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Abstract
Understanding the role of immune cells is at the core of cancer research. In this
paper, we boost the potential of the You Only Look Once (YOLO) architecture
applied to automatic detection of lymphocytes in gigapixel histopathology whole-
slide images (WSI) stained with immunohistochemistry by (1) tailoring the YOLO
architecture to lymphocyte detection in WSI; (2) guiding training data sampling
by exploiting prior knowledge on hard negative samples; (3) pairing the proposed
sampling strategy with the focal loss technique. The combination of the proposed
improvements increases the F1-score of YOLO by 3% with a speed-up of 4.3X.

1 Introduction
Lymphocytes are immune cells that accumulate at sites of disease in the event of an immune response.
In the presence of tumors, it has been shown that the amount of lymphocytic infiltration correlates
with clinical outcome [1]. Therefore, quantifying tumor-infiltrating lymphocytes is of paramount
interest in cancer research. Immunohistochemistry (IHC) is a staining technique used to highlight
cells of interest, such as lymphocytes, in histopathology tissue samples. As a result of IHC, a blue
nucleus and a brown rim will become visible in the presence of lymphocytes, but also artifacts with
dark regions and brown dots which may look like lymphocytes appear on tissue. Currently, tissue
examination and cell density assessment is performed by pathologists, often inspecting glass slides
under the microscope. Recently, advances in digital pathology have made high-resolution digitalized
whole-slide images (WSI’s) largely available, de facto allowing the rise of computational pathology,
with the aim of providing algorithms for accurate, objective and reproducible analysis of WSI’s.

Following the trend of recent fast development in object detection deep learning technology in
computer vision, You Only Look Once (YOLO) [2] comes as an improvement upon Fast and Faster
R-CNN [5], resulting in a model that is simpler and faster. Furthermore, additional improvements
were presented in [3] (YOLOv2) and only very recently in [4] (YOLOv3). In this work, we leverage
YOLOv2 for detection of lymphocytes in histopathology WSI’s of breast, colon and prostate cancer,
stained with IHC. Although research has been done in applying object detection approaches to
medical imaging, to the best of our knowledge, the YOLO architecture has never been used to tackle
detection of lymphocytes in histopathology images. Since the problem of lymphocyte detection
differs from object detection in natural images both in the appearance of the target objects and in
the size of input images, we implement and investigate the effectiveness of novel features in the
context of YOLO for lymphocyte detection. First, we tailor the classification model to the problem of
lymphocyte detection by simplifying the network architecture. Second, we take advantage of prior
knowledge on hard negative samples, typically consisting of staining artifacts and brown background
areas, to guide the sampling procedure during training, by applying a simple yet effective analysis in
the image color space. Finally, we investigate the effectiveness of combining the proposed sampling
strategy with the recently presented focal loss [6]. Inspired by YOLO, we named the proposed
architecture “You Only Look on Lymphocytes Once” (YOLLO).
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Figure 1: Left: Vector V of RGB values defining a range of brown. Right (top row): a mini-batch of 6 patches
sampled without using the sampling strategy. Right (bottom row): a mini-batch of 6 patches including hard
negative samples which were enforced through the sampling strategy.

2 Method
YOLLO. The input to the proposed method is an RGB patch of 256×256 pixels extracted at a
resolution of ≈0.5 µm/px. As in YOLO, we divide the input image into a S×S grid. The output
of the network is a tensor of size S×S×(B× 5 + C), where B is the number of bounding boxes
predicted per grid cell, C is the number of classes, and 5 is the number of parameters predicted for
each bounding box (i.e., center coordinates (x, y), (width, height) and confidence score). The average
size of lymphocytes is 6-8µm, and although they often tend to form clusters, they never overlap or
occlude each other. Based on this prior knowledge, we made several assumptions that allowed to
simplify the network. First, we postulated that lymphocytes are covered by bounding boxes of one
single size of approximately 12x12 px, de facto getting rid of anchor boxes with specific ratios for
different objects. Consequently, we enforced each grid cell to only predict one lymphocyte (B=1)
by using a grid size of 32x32, i.e., a grid cell size of 8x8 px. As done in YOLO, non maximum
suppression at inference time is used to address overlapping predictions. Finally, because we only
want to detect lymphocytes, we set C=1. We further simplify the network by trimming the original
23 layers of YOLO, pre-trained on the Pascal VOC dataset, down to a 8-layer convolutional network,
named YOLLO8L, which we trained from scratch. Furthermore, we investigate the effect of further
reducing the network size to a 4-layer model, which we name YOLLO4L. Common to all networks
are 3 max-pooling layers, ReLU activations and batch normalization.

