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ABSTRACT

We present a novel approach for normalizing audit logs from various
Independent Software Vendor (ISV)s by generating Velocity Template
Language (VTL) templates for mapping input events from ISVs to
Open Cybersecurity Schema Framework (OCSF) format using zero
shot learning with Large Language Model (LLM)s. In this approach,
we use hierarchical classification to classify events from an ISV
into appropriate OCSF event categories, event classes and event
activities. Then we use the JSON schema for the generated OCSF
event classes to generate VTL templates, which map the fields
in the input events to the fields in the OCSF format. We use the
ISV event name and description for the event classification task
and the event json schema and a collection of sample event logs
for the VTL template generation task. We evaluate the results of
the two tasks using human generated event mappings and VTL
templates for various ISVs as ground truth respectively. We also
use a different LLM for evaluation of the outputs of the two tasks,
by generating confidence scores and qualitative assessment for
both tasks using an evaluation prompt. If the confidence score is
lower than a preset threshold, the generated qualitative feedback is
used to improve the LLM output for the VTL template generation
task. This work helps improve the error prone and time consuming
audit log normalization process by doubling the event classification
accuracy obtained through human annotators, and reducing the
VTL template generation process for new ISVs by from 2 days to
half a day.

KEYWORDS

large language models, zero shot learning, open cybersecurity
schema framework, velocity template language, classification, con-
strained LLM generation, LLM output evaluation, prompt engineer-
ing, log management, log normalization
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1 INTRODUCTION

ISVs are organizations that develop and market software products
and solutions for commercial or business use. In today’s digital
landscape, organizations often rely on multiple software systems
and applications from different ISVs to support their operations. For
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example, independent Saa$ applications like Slack, Zoom, and Drop-
box are incredibly popular with users. Interoperability [7] between
these applications ensures that these systems can seamlessly com-
municate, exchange data, and work together effectively, eliminating
data silos and enabling efficient workflows. For enabling interoper-
ability between various ISVs, including a single interface to search,
manage, and secure data, a normalization mechanism is needed for
structuring raw data from multiple ISVs into a standardized format
to facilitate analysis and querying.

ISVs use log management tools [2, 10] or security information
and event management solutions to collect, store, and analyze au-
dit logs. Audit logs are chronological records that document the
sequence of activities or events that occur within an organization’s
computer systems, applications, networks, user accounts, or de-
vices. They are essential for monitoring, tracking, and maintaining
the security and integrity of an organization’s IT infrastructure,
by providing insights into user activities, system changes, security
events, and potential incidents or breaches. By normalizing audit
logs, organizations can ensure data consistency, integrity, and ef-
ficiency, while also enabling better data analysis, reporting, and
security measures.

In this work, we present a novel approach for normalizing audit
logs from various ISVs. Motivated by the success of LLMs in related
NLP tasks using zero shot learning, like classification [1, 5, 11] and
its reasoning abilities over complex data [3, 4, 8, 12, 14], this paper
explores the potential of LLMs for four tasks: i) event classification,
ii) template generation for normalization, iii) evaluation of LLM
outputs for tasks i) and ii), and iv) using LLM evaluation output
to improve the results of tasks i) and ii). In the event classification
task, the objective is to classify an input event from an ISV into the
appropriate OCSF event class. OCSF ! is an open-source project
that aims to provide a common language and structure to represent
and share cybersecurity data and information. In the template gen-
eration task, the objective is to convert an input event log from an
ISV into the OCSF format for the OCSF event class that the input
event was classified into in task i).

We propose a prompt based architecture for instructing LLMs
to classify an input event from an ISV into the appropriate OCSF
category, class and activity, evaluate the classification output, gen-
erate a template to convert the input event into OCSF format for
the generated OCSF event class and evaluate the template output.
We also propose a mechanism to use the LLM evaluation output as
input to the template generation step to improve the LLM output.
We use Claude V3 2 LLMs via AWS Bedrock 3: Haiku for genera-
tion and Sonnet for evaluation, and compare the event classifica-
tion and template generation performance using human generated
event mappings and templates for certain ISVs which are treated
as ground truth. Since, event classification into OCSF events is an
error prone task, we also ask the human annotators who produced

Uhttps://schema.ocsf.io/
2https://www.anthropic.com/news/claude-3-family
3https://aws.amazon.com/bedrock/
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the ground truth event mappings to manually examine the LLM
generated event mappings for certain ISVs to identify scenarios
where the human annotator is incorrect but the LLM output seems
to be a better match.

This paper is structured as follows: Section 2 introduces the
event mapping and template datasets. Section 3 describes the ex-
perimental setup. Section 4 discusses the LLM prompts, Section 5
discusses the VTL templates generated by the LLM, and Section 6
focuses on future work and improvements that can be made to the
current experimental setup to achieve better results.

