identify the most beneficial teacher layer to learn from.
The RNAS-CL method also involves searching for the ideal
teacher layer for each student layer.

Furthermore, inspired by recent progress in self-supervised
and semi-supervised learning that emphasizes consistency
between predictions from various augmented views, we
propose a novel Confidence-Aware Consistency loss or
CAC loss. The CAC loss aims to maximize prediction
consistency between adversarial and original views of in-
puts. CAC is compatible with various adversarial training
methodologies, such as TRADES. The experimental results
demonstrate that RNAS-CL significantly surpasses most
existing models without adversarial training in robust accu-
racy on the CIFAR-10 dataset. Furthermore, applying CAC
and TRADES to adversarially train RNAS-CL models sig-
nificantly enhances their robustness. The effectiveness of
RNAS-CL extends to promising results on the large-scale
ImageNet dataset as well.

1.1 CONTRIBUTIONS

Our contributions are detailed as follows.

First, we propose RNAS-CL – a novel method for search-
ing neural architectures that optimize the trade-off between
robustness and prediction accuracy in a differentiable way.
To the best of our knowledge, RNAS-CL is the first NAS
approach that simultaneously optimizes for robustness and
prediction accuracy without the necessity of robust train-
ing. By incorporating a penalty on model size and inference
cost, the architectures derived through RNAS-CL are more
compact than those from other NAS methods. We compare
RNAS-CL against other models known for their computa-
tional efficiency and robustness (Sehwag et al., 2020; Ye
et al., 2019; Gui et al., 2019; Goldblum et al., 2020; Dong
et al., 2020; Huang et al., 2021). RNAS-CL models of com-
parable size demonstrate superior performance in both clean
and PGD accuracy on the CIFAR-10 dataset.

Second, we extend the field of Knowledge Distillation (KD)
within the framework of NAS. Unlike traditional KD, which
relies on fixed connections between the teacher and stu-
dent models, RNAS-CL innovates by introducing learnable
connections between layers of the teacher and the student
models. This advancement not only enhances the efficacy
of KD but also provides insights into the development of



future adversarially robust NAS methods.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) involves transferring knowl-
edge from a larger, more complex model to a smaller, more
manageable one. Hinton et al. (2015) introduced the con-
cept of the teacher-student model, utilizing soft targets from
the teacher to train the student model. This approach en-
courages the student to generalize in a manner similar to
the teacher. Since this foundational work, various KD vari-
ants have been developed (Romero et al., 2015; Yim et al.,
2017; Zagoruyko and Komodakis, 2017; Li et al., 2019; Tian
et al., 2020a; Sun et al., 2019), incorporating feature maps,
attention maps, or contrastive learning elements. FitNets
(Romero et al., 2015) pioneered the use of intermediate-
level hints from the teacher model to enhance student model
training. This method involves a two-stage training process
where the student first learns to predict the output of a mid-
dle (hint) layer of the teacher, followed by fine-tuning with
the standard KD optimization function. The introduction
of intermediate hints allowed the student model to achieve
improved performance with fewer parameters. The intro-
duction of intermediate hints allowed the student model
to achieve improved performance with fewer parameters.
Moving a step further, (Yim et al., 2017), (Zagoruyko and
Komodakis, 2017) and (Li et al., 2019) utilize information
from multiple teacher layers to guide the student’s train-
ing. (Yim et al., 2017) utilized a Gramian matrix between
the outputs of the first and last layers to chart the problem-
solving process, transferring knowledge by minimizing the
distance between the student’s and teacher’s flow matri-
ces. (Li et al., 2019) calculated inter-layer and inter-class
Gramian matrices to identify the most representative lay-
ers, minimizing the distance between these key layers of
both student and teacher. (Zagoruyko and Komodakis, 2017)
focused on minimizing the distance between the attention
maps of the teacher and student at various blocks. In con-
trast with the above methods, RNAS-CL aims to map each
student layer to a corresponding teacher layer, optimizing
the match for each pair. This method extends the concept of
attention map alignment, similar to that in (Zagoruyko and
Komodakis, 2017), by minimizing the distance between the
attention maps of matched student-teacher layers. This com-
prehensive mapping ensures a more detailed and effective
knowledge transfer throughout the student’s architecture.

2.2 NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) is a method that auto-
mates the design of neural networks without human interven-
tion. Traditionally, finding the optimal architecture within

