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ABSTRACT

In this paper, we present a method to learn a joint multimodal representation space
that allows for the recognition of unseen activities in videos. We compare the effect
of placing various constraints on the embedding space using paired text and video
data. Additionally, we propose a method to improve the joint embedding space
using an adversarial formulation with unpaired text and video data. In addition to
testing on publicly available datasets, we introduce a new, large-scale text/video
dataset. We experimentally confirm that learning such shared embedding space
benefits three difficult tasks (i) zero-shot activity classification, (ii) unsupervised
activity discovery, and (iii) unseen activity captioning.

1 INTRODUCTION

Videos contain multiple data sources, such as visual, audio and text/caption data. Each data modality
has distinct statistical properties capturing different aspects of the event. Current state-of-the-art
activity recognition models (Carreira & Zisserman, 2017; Tran et al., 2017) only take visual data
and class labels as input, which limits the information the model can learn from. For example, the
sentence ‘a group of men play basketball outdoors’ contains rich information, such as ‘outdoors’ and
‘group of men’ compared to just the activity class of ‘basketball.’ Without multimodal learning, these
models are unable to benefit from the additional information.

In this paper, we explore multimodal learning from video and language data, each having its own
representation. Video data is represented as a sequence of images (spatio-temporal pixel data) while
text is represented as a sequence of word embeddings (temporal data). Using a shared embedding
space allows for learning the highly non-linear relationships between these modalities. The goal of
learning such relationships is to capture similarities between concepts (e.g., basketball and volleyball
both being sports with a ball) and further generalize to concepts not seen during training. To enable
this generalization, we rely on pre-trained word embeddings as they capture relationships between all
words in the English language (Mikolov et al., 2013). By learning a joint representation space, we
can capture these relationships, allowing generalization to unseen video activities.

To evaluate our approach, we test on several tasks based on recognizing activities not seen during
training. First, we test on a zero-shot learning task, where we classify activity classes not seen during
training. Our second task is unsupervised activity discovery, where no class information is provided
during training, relying only on the relationship between text and videos to learn good embeddings.
Finally, we evaluate on captioning videos with activities/words not seen during training.

Many existing approaches to both zero-shot and embedding space learning require paired data
examples, which can be expensive to obtain. By taking advantage of adversarial learning (Goodfellow
et al., 2014), we are able augment our method with unpaired data (i.e., random sentences and random
videos without any labels or correspondence) to further improve our learned shared embedding space.

In this paper, we design a method capable of learning joint video/language embedding spaces using
both paired and unpaired data and experimentally confirm its benefit to three challenging tasks (i)
zero-shot activity recognition, (ii) unsupervised activity discovery, and (iii) unseen activity captioning.
We show that the use of unpaired, multimodal data allows learning a shared embedding space that
generalizes to unseen data better than existing approaches.
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2 RELATED WORKS

Multimodal learning Previous approaches to multimodal learning have used Restricted Boltzmann
Machines (Srivastava & Salakhutdinov, 2012) or log-bilinear models (Kiros et al., 2014) to learn
distributions over sentences and images. Ngiam et al. (2011) designed an autoencoder that learns
joint audio-video representations, however they are unable to train the model end-to-end, instead
relying on greedy, layer-by-layer training and further do not evaluate the effect of using unpaired
data. Similarly, Chandar et al. (2016) proposed a auto-encoder able to learn correlations between
different view of images. Frome et al. (2013) describe a model that maps images and words to
a shared embedding. However, these works either learn a joint embedding by concatenating the
different features or require a triplet consisting of positive and negative matches and do not evaluate
the effects of using unpaired data.

Text and vision Using both text and visual data has been studied for many tasks, such as image
captioning (Karpathy et al., 2014; Johnson et al., 2016; Karpathy & Fei-Fei, 2015) or video captioning
(Krishna et al., 2017; Zhou et al., 2018; Xu et al., 2018). Other works have explored the use of
textual grounding for image/video retrieval (Gupta & Mooney, 2010; Rohrbach et al., 2016; Miech
et al., 2017; Hendricks et al., 2017). There have been various models proposed to learn a fixed text
embedding space with mappings from video features into this embedding space (Guadarrama et al.,
2013; Otani et al., 2016; Song et al., 2016; Wang et al., 2016; Xian et al., 2016). However, these
works all learn only a single directional mapping (e.g., only mapping from visual to text), only learn
with paired text/image samples and require additional data in the form of positive/negative pairs.

