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ABSTRACT

Vector semantics, especially sentence vectors, have recently been used success-
fully in many areas of natural language processing. However, relatively little work
has explored the internal structure and properties of spaces of sentence vectors. In
this paper, we will explore the properties of sentence vectors by studying a par-
ticular real-world application: Automatic Summarization. In particular, we show
that cosine similarity between sentence vectors and document vectors is strongly
correlated with sentence importance and that vector semantics can identify and
correct gaps between the sentences chosen so far and the document. In addition,
we identify specific dimensions which are linked to effective summaries. To our
knowledge, this is the first time specific dimensions of sentence embeddings have
been connected to sentence properties. We also compare the features of differ-
ent methods of sentence embeddings. Many of these insights have applications in
uses of sentence embeddings far beyond summarization.

1 INTRODUCTION

Vector semantics have been growing in popularity for many other natural language processing appli-
cations. Vector semantics attempt to represent words as vectors in a high-dimensional space, where
vectors which are close to each other have similar meanings. Various models of vector semantics
have been proposed, such as LSA (Landauer & Dumais| [1997), word2vec (Mikolov et al.l [2013),
and GLOVE(Pennington et al.,[2014), and these models have proved to be successful in other natural
language processing applications.

While these models work well for individual words, producing equivalent vectors for sentences or
documents has proven to be more difficult.

In recent years, a number of techniques for sentence embeddings have emerged. One promising
method is paragraph vectors (Also known as Doc2Vec), described by Le and Mikolov|Le & Mikolov
(2014). The model behind paragraph vectors resembles that behind word2vec, except that a classifier
uses an additional ‘paragraph vector’ to predict words in a Skip-Gram model.

Another model, skip-thoughts, attempts to extend the word2vec model in a different way (Kiros
et al} [2015). The center of the skip-thought model is an encoder-decoder neural network. The
result, skip-thought vectors, achieve good performance on a wide variety of natural language tasks.

Simpler approaches based on linear combinations of the word vectors have managed to achieve
state-of-the-art results for non-domain-specific tasks (Wieting et al.l 2015)). Arora et al!Arora et al.
(2016) offer one particularly promising such approach, which was found to achieve equal or greater
performance in some tasks than more complicated supervised learning methods.

2 PROBLEM DESCRIPTION

The large volume of news articles published every day motivates effective forms of automatic sum-
marization. The most basic and most well-studied form of automatic summarization is sentence
extraction, in which entire unmodified sentences are selected from the original document. These
selected sentences are concatenated to form a short summary, which ideally contains the most im-
portant information from the original document while avoiding redundancy.



Under review as a conference paper at ICLR 2018

Any practical summarization system would likely include other steps after sentence selection, such
as sentence reordering or text-simplification. However, effective algorithms for these tasks already
exist, and we are primarily concerned with sentence selection in this paper.

We are primarily concerned with multi-document summarization algorithms.

The nature of summarization requires some specific properties from sentence vectors, making it a
practical real world example for which current sentence embedding methods can be easily used. In
particular, news summarization may not require some of the nuances in meaning to be represented, as
we are primarily concerned with the topic, not the meaning, of a sentence. In particular, news articles
will rarely contain sentences expressing contradictory views on the same subject. For instance, our
algorithm will rarely need to differentiate between the sentence embeddings for sentences such as
“John loves Mary” and “Mary loves John”, which have divergent meanings but the same words.
This is in sharp contrast to typical testing cases for sentence embeddings, such as the detection of
paraphrased sentences. Then, summarization gives us an opportunity to compare the effectiveness
of different sentence embeddings in practice.

3 RELATED WORK

3.1 EXTRACTIVE SUMMARIZATION

State-of-the-art extractive summarization techniques have been achieved with a wide variety of
methods. Here, we provide a short overview of some recent successful techniques techniques.

Cao et al. (Cao et al.| (2015) used a recursive neural network, which operates on a parsing tree of a
sentence, to rank sentences for summarization.

Cheng and Lapata |[Cheng & Lapata (2016)) successfully used a neural-network-based sentence ex-
tractor, which considered the document encodings and the previously selected sentences, as well as
the current sentence in making its decisions.

Parveen et al. |Parveen & Strube| (2015)) used a graph-based approach, modeling a document as “a
bipartite graph consisting of sentence and entity nodes”.

