23
24
25
26
27
28
29

39
40
41
42
43
44

Normalizing Audit Logs Using Large Language Models

Anonymous Author(s)

ABSTRACT

We present a novel approach for normalizing audit logs from various
Independent Software Vendor (ISV)s by generating Velocity Template
Language (VTL) templates for mapping input events from ISVs to
Open Cybersecurity Schema Framework (OCSF) format using zero
shot learning with Large Language Model (LLM)s. In this approach,
we use hierarchical classification to classify events from an ISV
into appropriate OCSF event categories, event classes and event
activities. Then we use the JSON schema for the generated OCSF
event classes to generate VTL templates, which map the fields
in the input events to the fields in the OCSF format. We use the
ISV event name and description for the event classification task
and the event json schema and a collection of sample event logs
for the VTL template generation task. We evaluate the results of
the two tasks using human generated event mappings and VTL
templates for various ISVs as ground truth respectively. We also
use a different LLM for evaluation of the outputs of the two tasks,
by generating confidence scores and qualitative assessment for
both tasks using an evaluation prompt. If the confidence score is
lower than a preset threshold, the generated qualitative feedback is
used to improve the LLM output for the VTL template generation
task. This work helps improve the error prone and time consuming
audit log normalization process by doubling the event classification
accuracy obtained through human annotators, and reducing the
VTL template generation process for new ISVs by from 2 days to
half a day.

KEYWORDS

large language models, zero shot learning, open cybersecurity
schema framework, velocity template language, classification, con-
strained LLM generation, LLM output evaluation, prompt engineer-
ing, log management, log normalization

ACM Reference Format:

Anonymous Author(s). 2024. Normalizing Audit Logs Using Large Language
Models. In Proceedings of Knowledge Infused Learning Workshop (KIL). ACM,
New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

ISVs are organizations that develop and market software products
and solutions for commercial or business use. In today’s digital
landscape, organizations often rely on multiple software systems
and applications from different ISVs to support their operations. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KIL, August 25, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

example, independent Saa$ applications like Slack, Zoom, and Drop-
box are incredibly popular with users. Interoperability [7] between
these applications ensures that these systems can seamlessly com-
municate, exchange data, and work together effectively, eliminating
data silos and enabling efficient workflows. For enabling interoper-
ability between various ISVs, including a single interface to search,
manage, and secure data, a normalization mechanism is needed for
structuring raw data from multiple ISVs into a standardized format
to facilitate analysis and querying.

ISVs use log management tools [2, 10] or security information
and event management solutions to collect, store, and analyze au-
dit logs. Audit logs are chronological records that document the
sequence of activities or events that occur within an organization’s
computer systems, applications, networks, user accounts, or de-
vices. They are essential for monitoring, tracking, and maintaining
the security and integrity of an organization’s IT infrastructure,
by providing insights into user activities, system changes, security
events, and potential incidents or breaches. By normalizing audit
logs, organizations can ensure data consistency, integrity, and ef-
ficiency, while also enabling better data analysis, reporting, and
security measures.

In this work, we present a novel approach for normalizing audit
logs from various ISVs. Motivated by the success of LLMs in related
NLP tasks using zero shot learning, like classification [1, 5, 11] and
its reasoning abilities over complex data [3, 4, 8, 12, 14], this paper
explores the potential of LLMs for four tasks: i) event classification,
ii) template generation for normalization, iii) evaluation of LLM
outputs for tasks i) and ii), and iv) using LLM evaluation output
to improve the results of tasks i) and ii). In the event classification
task, the objective is to classify an input event from an ISV into the
appropriate OCSF event class. OCSF ! is an open-source project
that aims to provide a common language and structure to represent
and share cybersecurity data and information. In the template gen-
eration task, the objective is to convert an input event log from an
ISV into the OCSF format for the OCSF event class that the input
event was classified into in task i).

We propose a prompt based architecture for instructing LLMs
to classify an input event from an ISV into the appropriate OCSF
category, class and activity, evaluate the classification output, gen-
erate a template to convert the input event into OCSF format for
the generated OCSF event class and evaluate the template output.
We also propose a mechanism to use the LLM evaluation output as
input to the template generation step to improve the LLM output.
We use Claude V3 2 LLMs via AWS Bedrock 3: Haiku for genera-
tion and Sonnet for evaluation, and compare the event classifica-
tion and template generation performance using human generated
event mappings and templates for certain ISVs which are treated
as ground truth. Since, event classification into OCSF events is an
error prone task, we also ask the human annotators who produced

Uhttps://schema.ocsf.io/
2https://www.anthropic.com/news/claude-3-family
3https://aws.amazon.com/bedrock/

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

KIL, August 25, 2024, Barcelona, Spain

the ground truth event mappings to manually examine the LLM
generated event mappings for certain ISVs to identify scenarios
where the human annotator is incorrect but the LLM output seems
to be a better match.

This paper is structured as follows: Section 2 introduces the
event mapping and template datasets. Section 3 describes the ex-
perimental setup. Section 4 discusses the LLM prompts, Section 5
discusses the VTL templates generated by the LLM, and Section 6
focuses on future work and improvements that can be made to the
current experimental setup to achieve better results.

2 DATASET

This section introduces the datasets used for evaluation.