a given search space involves training each potential ar-
chitecture from scratch until convergence. This approach,
while straightforward, is computationally prohibitive. Early
NAS efforts employed Reinforcement Learning (RL) (Zoph
and Le, 2017; Tan et al., 2019) and Evolutionary Algo-
rithms (EA) (Real et al., 2017), but these methods also
demanded significant computational resources. More re-
cent advancements (Liu et al., 2019; Cai et al., 2019; Wu
et al., 2019) have introduced the concept of a weight-sharing
super-network, which encompasses all candidate architec-
tures. This network is over-parameterized and includes dis-
tinct paths for each architecture, each path having its own
set of weights. These weights are then optimized through
gradient descent during training to eventually select a sin-
gle, optimal architecture. This selected network is subse-
quently trained in a conventional manner. While these meth-
ods have achieved state-of-the-art (SOTA) results on var-
ious classification tasks, their vulnerability to adversarial
attacks remains largely unexplored. Research (Devaguptapu
et al., 2021; Guo et al., 2020; Li et al., 2021; Madry et al.,
2018; Su et al., 2018; Xie and Yuille, 2020; Huang et al.,
2021) has shown that network architecture significantly in-
fluences adversarial robustness. Studies like (Devaguptapu
et al., 2021) have noted that handcrafted architectures tend
to be more resilient against adversarial attacks compared
to NAS-generated models. Moreover, it has been empiri-
cally observed that larger models generally exhibit greater
robustness against such attacks. (Guo et al., 2020) found
that architectures with dense connections are particularly
resistant to adversarial threats, prompting them to devise a
NAS strategy that includes adversarial training on a super-
net followed by the selection of densely connected architec-
tures. (Li et al., 2021) expanded the backbone network to
maintain accuracy while optimizing both the architecture
and its parameters through adversarial training. Although
this approach shows promising results, the main downside
is that adversarial training is time-intensive and tends to
degrade performance on standard (clean) images. Our pro-
posed RNAS-CL method stands out by optimizing for both
robustness and prediction accuracy without the need for
adversarial training.

2.3 EFFICIENT AND ROBUST MODELS

The deep learning research community has thoroughly in-
vestigated the creation of efficient models and adversarially
robust models as separate endeavors. However, integrating
these two domains, that is, developing models that are both
efficient and adversarially robust, has seen limited explo-
ration. (Sehwag et al., 2020) introduced an approach to
make pruning techniques sensitive to robust training objec-
tives. They framed pruning as an empirical risk minimiza-
tion (ERM) problem and combined it with a robust training
framework. (Huang et al., 2021) examined how the configu-
rations of network width and depth affect the robustness of



adversarially trained deep neural networks (DNNs). They
found that reducing the capacity of the final blocks of a net-
work could enhance its adversarial robustness. (Goldblum
et al., 2020) developed Adversarially Robust Distillation
(ARD), a method that prompts student networks to approxi-
mate their teacher’s output within ϵ-ball of training samples,
fostering robustness in the student models. Additionally, a
few Neural Architecture Search (NAS) methods (Yue et al.,
2022; Ning et al., 2020; Xie et al., 2023) have aimed to
optimize for accuracy, latency, and robustness concurrently.
(Ning et al., 2020) implemented a multi-shot NAS approach
to identify architectures that are robust against adversarial at-
tacks, blending multiple one-shot methods to target specific
capacities. (Xie et al., 2023; Yue et al., 2022) employed a
one-shot NAS technique that selects an efficient model from
an adversarially trained supernet. In comparison to these
methods, models developed using RNAS-CL achieve supe-
rior accuracy on both clean and adversarial images while
maintaining comparable size, thus demonstrating the effec-
tiveness of integrating robustness and efficiency in neural
architecture design.

3 ROBUST KNOWLEDGE
DISTILLATION FOR NEURAL
ARCHITECTURE SEARCH

We utilize knowledge distilled from a robust teacher model
to facilitate the search for an architecture that achieves both
robustness and efficiency. Knowledge distillation involves
transferring knowledge from a larger teacher model to a
smaller student model. In standard knowledge distillation,
the teacher model’s outputs serve as "soft labels" for training
the student model. However, valuable attention information
is also contained in the intermediate features of the teacher,
where different layers concentrate on distinct parts of the in-
put object. In RNAS-CL, the student model not only benefits
from the teacher’s soft labels but also learns where to direct
its attention among the teacher’s intermediate layers. Each
student layer is specifically aligned with a robust teacher
layer to learn targeted areas of focus. In Section 3.1, we
discuss how we define attention maps. We hypothesize that
learning directed attention from a robust teacher inherently
enhances the student model’s resistance to adversarial at-
tacks. RNAS-CL is designed to identify the optimal tutor
layer for each student layer while concurrently searching for
an efficient architecture. In Section 3.2 and 3.3, we discuss
our tutor and architecture search algorithm. Similar to other
state-of-the-art NAS methods (Liu et al., 2019; Wu et al.,
2019; Wan et al., 2020), RNAS-CL is structured around
a search phase and a training phase. In the search phase,
we optimize the neural architecture weights. In the train-
ing phase, the architecture selected in the search phase is
trained using conventional methods. In Section 3.4, the ob-
jectives for the search and training phases are elaborated.

Although RNAS-CL can identify robust neural architectures
for the student model, we aim to further enhance robustness
through adversarial training. In Section 3.5, we introduce a
novel regularization term, Confidence-Aware Adversarial
Consistency Loss (CAC), which can be integrated with any
adversarial training objective, such as TRADES and FastAT
(Wong et al., 2020), to increase the robustness of the model.