Ren et al]Ren et al.| achieved state-of-the-art results through a regression-based approach. A variety
of engineered features are used as inputs into a regression model. The single highest rated sentence
is selected, and the process is repeated.

3.2 PREVIOUS EMBEDDING-BASED APPROACHES

To our knowledge, no one has explored the use of modern sentence embedding methods, such as
Paragraph Vectors or Skip-Thought vectors, in summarization. However, some work has been done
on summarization using word2vec representations.

Gong and Liu |Gong & Liu| (2001) presented a version of text summarization based on vector se-
mantics. However, instead of using the embeddings of a word as determined by a larger corpus,
they attempted to calculate the embedding of a word based off of analysis only on the document in
question. In addition they used LSA instead of newer techniques such as word2vec.

Kageback et al. |[Kagebick et al.[(2014) used cosine similarity between the sum of word2vec em-
beddings, as well as a recursive auto-encoder, to modify another standard summarization algorithm
(sub-modular optimization)

Ren et al. |Ren et al| used “Average Word Embedding” as one of many independent variables in a
regression model, but the degree to which word embeddings effected the final model was not clear.

Cheng and Lapata Cheng & Lapatal(2016)) used word embeddings as the input to a neural network as
part of summarization, but they did not directly compare embeddings. They used a single-layer con-
volutional neural network to encode sentences, and a LSTM neural network to encode documents.

Nayeem and Chali Nayeem & Chali| (2017)) recently achieved state-of-the-art results using a modi-
fied version of LexRank, using a combination of cosine similarity of weighted averages of vectors
and named entity overlap.
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4 METHODS

To explore potential sentence embeddings, we implement the four sentence embeddings above as
vector functions, which convert sentences or documents to vectors.

4.1 VECTOR FUNCTIONS

e SIF Average: The most basic sentence embedding is simply the weighted average of word
vectors from Arora et al/Arora et al.|(2016), without the common component removal. We
use the Brown corpus (Francis & Kuceral [1979)) for word frequency information.

e Arora: This method is simply the method described in Arora et al. It is equivalent to the
one above, except with common component removal added. We use the Brown corpus both
to compute the common component vector, and for word frequency information.

e Paragraph Vectors: The paragraph vector approach described above. We used the 300-
dimensional DBOW model pretrained by Lau et al{Lau & Baldwin|(2016) on the wikipedia
corpus.

o Skip-Thought Vectors The skip-thought vector approach described above. We used the
4800-dimensional combined-skip model (Kiros et al., 2015} |Al-Rfou et al.|[2016).

All sentence embeddings are normalized to produce unit vectors

4.2 POTENTIAL SELECTOR FUNCTIONS

To explore the design space, we consider combinations of vector functions and selector functions,
functions which, given vector representations for sentences, extracts a summary. We present a large
variety of example selector functions in order to allow us to explore interaction effects between
selector functions and vector functions.

e Near: The most basic selector function, Near, selects the sentences whose sentence vectors
have the highest cosine similarity with the document vector

e Near Nonredundant: An attempt at balancing redundancy with salience, Near Nonredun-
dant down-weights the cosine similarity scores by their average cosine similarity the sen-
tences selected so far. Because this redundancy measure is strongly (quadratically) corre-
lated with cosine similarity to the document, we fit a regression for redundancy for each
vector function, and use the residual on this regression for the final algorithm.

e LexRank: Our next selector is based off of the classical LexRank algorithm (Erkan &
Radev, 2004). We use a modified version of this algorithm, where the weights of edges
are determined by the cosine similarity between sentence embeddings.

o Cluster: We use an Agglomerative Clustering algorithm (using cosine similarity as its dis-
tance metric) to find clusters in the set of sentence embeddings. We then find the sentence
closest to the average of each cluster and add it to the summary. To ensure we find sum-
maries which meet the word-length requirement, we increase the number of clusters we
search for until we have selected sentences totaling 100 words.

e Greedy: The greedy selector, at each step, selects the sentence such that the cosine simi-
larity of the new summary (including previously selected sentences) is maximized. This is
subtly different than the Near selector for average-based vector functions, but significantly
different for Paragraph Vectors.