2.1 Event Classification

10 ISVs were chosen with different number and types of audit log
events, for which human annotators classified the ISV events into
OCSF event classes. The details of the number of unique events
and ground truth OCSF event categories, classes and activities for
each ISV can be found in Table 1. We also use Crowdstrike * events
to determine how often a human annotator thought that the LLM
generated output was a better event classification result than the
human generated ground truth.

2.2 Template Generation

We generate templates using three combinations of inputs to the
LLM: i) only raw audit logs, ii) only input event schema, iii) raw
audit logs and input event schema. For i) we use raw audit logs
from Figma®, for ii) input event schema for Crowdstrike, and for iii)
we use we use input event schema and raw audit logs from Asana®.
We use the human generated templates as ground truth for these

ISVs for manual comparison against the LLM generated output.

3 EXPERIMENTAL SETUP

This section describes each step in the system architecture described
in Figure 1. For each LLM generation step, we set temperature to 0
and top_k value to 1 to ensure maximum reproducibility[9].

3.1 Event Classification

There are 312 OCSF activities that an input event needs to be classi-
fied into. For directly classifying an event into one of these activity
types, the LLM prompt needs to have names (and descriptions)
for all these activities. This results in a very long prompt. Context
stuffing, i.e. giving the LLM more context or knowledge as a part
of the prompt, has an upper limit on the amount of text that can
be provided as context. The reasons for this are manifold. LLM
output quality decreases and the risk of hallucination increases
as the context size increases [6]. Cost also increases linearly with
larger contexts, since processing larger contexts requires more com-
putation, and LLM providers charge per token. There is also a hard
upper limit on the number of tokens that can be sent to the model.

To address this issue, the event classification task is broken down
into 3 steps [13]. First, we identify the OCSF category for an input
4https://www.crowdstrike.com/en-us/

Shttps://www.figma.com/
Shttps://asana.com/

Anon.

| Event schemar

ISV Decumentation OCSF Documentation—, ISV Logs

A

3. Event

ISV Name
class schema

Event Nama

Evant Dascrigtion ISV 1998

Event Gategories
Event Classes
Event Activilles

(names and descriptions)

¥

LLM Prompt Creator <¢——— LLM Prompt Creatar LLM Prompt Creator

|
2 Event &. Tamplate
Classification Evaluation
R 7. Template Prompt
Evaluation
Cutput 5. Tamplata
4. Template Generation Output
1. Event Classification Prompt Gl el
Prampt
—» LLM
EVENT TEMPLATE TEMPLATE
CLASSIFICATION GENERATION EVALUATION

Figure 1: Audit Log Normalization Architecture

event. There are 6 OCSF categories that organize event classes and
each of them is aligned with a specific domain or area of focus. Sec-
ond, we identify the event class within the selected category and
lastly, we identify the event activity within the selected event class
that best describes the input event. The list of the event categories
and the event classes within each category is given in Table 2. The
event class chosen in the second step gives the OCSF JSON schema
for normalizing the input event. This hierarchical classification
approach breaks down the otherwise complex vanilla classification
task of classifying an input event directly into 312 output classes to
a simpler task having fewer (maximum 18) output classes at any
step. This reduces the risk of hallucination and incorrect classifi-
cation. It also allows us to pass additional information like output
class descriptions in the LLM prompt to achieve better classifica-
tion accuracy, without increasing the total number of input tokens
required to get the event classification output.

Along with the event classification output, we also instruct the
LLM to output a verbose reasoning describing how it chose a specific
output class for each step of the hierarchical classification process.
This verbose reasoning helps a human annotator in a production
environment to verify the LLM output and replace it with a human
corrected event class if needed.

3.2 Event Classification Evaluation

We evaluate the output for event classification in two ways. For the
10 ISVs for which we have ground truth, we calculate the micro
F1 score (ranging from 0.0 to 1.0) for the event category, event
class and event activity. Table 3 contains F1 scores for event cat-
egory, event class and event activity, as well as the total number
of input tokens required to get all classification outputs and the

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Normalizing Audit Logs Using Large Language Models

KIL, August 25, 2024, Barcelona, Spain

Table 1: Event Classification Dataset

ISV Name No. of Events No. of OCSF Categories No. of OCSF Classes No. of OCSF Activities
Asana 157 2 6 37
Okta 875 4 11 52
Zoom 324 2 7 41
Cisco 540 3 7 42
Zendesk 31 2 5 16
Salesforce 63 3 7 16
Gitlab 301 3 7 37
Azure 872 3 10 48
1Password 132 2 7 36
Lastpass 114 2 6 37
Table 2: OCSF Event Categories and Classes
OCSF category No. of OCSF events List of OCSF Events
System Activity 7 File System Activity, Kernel Extension Activity, Kernel Activity, Memory Activity,
Module Activity, Scheduled Job Activity, Process Activity
Findings 5 Security Finding, Vulnerability Finding, Compliance Finding, Detection Finding,
Incident Finding
Identity & Access Management 6 Account Change, Authentication, Authorize Session, Entity Management,
User Access Management, Group Management
Network Activity 13 Network Activity, HTTP Activity, DNS Activity, DHCP Activity, RDP Activity,
SMB Activity, SSH Activity, FTP Activity, Email Activity, Network File Activity,
Email File Activity, Email URL Activity, NTP Activity
Discovery 5 Device Inventory Info, Device Config State, User Inventory Info,
Operating System Patch State, Device Config State Change
Application Activity 7 Web Resources Activity, Application Lifecycle, API Activity,

Web Resource Access Activity, Datastore Activity, File Hosting Activity,

Scan Activity

execution time in seconds for the same. It shows the improvement
in classification accuracy by using hierarchical classification over
vanilla classification. Hierarchical classification gives more than 3X
boost in classification accuracy for OCSF event category, class and
activity.

