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Abstract

In this paper we demonstrate that through the use of adversarial training and addi-
tional unsupervised costs it is possible to train a multi-class anatomical segmen-
tation algorithm without any ground-truth labels for the data set to be segmented.
Specifically, using labels from a different data set of the same anatomy (although
potentially in a different modality) we train a model to synthesise realistic multi-
channel label masks from input cardiac images in both CT and MRI, through
adversarial learning. However, as is to be expected, generating realistic mask im-
ages is not, on its own, sufficient for the segmentation task: the model can use
the input image as a source of noise and synthesise highly realistic segmenta-
tion masks that do no necessarily correspond spatially to the input. To overcome
this, we introduce additional unsupervised costs, and demonstrate that these pro-
vide sufficient further guidance to produce good segmentation results. We test
our proposed method on both CT and MR data from the multi-modal whole heart
segmentation challenge (MM-WHS) [1], and show the effect of our unsupervised
costs on improving the segmentation results, in comparison to a variant without
them.

1 Introduction

Deep learning methods are increasingly being applied in the medical domain, and have demonstrated
successes in diverse medical image processing tasks across various anatomies [7]. Here we are in-
terested in the segmentation of cardiac images, which offer particular challenges with the underlying
anatomy varying in shape, as typical of an active muscle. Specifically, we focus on the segmentation
of the Left Ventricle (LV), Right Ventricle (RV) and Myocardium (MYO) regions of cardiac MR
and CT images. Both MR and CT modalities have important clinical applications making automatic
segmentation a valuable tool [23]. Deep learning approaches have previously been applied to the
cardiac segmentation task, but typically these perform supervised segmentation, and thus require
extensive annotated images, which is not always possible because of the difficulty in obtaining the
data and the required expertise by the annotators.

In this paper, we present a method for cardiac segmentation which does not require a training set
of paired images and ground-truth segmentation labels. Instead, we make use of example labels
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Figure 1: An example of the problem that can arise when training an unsupervised segmentation
algorithm using only an adversarial loss, such that the only goal is to produce realistic masks. The
predicted masks are realistic, but do not correspond to the underlying anatomy.

coming from any previously labelled cardiac data set, i.e. not necessarily from images of the same
modality or the same patients as the images of interest.

In order to achieve segmentation, we train a Generative Adversarial Network (GAN) [4] model to
synthesise realistic masks from input images. However, as we will demonstrate, minimising only
an adversarial cost is not a sufficiently restrictive goal. While the network can produce realistic
masks from input images, these masks do not necessarily have a pixel-to-pixel correspondence with
the underlying substructures in the input image (see Figure 1). However, this is to be expected,
as the task is under-restricted: there is no requirement for the mask produced to be the mask of
the input image. We believe the generator is able to essentially treat the input image as a source
of noise, and can then behave like a traditional GAN, and synthesise a realistic output image. To
overcome this problem we propose a model with a number of additional unsupervised costs that
aims to promote the discovery of regions (defined by the masks) of high similarity. In particular,
we encourage intensity similarity in the segmented regions, encourage the segmented regions to be
large whilst staying realistic, and introduce an extremely simple reconstruction network to allow
a reconstruction cost to be included, without creating the potential for further alignment problems
to develop. The joint optimisation of all costs results in masks that are not only realistic but also
correspond (spatially) to the input image.

The contributions of the paper are as follows. We demonstrate the possibility for multi-class cardiac
segmentation without labels on the data set of interest through adversarial training. We show that
adversarial training alone is not sufficient for the unsupervised segmentation task, and we propose a
neural network model with an encoder-decoder architecture and a number of unsupervised costs that
improve the segmentation performance when used in conjunction with adversarial training. Finally,
we perform an ablation study on the proposed costs, showing that the best results are achieved
through their combination.