Learning with unpaired data Recently, there have been many works taking advantage of varia-
tional autoencoders (VAEs) (Kingma & Welling, 2014) or generative adversarial networks (GANs)
(Goodfellow et al., 2014) to learn mappings between unpaired samples. CycleGan (Zhu et al., 2017)
uses a cycle-consistency loss (i.e., the ability to go from a sample in one domain to a second domain
then back to the source) to learn unpaired image translation (e.g., image to sketch). Other works
learn many-to-many mappings between images (Almahairi et al., 2018) or use two GANs to map
between domains (Yi et al., 2017). An autoencoder with shared weights for both domains has been
used to learn a latent space for image-to-image translation (Liu et al., 2017). However, these works
all focus on learning mappings between unpaired data of the same modalitiy (e.g. image to image),
where the data is from the same underlying distribution. Our work focuses on learning from different
modalities with very different distributions.

Zero-shot activity recognition Many previous works have studied zero-shot activity recognition.
Common approaches include using attributes (Liu et al., 2011; Palatucci et al., 2009; Romera-Paredes
& Torr, 2015) or word embeddings (Xu et al., 2015; 2017; Norouzi et al., 2013; Socher et al., 2013;
Kodirov et al., 2017) or learning a similarity metric (Zhang & Saligrama, 2015; Chopra et al., 2005).
Some works have explored using adversarial losses on the latent space (Chen et al., 2018) or use
GANs to generate features for unseen classes (Xian et al., 2018) or used auto-encoders (Wang et al.,
2017).

Our work differs from these previous works in three key ways: (1) we show the benefit of additional
data augmentation using unpaired samples, (2) we experimentally compare the use of the embedding
space for both zero-shot recognition, unseen recognition, and unseen video captioning, and (3) we
learn a shared, multimodal embedding space with bi-directional mappings in an end-to-end fashion.

3 METHOD

To enable learning of a joint embedding space, we use a deep autoencoder architecture. Our model
consists of 4 neural networks:

Video Encoder EV : v 7→ zv Video Decoder GV : z 7→ v

Text Encoder ET : t 7→ zt Text Decoder GT : z 7→ t

where v is a sequence of video data and t is a sentence (sequence of words). z is the embedded data
in the shared space that we are learning. The encoders learn a compressed representation of the video
or text while the decoders are trained to reconstruct the input:

Lrecons(v, t) = ||GV (EV (v))− v||2 + ||GT (ET (t))− t||2 (1)
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Figure 1: Illustration of the encoder models used to learn a joint embedding space. Videos and
sentences are mapped into a low-dimensional space by applying CNNs and temporal attention. Then
several fully-connected layers map into the joint embedding space. The decoders follow this same
architecture with the weights transposed.

As both text and video data are sequences, they often have different lengths. A joint embedding space
requires that the features from both modalities have the same dimensions. Given a text representation
of length L and a video representation of length T , we need to obtain a fixed-size representation. To
learn a fixed-dimensional embedding, there are many choices for the encoder/decoder architecture,
such as temporal pooling (Ng et al., 2015), attention (Piergiovanni et al., 2017) or RNNs (Krishna
et al., 2017). We chose temporal attention filters (Piergiovanni et al., 2017) as they learn a mapping
from any length input to a N -dimensional vector and have been shown to outperform temporal
pooling and RNNs on activity recognition tasks.

The attention filters consists of N Gaussians, each learning 2 parameters: a center ĝ and width σ.
The filters are determined by:

gn = 0.5 · T · (g̃n + 1)

µi
n = gn + (i− 0.5N + 0.5)

F [n, t] =
1

Z
exp(− (t− µn)

2

2σ2
n

)

n ∈ {0, 1, . . . , N − 1}, t ∈ {0, 1, . . . , T − 1}

(2)

The weights are applied by matrix multiplication with the video or text sequence: v′ = Fv. Addi-
tionally, we can learn a transposed version of these filters to reconstruct the input: v = FT v′. To
reconstruct the input, the decoders learn their own parameters with the tensors transposed, resulting
in the matching output size. The architecture of the encoders is shown in Fig. 1.