To determine if the verbose reasoning generated by the LLM
during event classification (which describes how it chose an out-
put event class), is helpful to a human annotator to verify human
assigned labels, we use the input events from Crowdstrike. 1186
input events were classified into 31 OCSF event classes by the LLM
and ground truth for the same was generated by human annota-
tors without looking at the LLM generated output to prevent bias.
The two outputs were then compared by manually examining the
verbose reasoning generated by the LLM along with the output
classes. Only 82 event classification outputs for Crowdstrike’s 1186
events were revised by human annotators after manual inspection,
indicating that the LLM was correct 93% of the time.

3.3 Template Generation

We generate VTL templates to convert input events from an ISV into
the OCSF format for the OCSF event class for that event. VTL 7 is a

Java-based template engine used for web application development.

VTL templates are text files that contain a mix of static content
(like HTML) and dynamic content placeholders (like variables or
expressions) that are processed by the VTL engine to generate
the final output. It is often used to map one data format to another
format because it provides a flexible and powerful way to transform
data structures and generate dynamic content.

We establish 3 types of workflows to generate VTL templates
for input events from an ISV: i) using a sample of raw ISV audit
logs, ii) using input schema for ISV input events, and iii) using
a combination of both i) and ii). We use Figma, Crowdstrike and
Asana as target ISVs for i), ii) and iii) respectively. We retrieve the
input schema from ISV documentation and use dummy accounts
in the ISVs to get raw audit logs. Audit logs have a specific field for
the input event name which can be used along with input event
description retrieved from ISV documentation, to generate event
classification output for a log. This event class is then used to get

7https://velocity.apache.org/engine/1.7/user-guide.html

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

KIL, August 25, 2024, Barcelona, Spain

Anon.

Table 3: Event Classification Results

ISV Name Classification Type Event Category F1 Event Class F1 Event Activity F1 ~ No. of Input Tokens Execution Time (s)
Asana Vanilla 0.26 0.16 0.12 2799.05 0.75
Okta Vanilla 0.26 0.17 0.10 2819.50 0.68
Zoom Vanilla 0.30 0.10 0.06 2785.03 0.70
Cisco Vanilla 0.10 0.06 0.04 2794.08 0.76
Zendesk Vanilla 0.25 0.25 0.22 2788.1 0.72
Salesforce Vanilla 0.25 0.17 0.12 2816.52 0.95
Gitlab Vanilla 0.24 0.18 0.12 2800.20 0.73
Azure Vanilla 0.24 0.02 0.01 2798.54 0.76
1Password Vanilla 0.44 0.36 0.17 2791.84 0.74
Lastpass Vanilla 0.42 0.34 0.26 2787.625 0.75
Asana Hierarchical 0.87 0.71 0.40 2831.69 1.59
Okta Hierarchical 0.76 0.44 0.30 2857.63 1.47
Zoom Hierarchical 0.75 0.50 0.37 2768.59 1.41
Cisco Hierarchical 0.85 0.69 0.44 2820.15 1.59
Zendesk Hierarchical 0.96 0.96 0.74 2817.22 1.64
Salesforce Hierarchical 0.96 0.63 0.26 2890.25 1.90
Gitlab Hierarchical 0.87 0.69 0.50 2833.60 1.52
Azure Hierarchical 0.86 0.62 0.53 2841.51 1.57
1Password Hierarchical 0.75 0.62 0.39 2784.47 1.87
Lastpass Hierarchical 0.78 0.56 0.36 2783.96 1.54

the OCSF format corresponding to that class that the input event
needs to be converted into. We generate one VTL template for each
event class per ISV using either one of the 3 workflows described
above. In case of i), the chosen sample of audit logs has no more
than one log per input event that has been classified into that OCSF
event class.

3.4 Template Evaluation

We use an LLM evaluator prompt for evaluation of the generated
VTL templates. The LLM used for template evaluation is Claude
V3 Sonnet. The prompt instructs the LLM to output a confidence
score between 0 to 1 (where 0 is the lowest score indicating a poor
quality template and 1 is the highest score indicating a high quality
template). The prompt also contains instructions describing what
an ideal template should look like to help the LLM assign correct
confidence scores. In addition to this score, we also instruct the
LLM to output a qualitative assessment of the template, describing
the problems it encountered with the template (if any), to justify
the confidence score. This qualitative assessment helps in improv-
ing the LLM output as described in the following section, and also
helps human annotators to interpret the confidence score for exist-
ing templates and using the assessment to manually improve the
generated or human created templates if needed.

We also use human generated templates for certain ISVs like
Asana to manual evaluation of the LLM generated template.

3.5 Qualitative LLM Feedback

We use separate prompts - which take in the usual inputs for tem-
plate generation for the 3 different workflows mentioned in Section
3.3, along with the qualitative assessment generated by the LLM
during template evaluation mentioned in Section 3.4, as well as the

VTL template generated in Section 3.3 - and use the the assessment
to improve the template until either the confidence score generated
during template evaluation is greater than a preset threshold or the
maximum number of retries is reached. We use a preset threshold
of 0.9 and set the maximum number of retries to 3.