3.1 ATTENTION MAP

We focus on learning where to pay attention from a robust
teacher model, specifically analyzing convolution layers
with activation tensors represented as A ∈ RC×H×W where
C is the number of channels, and H and W represent the
spatial dimensions. A mapping function F : RC×H×W −→
RH×W is defined to convert the tensor A into an attention
map F(A) ∈ RH×W by [F(A)]hw =

∑C
c=1A

2
c,h,w, where

Ac,h,w represents the element of A with channel coordinate
c and spatial coordinates h and w. This activation-based
mapping function F , which was introduced in (Zagoruyko
and Komodakis, 2017), is applied post each convolution
layer to generate an attention map. The mapping function F
is applied to activation tensors after each convolution layer
to generate an attention map. Several attention maps are
illustrated in Figure 2(b). RNAS-CL aims to match each
student layer with a corresponding teacher layer, termed as
a tutor, ensuring that the student’s attention map closely re-
sembles that of its designated tutor from the teacher model.
Given that the dimensions of the student’s attention map
might differ from that of its tutor, we interpolate all atten-
tion maps to a standardized dimension to facilitate accurate
comparisons and alignments

3.2 TUTOR SEARCH

We aim to identify an appropriate tutor (teacher layer) for
each student layer, which instructs on where to pay attention
to, the potential combinations create a vast search space.
Each student layer has the option to select any of the teacher
layers as its tutor. Such flexibility results in a search space
that grows exponentially with the number of layers in each
model. For instance, the search space of a student model
with 20 layers and a teacher model with 50 layers is of
size 5020. To reduce the computation cost of the search
process, we adopt Gumbel-Softmax (Jang et al., 2017) to
search for the tutor for each student layer in a differen-
tiable manner. Given network parameter v = [v1, . . . , vn]
and a constant τ . The Gumbel-Softmax function is defined
as g(v) = [g1, . . . , gn] where gi = exp[(vi+ϵi)/τ ]∑

i exp[(vi+ϵi)/τ ]
and

ϵi ∼ N(0, 1) is the uniform random noise, which is also re-
ferred to as Gumbel noise. When τ → 0, Gumbel-Softmax
tends to the argmax function. Gumbel-Softmax is a “re-
parametrization trick”, that can be regarded as a differen-
tiable approximation to the argmax function.
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(a) RNAS-CL Training Paradigm
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Figure 2: (a) Training paradigm based on RNAS-CL. We connect attention maps from each student layer to each robust
teacher layer. For each student layer, we search for the optimum teacher layer. gij represents gumbel weights associated
between ith student layer and jth teacher layer. RNAS-CL induces robustness to the student model by searching for the
optimum teacher layer. We also search for the number of filters in each layer to build an efficient model inspired by FBNetV2
(Wan et al., 2020). (b) Sample attention maps corresponding to input Image (i) from low-level (ii), mid-level (iii), and
high-level (iv) convolution layers.

Consider a teacher model T and a student model S, each
consisting of nt and ns layers respectively. Let Ai

t and
Ai

s represent the activation tensors of the ith layer in the
teacher and student models. In the RNAS-CL framework,
each student layer (i) is paired with nt Gumbel weights (gi),
where gi belongs to the set R1×nt . Denote gij as the Gumbel
weight linking the ith student layer to the jth teacher layer.
The attention loss is then defined as follows:

LAttn(At, As) =

1

ns × nt

ns∑
i=0

nt∑
j=0

gij

∥∥∥∥ F(Ai
s)

||F(Ai
s)||2

− F(Aj
t )

||F(Aj
t )||2

∥∥∥∥
2

, (1)

where As and At represent the activation tensors for all
convolution layers in the student and teacher models, re-
spectively. F is the mapping function as defined in Sec-
tion 3.1, ∥ · ∥2 is the ℓ2-norm. Throughout the search pro-
cess, we apply an exponential decay to the temperature τ of
the Gumbel-Softmax, resulting in an encoding that closely
approximates a one-hot vector.

3.3 ARCHITECTURE SEARCH

In addition to identifying the optimal tutor for each layer,
we aim to develop an architecture that prioritizes efficiency
and low latency. Drawing inspiration from FBNetV2 (Wan
et al., 2020), our search focuses on determining the ideal
number of filters, or output channels, for each convolution
block. Consider a set of filter options A = {f1, f2, ..., fn}
and their corresponding outputs {z1, z2, ..., zn} for a con-
volution block. The cumulative output is then defined as

Z =
∑n

i=1g
(i)
w zi, where g

(i)
w represents the Gumbel weight

associated with the ith filter choice. We optimize the num-
ber of FLOPs to achieve minimal latency, noting that FLOPs
are directly proportional to the number of filters. This cu-
mulative count of filters, influenced by the Gumbel weights,
allows for differential optimization using SGD. Similar to
the tutor search, the temperature decay is applied expo-
nentially to secure an encoding nearing a one-hot vector.
Figure 4 in the appendix illustrates the architecture search
process by FBNetV2.