e Brute Force: Another attempt at optimizing the cosine similarity between the summary
and the document, this selector creates a pool of the 20 sentences with the highest cosine
similarity. From this pool, every combination of sentences (with an appropriate word count)
is tried, and the combination with the highest cosine similarity is selected as the summary.

e Max Similarity: A proof-of-concept selector which computes results for both the Greedy
and Brute Force selectors and then selects the result with the highest cosine similarity to
the document vector.
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o Near-then-Redundancy: Starting with the pool from the Brute Force algorithm, this al-
gorithm optimizes via brute force to minimize redundancy (defined as the average cosine
similarity between pairs of sentences). Note that the size of the sentence pool, which is es-
sentially a computational shortcut in the Brute Force selector, is now a performance-critical
hyper-parameter.

e PCA: This selector performs Principal Component Analysis (PCA) on the set of sentence
vectors in a document. Then, the algorithm selects the one sentence closest to the first
component, one sentence closest to the second component, and so on, until the length
capacity is met.

e Random: This selector simply selects sentences at random, until the word limit is reached.
This provides a lower-bound on the performance of an effective algorithm, and is used for
baseline comparisons

5 PERFORMANCE OF SELECTOR FUNCTIONS

SIF Average Arora Paragraph Vectors Skipthought
LexRank 32.6 (6.8) 32.6 (6.8) 32.6(6.8) 32.6 (6.8)
Near Nonredundant 33.6 (6.1) 34.5(6.3) 32.6(5.5) 32.1 (4.9)
Brute Force 32.0 (5.7) 32.2(6.3) 33.0(6.6) 31.4 (4.5)
Near-then-Redundancy | 33.2 (6.2) 342(6.9) 31.5(5.4) 33.1(5.3)
PCA 32.9 (5.6) 33.5(5.6) 32.0(5.5) NA
Max Similarity 32.0(5.7) 32.2(6.3) 33.0(6.6) NA
Greedy 35.1 (7.0) 33.1(6.0) NA NA
Near 32.5(5.4) 32.2(5.5) 33.1(6.1) NA
Cluster NA NA NA 32.1 (4.6)

Table 1: ROUGE-1 Results on the DUC 2004 dataset. ROUGE-2 results in parentheses. All combi-
nations which do not perform significantly better than random chance (p < .05, using a paired t-test)
are replaced with "NA’ for clarity. SIF Average with either Max Similarity or Brute Force were in-
cluded, despite having p=.051. In addition, one combination (Max Similarity with Skipthought Vec-
tors) are not computed, but are not expected to perform better than chance. Selector Functions are
roughly organized according to the vector functions with which they are effective. For Skipthought
vectors, docvec-avg is used (Section@

5.1 EXPERIMENTAL EVALUATION

Because evaluation of summarization is fundamentally a subjective task, human evaluations are
ideal. However, human evaluations are often expensive and time-consuming to obtain. Luckily,
some metrics of automatically evaluating summaries, by comparison to a human-written summary,
have been developed. Traditionally, various forms of the ROUGE metric, which compare shared
n-grams, have been used.(Lin, |2004). ROUGE has been shown to correlate strongly with human
judgments(Rankel et al., [2013)), and is our primary metric for evaluating summariesﬂ We report
ROUGE-1 and ROUGE-2 statistics, which correspond to unigrams and bigrams, respectively.

We split the document clusters in the DUC 2004 dataset into a testing set and a validation set of
approximately equal sizes. The pre-defined training set of the DUC 2001 dataset was used as a
training set for some of the graphs and data analysis presented here.

5.2 RESULTS

We present results for Multi-Document Summarization on the DUC 2004 dataset (Table[I). A few
notes on the results:

o The best performing selector, Greedy, is both very simple and based on fundamental prin-
ciples of vector semantics.

'We trucate summaries to 100 words and use the following parameters, for direct comparison with Hong et
al. |[Hong et al|(2014): -n 4 -m -a -1 100 -x -¢ 95 -r 1000 -f A -p 0.5 -t 0.
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Figure 1: Distribution of cosine similarity scores between each sentence vector and their corre-
sponding document vector, for all four vector functions.

e Paragraph Vectors work much worse with the Clustering and Greedy algorithms, and work
much better with Near and SVMs.

e Many combinations of selector function and vector function do not work above the level of
random chance.

e In general, despite their sophistication, Paragraph Vectors and Skip-Thought vectors per-
form worse than much more basic approaches.