4 PROMPT ENGINEERING

We make several observations about the Claude V3 class of models
while editing the prompts for improving the quality of LLM out-
put based on comparison with ground truth data, manual human
assessment and LLM evaluation.

Claude V3 models seem to understand Extensible Markup Lan-
guage (XML) tags well and dividing the complex prompts into
various sections using XML tags improves the LLM output. We
arrange the sections in the prompt in the following order: i) input
data descriptions and input data, ii) output classes or format de-
scription, and iii) guidelines and constraints for output generation.
We use Pydantic’s ® format instructions for specifying the JSON
output format for the LLM for all generation tasks and add an addi-
tional instruction at the end of each prompt directing the LLM to
only generate the output in the specified JSON format without any
XML tags. We observe that adding detailed descriptions of input
and output classes for the event classification task improves the
classification accuracy, so we add descriptions from ISV and OCSF
documentations to the event classification prompt. We also observe
that using descriptions of input fields of the ISV’s input event for
the VTL template generation task enhances the quality of the LLM
generated VTL template.

For the event classification task, we instruct the LLM to first
identify the main resource type affected by the input event using

8https://docs.pydantic.dev/latest/

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

Normalizing Audit Logs Using Large Language Models

the input event name and description, then identify the action
performed in the input event that alters the identified resource
type, and then identify the output class whose name or description
indicates or mentions the identified resource type and the action.
Such a step by step approach helps in mimicing the workflow of
a human annotator and also breaks down the complex task into
simpler subtasks for the LLM.

5 RESULTS

Examples of VTL templates generated for Figma, Asana and Crowd-
strike can be found in Listings 2, 4 and 6 respectively, along with
their LLM generated confidence scores and qualitative assessments
in Listings 3, 5 and 7 respectively. The output fields mapped to null
values by the LLM in the VTL templates have been removed for
readability purposes. The LLM does a good job of mapping fields
in the input event to those in the output OCSF format, even where
if-else conditions are involved. It also follows the instructions to
map fields only if they have the same type. It assigns null values to
fields marked as required in the output schema whose mappings it
can’t determine using the input schema and/or logs. It also includes
a list of input fields in the un-mapped section of the output for
which no corresponding output fields can be determined. However,
the templates suffer from certain problems like output fields being
mapped to a constant value inferred from the supplied context, con-
fusion between similar fields like source and destination endpoints,
and same input fields being mapped to different output fields.

#foreach($inputEvent in $input_events)

"raw_data":
"actor": {
"user": {
"email_addr":
"name":
"type":
"type_id":
else99#end,
"uid": "$inputEvent.actor.id"

$inputEvent,

"$inputEvent.
"$inputEvent.actor.
"$inputEvent.actor.
#if ($inputEvent.

actor.email"”,
name",
type",

actor.type == "user")1#

}

3,

"dst_endpoint": {
"type": #if($inputEvent.entity.editor_type == "figma
"Ybrowser#elseif ($inputEvent.entity.editor_type ==
figjam")desktop#else"unknown"#end,
},
"type_id": #if ($inputEvent.entity.editor_type ==
figma")6#elseif ($inputEvent.entity.editor_type ==
figjam") 2#else0t#end,

"

"

3,
"file": {
"hashes": [
{
"algorithm_id": 3,
"value": "$inputEvent.entity.key"
}
15
"name": "$inputEvent.entity.name",
"type": "$inputEvent.entity.editor_type",
"type_id": #if($inputEvent.entity.editor_type == "
figma")1#elseif ($inputEvent.entity.editor_type == "
figjam")2#else0#end,
"uid": "$inputEvent.entity.key"
3,

"src_endpoint": {

KIL, August 25, 2024, Barcelona, Spain

31 "type": #if($inputEvent.context.client_name)browser#
elseif ($inputEvent.context.ip_address)desktop#else"
unknown"#end,

32 "ip": "$inputEvent.context.ip_address",

33 "type_id": #if($inputEvent.context.client_name)8#
elseif ($inputEvent.context.ip_address)2#else0#end,

T

35 "type_uid": "$inputEvent.id",

36 "time": "$inputEvent.timestamp",

37 "timezone_offset": 0,

38 "cloud": {

39 "provider": "Figma",

w0 3,

41 "api": {

42 "operation": "$inputEvent.action.type",

43 "request": {

14 "data": "$inputEvent.action.details",

45 1,

6 "response": {

47 "message": "$inputEvent.action.details"

48 }

T

50 "message": "$inputEvent.action.type",

51 "severity": #if($inputEvent.action.type == "

fig_file_view")Informational#elseif ($inputEvent.
action.type == "fig_file_move" || $inputEvent.action
.type == "fig_file_rename" || $inputEvent.action.
type == "fig_file_create" || $inputEvent.action.type
== "fig file_save_as" || $inputEvent.action.type ==
"fig_file_export" || $inputEvent.action.type == "
fig_file_unset_password" || $inputEvent.action.type
== "fig_file_link_access_change" || $inputEvent.
action.type == "fig_file_duplicate")Low#else"Other"#
end,