3.1 LEARNING A JOINT EMBEDDING SPACE

To learn a joint representation space, we minimize the L2 distance between the embeddings of a pair
of text and video (shown in Fig. 2(a)):

Ljoint(v, t) = ||EV (v)− ET (t)||2 (3)

This forces the joint embeddings to be similar and when combined with the reconstruction loss,
ensures that the representations can still reconstruct the input.
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Figure 2: Visualization of several constrains on the shared embedding space. Circles are video data,
ovals are reconstructed video. Diamonds are text data, and pentagons are reconstructed text. (a) The
reconstruction (Eq. 1) and joint (Eq. 3) losses. (b) Mapping from text to video using the cross-domain
(Eq. 4) loss.
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Figure 3: Visualization of the adversarial formulation to learn with unpaired data. We create 3
discriminators, (1) Dz learns to discriminate examples of text/video in the latent space. (2) DV learns
to discriminate video generated from text compared to video. (3) DT learns to discriminate generated
text compared to text.

We can further constrain the networks and learned representation by forcing a cross-domain mapping
from text to video and from video to text (shown in Fig. 2(b)):

Lcross(v, t) = ||GT (EV (v))− t||2 + ||GV (ET (t))− v||2 (4)

Additionally, we can use a ‘cycle’ loss to map from video to text and back to video. Note that while
the previous losses all require paired examples, this loss does not.

Lcycle(v, t) = ||GT (EV (GV (ET (t))))− t||2 + ||GV (ET (GT (EV (v))))− v||2 (5)

To train the model to learn a joint embedding space, we minimize

L(v, t) = Lrecons(v, t) + α1Ljoint(v, t) + α2Lcross(v, t) + α3Lcycle(v, t) (6)

where αi are hyper-parameters weighting the various loss components.

3.2 SEMI-SUPERVISED LEARNING WITH UNPAIRED DATA

To learn using unpaired data (i.e., unrelated text and video), we use an adversarial formulation. We
treat the encoders and decoders as generator networks. We then learn an additional 3 discriminator
networks which constrain the generators and embedding space and force the encoders and decoders
to be consistent:

(1) Dz which learns to discriminate between latent text representations and latent video represen-
tations. Conceptually, this constrains the learned embeddings to appear to be from the same
distribution.

(2) DV which learns to discriminate between true video data and generated video data GV (ET (t)).

(3) DT which learns to discriminate between true text data and generated text data, GT (EV (v)).

Given these discriminators, we minimize the following losses:

LDz
(v, t) = − log(Dz(ET (t)))− log(1−Dz(EV (v)))

LDV
(v, t) = − log(DV (v)− log(1−DV (GV (ET (t))))

LDT
(v, t) = − log(DT (t))− log(1−DT (GT (EV (v))))

(7)
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Using the discriminators, we can train the generators (encoders and decoders) to minimize the
following loss based on unpaired data:

LGz
(v, t) = log(Dz(ET (t)))) + log(1−Dz(EV (v)))

LGV
(v, t) = log(1−DV (GV (ET (t))))

LGT
(v, t) = log(1−DT (GT (EV (v))))

(8)

Note that in this formulation, v and t are not paired.

These networks are trained in an adversarial setting. For example, for the text-to-video generator (i.e.,
v′ = GV (ET (t)) and video discriminator, DV , we optimize the following minimax equation:

min
ET ,GV

max
DV

= Ev∼pdata(v)[logDV (v)] + Et∼pdata(t)[log(1−DV (GV (ET (t))))] (9)

This equation is similarly applied for video-to-text. For learning the embedding space with the video
and text encoders, EV , ET and the discriminator Dz , we optimize the following minimax equation:

min
ET ,EV

max
Dz

= Ev∼pdata(v)[logDz(EV (v))] + Et∼pdata(t)[log(1−Dz(ET (t)))] (10)

As training GANs can be unstable, we developed an method to allow for more stable training of the
joint embedding space, shown in Algorithm 1. We initialize both the generator and discriminator
networks by training only on paired data. After several iterations of this, we train with both unpaired
and paired data. We found the initial training of the generators and discriminators was important for
stability, without it the loss often diverges and the learned embedding did not generalize to unseen
activities.