3.4 RNAS-CL LOSS

Adhering to the practices of leading NAS methodologies
(Liu et al., 2019; Wu et al., 2019), RNAS-CL incorporates
distinct searching and training phases. During the search
phase, the Gumbel weights and other model parameters are
updated each epoch. These include the Gumbel weights{
g
(i)
w

}
associated with the student-teacher connections ref-

erenced in (1), and the Gumbel weights
{
g
(i)
w

}
for select-

ing filters as outlined in Section 3.3. Optimization of these
weights is conducted using the RNAS-CL search loss, which
will be detailed subsequently.

RNAS-CL search loss. Let y be the ground-truth one-hot
encoded vector, p and q be output probabilities of the student
and teacher network, and As, At as the activation tensors for
all student and teacher convolution layers. The RNAS-CL



search loss is given by

L(y, p, q, At, As) = (−y log p+ KL(p, q)
+ γsLAttn(At, As))nf , (2)

where KL(p, q) =
∑

i pi log
pi

qi
denotes the Kullback-

Leibler (KL) divergence between the probability distribu-
tions. LAttn is the attention loss as defined in (1) and γs is
a normalization constant. nf represents the latency, which
is minimized through differential optimization as in (Wan
et al., 2020).

Upon completion of the search phase, a tutor layer j∗ is
chosen for each student layer i, where j∗ = argmaxj gij .
Additionally, the optimal filter choices for each convolution
block, as discussed in Section 3.3, are determined based on
the highest Gumbel weights. Subsequent to the search, the
training phase commences, wherein the searched architec-
ture is trained utilizing the RNAS-CL training loss, which
will be delineated subsequently.

RNAS-CL train loss. Let y be the ground-truth one-hot
encoded vector, p and q be output probabilities of the student
and teacher network, and At, As be activation tensors for
all student and teacher convolution layers. The training loss
of RNAS-CL is

L(y, p, q, At, As) = LCE(y, p) + KL(p, q)
+ γtLAttn(At, As), (3)

where LCE(y, p) = −y log p represents the cross-entropy
loss, KL(p, q) denotes the KL-divergence, and γt is a nor-
malization constant. It should be noted that gi within LAttn
is defined as a one-hot vector, leading to the optimization of
each student attention map with respect to a specific tutor
layer.

3.5 CONFIDENCE-AWARE ADVERSARIAL
CONSISTENCY LOSS

Motivated by studies in self-supervised learning (Zhai et al.,
2019) and semi-supervised learning (Berthelot et al., 2019)
that emphasize the alignment of predictions across varied
augmented views, we introduce a consistency loss aimed
at enhancing the agreement between predictions from both
adversarial and original views of the input data. This loss
function is applied selectively to samples where the ad-
versarial view yields highly confident predictions. For an
input image x, its adversarial counterpart xadv is first gen-
erated, followed by acquiring the predictions for both x
and xadv from the student network, denoted as p and padv,
respectively. We then compute the mean of these predic-
tions as p̄ = p+padv

2 . Subsequently, this average prediction
p̄ is refined through the formula p̃j = p̄j

1
τ /

∑
k = 1K p̄k

1
τ ,

where K is the total number of classes and p̃j is the j-th
component of p̃. Here, τ ∈ (0, 1] serves as the sharpening

parameter. As τ decreases, p̃ approaches a one-hot distri-
bution. This sharpened p̃ is then used as a pseudo label
for x, reflecting the collective predictions from both x and
xadv. Our objective is to fortify the consistency between p
and padv by minimizing their divergence from p̃, thereby
defining our confidence-aware adversarial consistency loss
as

LCAC(x) = 1(max(p̄) ≥ γ) (KL(p̃, p) + KL(p̃, padv)) , (4)

where 1(·) represents the indicator function, and γ ∈ [0, 1)
denotes the confidence threshold. In the context of LCAC,
consistency optimization between the predictions of an im-
age and its adversarial view is conducted only if the max-
imum value in the prediction vector p̄ meets or exceeds γ.
This condition ensures that LCAC enforces consistency solely
on images where the predictions are deemed confident. The
optimization of LCAC is designed to mitigate the detrimental
effects of the noisy adversarial view, thereby enhancing the
robustness of the student network. Our model undergoes
adversarial training using LCAC alongside established adver-
sarial objectives like TRADES and FastAT. The combined
training loss for this adversarial training, incorporating both
TRADES and LCAC, is defined as

LADV = LCAC + LTRADES + LKL + γtLAttn, (5)

where LTRADES is TRADES optimization objective and
LKL, γt, LAttn are the same as those in (3).

4 EXPERIMENTS

In this section, we present experiments conducted on real-
world datasets to demonstrate the effectiveness of our pro-
posed framework. The structure of this section is organized
as follows. In Section 4.1, we discuss the settings and the
implementation details. In Section 4.2, RNAS-CL is com-
pared against state-of-the-art efficient and robust models on
CIFAR-10, with more results outlined which are deferred to
the supplementary.