We demonstrate our approach on segmentation of three cardiac regions on both an MR and a CT
data set from MM-WHS. We evaluate the accuracy of our results by comparing with an upper bound
obtained by training a U-Net [16] with full supervision, and also by comparing with a standard GAN
model that does not use our proposed costs.

The paper now proceeds as follows: we first provide an overview of our task in Section 2. We then
summarise, in Section 3, related literature in the field of segmentation with or without labels. Section
4 describes in detail our approaches to unsupervised segmentation. In Section 5 we experimentally
evaluate our approaches and finally we conclude in Section 6.

2 Problem Overview

The problem of segmentation can be seen as a function learning problem. Specifically, an m-class
2D image segmentation task can be seen as learning a function f : Rh,w,c → {0, 1}h,w,m, where
I ∈ Rh,w,c is an input h × w pixel c channel input image, and f(I) is an m-channel binary image
of the same spatial size. Thus, learning a segmentation algorithm is learning a suitable function f .
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Here we are interested in segmenting CT or MR images into three regions (MYO, LV and RV), so
we have c = 1 and m = 3.

We will represent f as a neural network. Thus, the aim is to specify how f should be trained to
produce the right mapping. In the supervised setting (results from which we provide in Section 5.4),
f can be trained by minimising the error on known image-mask pairs. In this paper we explore how
f can be trained without such paired data.

3 Previous Work

Here we review relevant previous work on cardiac image segmentation. We also survey related work
on unsupervised segmentation, and segmentation with unlabelled data.

3.1 Cardiac Image Segmentation

There has been much previous work on automatic segmentation of anatomy from cardiac images,
with state of the art results currently achieved with fully convolutional deep neural networks, such as
the 2D fully supervised approach in [18]. Supervised segmentation results can be further improved
by considering adjacent volume slices [21] or by introducing shape priors [26, 12]. Multi-class
segmentation has also been investigated in the 3D setting, again this can produce improved perfor-
mance, see for example [13]. Note however, that all of these approaches require extensive labelled
training data.

3.2 Unsupervised Segmentation

Unsupervised segmentation attempts to overcome the labelled data requirement, and is a more chal-
lenging problem. To the best of our knowledge this work is the first deep learning approach to
unsupervised cardiac segmentation. That said, there are a small number of previous approaches
to unsupervised cardiac segmentation using non deep learning methods. In [3] the myocardium is
initially detected by fitting a Gaussian Mixture Model to represent the different tissue characteris-
tics, and then a Markov Random Field (MRF) is optimised based on the likelihood distribution of
the intensity and gradient of pixels in the detected region. In [10] a sparse representation is firstly
obtained with dictionary learning of a coarse segmentation, and secondly this representation is seg-
mented with a Support Vector Machine pixel classifier. This is extended in [11], in which dictionary
learning is combined with a new pre-processing step and Markov Random Fields to further improve
segmentation accuracy. However, these approaches only address single-class segmentation and do
not tackle the multi-class problem.

Recently, an encoder-decoder architecture for unsupervised semantic segmentation has been pro-
posed in [19] in which the encoder encodes an input image into a multi-class segmentation map
that is then decoded to produce the original input. The segmentation map is constrained by a soft
cut loss and post-processed by conditional random fields and hierarchical merging of areas. This
is most related to our work, since its architecture is also an autoencoder. However, this method is
not end-to-end, requires post-processing of the intermediate representation to produce semantically
meaningful masks, and also does not use adversarial training.

3.3 Other Related Works

More generally, extracting a multi-class semantic mask from an image can be seen as a form of lossy
compression, or as a representation learning task. As in the variational lossy autoencoder [2], our aim
here can be seen as capturing structural information, and discarding other irrelevant information. The
aim is to discard unnecessary information from the input whilst retaining the salient features, which
here correspond to the underlying anatomical structure. In this sense the unsupervised segmentation
task can be seen as a particular example of the more general unsupervised representation learning
problems [15].