6 DISCUSSION

Despite the poor performance of our models compared to the baselines, analyses of the underlying
data provide many useful insights into the behavior of vector semantics in real-world tasks.

6.1 DISTRIBUTIONS OF COSINE SCORES

The cosine scores between all sentence vectors and the corresponding document vectors follow a
normal distribution for all vector functions (Fig. [T), but this effect is most pronounced for paragraph
vectors (r2 = .996). In addition, the sentence embeddings for paragraph vectors and skip-thought
vectors are far closer to the document embedding than would be expected from a random distribu-
tion, with mean cosine similarities of .65 and .84, respectively (Unsurprisingly, this also holds for
Average and Arora vectors).

6.2 CORRELATION OF COSINE SCORES WITH GOOD SUMMARIES

By identifying the sentences present in an optimal summarization, we show that optimal sentences
have higher cosine scores, and that this effect is increased after adjusting cosine scores for word
length (Fig. [2). However, there is a lot of overlap, implying that, although this method has some
power to discern good summaries from bad summaries, the power of this method alone is not high
enough to product good summaries.
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Figure 3: Correlation of ROUGE scores and Cosine Similarity scores per sentence. ROUGE scores
transformed with 7' = log(1 + ), to account for zero values. Some high-leverage points have been
excluded for Paragraph Vectors and Skipthought.

6.3 REGRESSION ON VECTOR DIMENSIONS

We calculated the isolated ROUGE score of each individual sentence in the training set, and the
sentence embeddings for these sentences on all four vector functions. To partially eliminate the
effects of the sentence’s context, we subtract the corresponding document vector from all sentence
vectors before regression.

Due to the large number of predictor variables, we use a Bonferroni correction, considering values
significant only if they have p-values of {, which, for « = .05, corresponds approximately to
p < .00001 for the skip-thought vectors, and p < .00016 for all other vectors.

Three dimensions are significant at this level for SIF Average vectors. No dimensions are significant
at this level for Arora vectors, though the three values significant for SIF Average achieve p values
of .0021, .0485 and .0006. 29 dimensions are significant for Paragraph Vectors. 5 dimensions are
significant, at the much higher threshold, for Skip-Thought Vectors. It appears that these specific
dimensions correspond to aspects of a sentence that make it somehow more suited for a summary.
Despite the theoretical implications of this result, the regression models do not have enough predic-
tive power to create good summaries by themselves.
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6.4 THE PERFORMANCE OF THE GREEDY ALGORITHM

The Greedy algorithm is the most successful algorithm among those we have explored. As its name
implies, the Greedy algorithm appears to be simply an attempt at maximizing the following objective
function:

feos(summary) = vector(summary) - vector(document) ()

Of course, any simple objective function can only be an approximation to the informally-defined
criteria for good summaries. Even so, Table[I|suggests that the performance of the greedy algorithm
is not based on the accuracy of the corresponding objective function. In particular, the two other
strategies which try to maximize the same objective functio (Brute force, and Maximum Similarity)
consistently and significantly create summaries with higher cosine similarity to the document, out-
performing the Greedy selector on its objective function, but both of these algorithms perform much
worse than the Greedy algorithm.

Deeper analysis into the decisions of the Greedy algorithm reveals some reasons for this discrepancy.
It appears that the good performance of the Greedy algorithm results not from the associated objec-
tive function, but by the way in which it maximizes this objective function. In particular, the Greedy
algorithm selects sentences with low cosine similarity scores in a vacuum, but which increase the
cosine similarity of the overall sentence.

To understand why this is true, it we consider the step-by-step behavior of the Greedy algorithm,
which can be understood as maximizing the following equation (derived in Appendix A):

_ i(d-3,)+d-5
Si41 = argmax = — =
sesr /12 +1+2i5,-5
Z;‘:O 5j
I1225=0 5

(2
where 5, =

Note that this equation consists of three parts: id - 5; (a constant wrt. 5), d - 3, which is simply the
salience of a sentence measured by cosine similarity, and the denominator, which is essentially a
measure of redundancy. Not only does this simple metric lead to a ‘natural’ penalty for redundancy,
it performs better than our handcrafted redundancy penalties.