4.1 IMPLEMENTATION DETAILS

In this paper, we assess the performance of RNAS-CL across
three prominent public image classification benchmarks: (1)
CIFAR-10, which includes 60k images distributed across 10
classes (Krizhevsky, 2009); (2) ImageNet, a comprehensive
image classification dataset (Russakovsky et al., 2015) with
approximately 1.2M images spanning 1000 classes; and (3)
ImageNet-100, a more focused subset of the ImageNet-1k
dataset (Russakovsky et al., 2015), featuring 100 classes
and around 130k images (Tian et al., 2020c). We employ
standard data augmentation techniques for each dataset,
including random-resize cropping and random flipping. Ini-
tially, for each dataset, we undertake a searching step where
our model is trained using the RNAS-CL search loss (2),



Figure 3: The figure compares the performance of various efficient and robust methods on CIFAR-10 dataset. Clean Accuracy
represents top-1 accuracy on clean images. Adversarial Accuracy represents 20 step PGD attack.

aiming to identify optimal channel numbers and the ap-
propriate connected teacher layers for each student layer.
We explore various search spaces and utilize different ro-
bust teacher models throughout these experiments. In this
paper, our model is denoted as RNAS-CL-X-T, where X
indicates the search space and T denotes the robust teacher
model. The search spaces are detailed in Table 2 and Table 3.
We test four robust teacher models: ResNet-50, ResNet-18,
WideResNet-50, and WideResNet-34, referred to as R-50,
R-18, WRT-50, and WRT-34, respectively. For instance,
RNAS-CL-S3-R-18 describes a model trained within the S3
search space using a ResNet-18 as the adversarially robust
teacher model.

For all three datasets, we employ the SGD optimizer. The
momentum and weight decay default values for ImageNet
and ImageNet-100 are set at 0.9 and 4× 10−5 respectively.
The batch size used is 256, and the learning rate starts at 0.1,
gradually decreasing to zero according to a cosine sched-
ule. Post the search phase, which spans 100 epochs, the
identified architecture undergoes training from scratch for
200 epochs using the RNAS-CL train loss (3). For CIFAR-
10, the default momentum and weight decay values are 0.9
and 2 × 10−4 respectively, with a batch size of 128. The
model is trained over 100 epochs in both the searching and
training phases. The learning rate, initially set at 0.1, is
reduced by a factor of 10 at the 75-th and 90-th epochs.
In line with FBNetV2 settings, the Gumbel-Softmax tem-

perature (τ ) starts at 5.0 and is exponentially reduced by
e−0.045 each epoch during the search phase. Hyperparame-
ters λs and λt are maintained at 1.0 across all experiments.
During the search phase, 80% of the data in each batch is
used to optimize model weights while the remaining 20%
is employed for optimizing the architecture weights, the
latter being Gumbel weights as discussed in Section 3.4. For
robustness assessment, we deploy five prominent attacks:
FGSM (Goodfellow et al., 2015), MI-FGSM (Dong et al.,
2018), PGD (Madry et al., 2018), CW (Carlini and Wagner,
2017), and AutoAttack (Croce and Hein, 2020). Following
standard practices in adversarial studies (Madry et al., 2018;
Zhang et al., 2019b), adversarial perturbations are config-
ured under the ℓ∞ norm with a maximum perturbation limit
of 8/255(= 0.031).

4.2 EXPERIMENTAL RESULTS AND ABLATION
STUDY

In this section, we evaluate the robustness of our method
compared to other state-of-the-art (SOTA) efficient and ro-
bust models. These results are visually illustrated in Figure
3, where RNAS-CL models are positioned in the top right
corner, indicating that they are among the models with the
highest clean and adversarial accuracy. As shown in Figure
3, we benchmark RNAS-CL against both efficient models
that have undergone adversarial training and those that have



not. All RNAS-CL models utilize a robust WideResNet-
34 (Rice et al., 2020) as the teacher model. The results
demonstrate that RNAS-CL substantially outperforms all
models trained without adversarial interventions in terms of
adversarial accuracy. Despite their smaller size, our RNAS-
CL models achieve significantly better adversarial accuracy
compared to their counterparts trained without adversar-
ial measures. For instance, RNAS-CL-S7-WRT-34 achieves
more than a 28% higher PGD accuracy than most other
models of comparable size.

Next, we extend our comparison of RNAS-CL to models
that have been adversarially trained. To ensure a fair assess-
ment, after the initial training phase, our RNAS-CL models
undergo further enhancement with our specialized adversar-
ial training loss (5)for an additional 20 epochs. This phase
of adversarial training boosts the adversarial accuracy of
RNAS-CL models, allowing them to match or exceed the
adversarial accuracy of other robustly trained models. Ad-
ditionally, RNAS-CL models are significantly smaller and
achieve considerably higher clean accuracy. For instance,
the RNAS-CL-M-WRT-34 model not only matches but in
some cases surpasses the adversarial accuracy of most other
methods, while also being more compact and achieving
significantly higher clean accuracy. Moreover, RNAS-CL
enables the creation of notably smaller models. The Tiny
RNAS-CL model, specifically RNAS-CL-S5-WRT-34, out-
performs its counterpart, Hydra ResNet 34 (Sehwag et al.,
2020), by over approximately 12% in clean accuracy while
maintaining the same model size.