3



4 Proposed Approach

We define a segmentation network consisting of a shallow U-Net like architecture with only 2 down-
sample / up-sample stages, LeakyReLU activations and Instance Normalisation [17], with a softmax
activation on the final layer. This segmentation network will act as the generator in our adversarial
training setup, taking either 2D CT or MR cardiac images as input and producing a three-channel
segmentation mask as output. Additionally, in parallel we train a discriminator network to be used
for the adversarial training of the generator. To improve the performance of the adversarial training
we use the Least-Squares GAN (LSGAN) loss-function [8], and employ Spectral Normalisation [9]
in the discriminator.

We now describe firstly the initial simple adversarial approach, and then our improved adversarial
approach in detail.

4.1 Adversarial Approach

Generative adversarial learning [4] is now often used when paired data is unavailable in order to
learn image transformations, for example with the use of a cycle consistency property [5, 20, 22], or
directly to synthesise realistic data from noise [15]. In this case segmentation can be perceived as a
special case of image generation, thus an adversarial loss can be used to train a deep neural network
to produce realistic results. As seen in Figure 1 and discussed in Section 5.4, this naive approach
does not guarantee that each binary region of the segmentation map is spatially aligned with its
corresponding region in the real image, concluding that just an adversarial cost is not sufficient for
our task. In particular, although this adversarial approach often produces good synthetic masks,
these masks, despite being realistic, are only very roughly related to the underlying image. The
results of this approach are given in Section 5.4.

Here, given an input image X we are interested in segmenting MYO, LV and RV, represented
as a 3-channel mask Zm = {ZMYO, ZLV , ZRV }. Given real three-channel masks M =
{MMYO,MLV ,MRV }, our LSGAN based adversarial cost is defined by a discriminator D:

c1(X,Zm, f) = D(M)2 + (D(Zm)− 1)2.

Further training details are given in Section 5.2.

4.2 Proposed Adversarial Approach

Although training a generator to produce realistic synthetic masks is possible in the above adversarial
setup, the resulting images are often not well correlated with the input. In order to overcome this we
propose a number of additions to the simple adversarial training.

Firstly, as well as predicting the segmentation mask Zm we also produce a multi-channel residual
Zb, which can store the non-mask information, that is f(X) = {Zm, Zb}. In our work we used a Zb

with 4 channels, but found the exact value didn’t have a large influence on the results. Zm and Zb are
concatenated together to produce a 7-channel latent representation Z. Based on this Z we then try
to reconstruct the original input as follows: a reconstruction network h inspired by the conditional
normalisation in FiLM [14] predicts two 7 element vectors γ and β. The final reconstruction is then
simply

∑7
i=1 Ziγi + βi, where Zi is the i-th channel of Z and γi, βi are the i-th values in γ and β

respectively. A schematic is given in Figure 2.

Thus, our model functions like an auto-encoder, with the segmentor acting as an encoder, encoding
an imageX to a mask prediction Zm and residual information Zb. The reconstructor network h then
takes Zm, Zb and X , and following a very simple structure tries to reconstruct X from a weighted
sum of the channels of Zm and Zb.

In additional to the LSGAN based adversarial cost defined above, which we still apply to Zm, we
also introduce three additional costs. Firstly an autoencoder like reconstruction loss:

c2(X, f, h) = |X − h(f(X), X)|.
Secondly, the produced segmentation masks are encouraged to be large, in order to avoid segmenting
sub-regions that still appear realistic:

c3(Zi) = −
∑

Zm.
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Figure 2: Schematic for our proposed approach. A segmentation network f receives an input image
X and produces a multi-channel feature map. The first three channels, Zm, contain segmentations
of LV, RV and MYO, as encouraged by a mask discriminator D. The residual channels Zb of the
feature map along with Zm are used as the input to a reconstruction network h that synthesises the
input image. The network h is also conditioned on the input image to provide additional information
of what intensities to use for each reconstructed region.