52 "severity_id": #if ($inputEvent.action.type ==
fig_file_view")1#elseif ($inputEvent.action.type ==
fig_file_move" || $inputEvent.action.type == "
fig_file_rename" || $inputEvent.action.type ==
fig_file_create" || $inputEvent.action.type ==
fig_file_save_as" || $inputEvent.action.type
fig_file_export" || $inputEvent.action.type ==
fig_file_unset_password" || $inputEvent.action.type

"

== "fig_file_link_access_change" || $inputEvent.
action.type == "fig_file_duplicate")?2#else99#end,

53 "status": #if ($inputEvent.action.type == "fig_file_view
" || $inputEvent.action.type == "fig_file_move" ||
$inputEvent.action.type == "fig_file_rename" ||
$inputEvent.action.type == "fig_file_create" ||
$inputEvent.action.type == "fig_file_save_as" ||
$inputEvent.action.type == "fig_file_export" ||
$inputEvent.action.type == "fig_file_unset_password"

"

|| $inputEvent.action.type ==
fig_file_link_access_change" || $inputEvent.action.
type == "fig_file_duplicate")Success#else"Other"#end
54 "status_id": #if ($inputEvent.action.type == "
fig_file_view" || $inputEvent.action.type ==
fig_file_move" || $inputEvent.action.type ==
fig_file_rename" || $inputEvent.action.type ==
fig_file_create" || $inputEvent.action.type ==
fig_file_save_as" || $inputEvent.action.type ==
fig_file_export" || $inputEvent.action.type ==
fig_file_unset_password" || $inputEvent.action.type

"

"

== "fig_file_link_access_change" || $inputEvent.
action.type == "fig_file_duplicate")1#else99#end,

55 "unmapped": {

56 "entity_link_access": "$inputEvent.entity.link_access

"
)

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

589

590

592

593

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

KIL,August25,2024,Barcdona,Spam

"entity_proto_link_access":
proto_link_access",
"context_team_id": "$inputEvent.context.team_id",
"context_org_id": "$inputEvent.context.org_id",
"context_is_figma_support_team_action": "$inputEvent.
context.is_figma_support_team_action",
"context_client_name": "$inputEvent.context.
client_name"

"$inputEvent.entity.

3
#end

Listing 1: LLM generated VTL template for OCSF event class
"File Hosting Activity" for Figma using raw audit logs

Score : 0.8
Assessment The VTL template maps most of the required
fields correctly, but there are a few issues:

1. The dst_endpoint.location fields are not mapped, which
should ideally be populated based on the IP address
if possible.

2. The src_endpoint.type mapping could be improved. It
currently maps to 'browser' if context.client_name
is present, 'desktop' if context.ip_address is
present, and 'unknown' otherwise. A more accurate
mapping would be to use the context.client_name
value directly if available, or map to 'desktop' if
context.ip_address is present and context.
client_name is not available.

3. The severity and severity_id mappings could be more
granular based on the specific action.type values.

4. The status and status_id mappings are reasonable, but
could potentially be more specific based on the
action.type values.

5. The unmapped object contains fields that are not
mapped to the output schema, which is acceptable,
but it would be better to map them if possible.

Overall, the template covers most of the required fields
and makes reasonable assumptions for mapping, but
there is room for improvement in terms of accuracy
and completeness.

Listing 2: LLM generated confidence score and qualitative

assessment for Figma’s VTL template for OCSF event class

"File Hosting Activity"

#foreach($inputEvent in $input_events)

{
"raw_data": $inputEvent,
"actor": {
"user": {
"email_addr": "$inputEvent.actor.email",
"name": "$inputEvent.actor.name",
"type": "$inputEvent.actor.actor_type",
"type_id": #if ($inputEvent.actor.actor_type == "
user")1#else99#end,
"uid": "$inputEvent.actor.gid"
3
3,
"auth_protocol": #if($inputEvent.details.method.
contains ("PASSWORD"))
"PASSWORD"
#else
"Other"
#end,

"auth_protocol_id": #if($inputEvent.details.method.
contains ("PASSWORD"))

Anon

7

#else
99

#end,

"dst_endpoint": {
"type": "$inputEvent.context.context_type",
"hostname": "$inputEvent.context.user_agent",
"ip": "$inputEvent.context.client_ip_address",
"type_id": #if($inputEvent.context.context_type == "
web")8#else99#end,

Do

"http_request": {
"http_headers": [1],
"uid": "$inputEvent.gid",
"user_agent": "$inputEvent.context.user_agent",

}

"is_mfa": false,

"is_remote": true,

"logon_type_id": #if ($inputEvent.event_type == "
user_login_succeeded")
10

#elseif ($inputEvent.event_type == "user_login_failed")
99

#elseif ($inputEvent.event_type == "user_logged_out")
13

#else
0

#end,

"service": {
"name": "Asana",

},

"user": {
"email_addr": "$inputEvent.resource.email",
"name": "$inputEvent.resource.name",
"type": "$inputEvent.resource.resource_type",
"type_id": #if($inputEvent.resource.resource_type ==
"user")1#else99#end,
"uid": "$inputEvent.resource.gid"

3,

"device": {
"type": "$inputEvent.context.context_type",
"type_id": #if($inputEvent.context.context_type == "
web")8#else99#end,
"hostname": "$inputEvent.context.user_agent",
"ip": "$inputEvent.context.client_ip_address"”