The way this expression scales when picking the i*" sentence is particularity noteworthy: the be-
havior of this function changes as i increases. In particular, the function becomes more sensitive to
redundancy, and less sensitive to salience, as the algorithm selects more sentences. In other words,
the algorithm will first try to select important sentences, and then select sentences to fill in the gaps.
This result, and the success of the resulting algorithm, has implications for balancing salience and
redundancy in future summarization algorithms.

6.5 DOCUMENT VECTOR COMPUTATION

In general, there are two ways to compute a document vector. The most obvious is to pass the entire
text of the document into the vector function. This has two theoretical problems. The first is that
the ‘documents’ in our algorithms are really clusters of documents, and are therefore non-coherent.
The second is that Skip-thought vectors are not designed to handle text longer than a sentence.
However, an alternative document vector, docvec-avg, is defined as the mean of the (normalized)
sentence vectors. This corresponds to treating the document as a collection of sentences, instead of
a collection of words. We compare the two results here, and present full results in Appendix B.

As expected, Skipthought vectors, which are not designed for text larger than a sentence, per-
form significantly better with the docvec-avg strategy. More notable is the poor performance of
the docvec-avg strategy with Paragraph Vectors. The size of the performance gap here implies that
Paragraph Vectors can combine information from multiple sentences in a manner more sophisticated
than simple averaging.

More interesting is the performance for SIF Average and Arora vectors. For these vector functions,
which are based on taking the average of words, docvec-avg very closely resembles the simple
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strategy. And yet there is a small but significant performance gap. The difference between the
two document vectors is the weighting. Docvec-avg, which normalizes vectors before adding them
together, removes some weighting information present in the simple strategy. In particular, the
simple strategy assigns more weight to sentences with a lot of highly-weighted words. Presumably,
docvec-avg, by ignoring this weighting, leaves out useful information. This hypothesis is supported
by the greater performance gap for Arora vectors, which effectively downweights certain common
words and therefore could be expected to carry more information in word weightings. Similar, but
much smaller, gaps exist when computing the vectors for summaries at each step in the greedy
algorithm.

6.6 PROPERTIES OF DIFFERENT SENTENCE EMBEDDINGS

We present a broad comparison of the properties of different sentence embedding schemes.

6.6.1 SIF AVERAGE/ARORA VECTORS

Three selector functions perform better with both SIF Average and Arora vectors: Near Nonredun-
dant, Greedy, and PCA. These functions seem to be unified by their comparisons between the vectors
of sentence embeddings (implicitly, in the case of the greedy algorithm). These selector functions
correspond to the most basic test for sentence embeddings: Judging the similarity of two sentences.

The exact difference the common component removal makes is less clear. Arora vectors hold a slight
performance edge for all selectors except for Near and Greedy (the Greedy algorithm loses a full 2
points).

6.6.2 PARAGRAPH VECTORS

Two selector functions perform better with Paragraph Vectors: Near and Brute Force. Both of these
are very similar: They require comparing sentence vectors to the document vector. The poor per-
formance on algorithms such as Near Nonredundant suggests that Paragraph Vectors are especially
poor at comparing sentence vectors to each other. These results suggest that Paragraph Vectors are
especially good at computing document vectors, a hypothesis also implied by the results of Sec-
tion The other distinguishing property of Paragraph Vectors is their very high correlation when
regressing on the individual features.

6.6.3 SKIPTHOUGHT VECTORS

It is hard to disentangle the properties of Skipthought vectors from the high dimensionality of the
pretrained vectors we used. In general, Skipthought vectors performed poorly. They only performed
better than other vector functions with one selector, Clustering, although their performance with this
selector was significant.

7 CONCLUSIONS

We have identified differences in different forms of sentence vectors when applied to real-world
tasks. In particular, each sentence vector form seems to be more successful when used in a par-
ticular way. Roughly speaking, Arora’s vectors excel at judging the similarity of two sentences
while Paragraph Vectors excel at representing document vectors, and at representing features as di-
mensions of vectors. While we do not have enough data to pinpoint the strengths of Skipthought
vectors, they seem to work well in specific contexts that our work did not fully explore. These dif-
ferences are extremely significant, and will likely make or break real-world applications. Therefore,
special care should be taken when selecting the sentence vector method for a real-world task.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No.
1659788 and 1359275



Under review as a conference paper at ICLR 2018

REFERENCES

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau,
Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, et al.
Theano: A python framework for fast computation of mathematical expressions. arXiv preprint,
2016.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. ICLR, 2016.

Ziqgiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming Zhou. Ranking with recursive neural networks
and its application to multi-document summarization. In AAAI pp. 2153-2159, 2015.

Jianpeng Cheng and Mirella Lapata. Neural summarization by extracting sentences and words.
arXiv preprint arXiv:1603.07252, 2016.

Giines Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, 22:457-479, 2004.

W. Nelson Francis and Henry Kucera. The Brown Corpus: A Standard Corpus of Present-Day
Edited American English, 1979. Brown University Liguistics Department.

Yihong Gong and Xin Liu. Generic text summarization using relevance measure and latent semantic
analysis. In Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 19-25. ACM, 2001.

Kai Hong, John M Conroy, Benoit Favre, Alex Kulesza, Hui Lin, and Ani Nenkova. A repository of
state of the art and competitive baseline summaries for generic news summarization. pp. 1608—
1616, 2014.

Mikael Kagebick, Olof Mogren, Nina Tahmasebi, and Devdatt Dubhashi. Extractive summarization
using continuous vector space models. In Proceedings of the 2nd Workshop on Continuous Vector
Space Models and their Compositionality (CVSC)@ EACL, pp. 31-39, 2014.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Skip-thought vectors. pp. 3294-3302, 2015.

Thomas K Landauer and Susan T Dumais. A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological Review,
104(2):211, 1997.

Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical insights into
document embedding generation. arXiv preprint arXiv:1607.05368, 2016.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Pro-
ceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1188-1196,
2014.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out: Proceedings of the ACL-04 workshop, volume 8. Barcelona, Spain, 2004.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Mir Tafseer Nayeem and Yllias Chali. Extract with order for coherent multi-document summariza-
tion. arXiv preprint arXiv:1706.06542, 2017.

Daraksha Parveen and Michael Strube. Integrating importance, non-redundancy and coherence in
graph-based extractive summarization. In IJCAI pp. 1298-1304, 2015.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pp. 1532-1543, 2014.

Peter A Rankel, John M Conroy, Hoa Trang Dang, and Ani Nenkova. A decade of automatic content
evaluation of news summaries: Reassessing the state of the art. In ACL (2), pp. 131-136, 2013.



Under review as a conference paper at ICLR 2018

Pengjie Ren, Furu Wei, Zhumin Chen, Jun Ma, and Ming Zhou. A redundancy-aware sentence
regression framework for extractive summarization.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198, 2015.

10



Under review as a conference paper at ICLR 2018

A APPENDIX A

The first choice of the greedy algorithm is simple: it chooses the sentence with maximum cosine
similarity to the document vector: -
51 = argmaxs - d
s€8

(Recall that all vectors have unit-length, so cosine similarity is equivalent to the dot product).
To select the second vector, the greedy algorithm is maximizing the following equation:

S+ 81 =

S0 = argmax(————) - 3)
S
d-5+d-5 @
= argmax ————
§eS' V14515
(&)
where S’ is the set of remaining sentences|[]
In general, the behavior can be described by:
§i+1 = Stotal * CZ (6)
1 24 i ¢
=S+ —=S§ -
Si41 = argmax Hll,—ltl,p : (7
ses' lags+ sl
(d-5,)+d -5
= argmax ild-5y) +d-5 3)

sest \Ji?+1+2i5,-5
Zj':o 5
1250 5l

where 5, =

Note that the results reported above do not represent the Greedy algorithm averaging together the vectors,
though the difference is minimal for SIF Average and Arora vectors(see Section@] for more information)

11
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B APPENDIX B

SIF Average Arora  Paragraph Vectors Skipthought

Near Nonredundant -1.98 -1.72 -0.734 +3.81
Brute Force -0.323 -0.256  -1.24 +3.42
Near-then-Redundancy | +0.739 -0.584  -0.205 +3.46
Max Similarity -0.323 -0.256  -1.24 NA

Greedy +0.254 -0.813 -3.11 NA

Near -0.868 -0.0652 -5.53 +1.76
Total Average -417 -.614 -2.01 +2.74

Table 2: A comparison of document vector methods. Numbers represent the difference in ROUGE-1
scores between document vector methods. Positive numbers represent a gain when using docvec-
avg. Selectors which do not use the document vector have been omitted.
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