Sampling strategy. Sources of difficult negative samples can be identified in WSI areas con-
taining brown areas of artifacts and dots without lymphocytes (see Figure 1). Based on
this prior knowledge, a brown score Bi was computed for each training image patch Ii as
Bi =

∑3
c=1

∑V
v=1 |T (c, v)− δ < Ii(c) < T (c, v) + δ|, where c indicates the three channels in RGB

images, T is a look-up table containing V RGB combinations of brown colors, ranging from light
brown to black (see Figure 1, left), and | · | indicates cardinality of non-zero pixel values. As a result,
Bi is proportional to the amount of brown in a patch. During training, we sample patches based on
the distribution of Bi, allowing YOLLO to focus on difficult negative samples, de facto implementing
hard negative mining “on-the-fly”, without the need for a two-stage detector.

Focal loss. While the proposed sampling strategy offers YOLLO the possibility of focusing on
difficult negative examples, their contribution to learning can be supervised by the focal loss [6],
which balances sample weights by detecting easy and difficult training examples. For this purpose,
we implemented the focal loss as described in [6].

3 Experimental results

Table 1: Performance on the validation data. The symbol +
indicates training done with guided sampling, ++ indicates
training with both guided sampling and focal loss.

Network Precision Recall F1-score Speed-up
YOLLO4L 0.819 0.653 0.727 6.8X
YOLLO8L 0.799 0.672 0.730 4.3X

YOLLO8L+ 0.811 0.693 0.747 4.3X
YOLLO8L++ 0.589 0.751 0.660 4.3X

YOLO 0.717 0.730 0.723 1.0X

Materials. The data consisted of 58 slides
and contained breast, colon and prostate tis-
sue. Slides were stained for CD3 and CD8
and were collected from 6 different medical
centers in the Netherlands. The 3D-Histech
Pannoramic Flash II scanner was used to gen-
erate WSI’s. 109,841 annotations were made
within ROI’s containing both sparse lympho-
cytes and densely distributed lymphocytes as
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Figure 2: Results on samples from the validation set. From left to right: black artifacts, brown artifacts, sparse
lymphocytes and a cluster of lymphocytes. Detections from YOLLO8L+ are shown as green rectangles. True
annotations are visualized as yellow dots.

well as artifacts. Fig 1 shows examples of these sites. The 58 slides were divided into a training set
of 37 WSI’s, a validation set of 6 WSI’s and a test set of 15 WSI’s. The training and validation sets
contained WSIs from 2 medical centers. The WSI’s in the test set came from 6 medical centers.

Experiments. We compared the performance of the original YOLO, YOLLO8L and YOLLO4L

using the data sets described in section Materials in case of (1) YOLO pre-trained on Pascal VOC
and fine tuned using data at hand, (2) YOLLO8L and YOLLO4L trained from scratch, (3) presence of
the proposed sampling strategy, (4) combination of (3) with focal loss. For training purposes, we
extracted patches at a resolution of 0.49 µm/px (20X magnification). In all networks, grid cells that
contained objects were weighted 5 times higher than grid cells only containing background. Network
parameters were updated with the Adam optimizer and its default parameters, and a learning rate of
5× 10−5. During training, we monitored model performance using the F1 score on the validation
set. We also made a comparison in terms of computation time performance at inference time. For
this purpose, we ran the network 100 times, and averaging the time it takes to process a mini-batch
of 32 samples. In Table 1 we report the performance on the validation set for all the considered
approaches. It can be noted that the original YOLO and YOLLO4L achieve comparable results, but
with a speed-up factor of 6.8X in favor of YOLLO4L. The slightly deeper architecture YOLLO8L

achieves an F1 score of 0.73, which is further improved when the proposed sampling strategy is used
for training, achieving an F1 score of 0.747. Visual results for this approach are shown in Figure
2. Training with focal loss did not result in better performance. Although this was not expected
initially, the same effect was reported in the very recent YOLOv3 paper [4]. Consequently, the best
performing model on the validation set (YOLLO8L+), was used for processing the independent test
set, where it scored an precision of 0.83, a recall of 0.6 and an F1 score of 0.7.

4 Discussion and conclusion
We presented YOLLO, a YOLOv2-based model tailored to detection of lymphocytes in histopathology
WSI stained with IHC. The proposed modifications, namely simplified architecture and guided
sampling strategy, allowed to gain a speed up of 4.3 with an increase of 3% in detection performance.
However, application of focal loss did not increase performance. Improvements due to the guided
sampling were mostly observed in ROIs with artifacts and clusters of lymphocytes. Future work
could focus on a more in depth analysis of misclassified lymphocytes. With YOLLO8L, a gigapixel
whole-slide image of 100,000×100,000 pixels can be fully processed in 16 minutes using a GeForce
GTX 1080, which can become < 5 minutes when image background is removed and only patches
containing tissue are processed.
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