3,

"type_uid": #if($inputEvent.event_type == "
user_login_succeeded")
100

#elseif ($inputEvent.event_type == "user_login_failed")
101

#elseif ($inputEvent.event_type == "user_logged_out")
102

#else
[}

#end,

"time": "$inputEvent.created_at",

"message": #if($inputEvent.event_type == "

user_login_succeeded")
"User $inputEvent.resource.name logged in
successfully"

#elseif ($inputEvent.event_type == "user_login_failed")
"User $inputEvent.actor.name failed to log in"

#elseif ($inputEvent.event_type == "user_logged_out")
"User $inputEvent.actor.name logged out"

#else
null

#end,

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

102

103

104

105

106

107

108

109

110

4

6

Normalizing Audit Logs Using Large Language Models

"severity": #if($inputEvent.event_type ==
user_login_succeeded")
"Informational"

#elseif ($inputEvent.event_type ==
"Medium"

#elseif ($inputEvent.event_type ==
"Informational"

#else
"Unknown"

#end,

"severity_id": #if($inputEvent.event_type ==
user_login_succeeded")
1

#elseif ($inputEvent.event_type ==
3

#elseif ($inputEvent.event_type ==
1

#else
0

#end,

"status": #if ($inputEvent.event_type ==
user_login_succeeded")
"Success"

#elseif ($inputEvent.event_type ==
"Failure"

#elseif ($inputEvent.event_type ==
"Success"

#else
"Unknown"

#end,

"status_id": #if($inputEvent.event_type ==
user_login_succeeded")
1

#elseif ($inputEvent.event_type ==
2

#elseif ($inputEvent.event_type ==
1

#else
[

#end

"user_login_failed")

"user_logged_out")

"

"user_login_failed")

"user_logged_out")

"user_login_failed")

"user_logged_out")

"user_login_failed")

"user_logged_out")

3
#end

Listing 3: LLM generated VTL template for OCSF event class
"Authentication" for Asana using raw audit logs and input
event schema"

Score 0.8

Assessment The VTL template maps most of the input
fields to the corresponding output fields correctly.
However, there are a few issues:

1. The “auth_protocol™ and “auth_protocol_id~ fields are

not mapped accurately. The template assumes that if

the “details.method™ contains 'PASSWORD', it maps to

the PAP authentication protocol, which may not

always be correct.

2. The “dst_endpoint.type_id"~ field is not mapped

correctly for all context types. It only handles the
‘'web' context type and maps everything else to 99 (

Other).

3. The “logon_type_id”~ field is not mapped accurately for

all event types. It only handles '

user_login_succeeded', 'user_login_failed',

user_logged_out' event types.

and

KIL, August 25, 2024, Barcelona, Spain

4. The “type_uid”~ field is not calculated correctly
according to the formula “class_uid * 100 +
activity_id~. The template assumes hardcoded values
based on the event type.

5. The ~timezone_offset™ field is not mapped.

6. The “cloud”™ object fields are not mapped.

7. The “api” object fields are not mapped.

8. The “severity”™ and “severity_id~ fields are not mapped

accurately for all event types. The template only
handles a few specific event types.

9. The “status™ and “status_id”~ fields are not mapped
accurately for all event types. The template only
handles a few specific event types.

10. Some fields like “dst_endpoint.port™, “dst_endpoint.
svc_name~, “dst_endpoint.container” fields,
dst_endpoint.location™ fields, “http_request.
http_headers ™, “http_request.url” fields,
location™ fields, “device.region”, “device.container
* fields, and others are not mapped or set to null,
which may not be accurate.

“device.

Overall, the template covers a good portion of the
mapping, but there is room for improvement in
handling edge cases, accurate mapping of certain
fields, and ensuring all required fields are
populated correctly.

Listing 4: LLM generated confidence score and qualitative

assessment for Asana’s VTL template for OCSF event class
"Authentication"”

#foreach($inputEvent
{

in $inputEvents)

"device": {
"location": {

"city": $inputEvent.K8SResourceNamespace,

"continent": "unknown",

"coordinates": [#if($inputEvent.
K8SAdmissionReviewTimestamp) $inputEvent.
K8SAdmissionReviewTimestamp, $inputEvent.
K8SAdmissionReviewTimestamp#else[0.0, 0.0]1#end],

"country": "unknown"

1,

"name": $inputEvent.K8SResourceName,
"region": $inputEvent.K8SClusterName,
"type": #if($inputEvent.K8SResourceKind ==

"container"

#elseif ($inputEvent.K8SResourceKind == "Deployment")

"server"

#elseif ($inputEvent.K8SResourceKind == "ReplicaSet")

"server"

#elseif ($inputEvent.K8SResourceKind ==

"server"

#elseif ($inputEvent.K8SResourceKind == "StatefulSet")

"server"

#else

"unknown"

#end,

"type_id":
6

#elseif ($inputEvent.K8SResourceKind == "Deployment")
1

#elseif ($inputEvent.K8SResourceKind ==

"Pod")

"DaemonSet")

#if ($inputEvent.K8SResourceKind == "Pod")

"ReplicaSet")

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

KIL,August25,2024,Barcdona,Spam

1

#telseif ($inputEvent.K8SResourceKind == "DaemonSet")
1

#elseif ($inputEvent.K8SResourceKind == "StatefulSet")
1

#else
0

#end,

"uid": $inputEvent.K8SResourceUid,

"container": {

"name": $inputEvent.K8SResourceName,
"image": {
"name": $inputEvent.K8SImage,
"uid": $inputEvent.K8SImageld
3,
"uid": $inputEvent.K8SContainerId,