Comparison against various perturbation budgets. To
further highlight the efficacy of RNAS-CL, we contrast
it with previously proposed defense mechanisms across a
range of perturbation budgets. In Figure 6 of the supple-
mentary, we illustrate the performance of various methods
under PGD and FGSM attacks. For both types of attacks,
RNAS-CL consistently outperforms its counterparts at every
level of perturbation. Notably, as the size of the perturba-
tion increases, the superiority of RNAS-CL becomes even
more pronounced. Specifically, at a perturbation level of
ϵ = 0.1, RNAS-CL surpasses other methods by approxi-
mately 20% in terms of resistance to both PGD and FGSM
attacks. This robust performance underscores the strength of
RNAS-CL in maintaining higher adversarial accuracy under
increasingly challenging conditions.

We present additional experimental results and an ablation
study in Section D of the supplementary. In Section D.1,
our methods are benchmarked against various knowledge
distillation techniques as detailed in (Park et al., 2019; Ahn
et al., 2019; Tung and Mori, 2019; Tian et al., 2020b; Pas-
salis and Tefas, 2018). Section D.2 evaluates RNAS-CL
and the approach by (Huang et al., 2021) against recent
attacks such as CW∞ (Carlini and Wagner, 2017) and Au-
toAttack (Croce and Hein, 2020) on the CIFAR-10 dataset.
In Section D.3, we compare our model with the SOTA com-

pact and efficient method (Huang et al., 2021), which is
known for achieving one of the best PGD accuracies on Im-
ageNet. Section D.4 provides ablation studies highlighting
the significance of student-teacher cross-layer connections
in RNAS-CL. We outline three training paradigms: the first
uses standard cross-entropy loss without any teacher model,
referred to as standard; the second minimizes the cross-
entropy loss and standard KL Divergence with a robust
teacher model, denoted as KL-X-T, where X represents the
search space and T is the teacher model; the third model
type, RNAS-CL, incorporates all three terms: cross-entropy
loss, KL Divergence, and cross-layer student-teacher con-
nections.

Moreover, in Section A of the supplementary, we report
the robustness of adversarially trained teacher models used
throughout the paper on the CIFAR-10 dataset in Table 1.
In Section B and Section C, we discuss the architectures
of various proposed supernets used in RNAS-CL for the
CIFAR-10 dataset and outline the neural architecture search
process based on FBNetV2.

5 CONCLUSIONS

In this paper, we propose Robust Neural Architecture Search
by Cross-Layer Knowledge Distillation (RNAS-CL), a
novel NAS algorithm that enhances the robustness of the stu-
dent model through cross-layer knowledge distillation from
a robust teacher. RNAS-CL optimizes neural architectures in
a differentiable manner, aiming to balance robustness with
clean accuracy, and can be employed with or without robust
training. Our experiments demonstrate that compact models
trained using RNAS-CL surpass those trained without robust
measures in terms of adversarial robustness. Furthermore,
incorporating adversarial training into RNAS-CL signifi-
cantly boosts its adversarial resilience. Upon undergoing
robust training, RNAS-CL models exhibit comparable ad-
versarial robustness to those trained robustly from the outset,
yet achieve superior clean accuracy. As a direction for fu-
ture research, we plan to integrate robust training during the
architecture search phase to further improve the robustness
of the models.
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A ROBUST TEACHER MODELS

In this section, we report the robustness of adversarially trained teacher models used throughout the paper on the CIFAR-10
dataset in Table 1.

Table 1: Robustness results for various teacher models on the CIFAR-10 dataset.

Method Clean PGD20

WRT-34 86.07 58.33
ResNet 18 84.59 55.54
ResNet 50 87.03 49.25

Table 2: The table describes the search space for CIFAR-10. Depth represents the depth of each stage. For example, 3-3-3
represents three convolution blocks in each stage. All search spaces have three stages. Stage 1, Stage 2, and Stage 3 represent
the filter choices for the corresponding stages. For example, at stage 3 of RNAS-CL-S3, we search among 4 output channels,
(64, 60, 56, 52), for each convolution block.

Search Space Depth Stage 1 Stage 2 Stage 3
RNAS-CL-S3 3-3-3 16, 12 32, 28, 24, 20 64, 60, 56, 52
RNAS-CL-S5 5-5-5 16, 12 32, 28, 24, 20 64, 60, 56, 52
RNAS-CL-S7 7-7-7 16, 12 32, 28, 24, 20 64, 60, 56, 52
RNAS-CL-M 9-7-1 80, 76 160, 156, 152, 148 128, 124, 120, 116
RNAS-CL-L 9-7-1 160, 156 320, 316, 312, 308 256, 252, 248, 244

B ARCHITECTURE

In this section, we discuss architectures for various proposed supernets used in RNAS-CL for the CIFAR-10 and ImageNet-
100 datasets. Table 2 describes the supernets used for CIFAR-10. We use supernets with three blocks. Super-nets used for
ImageNet-100 are described in Table 3. For ImageNet-100, the number of blocks varies from 3 to 5.