2 DATASET

This section introduces the datasets used for evaluation.

2.1 Event Classification

10 ISVs were chosen with different number and types of audit log
events, for which human annotators classified the ISV events into
OCSF event classes. The details of the number of unique events
and ground truth OCSF event categories, classes and activities for
each ISV can be found in Table 1. We also use Crowdstrike * events
to determine how often a human annotator thought that the LLM
generated output was a better event classification result than the
human generated ground truth.

2.2 Template Generation

We generate templates using three combinations of inputs to the
LLM: i) only raw audit logs, ii) only input event schema, iii) raw
audit logs and input event schema. For i) we use raw audit logs
from Figma®, for ii) input event schema for Crowdstrike, and for iii)
we use we use input event schema and raw audit logs from Asana®.
We use the human generated templates as ground truth for these

ISVs for manual comparison against the LLM generated output.

3 EXPERIMENTAL SETUP

This section describes each step in the system architecture described
in Figure 1. For each LLM generation step, we set temperature to 0
and top_k value to 1 to ensure maximum reproducibility[9].

3.1 Event Classification

There are 312 OCSF activities that an input event needs to be classi-
fied into. For directly classifying an event into one of these activity
types, the LLM prompt needs to have names (and descriptions)
for all these activities. This results in a very long prompt. Context
stuffing, i.e. giving the LLM more context or knowledge as a part
of the prompt, has an upper limit on the amount of text that can
be provided as context. The reasons for this are manifold. LLM
output quality decreases and the risk of hallucination increases
as the context size increases [6]. Cost also increases linearly with
larger contexts, since processing larger contexts requires more com-
putation, and LLM providers charge per token. There is also a hard
upper limit on the number of tokens that can be sent to the model.

To address this issue, the event classification task is broken down
into 3 steps [13]. First, we identify the OCSF category for an input
4https://www.crowdstrike.com/en-us/

Shttps://www.figma.com/
Shttps://asana.com/

Anon.
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Figure 1: Audit Log Normalization Architecture

event. There are 6 OCSF categories that organize event classes and
each of them is aligned with a specific domain or area of focus. Sec-
ond, we identify the event class within the selected category and
lastly, we identify the event activity within the selected event class
that best describes the input event. The list of the event categories
and the event classes within each category is given in Table 2. The
event class chosen in the second step gives the OCSF JSON schema
for normalizing the input event. This hierarchical classification
approach breaks down the otherwise complex vanilla classification
task of classifying an input event directly into 312 output classes to
a simpler task having fewer (maximum 18) output classes at any
step. This reduces the risk of hallucination and incorrect classifi-
cation. It also allows us to pass additional information like output
class descriptions in the LLM prompt to achieve better classifica-
tion accuracy, without increasing the total number of input tokens
required to get the event classification output.

Along with the event classification output, we also instruct the
LLM to output a verbose reasoning describing how it chose a specific
output class for each step of the hierarchical classification process.
This verbose reasoning helps a human annotator in a production
environment to verify the LLM output and replace it with a human
corrected event class if needed.

3.2 Event Classification Evaluation

We evaluate the output for event classification in two ways. For the
10 ISVs for which we have ground truth, we calculate the micro
F1 score (ranging from 0.0 to 1.0) for the event category, event
class and event activity. Table 3 contains F1 scores for event cat-
egory, event class and event activity, as well as the total number
of input tokens required to get all classification outputs and the
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Table 1: Event Classification Dataset

ISV Name No. of Events No. of OCSF Categories No. of OCSF Classes No. of OCSF Activities
Asana 157 2 6 37
Okta 875 4 11 52
Zoom 324 2 7 41
Cisco 540 3 7 42
Zendesk 31 2 5 16
Salesforce 63 3 7 16
Gitlab 301 3 7 37
Azure 872 3 10 48
1Password 132 2 7 36
Lastpass 114 2 6 37
Table 2: OCSF Event Categories and Classes
OCSF category No. of OCSF events List of OCSF Events
System Activity 7 File System Activity, Kernel Extension Activity, Kernel Activity, Memory Activity,
Module Activity, Scheduled Job Activity, Process Activity
Findings 5 Security Finding, Vulnerability Finding, Compliance Finding, Detection Finding,
Incident Finding
Identity & Access Management 6 Account Change, Authentication, Authorize Session, Entity Management,
User Access Management, Group Management
Network Activity 13 Network Activity, HTTP Activity, DNS Activity, DHCP Activity, RDP Activity,
SMB Activity, SSH Activity, FTP Activity, Email Activity, Network File Activity,
Email File Activity, Email URL Activity, NTP Activity
Discovery 5 Device Inventory Info, Device Config State, User Inventory Info,
Operating System Patch State, Device Config State Change
Application Activity 7 Web Resources Activity, Application Lifecycle, API Activity,

Web Resource Access Activity, Datastore Activity, File Hosting Activity,

Scan Activity

execution time in seconds for the same. It shows the improvement
in classification accuracy by using hierarchical classification over
vanilla classification. Hierarchical classification gives more than 3X
boost in classification accuracy for OCSF event category, class and
activity.