Algorithm 1 Semi-supervised alignment with adversarial learning

function TRAIN
for number of initialization iterations do

Sample (V , T ) from pair training data
Update encoders/decoders based on paired data (Eq. 6)
Update discriminators (Eq. 7)

end for
for number of training iterations do

Sample (Vp, Tp) from paired and (Vu, Tu) from unpaired training data
Update encoders/decoders based on paired data (Eq. 6)
Update encoders/decoders based on unpaired data (Eq. 8)
Update discriminators based on all samples (Eq. 7)

end for
end function

4 EXPERIMENTS

We compare our various approaches on different tasks (i) zero-shot activity recognition, (ii) unsuper-
vised activity discovery and (iii) unseen activity captioning. These tasks test various combinations
of our encoders and decoders and how well the shared representation generalizes to unseen data.
We experimentally confirm the benefits of our methods using multiple public datasets: AcitivtyNet
(Heilbron et al., 2015; Krishna et al., 2017), HMDB (Kuehne et al., 2011), UCF101 (Soomro et al.,
2012), and MLB-YouTube (Piergiovanni & Ryoo, 2018).

4.1 IMPLEMENTATION/TRAINING DETAILS

We implement our models in PyTorch. For the per-segment video CNN, we use I3D (Carreira &
Zisserman, 2017) to obtain a 1024× T video representation. We trained a version of I3D based on
Kinetics-600, but withheld all classes that appear in ActivityNet, HMDB51, or UCF101 so that the
classes are truly unseen. This resulted in a training set with 478 classes and 278k videos. Since
generating videos is an extremely challenging task, the video autoencoders start with and generate
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the I3D feature. We use GloVe word embeddings (Pennington et al., 2014) to obtain a language
representation. We set N = 4 for the temporal attention filters and apply 4 fully connected layers.
These layers are followed by L2 normalization so that the embedding space has unit length (Tygert
et al., 2015). We train for 200 epochs and use stochastic gradient descent with momentum to minimize
the loss function with a learning rate of 0.01. After every 50 epochs, we decay the learning rate by a
factor of 10. When training in the adversarial setting (e.g., Algorithm 1), we initialize the network
training for 50 epochs on paired data followed by 200 on the paired + unpaired data.

Baselines For baselines, we compare to a fixed-text embedding space, were only a mapping from
video data into the text embedding space is learned (e.g., (Otani et al., 2016)). We also compare to
learning a shared embedding space with the ‘recons’ (Eq. 1) and ‘cross’ (Eq. 4) terms (e.g., (Ngiam
et al., 2011)).

4.2 ZERO-SHOT ACTIVITY RECOGNITION

Zero-shot activity recognition is the problem of classifying a video that belongs to a class not seen
during training. Given training videos of seen classes together with paired text descriptions, our
approach learns a shared embedding that maps videos/texts from multiple seen classes. The objective
is to classify videos of unseen classes solely based on the learned embedding space and the text
samples.

We use the ActivityNet captions (Krishna et al., 2017) dataset to learn the joint embedding space, as
this dataset has both sentence descriptions for each video as well as activity classes. We randomly
choose a set of K activity classes and withhold all videos/sentences belonging to those classes during
training. For testing, we take a subset of sentences for the unseen classes and map the sentences into
the joint embedding space, zt = ET (t). We then map the videos into the space, zv = EV (v) and use
nearest neighbors to match each video (zv) to text (zt), using the class of the nearest sentence as the
classification for the video.

In Table 1, we compare the effect of the various loss components. For each method, we run 10
trials each with a different set of unseen activity classes and average the results. We find that
previous methods of learning a fixed language embedding (e.g., (Socher et al., 2013; Xu et al., 2015;
2017)) are significantly outperformed by learning a joint representation. Previous methods learning
embedding spaces without the ‘joint’ term (e.g. (Ngiam et al., 2011)), we found yield nearly random
performance on these tasks, suggesting that forcing the representations to match in the embedding
space is important. Further, adding the reconstruction, cross-domain, and cycle losses all improve
performance. We also compare to a standard triplet loss (e.g., (Guadarrama et al., 2013)) which
requires additional positive/negative samples. We find that the triplet loss outperforms the ‘joint’ loss,
but is surpassed by adding the ‘cycle’ and ‘cross’ terms, which use less data.