"size": #if($inputEvent.Size)$inputEvent.Size#else"
unknown"#end,
"hash": {
"algorithm_id": 3,
"value": $inputEvent.SHA256HashData
}
1,
"namespace_pid": #if ($inputEvent.K8SPodUid)
$inputEvent.K8SPodUid#else null#end,
"hostname": $inputEvent.K8SResourceName,
"ip": $inputEvent.K8SPodIP4
3,
"actor": {
"user": {
"name": $inputEvent.K8SServiceAccountName,
"type": "Service Account",
"type_id": 3,
"uid": $inputEvent.K8SServiceAccountName
3
Yo
"app": {
"name": $inputEvent.K8SImage,
"uid": $inputEvent.K8SImageld,
"vendor_name": #if($inputEvent.AppVendor)$inputEvent.
AppVendor#else"unknown"#end,

#if ($inputEvent.AppVersion)$inputEvent.
AppVersion#else"unknown"#end

3,

"type_uid": $inputEvent.K8SAdmissionReviewAction,

"time": $inputEvent.K8SAdmissionReviewTimestamp,

"timezone_offset": 0,

"cloud": {

"provider": #if($inputEvent.CloudPlatform == 1)
"AWS"
#elseif ($inputEvent.CloudPlatform == 2)
"Azure"
#elseif ($inputEvent.CloudPlatform == 3)
"GCP"
#else
"Kubernetes"
#end,
"region":

1,

"api": {
"operation":
"request": {

"data": $inputEvent.K8SResourceObject,
"uid": $inputEvent.K8SAdmissionReviewUid
},
"response": {
"code": #if($inputEvent.K8SAdmissionReviewAction
"ox1")
200

"version":

$inputEvent.K8SClusterName

$inputEvent .K8SAdmissionReviewOperation,

94

100

101

102

103

104

105

106

108

109

110

Anon

#elseif ($inputEvent.K8SAdmissionReviewAction == "0@
x2")
400
#else
null
#end,
"error": #if($inputEvent.K8SAdmissionReviewAction
== "@x2")
"Failure"
#else
null
#end,
"error_message": $inputEvent.K8SAdmissionReviewMsg,
"message": $inputEvent.K8SAdmissionReviewMsg
}
},
"message": $inputEvent.K8SAdmissionReviewMsg,
"severity": #if($inputEvent.K8SDetectionSeverity == "
Low")
"Low"
#elseif ($inputEvent.K8SDetectionSeverity == "Medium")
"Medium"
#elseif ($inputEvent.K8SDetectionSeverity == "High")
"High"
#elseif ($inputEvent.K8SDetectionSeverity == "Critical")
"Critical"
#elseif ($inputEvent.K8SDetectionSeverity ==
Informational")

"Informational"

#else
"Other"

#end,

"severity_id": #if($inputEvent.K8SDetectionSeverity ==
"Low")
2

#elseif ($inputEvent.K8SDetectionSeverity == "Medium")
3

#elseif ($inputEvent.K8SDetectionSeverity == "High")
4

#elseif ($inputEvent.K8SDetectionSeverity == "Critical")
5

#elseif ($inputEvent.K8SDetectionSeverity ==
Informational")
1

#else
99

#end,

"status": #if ($inputEvent.K8SAdmissionReviewAction ==
"ox1")
"Success"

#elseif ($inputEvent.K8SAdmissionReviewAction == "@x2")
"Failure"

#elseif ($inputEvent.
K8SAdmissionReviewImageAssessmentPolicyID)
"Success"

#else
"Other"

#end,

"status_id":
== "ox1")
1

#elseif ($inputEvent.K8SAdmissionReviewAction == "@x2")
2

#elseif ($inputEvent.
K8SAdmissionReviewImageAssessmentPolicyID)
1

#else
99

#end,

#if ($inputEvent.K8SAdmissionReviewAction

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Normalizing Audit Logs Using Large Language Models

"raw_data": $inputEvent

3
#end

Listing 5: LLM generated VIL template for OCSF event class
"Application Lifecycle" for Crowdstrike using input event
schema

Score: 0.9
Assessment: The VTL template is well-designed and
accurately maps most of the relevant input fields to
the corresponding output fields defined in the JSON
schema. It handles various cases and conditions to
map the input data correctly. However, there are a
few minor issues:

1. The 'continent' field is hardcoded to 'unknown'
instead of being derived from the input data.

2. The 'country' field is hardcoded to 'unknown' instead
of being derived from the input data.

3. The 'vendor_name' and 'version' fields are hardcoded
to 'unknown' if the corresponding input fields are
missing, instead of being left null.

4. The 'instance_uid', 'interface_name', and
interface_uid' fields are hardcoded to null instead
of being derived from the input data (if available).

5. The 'email_addr' field is hardcoded to null instead of

being derived from the input data (if available).

6. The 'timezone_offset' field is hardcoded to @ instead
of being derived from the input data (if available).

Overall, the template effectively maps most of the input
fields to the output schema, and the issues
mentioned above are relatively minor. With some
additional improvements, the template can be made
even more accurate and comprehensive.