Where the sum is over all channels and pixels. Finally, to encourage delineated regions to have
similar intensity values, we also minimise the within-region-variance of intensity values:

c4(X,Z) =
∑
i

var(X � Zm,i)

where Zm,i denotes the i-th channel of the mask Zm, and � is the element-wise product. The
overall cost function is a weighted sum of the individual costs C = λ1c1 + λ2c2 + λ3c3 + λ4c4,
where λ1 = λ2 = λ3 = 1 and λ4 = 100. Due to a big difference in the values produced by c4 in
comparison with the other costs, a λ4 = 100 has been set.

5 Experiments

Here we evaluate our approach by generating binary masks of the MYO, LV and RV regions of
the heart and compare with an upper bound, as obtained by fully supervised segmentation, and the
naive unsupervised segmentation approach described in Section 4.1. In Section 5.1 we describe the
data used for our evaluation, Section 5.2 describes the network architecture and training details and
finally Section 5.4 describes the experimental results.

5.1 Data and Pre-processing

For all experiments we use the 2017 MM-WHS challenge dataset [23, 24, 25], which consists of
20 CT/CTA and 20 MRI volumes. The CT/CTA data were acquired at Shanghai Shuguang Hospi-
tal, China, using routine cardiac CT angiography. The slices were acquired in the axial view. The
inplane resolution is about 0.78 × 0.78mm and the average slice thickness is 1.60mm. The MRI
data were acquired at St. Thomas hospital and Royal Brompton Hospital, London, UK, using 3D
balanced steady state free precession (b-SSFP) sequences, with about 2mm acquisition resolution
at each direction and reconstructed (resampled) into about 1mm. The data contains static 3D im-
ages, acquired at different time points relative to the systole and diastole. All the data has manual
segmentations of the seven whole heart substructures. We removed images that did not contain at
least 400 pixels of myocardium, restricting our attention to central slices, as basal and apical slices
can be challenging even for supervised approaches and our adversarial training was not stable when
all slices were used.

For the unsupervised case we also down-sample the images four times before segmenting, and then
up-sample the resulting segmentation mask to compute the Dice. This was done in order to facilitate
training of the adversarial networks, which have proven unstable when dealing with larger size
images.

Our data is pre-processed as follows: first the field of view is made approximately consistent across
the volumes with affine transformations, then images are cropped to a region of interest around the
heart. Finally the intensities are normalised to be in the range [−1, 1]. This results in 2580 images
of size 176× 192 pixels for each modality.
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Table 1: Dice score of MYO, LV and RV regions for supervised (top two rows) and unsupervised
(bottom four rows) segmentation approaches.

MYO LV RV Average

Supervised (upper bound) MR 0.76 0.90 0.87 0.84
CT 0.85 0.90 0.85 0.87

Simple GAN MR 0.42 0.66 0.55 0.54
CT 0.31 0.39 0.29 0.33

Proposed GAN MR 0.56 0.78 0.65 0.66
CT 0.44 0.66 0.42 0.51

5.2 Network Architectures and Training

For the supervised baseline we train a standard U-Net model [16], with the final layer changed to
a three filter 2D convolution using a sigmoid activation, so that the network outputs the required
3-channel masks. The U-Net consists of 4 convolution and down-sampling blocks, followed by 4
convolution and up-sampling blocks. We train the model using Adam [6] with standard parameters,
stopping when no improvement is seen on a validation set. The adversarial networks in the unsu-
pervised settings are trained for a fixed number of 100 epochs. The unsupervised MR segmentation
model is trained with segmentation masks from the CT dataset and vice versa, in order to avoid the
possibility of the network memorising masks and learning to match memorised masks to images.

For all experiments we use 3-fold cross validation, splitting the data into a 12 volume training set,
a 4 volume validation set and a 4 volume test set for each split. The division into each split is
random (although fixed across experiments) with the only restriction being that in each split the test
set contains different volumes. All models are implemented in Python using Keras.