To determine if the verbose reasoning generated by the LLM
during event classification (which describes how it chose an out-
put event class), is helpful to a human annotator to verify human
assigned labels, we use the input events from Crowdstrike. 1186
input events were classified into 31 OCSF event classes by the LLM
and ground truth for the same was generated by human annota-
tors without looking at the LLM generated output to prevent bias.
The two outputs were then compared by manually examining the
verbose reasoning generated by the LLM along with the output
classes. Only 82 event classification outputs for Crowdstrike’s 1186
events were revised by human annotators after manual inspection,
indicating that the LLM was correct 93% of the time.

3.3 Template Generation

We generate VTL templates to convert input events from an ISV into
the OCSF format for the OCSF event class for that event. VTL 7 is a

Java-based template engine used for web application development.

VTL templates are text files that contain a mix of static content
(like HTML) and dynamic content placeholders (like variables or
expressions) that are processed by the VTL engine to generate
the final output. It is often used to map one data format to another
format because it provides a flexible and powerful way to transform
data structures and generate dynamic content.

We establish 3 types of workflows to generate VTL templates
for input events from an ISV: i) using a sample of raw ISV audit
logs, ii) using input schema for ISV input events, and iii) using
a combination of both i) and ii). We use Figma, Crowdstrike and
Asana as target ISVs for i), ii) and iii) respectively. We retrieve the
input schema from ISV documentation and use dummy accounts
in the ISVs to get raw audit logs. Audit logs have a specific field for
the input event name which can be used along with input event
description retrieved from ISV documentation, to generate event
classification output for a log. This event class is then used to get

7https://velocity.apache.org/engine/1.7/user-guide.html
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Anon.

Table 3: Event Classification Results

ISV Name Classification Type Event Category F1 Event Class F1  Event Activity F1 ~ No. of Input Tokens Execution Time (s)
Asana Vanilla 0.26 0.16 0.12 2799.05 0.75
Okta Vanilla 0.26 0.17 0.10 2819.50 0.68
Zoom Vanilla 0.30 0.10 0.06 2785.03 0.70
Cisco Vanilla 0.10 0.06 0.04 2794.08 0.76
Zendesk Vanilla 0.25 0.25 0.22 2788.1 0.72
Salesforce Vanilla 0.25 0.17 0.12 2816.52 0.95
Gitlab Vanilla 0.24 0.18 0.12 2800.20 0.73
Azure Vanilla 0.24 0.02 0.01 2798.54 0.76
1Password Vanilla 0.44 0.36 0.17 2791.84 0.74
Lastpass Vanilla 0.42 0.34 0.26 2787.625 0.75
Asana Hierarchical 0.87 0.71 0.40 2831.69 1.59
Okta Hierarchical 0.76 0.44 0.30 2857.63 1.47
Zoom Hierarchical 0.75 0.50 0.37 2768.59 1.41
Cisco Hierarchical 0.85 0.69 0.44 2820.15 1.59
Zendesk Hierarchical 0.96 0.96 0.74 2817.22 1.64
Salesforce Hierarchical 0.96 0.63 0.26 2890.25 1.90
Gitlab Hierarchical 0.87 0.69 0.50 2833.60 1.52
Azure Hierarchical 0.86 0.62 0.53 2841.51 1.57
1Password Hierarchical 0.75 0.62 0.39 2784.47 1.87
Lastpass Hierarchical 0.78 0.56 0.36 2783.96 1.54

the OCSF format corresponding to that class that the input event
needs to be converted into. We generate one VTL template for each
event class per ISV using either one of the 3 workflows described
above. In case of i), the chosen sample of audit logs has no more
than one log per input event that has been classified into that OCSF
event class.

3.4 Template Evaluation

We use an LLM evaluator prompt for evaluation of the generated
VTL templates. The LLM used for template evaluation is Claude
V3 Sonnet. The prompt instructs the LLM to output a confidence
score between 0 to 1 (where 0 is the lowest score indicating a poor
quality template and 1 is the highest score indicating a high quality
template). The prompt also contains instructions describing what
an ideal template should look like to help the LLM assign correct
confidence scores. In addition to this score, we also instruct the
LLM to output a qualitative assessment of the template, describing
the problems it encountered with the template (if any), to justify
the confidence score. This qualitative assessment helps in improv-
ing the LLM output as described in the following section, and also
helps human annotators to interpret the confidence score for exist-
ing templates and using the assessment to manually improve the
generated or human created templates if needed.