Listing 6: LLM generated confidence score and qualitative

assessment for Crowdstrike’s VTL template for OCSF event

class "Application Lifecycle"

6 FUTURE WORK

The event classification performance can be improved by adding
more domain specific information to the prompt, like description
of the ISV, resource types supported by the ISV, resource types

affected by the input event according to ISV documentation, etc.

Qualitative assessment generated as a part of the event classification
evaluation prompt can also be used as feedback to re-generate the
event classification output if the generated confidence score is
lesser than a preset threshold, in the same way as described for the
template generation task in Section 3.3. We observe that the Claude
Sonnet model used for evaluation generally gives high confidence
scores for most templates, ranging from 0.7 to 0.9, even when it
identifies a substantial number of problems with the generated VIL
template. Hence, prompt engineering can be done to generate a
more interpretive confidence score that aligns with the generated
qualitative assessment. Other state of the art LLMs can also be
explored for both the event classification and template generation
tasks.

7 CONCLUSION

In this paper, we investigate the ability of Claude V3 class of LLMs to
normalize audit logs from ISVs by first classifying the input events

KIL, August 25, 2024, Barcelona, Spain

in these logs to OCSF event classes, and then using the schema
for these event classes to generate VTL templates to convert the
input events into the format specified by the schema. We perform
both these generation tasks using zero shot learning. We achieve
a 2X boost in classification accuracy as compared to human anno-
tators and a speed up of 4X in generation of VTL templates. This
automated method for generating templates for normalizing audit
logs helps reduce human effort and human error and paves the
way for better data analysis and reporting across different kinds of
applications.

REFERENCES

[1] Youngjin Chae and Thomas Davidson. 2023. Large Language Models for Text
Classification: From Zero-Shot Learning to Fine-Tuning. https://doi.org/10.
31235/osf.io/sthwk

[2] A.Chuvakin, K. Schmidt, and C. Phillips. 2012. Logging and Log Management:
The Authoritative Guide to Understanding the Concepts Surrounding Logging and
Log Management. 1-434 pages.

[3] Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli
Celikyilmaz, and Jason Weston. 2023. Chain-of-Verification Reduces Hallucina-
tion in Large Language Models. arXiv:2309.11495 [cs.CL]

[4] Jie Huang and Kevin Chen-Chuan Chang. 2023. Towards Reasoning in Large
Language Models: A Survey. arXiv:2212.10403 [cs.CL]

[5] Pierre Lepagnol, Thomas Gerald, Sahar Ghannay, Christophe Servan, and Sophie
Rosset. 2024. Small Language Models are Good Too: An Empirical Study of
Zero-Shot Classification. arXiv:2404.11122 [cs.Al]

[6] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. 2024. Long-
context LLMs Struggle with Long In-context Learning. arXiv:2404.02060 [cs.CL]

[7] Shijun Liu, Liwen Wang, Xiangxu Meng, and Lei Wu. 2012. Dynamic Interoperabil-
ity Between Multi-Tenant SaaS Applications. 217-226. https://doi.org/10.1007/978-
1-4471-2819-9_19

[8] Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng,

Chuangi Tan, Fei Huang, and Huajun Chen. 2023. Reasoning with Language

Model Prompting: A Survey. arXiv:2212.09597 [cs.CL]

Matthew Renze and Erhan Guven. 2024. The Effect of Sampling Temperature on

Problem Solving in Large Language Models. arXiv:2402.05201 [cs.CL]

Narongsak Sukma, Wasin Srisawat, Prush Sa-nga ngam, and Adisorn Leelas-

antitham. 2019. An Analysis of Log Management Practices to reduce IT Op-

erational Costs Using Big Data Analytics. In 2019 4th Technology Innovation

Management and Engineering Science International Conference (TIMES-iCON).

1-5. https://doi.org/10.1109/TIMES-iCON47539.2019.9024400

Zhiqiang Wang, Yiran Pang, and Yanbin Lin. 2023. Large Language Models Are

Zero-Shot Text Classifiers. arXiv:2312.01044 [cs.CL]

[12] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. arXiv:2305.10601 [cs.CL]

[13] Quan Yuan, Mehran Kazemi, Xin Xu, Isaac Noble, Vaiva Imbrasaite, and Deepak
Ramachandran. 2023. TaskLAMA: Probing the Complex Task Understanding of
Language Models

[14] Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-Most Prompting Enables Complex Reasoning in Large Language
Models. arXiv:2205.10625 [cs.Al]

[

[10

[11

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://doi.org/10.31235/osf.io/sthwk
https://doi.org/10.31235/osf.io/sthwk
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2404.11122
https://arxiv.org/abs/2404.02060
https://doi.org/10.1007/978-1-4471-2819-9_19
https://doi.org/10.1007/978-1-4471-2819-9_19
https://arxiv.org/abs/2212.09597
https://arxiv.org/abs/2402.05201
https://doi.org/10.1109/TIMES-iCON47539.2019.9024400
https://arxiv.org/abs/2312.01044
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2205.10625

	Abstract
	1 Introduction
	2 Dataset
	2.1 Event Classification
	2.2 Template Generation

	3 Experimental Setup
	3.1 Event Classification
	3.2 Event Classification Evaluation
	3.3 Template Generation
	3.4 Template Evaluation
	3.5 Qualitative LLM Feedback

	4 Prompt Engineering
	5 Results
	6 Future Work
	7 Conclusion
	References