We also compare the various components of the adversarial loss. We compare to having just the
adversarial loss on the embedding space (Dz), like (Chen et al., 2018), and compare just the adversary
on the generated videos/sentences. We find that the use of all terms in important for performance.

To obtain unpaired data, we use the sentence descriptions from the Charades (Sigurdsson et al., 2016)
dataset, which contains many activities in a home setting. The unpaired video data is sampled from
HMDB and UCF101. While previous works such as (Ngiam et al., 2011) can support learning with
unpaired data, we find that the adversarial loss provides better results than just the ‘cycle’ and ‘recons’
terms, and further improves over training with just paired data.

In Table 2, we compare our approach to previous zero-shot learning methods on HMDB and UCF101.
The paired training data for these models is drawn from ActivityNet with any classes belonging to
HMDB or UCF101 withheld. The unpaired text data is sampled from Charades and the video data
comes from either HMDB (when testing on UCF101) or UCF101 (when testing on HMDB). As
HMDB and UCF101 have no text descriptions, we created a sentence description for each activity
class (included in Appendix B). We find that our joint embedding space outperforms the previous
approaches on these datasets and unpaired adversarial learning further improves our performance.
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Table 1: Comparison of various methods on ActivityNet for 5, 10, 20 or 50 unseen classes. These
results are averaged over 10 trials where each trial has a different set of unseen activity classes.

5 Unseen 10 Unseen 20 Unseen 50 Unseen

Paired Data

Fixed Text Representation 41.9 38.4 29.4 15.6
Triplet Loss 56.8 44.9 38.8 23.3
joint 54.3 41.7 36.1 21.2
recons + cross 21.1 12.6 7.6 2.9
joint + recons 70.1 54.4 42.6 27.5
joint + recons + cycle 70.4 54.3 42.1 26.8
joint + recons + cross 72.6 55.4 43.2 27.8
joint + recons + cross + cycle 76.4 56.9 45.5 28.8

With Adversarial Losses (joint + recons + cross + cycle + Adv.)

+ Dz 78.4 57.3 45.9 29.1
+ Dv +Dt 77.2 57.2 45.6 28.9
+ Dz +Dv +Dt 79.7 58.3 46.5 29.7

Paired + Unpaired Data

recons + cycle 22.8 13.6 8.4 4.2
joint + recons + cycle 72.6 58.4 44.7 29.3
joint + recons + cross + cycle 73.4 59.1 45.3 29.2
All terms 82.5 60.4 46.2 30.1

Table 2: Results on HMDB51 and UCF101 compared to previous state-of-the-art results. We find
that learning a shared embedding space is beneficial and that augmented with unpaired data provides
the best results.

Feature HMDB51 UCF101

SJE (Akata et al., 2015) IDT 12.0± 2.6 9.3± 1.7
ConSe (Norouzi et al., 2013) IDT 15.0± 2.7 11.6± 2.1
ZSECOC (Qin et al., 2017) IDT 22.6± 1.2 15.1± 1.7
Semantic Embedding (Xu et al., 2015) IDT 21.2± 3.0 18.6± 2.2
Manifold Ridge Regression (Xu et al., 2017) IDT 24.1± 3.8 22.1± 2.5
SAE (Kodirov et al., 2017) I3D 25.6± 3.2 25.4± 2.2
Ours (paired) IDT 26.3± 3.2 25.4± 3.4
Ours (paired + unpaired) IDT 29.7± 2.2 26.4± 2.1
Ours (paired) I3D 28.3± 2.7 27.8± 2.2
Ours (paired + unpaired) I3D 34.7± 2.4 33.4± 1.8

4.3 USE OF UNPAIRED DATA

We explore different strategies for obtaining unpaired data. For these experiments, we keep a fixed
set of paired text and videos and explore adding various sources of unpaired data. We compare (i)
10k random sentences from Wikipedia, (ii) 10k random dictionary definitions, and (iii) 10k dictionary

Table 3: Unseen activity recognition results on ActivityNet, HMDB51 and UCF101, evaluated by
using both unseen and seen classes for the testing.