We also use human generated templates for certain ISVs like
Asana to manual evaluation of the LLM generated template.

3.5 Qualitative LLM Feedback

We use separate prompts - which take in the usual inputs for tem-
plate generation for the 3 different workflows mentioned in Section
3.3, along with the qualitative assessment generated by the LLM
during template evaluation mentioned in Section 3.4, as well as the

VTL template generated in Section 3.3 - and use the the assessment
to improve the template until either the confidence score generated
during template evaluation is greater than a preset threshold or the
maximum number of retries is reached. We use a preset threshold
of 0.9 and set the maximum number of retries to 3.

4 PROMPT ENGINEERING

We make several observations about the Claude V3 class of models
while editing the prompts for improving the quality of LLM out-
put based on comparison with ground truth data, manual human
assessment and LLM evaluation.

Claude V3 models seem to understand Extensible Markup Lan-
guage (XML) tags well and dividing the complex prompts into
various sections using XML tags improves the LLM output. We
arrange the sections in the prompt in the following order: i) input
data descriptions and input data, ii) output classes or format de-
scription, and iii) guidelines and constraints for output generation.
We use Pydantic’s ® format instructions for specifying the JSON
output format for the LLM for all generation tasks and add an addi-
tional instruction at the end of each prompt directing the LLM to
only generate the output in the specified JSON format without any
XML tags. We observe that adding detailed descriptions of input
and output classes for the event classification task improves the
classification accuracy, so we add descriptions from ISV and OCSF
documentations to the event classification prompt. We also observe
that using descriptions of input fields of the ISV’s input event for
the VTL template generation task enhances the quality of the LLM
generated VTL template.

For the event classification task, we instruct the LLM to first
identify the main resource type affected by the input event using

8https://docs.pydantic.dev/latest/
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the input event name and description, then identify the action
performed in the input event that alters the identified resource
type, and then identify the output class whose name or description
indicates or mentions the identified resource type and the action.
Such a step by step approach helps in mimicing the workflow of
a human annotator and also breaks down the complex task into
simpler subtasks for the LLM.

5 RESULTS

Examples of VTL templates generated for Figma, Asana and Crowd-
strike can be found in Listings 2, 4 and 6 respectively, along with
their LLM generated confidence scores and qualitative assessments
in Listings 3, 5 and 7 respectively. The output fields mapped to null
values by the LLM in the VTL templates have been removed for
readability purposes. The LLM does a good job of mapping fields
in the input event to those in the output OCSF format, even where
if-else conditions are involved. It also follows the instructions to
map fields only if they have the same type. It assigns null values to
fields marked as required in the output schema whose mappings it
can’t determine using the input schema and/or logs. It also includes
a list of input fields in the un-mapped section of the output for
which no corresponding output fields can be determined. However,
the templates suffer from certain problems like output fields being
mapped to a constant value inferred from the supplied context, con-
fusion between similar fields like source and destination endpoints,
and same input fields being mapped to different output fields.

#foreach($inputEvent in $input_events)

"raw_data":
"actor": {
"user": {
"email_addr":
"name":
"type":
"type_id":
else99#end,
"uid": "$inputEvent.actor.id"

$inputEvent,

"$inputEvent.
"$inputEvent.actor.
"$inputEvent.actor.
#if ($inputEvent.

actor.email"”,
name",
type",

actor.type == "user")1#

}

3,

"dst_endpoint": {
"type": #if($inputEvent.entity.editor_type == "figma
"Ybrowser#elseif ($inputEvent.entity.editor_type ==
figjam")desktop#else"unknown"#end,
},
"type_id": #if ($inputEvent.entity.editor_type ==
figma")6#elseif ($inputEvent.entity.editor_type ==
figjam") 2#else0t#end,

"

"

3,
"file": {
"hashes": [
{
"algorithm_id": 3,
"value": "$inputEvent.entity.key"
}
15
"name": "$inputEvent.entity.name",
"type": "$inputEvent.entity.editor_type",
"type_id": #if($inputEvent.entity.editor_type == "
figma")1#elseif ($inputEvent.entity.editor_type == "
figjam")2#else0#end,
"uid": "$inputEvent.entity.key"
3,

"src_endpoint": {

KIL, August 25, 2024, Barcelona, Spain

31 "type": #if($inputEvent.context.client_name)browser#
elseif ($inputEvent.context.ip_address)desktop#else"
unknown"#end,