5.3 Experimental Method

We train across 3 splits, repeating each split 7 times. We then take the splits in which the generator
successfully learnt to generate all three anatomical regions (which we assessed automatically by only
including models that achieved over 10% Dice on the test set for each of the three regions, which we
used as a proxy for selecting only models which produced realistic masks). When training the MR
model we use the segmentation masks from the CT data as ‘real’ examples for the discriminator,
and vice versa for training on CT images.

5.4 Segmentation Results

Here we evaluate our two approaches for unsupervised segmentation and compare with the super-
vised (upper bound). The Dice scores of the three experiments are summarised in Table 1. Su-
pervised training of a U-Net results in a mean Dice of 0.84 and 0.87 for MR and CT respectively.
Training a GAN with our proposed costs of Section 4.2 outperforms the results from a standard
GAN in all three regions, producing a mean Dice of 0.66 and 0.51 for MR and CT respectively.
Example results from our model using all costs are shown in Figure 3.

5.5 Costs evaluation

In this experiment we perform an ablation study to evaluate the effect of the four cost functions
described in Section 4.2. Table 2 presents Dice scores in four situations: when using just the adver-
sarial cost c1, when adding the reconstruction cost c2, when combining c1 with maximising the size
of the mask c3 and minimising the within region pixel variance c4 and finally when using all costs.
We observe the results improve when c3 and c4 are included, while the best performance is obtained
when all four costs are jointly optimised.
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Figure 3: Unsupervised segmentation examples. The first two rows show input images and ground
truth segmentation masks (of LV, RV and MYO) respectively. The next two rows show segmenta-
tion results from our proposed and a simple adversarial method. Finally, the last two rows show
examples of the residual channels and input reconstruction images respectively. As can be seen the
unsupervised segmentation is able to capture the anatomical structure, although it has problems with
over and under segmentation (see discussion in Section 6). For example, the right ventricle is sys-
tematically under segmented in all examples shown, when present. (Note the colours in the residual
images differ between the two experiments as the channels in the residual are used differently (for
example, are differently ordered) as there is no explicit cost controlling the residual structure.)

Table 2: Ablation study evaluating the effect of different costs. The Dice score of our proposed
approach with different cost combinations is reported on the same test volumes.

c1 c1, c2 c1, c3, c4 all costs

MR 0.54 0.58 0.64 0.66
CT 0.33 0.45 0.43 0.51

6 Discussion and Conclusion

We have shown that the multi-class segmentation task can be approached even when no labels on
the data set of interest are available, demonstrating that an adversarially trained model with suitable
costs can produce reasonable results on both MR and CT cardiac data. Further, we demonstrated that
an unrestricted adversarial approach led to realistic but erroneous synthetic mask images, essentially
treating the input as a source of noise. Although not surprising in itself, this behaviour is important
to be aware of when applying machine learning techniques to medical image tasks in limited data
settings. We discussed potential approaches to overcoming this ‘treating input as noise’ problem,
in particular demonstrating that additional costs combined with an auto-encoder style approach can
suitably restrict the learnt function. Further understanding the relationship between implicit and
explicit restrictions and learnt functions is an open and interesting area of machine learning research,
with particular relevance in medical imaging, as this is a domain in which accuracy is particularly
important, as is properly understanding the learnt behaviour of our models.

We have shown that unsupervised segmentation can sometimes over or under segment a region, since
partial or expanded masks can look like realistic masks. However, the model is still achieving broad
localisation, and producing promising approximate masks for the underlying multi-class anatomy. A
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potential extension could be to expore computing the within-class variance cost c4 in a representation
space, rather than directly in the pixel space. This could be done either with features learnt by the
segmentor itself, or with an external feature extractor.

Although here we used the masks from a different data set of the same anatomy, it would also
be possible to instead use a cardiac shape model to generate realistic mask shapes. This would
overcome the need for expert labelling, and could also potentially allow a very large number of
example masks to be generated.
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