ActNet (10 unseen) ActNet (50 unseen) HMDB51 UCF101

Fixed Text Representation 55.7 46.8 24.5 26.8
Triplet Loss 57.7 48.5 27.6 29.8
joint 62.1 50.2 29.8 30.6
joint + recons 64.4 52.6 30.4 31.3
joint + recons + cross + cycle 69.6 58.5 35.6 36.5

Paired + Unpaired Data

All terms 71.6 65.9 38.9 42.1
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Table 4: Comparison of various source of unpaired data on ActivityNet with 10 unseen classes.

Accuracy (unseen) Accuracy (all classes)

Paired Data 58.3 69.6
+ Random Wikipedia Sentences 55.8 66.4
+ Random Dictionary Defs. 56.3 68.2
+ Verb Dictionary Defs. 59.2 70.7
+ Random YouTube Videos 58.7 70.1
+ Verbs + Random Videos 60.3 71.2

He is an aggressive third baseman and he can really play over 
there you know. He definitely takes pride in his defense as well.

He got right on top of that pitch, Pederson, and shot 
and way out of here. Three-run blast. 

That has been a feat in this series for both teams, nobody is hitting 
with two strikes. That's how good the pitching has been.

They would suspend him at the beginning of next year 
as opposed to for a game during this World Series.

Figure 4: Example video sequences from the MLB-YouTube dataset with the commentary caption.
Top: Sentences that describe the occurring activities. Bottom: Sentences that do not describe the
current activities.

definitions of verbs. We also compare adding 10k random videos from YouTube as additional video
data. We show our results using 10 unseen classes in ActivityNet in Table 4. We find that augmenting
with similar unpaired data improves performance, while using irrelevant data harms performance.
We find that dictionary verb definitions improve performance the most, as they capture important
semantic information regarding the activities we are learning. The use of additional video data is
further beneficial.

4.4 UNSUPERVISED ACTIVITY DISCOVERY

To further evaluate our joint embedding space, we conducted experiments on unsupervised activity
discovery. For this task, we expanded the MLB-YouTube dataset (Piergiovanni & Ryoo, 2018)
by densely annotating the videos with a transcription of the announcers’ commentary, resulting in
approximately 50 hours of aligned text and video. Examples of this data are shown in Fig. 4. The
MLB-YouTube dataset is designed for fine-grained activity recognition, where the difference between
activities is quite small. Additionally, these captions only roughly describe what is happening in
the video, and often contain unrelated stories or commentary on a previous event, making this a
challenging task. The dataset will be made publicly available. To train our joint embedding space,
we split each baseball video into 30 second intervals and use the corresponding text as paired data,
resulting in 6,089 paired training samples.

We evaluate our joint embedding using the segmented videos from MLB-YouTube. For each video,
we compute the embedded features and apply k-means clustering (k = 8, the number of classes).
Each segmented video is assigned to a cluster and votes for the cluster label based on its ground
truth label. We use that cluster assignment for classification on the MLB-YouTube test set. We
report our findings in Table 5. As a baseline, we cluster I3D features pre-trained on Kinetics. We
find that our methods improve the embedding space. However, we note that when using unpaired
data from Charades, the performance drops. This is likely due to Charades data being very different
from MLB-YouTube data. We collected additional captions and baseball videos to augment the
MLB-YouTube dataset, and confirmed that unpaired data helps when it is from a similar distribution.

In Table 6 we compare our various methods for unsupervised activity discovery on HMDB and
UCF101. Here, we learn a joint embedding space using the ActivityNet videos and captions. We
withhold any videos belonging to a class in HMDB or UCF101. Unlike MLB-YouTube, on these
datasets, we find that using the unpaired training with Charades further improves performance. This
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Table 5: Comparison of unsupervised activity
classification on MLB-YouTube.