32 "ip": "$inputEvent.context.ip_address",

33 "type_id": #if($inputEvent.context.client_name)8#
elseif ($inputEvent.context.ip_address)2#else0#end,

T

35 "type_uid": "$inputEvent.id",

36 "time": "$inputEvent.timestamp",

37 "timezone_offset": 0,

38 "cloud": {

39 "provider": "Figma",

w0 3,

41 "api": {

42 "operation": "$inputEvent.action.type",

43 "request": {

14 "data": "$inputEvent.action.details",

45 1,

6 "response": {

47 "message": "$inputEvent.action.details"

48 }

T

50 "message": "$inputEvent.action.type",

51 "severity": #if($inputEvent.action.type == "

fig_file_view")Informational#elseif ($inputEvent.
action.type == "fig_file_move" || $inputEvent.action
.type == "fig_file_rename" || $inputEvent.action.
type == "fig_file_create" || $inputEvent.action.type
== "fig file_save_as" || $inputEvent.action.type ==
"fig_file_export" || $inputEvent.action.type == "
fig_file_unset_password" || $inputEvent.action.type
== "fig_file_link_access_change" || $inputEvent.
action.type == "fig_file_duplicate")Low#else"Other"#
end,

52 "severity_id": #if ($inputEvent.action.type ==
fig_file_view")1#elseif ($inputEvent.action.type ==
fig_file_move" || $inputEvent.action.type == "
fig_file_rename" || $inputEvent.action.type ==
fig_file_create" || $inputEvent.action.type ==
fig_file_save_as" || $inputEvent.action.type
fig_file_export" || $inputEvent.action.type ==
fig_file_unset_password" || $inputEvent.action.type

"

== "fig_file_link_access_change" || $inputEvent.
action.type == "fig_file_duplicate")?2#else99#end,

53 "status": #if ($inputEvent.action.type == "fig_file_view
" || $inputEvent.action.type == "fig_file_move" ||
$inputEvent.action.type == "fig_file_rename" ||
$inputEvent.action.type == "fig_file_create" ||
$inputEvent.action.type == "fig_file_save_as" ||
$inputEvent.action.type == "fig_file_export" ||
$inputEvent.action.type == "fig_file_unset_password"

"

|| $inputEvent.action.type ==
fig_file_link_access_change" || $inputEvent.action.
type == "fig_file_duplicate")Success#else"Other"#end
54 "status_id": #if ($inputEvent.action.type == "
fig_file_view" || $inputEvent.action.type ==
fig_file_move" || $inputEvent.action.type ==
fig_file_rename" || $inputEvent.action.type ==
fig_file_create" || $inputEvent.action.type ==
fig_file_save_as" || $inputEvent.action.type ==
fig_file_export" || $inputEvent.action.type ==
fig_file_unset_password" || $inputEvent.action.type

"

"

== "fig_file_link_access_change" || $inputEvent.
action.type == "fig_file_duplicate")1#else99#end,

55 "unmapped": {

56 "entity_link_access": "$inputEvent.entity.link_access

"
)
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"entity_proto_link_access":
proto_link_access",
"context_team_id": "$inputEvent.context.team_id",
"context_org_id": "$inputEvent.context.org_id",
"context_is_figma_support_team_action": "$inputEvent.
context.is_figma_support_team_action",
"context_client_name": "$inputEvent.context.
client_name"

"$inputEvent.entity.

3
#end

Listing 1: LLM generated VTL template for OCSF event class
"File Hosting Activity" for Figma using raw audit logs

Score : 0.8
Assessment The VTL template maps most of the required
fields correctly, but there are a few issues:

1. The dst_endpoint.location fields are not mapped, which
should ideally be populated based on the IP address
if possible.

2. The src_endpoint.type mapping could be improved. It
currently maps to 'browser' if context.client_name
is present, 'desktop' if context.ip_address is
present, and 'unknown' otherwise. A more accurate
mapping would be to use the context.client_name
value directly if available, or map to 'desktop' if
context.ip_address is present and context.
client_name is not available.

3. The severity and severity_id mappings could be more
granular based on the specific action.type values.

4. The status and status_id mappings are reasonable, but
could potentially be more specific based on the
action.type values.

5. The unmapped object contains fields that are not
mapped to the output schema, which is acceptable,
but it would be better to map them if possible.

Overall, the template covers most of the required fields
and makes reasonable assumptions for mapping, but
there is room for improvement in terms of accuracy
and completeness.