C ARCHITECTURE SEARCH BY FBNETV2

RNAS-CL builds both an efficient and adversarially robust deep learning model. In this work, we use the training paradigm
of FBNetV2 to search for efficient models. In Figure 4, we illustrate the searching process for neural architecture at a single
convolution layer. Each filter choice is attached with a Gumbel weight. These Gumbel weights are optimized to select an
efficient model.



Table 3: The table describes the search space for ImageNet and ImageNet-100. Similar to Table 2, depth represents the depth
of each stage. For ImageNet, we have up to 5 stages. Stage 1, Stage 2, Stage 3, Stage 4, and Stage 5 represent the filter
choices for their respective stages. For example, in stage 1, we search among 4 output channel options, (28, 24, 20, 16), for
each convolution block.

Search Space Depth Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

RNAS-CL-IS 3-3-3
28, 24,
20, 16

40, 36,
32, 28

96, 88, 80,
72, 64, 56,
48

RNAS-CL-IM 3-3-3-4
28, 24,
20, 16

40, 36,
32, 28

96, 88, 80,
72, 64, 56,
48

128 120, 108,
100, 92, 84,
76, 68

RNAS-CL-I 3-3-3-4-4
28, 24,
20, 16

40, 36,
32, 28

96, 88, 80,
72, 64, 56,
48

128 120, 108,
100, 92, 84,
76, 68

216, 208, 200,
192, 184,176,
168, 160, 152,
144,136, 128,
120, 108

RNAS-CL-IL 1-2-2-4-3
28, 24,
20, 16

40, 36,
32, 28

96, 88, 80,
72, 64, 56,
48

128 120, 108,
100, 92, 84,
76, 68

216, 208, 200,
192, 184,176,
168, 160, 152,
144,136, 128,
120, 108

...
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Figure 4: Illustration of searching for the neural architecture of each layer of student model using the searching mechanism
in FBNetV2.
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represents gumbel weights associated with different filter choices.

D MORE EXPERIMENTAL RESULTS

D.1 COMPARISON AGAINST KD VARIANTS

In this section, we evaluate our methods in comparison to a variety of knowledge distillation (KD) techniques as outlined
in (Park et al., 2019; Ahn et al., 2019; Tung and Mori, 2019; Tian et al., 2020b; Passalis and Tefas, 2018). We utilize
Robust WRT-34 as the teacher model across all KD methods and train three distinct student architectures: RNAS-CL-S3,
RNAS-CL-S5, and RNAS-CL-S7. In Figure 5, models trained under our paradigm are clearly positioned in the upper
right-most part of the graph, underscoring the effectiveness of our intermediate cross-connections strategy. The RNAS-CL-S3
architecture, when trained using Relational Knowledge Distillation (RKD), demonstrates performance comparable to that
achieved through our method. Beyond this, all models trained using the RNAS-CL approach significantly surpass other
methods in both clean and adversarial accuracy, highlighting the robustness and efficiency of our training strategy.



Figure 5: The figure compares various knowledge distillation variants (Similarity (Tung and Mori, 2019), VID (Ahn et al.,
2019), RKD (Park et al., 2019), CRD (Tian et al., 2020b), PKD (Passalis and Tefas, 2018)) against RNAS-CL on the
CIFAR-10 dataset. Adversarial Accuracy represents top-1 Accuracy on images perturbed by 20 step PGD attack. Clean
Accuracy represents top-1 Accuracy on clean images. Larger marker size indicates larger architecture. For each method,
RNAS-CL-S3, RNAS-CL-S5, and RNAS-CL-S7 are represented by increasing marker size.

D.2 COMPARE CIFAR-10 MODEL AGAINST CW AND AUTOATTACK

In this section, we evaluate the performance of RNAS-CL and the approach described by (Huang et al., 2021) against
recent adversarial attacks, specifically CW∞ (Carlini and Wagner, 2017) and AutoAttack (Croce and Hein, 2020), using
the CIFAR-10 dataset. The CW∞ attacks, originally designed to overcome defensive distillation, are implemented here in
their ℓ∞ variant, optimized using PGD with a maximum perturbation budget of ϵ = 8/255. AutoAttack, known for being
a parameter-free ensemble attack, is currently regarded as one of the most robust and reliable benchmarks for evaluating
adversarial defenses. The comparative results are shown in Table 4, showcasing how each model withstands these rigorous
testing methods.

Table 4: Comparison between the performance of (Huang et al., 2021) and RNAS-CL against CW∞ (Carlini and Wagner,
2017) and AutoAttack (Croce and Hein, 2020) on the CIFAR-10 dataset.