Accuracy mAP

Baseline I3D features 23.4 32.6
Fixed Text Representation 27.9 34.7
Joint 34.5 41.6
Joint + recons 37.9 43.7
Joint + recons + cycle 44.2 48.6
Joint + recons + cross 43.7 49.3
All (paired) 48.4 51.2
All (+ unrelated unpaired) 39.7 43.9
All (+ related unpaired) 49.1 54.3

Table 6: Comparison of unsupervised activity
classification on HMDB and UCF101.

HMDB UCF101

Baseline I3D features 26.6 42.5
Joint 32.4 57.7
Joint + recons 33.5 59.0
All (paired) 34.6 59.5
All (+ unpaired) 34.9 59.9

Several men are playing basketball People are swimming in the ocean

Figure 5: Example captions for unseen activities. Left: Using a joint embedding space allows the
model to correctly caption this video as basketball, despite never seeing an example of basketball
during training. Right: An example of a caption for the unseen water-ski activity. Here the model
fails to correctly caption the activity.

confirms that when the additional data is similar to the target dataset, using the adversarial learning
setting further improves the embedding space.

4.5 UNSEEN VIDEO CAPTIONING

As our model learns a bi-directional mappings, we can apply our model to generate video captions.
Existing video captioning models are unable to create realistic captions for unseen activities, as
without training data they do not know the words to describe the video. Given a video, v, we can
generate a caption by mapping the video to text t = GT (EV (v)). For each word, we then use nearest
neighbors matching with the GloVe embeddings to obtain the words to form a sentence. In Table 7,
we report the commonly used METEOR (Banerjee & Lavie, 2005) and CIDEr (Vedantam et al.,
2015) scores of our various models, measured with the unseen classes from the ActivityNet dataset.
We find that learning a joint representation is beneficial and using unpaired samples further improves
the task. In Fig. 5, we show example captioned videos. Note that this task is extremely challenging,
as it requires the model to generate captions using activity words (e.g., basketball) not seen during
training.

5 CONCLUSION

We proposed an approach to learn a joint language/text embedding space using various constraints. We
further extended the model to be able to learn with unpaired video and text data using an adversarial
formulation. We experimentally confirmed that learning such an embedding space benefits three

Table 7: Comparison of several models for unseen activity captioning using the ActivityNet dataset,
using METEOR and CIDEr scores. This evaluation was done on 10 unseen classes held out during
training. Higher values are better.

METEOR CIDEr

Fixed Text Representation 3.64 8.95
Joint 4.21 9.23
All (paired) 5.31 11.21
All (paired + unpaired) 6.89 13.95
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difficult tasks (i) zero-shot activity classification, (ii) unsupervised activity discovery, and (iii) unseen
activity captioning. We find that the use of related unpaired data is beneficial. We presented several
strategies for obtaining unpaired data and confirmed the benefit of adding additional, relevant unpaired
data.
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Table 8: Comparison of temporal pooling methods for 5 unseen classes in the ActivityNet dataset.

Accuracy

Max Pooling 23.4
Sum Pooling 24.1
LSTM 42.3
Temporal Attention Filters 55.2

Table 9: Comparison of different ratios of paired and unpaired data methods for 5 unseen classes in
the ActivityNet dataset.

Paired/Unpaired Accuracy

100% / 0% 74.2
75% / 25% 73.2
50% / 50% 69.7
25% / 75% 62.6
0% / 100% 24.5

A ADDITIONAL EXPERIMENTS

A.1 COMPARISON OF TEMPORAL POOLING METHODS

To confirm that temporal attention is beneficial, we compare different forms of temporal pooling (i)
max-pooling, (ii) sum-pooling, (iii) LSTM, and (iv) temporal attention filters (Piergiovanni et al.,
2017). In Table 8, we compare these temporal pooling methods learning the joint embedding space.
We confirm that using the temporal attention filters performs best.

A.2 COMPARISON OF DIFFERENT RATIOS OF PAIRED AND UNPAIRED DATA

We compare different ratios of paired and unpaired data to see how much paired data we require and
how much unpaired data is beneficial. For these experiments, we use all the loss terms (i.e., what
provided us the best results). Note that in these experiments, the total number of samples was the
same for each method (40k examples) so that we can directly compare the effects of unpaired data vs.
paired data. Thus not all the available data was used.