Listing 2: LLM generated confidence score and qualitative

assessment for Figma’s VTL template for OCSF event class

"File Hosting Activity"

#foreach($inputEvent in $input_events)

{
"raw_data": $inputEvent,
"actor": {
"user": {
"email_addr": "$inputEvent.actor.email",
"name": "$inputEvent.actor.name",
"type": "$inputEvent.actor.actor_type",
"type_id": #if ($inputEvent.actor.actor_type == "
user")1#else99#end,
"uid": "$inputEvent.actor.gid"
3
3,
"auth_protocol": #if($inputEvent.details.method.
contains ("PASSWORD"))
"PASSWORD"
#else
"Other"
#end,

"auth_protocol_id": #if($inputEvent.details.method.
contains ("PASSWORD"))

Anon

7

#else
99

#end,

"dst_endpoint": {
"type": "$inputEvent.context.context_type",
"hostname": "$inputEvent.context.user_agent",
"ip": "$inputEvent.context.client_ip_address",
"type_id": #if($inputEvent.context.context_type == "
web")8#else99#end,

Do

"http_request": {
"http_headers": [1],
"uid": "$inputEvent.gid",
"user_agent": "$inputEvent.context.user_agent",

}

"is_mfa": false,

"is_remote": true,

"logon_type_id": #if ($inputEvent.event_type == "
user_login_succeeded")
10

#elseif ($inputEvent.event_type == "user_login_failed")
99

#elseif ($inputEvent.event_type == "user_logged_out")
13

#else
0

#end,

"service": {
"name": "Asana",

},

"user": {
"email_addr": "$inputEvent.resource.email",
"name": "$inputEvent.resource.name",
"type": "$inputEvent.resource.resource_type",
"type_id": #if($inputEvent.resource.resource_type ==
"user")1#else99#end,
"uid": "$inputEvent.resource.gid"

3,

"device": {
"type": "$inputEvent.context.context_type",
"type_id": #if($inputEvent.context.context_type == "
web")8#else99#end,
"hostname": "$inputEvent.context.user_agent",
"ip": "$inputEvent.context.client_ip_address"”

3,

"type_uid": #if($inputEvent.event_type == "
user_login_succeeded")
100

#elseif ($inputEvent.event_type == "user_login_failed")
101

#elseif ($inputEvent.event_type == "user_logged_out")
102

#else
[}

#end,

"time": "$inputEvent.created_at",

"message": #if($inputEvent.event_type == "

user_login_succeeded")
"User $inputEvent.resource.name logged in
successfully"

#elseif ($inputEvent.event_type == "user_login_failed")
"User $inputEvent.actor.name failed to log in"

#elseif ($inputEvent.event_type == "user_logged_out")
"User $inputEvent.actor.name logged out"

#else
null

#end,
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"severity": #if($inputEvent.event_type ==
user_login_succeeded")
"Informational"

#elseif ($inputEvent.event_type ==
"Medium"

#elseif ($inputEvent.event_type ==
"Informational"

#else
"Unknown"

#end,

"severity_id": #if($inputEvent.event_type ==
user_login_succeeded")
1

#elseif ($inputEvent.event_type ==
3

#elseif ($inputEvent.event_type ==
1

#else
0

#end,

"status": #if ($inputEvent.event_type ==
user_login_succeeded")
"Success"

#elseif ($inputEvent.event_type ==
"Failure"

#elseif ($inputEvent.event_type ==
"Success"

#else
"Unknown"

#end,

"status_id": #if($inputEvent.event_type ==
user_login_succeeded")
1

#elseif ($inputEvent.event_type ==
2

#elseif ($inputEvent.event_type ==
1

#else
[

#end

"user_login_failed")

"user_logged_out")

"

"user_login_failed")

"user_logged_out")

"user_login_failed")

"user_logged_out")

"user_login_failed")

"user_logged_out")

3
#end

Listing 3: LLM generated VTL template for OCSF event class
"Authentication" for Asana using raw audit logs and input
event schema"

Score 0.8

Assessment The VTL template maps most of the input
fields to the corresponding output fields correctly.
However, there are a few issues:

1. The “auth_protocol™ and “auth_protocol_id~ fields are

not mapped accurately. The template assumes that if

the “details.method™ contains 'PASSWORD', it maps to

the PAP authentication protocol, which may not

always be correct.

2. The “dst_endpoint.type_id"~ field is not mapped

correctly for all context types. It only handles the
‘'web' context type and maps everything else to 99 (

Other).

3. The “logon_type_id”~ field is not mapped accurately for

all event types. It only handles '

user_login_succeeded', 'user_login_failed',

user_logged_out' event types.

and
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4. The “type_uid”~ field is not calculated correctly
according to the formula “class_uid * 100 +
activity_id~. The template assumes hardcoded values
based on the event type.