Method CW∞ AA
VGG-R (Huang et al., 2021) 46.49 38.44

DN-121-R (Huang et al., 2021) 53.07 47.75
RNAS-CL-S3-WRT-34 (Our) 47.07 37.17
RNAS-CL-S5-WRT-34 (Our) 48.33 39.28
RNAS-CL-S7-WRT-34 (Our) 47.91 38.36
RNAS-CL-M-WRT-34 (Our) 53.52 46.89
RNAS-CL-L-WRT-34 (Our) 52.63 48.49

D.3 RESULTS FOR IMAGENET

In this section, we compare our model against the SOTA compact and efficient method (Huang et al., 2021), which is
known to achieve one of the best PGD accuracies using a compact and efficient model on ImageNet. In Table 5, we evaluate
RNAS-CL and (Huang et al., 2021) against 10 step PGD attack with ϵ = 4/255 on the ImageNet dataset. Both models are
adversarially trained using FastAT (Wong et al., 2020). Next, we train RNAS-CL with FastAT and CAC to further increase
the robustness. RNAS-CL models significantly outperform (Huang et al., 2021) in all three attributes: clean accuracy, robust
accuracy, and the number of parameters.



Table 5: Performance of various efficient and robust methods on the ImageNet dataset. Clean and PGD are the same as that
in Figure 3. ∗ represents approximate values.

Method Objective Clean PGD10 Params (M) GFLOPs
ResNet-50-R (Huang et al., 2021) FastAT 56.63 31.14 25.5 4∗

RNAS-CL-IL-WRT-50 FastAT 61.7 32.5 8.5 0.35
RNAS-CL-IL-WRT-50 FastAT + CAC 61.5 33.5 8.5 0.35

10th layer (28) 25th layer (32) 45th layer (47)

43rd layer 47th layer 

35th layer (43)

13th layer 28th layer 32rd layer 

45th layer 10th layer0th layer 25th layer 35th layer 

0th layer (13)

K
L-

I-
R

-5
0

Te
a

ch
e

r 
(R

-5
0

)
R

N
A

S
-C

L-
I-

R
-5

0Input

(a) (b) (c) (d) (e)

(i) PGD 

(A) Attention evaluation for various convolution layers
(B) Robustness evaluation

(ii) FGSM 

Figure 6: (A) KL-I-R-50 represents attention maps from a model trained using cross-entropy loss and knowledge distillation
without any cross-layer connections. Teacher and RNAS-CL represent attention maps from the robust teacher (ResNet-50)
and RNAS-CL model. The name for each RNAS-CL layer includes its connected teacher layer. For example, in the 0-th
layer (13), 13 represents the corresponding teacher layer. RNAS-CL drives attention maps from student layers closer to their
corresponding teacher layers. (B) Robustness evaluation under different perturbation sizes for PGD and FGSM attacks on
CIFAR-10.

D.4 ABLATION STUDY

Table 6: Ablation study on various components used during RNAS-CL training on the CIFAR-10 dataset with RNAS-CL-S7-
WRT-34 as the base model. CE represents models trained using Cross-Entropy Loss. CE + KL represents models trained by
minimizing the Cross-Entropy loss and standard KL Divergence with a robust teacher model. CE + ICC represents models
trained by minimizing the Cross-Entropy loss and Intermediate Cross-Connections (ICC). Clean and PGD are the same as
that in Figure 3.

Training Type Objective Function Clean PGD20

Without Adversarial training

CE 90.98 19.3
CE + KL 90.76 36.3
CE + ICC 90.33 35.54

CE + KL + ICC 90.62 37.24

With Adversarial training

CE 80.85 39.67
CE + KL 85.07 41.63
CE + ICC 82.45 41.03

CE + KL + ICC 85.06 43.88
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Figure 7: Adversarial accuracy of various models at various perturbation budgets on CIFAR-10.

This ablation study demonstrates the significance of student-teacher cross-layer connections in RNAS-CL. We compare
three types of training paradigms. In the first training paradigm, we conduct searching and training using cross-entropy
loss without any teacher model. We refer to this as standard. In the second paradigm, we conduct searching and training by
minimizing the cross-entropy loss and standard KL Divergence with a robust teacher model. We refer to the corresponding
models as KL-X-T, where X represents the search space, and T represents the robust teacher model. Finally, the third model
type is RNAS-CL, where we include all three terms, cross-entropy loss, KL Divergence, and cross-layer student-teacher
connections.

In Figure 6(A), we compare the attention maps from student models trained using RNAS-CL-I-R-50 against students trained
using KL-I-R-50. We compare attention maps for various convolution layers at regular intervals. As expected, adding
cross-layer connections obtains attention maps from the student model closer to the teacher model. Each student layer
learns where to pay attention from its connected teacher layer. For example, in column (b), the KL-I-R-50 layer attends
to various parts of the image, whereas the RNAS-CL layer learning from the 28-th teacher layer pays more attention to
the informative central part of the image. Similarly, in column (c), the RNAS-CL layer learns from the teacher model to
pay more attention to the central and upper portions of the image. In Table 6, we compare the performance of various
components of RNAS-CL. We observe that under both training schemes, KL and ICC (Intermediate Cross-Connections)
significantly increase the robustness compared to the standard network. Finally, combining KL and ICC, that is, RNAS-CL,
outperforms its counterparts. In Figure 7, we compare RNAS-CL models against KL-X-T and standard models against PGD
attacks at various perturbation budgets on the CIFAR-10 dataset.
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