5. The ~timezone_offset™ field is not mapped.

6. The “cloud”™ object fields are not mapped.

7. The “api” object fields are not mapped.

8. The “severity”™ and “severity_id~ fields are not mapped

accurately for all event types. The template only
handles a few specific event types.

9. The “status™ and “status_id”~ fields are not mapped
accurately for all event types. The template only
handles a few specific event types.

10. Some fields like “dst_endpoint.port™, “dst_endpoint.
svc_name~, “dst_endpoint.container” fields,
dst_endpoint.location™ fields, “http_request.
http_headers ™, “http_request.url” fields,
location™ fields, “device.region”, “device.container
* fields, and others are not mapped or set to null,
which may not be accurate.

“device.

Overall, the template covers a good portion of the
mapping, but there is room for improvement in
handling edge cases, accurate mapping of certain
fields, and ensuring all required fields are
populated correctly.

Listing 4: LLM generated confidence score and qualitative

assessment for Asana’s VTL template for OCSF event class
"Authentication"”

#foreach($inputEvent
{

in $inputEvents)

"device": {
"location": {

"city": $inputEvent.K8SResourceNamespace,

"continent": "unknown",

"coordinates": [#if($inputEvent.
K8SAdmissionReviewTimestamp) $inputEvent.
K8SAdmissionReviewTimestamp, $inputEvent.
K8SAdmissionReviewTimestamp#else[0.0, 0.0]1#end],

"country": "unknown"

1,

"name": $inputEvent.K8SResourceName,
"region": $inputEvent.K8SClusterName,
"type": #if($inputEvent.K8SResourceKind ==

"container"

#elseif ($inputEvent.K8SResourceKind == "Deployment")

"server"

#elseif ($inputEvent.K8SResourceKind == "ReplicaSet")

"server"

#elseif ($inputEvent.K8SResourceKind ==

"server"

#elseif ($inputEvent.K8SResourceKind == "StatefulSet")

"server"

#else

"unknown"

#end,

"type_id":
6

#elseif ($inputEvent.K8SResourceKind == "Deployment")
1

#elseif ($inputEvent.K8SResourceKind ==

"Pod")

"DaemonSet")

#if ($inputEvent.K8SResourceKind == "Pod")

"ReplicaSet")
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1

#telseif ($inputEvent.K8SResourceKind == "DaemonSet")
1

#elseif ($inputEvent.K8SResourceKind == "StatefulSet")
1

#else
0

#end,

"uid": $inputEvent.K8SResourceUid,

"container": {

"name": $inputEvent.K8SResourceName,
"image": {
"name": $inputEvent.K8SImage,
"uid": $inputEvent.K8SImageld
3,
"uid": $inputEvent.K8SContainerId,

"size": #if($inputEvent.Size)$inputEvent.Size#else"
unknown"#end,
"hash": {
"algorithm_id": 3,
"value": $inputEvent.SHA256HashData
}
1,
"namespace_pid": #if ($inputEvent.K8SPodUid)
$inputEvent.K8SPodUid#else null#end,
"hostname": $inputEvent.K8SResourceName,
"ip": $inputEvent.K8SPodIP4
3,
"actor": {
"user": {
"name": $inputEvent.K8SServiceAccountName,
"type": "Service Account",
"type_id": 3,
"uid": $inputEvent.K8SServiceAccountName
3
Yo
"app": {
"name": $inputEvent.K8SImage,
"uid": $inputEvent.K8SImageld,
"vendor_name": #if($inputEvent.AppVendor)$inputEvent.
AppVendor#else"unknown"#end,

#if ($inputEvent.AppVersion)$inputEvent.
AppVersion#else"unknown"#end

3,

"type_uid": $inputEvent.K8SAdmissionReviewAction,

"time": $inputEvent.K8SAdmissionReviewTimestamp,

"timezone_offset": 0,

"cloud": {

"provider": #if($inputEvent.CloudPlatform == 1)
"AWS"
#elseif ($inputEvent.CloudPlatform == 2)
"Azure"
#elseif ($inputEvent.CloudPlatform == 3)
"GCP"
#else
"Kubernetes"
#end,
"region":

1,

"api": {
"operation":
"request": {

"data": $inputEvent.K8SResourceObject,
"uid": $inputEvent.K8SAdmissionReviewUid
},
"response": {
"code": #if($inputEvent.K8SAdmissionReviewAction
"ox1")
200

"version":

$inputEvent.K8SClusterName

$inputEvent .K8SAdmissionReviewOperation,

94

100

101

102

103

104

105

106

108

109

110

Anon

#elseif ($inputEvent.K8SAdmissionReviewAction == "0@
x2")
400
#else
null
#end,
"error": #if($inputEvent.K8SAdmissionReviewAction
== "@x2")
"Failure"
#else
null
#end,
"error_message": $inputEvent.K8SAdmissionReviewMsg,
"message": $inputEvent.K8SAdmissionReviewMsg
}
},
"message": $inputEvent.K8SAdmissionReviewMsg,
"severity": #if($inputEvent.K8SDetectionSeverity == "
Low")
"Low"
#elseif ($inputEvent.K8SDetectionSeverity == "Medium")
"Medium"
#elseif ($inputEvent.K8SDetectionSeverity == "High")
"High"
#elseif ($inputEvent.K8SDetectionSeverity == "Critical")
"Critical"
#elseif ($inputEvent.K8SDetectionSeverity ==
Informational")

"Informational"

#else
"Other"

#end,

"severity_id": #if($inputEvent.K8SDetectionSeverity ==
"Low")
2

#elseif ($inputEvent.K8SDetectionSeverity == "Medium")
3

#elseif ($inputEvent.K8SDetectionSeverity == "High")
4

#elseif ($inputEvent.K8SDetectionSeverity == "Critical")
5

#elseif ($inputEvent.K8SDetectionSeverity ==
Informational")
1

#else
99

#end,

"status": #if ($inputEvent.K8SAdmissionReviewAction ==
"ox1")
"Success"

#elseif ($inputEvent.K8SAdmissionReviewAction == "@x2")
"Failure"

#elseif ($inputEvent.
K8SAdmissionReviewImageAssessmentPolicyID)
"Success"

#else
"Other"

#end,

"status_id":
== "ox1")
1

#elseif ($inputEvent.K8SAdmissionReviewAction == "@x2")
2

#elseif ($inputEvent.
K8SAdmissionReviewImageAssessmentPolicyID)
1

#else
99

#end,

#if ($inputEvent.K8SAdmissionReviewAction
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"raw_data": $inputEvent

3
#end

Listing 5: LLM generated VIL template for OCSF event class
"Application Lifecycle" for Crowdstrike using input event
schema

Score: 0.9
Assessment: The VTL template is well-designed and
accurately maps most of the relevant input fields to
the corresponding output fields defined in the JSON
schema. It handles various cases and conditions to
map the input data correctly. However, there are a
few minor issues:

1. The 'continent' field is hardcoded to 'unknown'
instead of being derived from the input data.

2. The 'country' field is hardcoded to 'unknown' instead
of being derived from the input data.

3. The 'vendor_name' and 'version' fields are hardcoded
to 'unknown' if the corresponding input fields are
missing, instead of being left null.

4. The 'instance_uid', 'interface_name', and
interface_uid' fields are hardcoded to null instead
of being derived from the input data (if available).

5. The 'email_addr' field is hardcoded to null instead of

being derived from the input data (if available).

6. The 'timezone_offset' field is hardcoded to @ instead
of being derived from the input data (if available).

Overall, the template effectively maps most of the input
fields to the output schema, and the issues
mentioned above are relatively minor. With some
additional improvements, the template can be made
even more accurate and comprehensive.

Listing 6: LLM generated confidence score and qualitative

assessment for Crowdstrike’s VTL template for OCSF event

class "Application Lifecycle"

6 FUTURE WORK

The event classification performance can be improved by adding
more domain specific information to the prompt, like description
of the ISV, resource types supported by the ISV, resource types

affected by the input event according to ISV documentation, etc.

Qualitative assessment generated as a part of the event classification
evaluation prompt can also be used as feedback to re-generate the
event classification output if the generated confidence score is
lesser than a preset threshold, in the same way as described for the
template generation task in Section 3.3. We observe that the Claude
Sonnet model used for evaluation generally gives high confidence
scores for most templates, ranging from 0.7 to 0.9, even when it
identifies a substantial number of problems with the generated VIL
template. Hence, prompt engineering can be done to generate a
more interpretive confidence score that aligns with the generated
qualitative assessment. Other state of the art LLMs can also be
explored for both the event classification and template generation
tasks.

7 CONCLUSION

In this paper, we investigate the ability of Claude V3 class of LLMs to
normalize audit logs from ISVs by first classifying the input events
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in these logs to OCSF event classes, and then using the schema
for these event classes to generate VTL templates to convert the
input events into the format specified by the schema. We perform
both these generation tasks using zero shot learning. We achieve
a 2X boost in classification accuracy as compared to human anno-
tators and a speed up of 4X in generation of VTL templates. This
automated method for generating templates for normalizing audit
logs helps reduce human effort and human error and paves the
way for better data analysis and reporting across different kinds of
applications.
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