In Table 9, we show the results. We find that using no paired data results in nearly random performance,
but using using some paired data greatly improves the embedding space. The model using 100%
paired data performs best, as all the others are using less overall paired data.

We also compare augmenting our 40k paired training samples with different amounts of unpaired
data. Since UCF101 and HMDB only have 13k and 7k examples, to get up to 60k samples, we also
use videos from the Kinetics dataset (Carreira & Zisserman, 2017). The results, shown in Table 10,
show that adding the initial 10k samples is most beneficial, while additional samples do not seem to
meaningfully improve results. However, due to our training method where each batch consists of
50% paired data and 50% unpaired data, the additional unpaired data does not harm results either.

Table 10: Comparison using 40k paired examples and varying amounts of unpaired samples for 5
unseen classes in the ActivityNet dataset.

Unpaired Samples Accuracy

0 77.1
10k 82.4
20k 83.9
40k 83.6
60k 83.5
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(a) (b)

Figure 6: t-SNE mapping of (a) fixed text representation and (b) joint embedding with all paired losses
for the MLB-YouTube dataset. The joint embedding space provides most distinct representations for
the activities. Each color represents the activity class of the video (e.g., swing, hit, foul ball, etc.).

Table 11: Comparison of several models for standard, seen video captioning using the MLB-YouTube
dataset, using Bleu, METEOR and CIDEr scores. Higher values are better.

Bleu METEOR CIDEr

Fixed Text Representation 0.12 0.04 0.12
Joint Representation 0.14 0.08 0.15
Joint + all paired 0.15 0.10 0.18
Joint + paired + unpaired 0.10 0.02 0.08

A.3 MLB-YOUTUBE CAPTIONS

In Fig. 6, we compare t-SNE embeddings of the fixed text representation and our joint embed-
ding space. This visually shows that learning a joint embedding space gives more distinct class
distributions.

A.3.1 MLB-YOUTUBE CAPTIONS

As a baseline for the MLB-YouTube captions dataset, we compared several different models for
standard video captioning (i.e., all activity classes are seen). This task is quite challenging compared
to other datasets as the announcers commentary is not always a direct description of the current
events. Often the announcers tell loosely related stories and attempt to describe events differently
each time to avoid repetition. Additionally, the descriptions contain on average 150 words for each
30 second interval and current captioning approaches usually only trained and tested on 10-20 word
sentences. Due to these factors, this task is quite challenging the standard evaluation metrics do not
account for these factors. In Table 11, we report our results on this task.

B HMDB AND UCF101 SENTENCES

For the HMBD and UCF101 datasets, we created sentences to describe each activity class. Our
sentences descriptions are included in this appendix.

These sentences are written for each activity class (by randomly selecting a single video per class)
and are shared for all instances of the activity. Depending on what video was randomly chosen for
the class, some sentences describe the actor as a ‘man’, ‘woman’, or ‘person’ which could confuse
the model. Ideally, the CNN embedding needs to learn to ignore the impact of such pronoun changes.

We conducted experiments comparing randomly replacing the pronouns to determine if there was
any bias introduced by the pronouns. We show the results in Table 12. We find that the choice of
pronouns does not impact performance, as our model automatically learns to focus more on verbs
rather than pronouns. When examining the temporal attention filters on the sentences, we found that
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Table 12: Comparison of various pronouns on the UCF101 dataset with 50 unseen classes.

Accuracy

Baseline Sentences 33.4
All ‘man’ 33.2
All ‘woman’ 33.3
All ‘person’ 33.4
Random pronoun 33.4

they placed very little ‘attention’ on the start of the sentence, where the pronoun usually is, suggesting
that the pronoun has very little effect on the embedding space we learned.

HMDB:

1. chew: a woman is chewing on bread
2. golf: a man swings a golf club
3. sword exercise: a person is playing with a sword
4. walk: a person is walking
5. jump: a person jumps into the water
6. pour: a man pours from a bottle
7. laugh: a man is laughing
8. shoot gun: a person rapidly fires a gun
9. run: a person is running

10. turn: a person turns around
11. ride bike: a man is riding a bike on the street
12. swing baseball: a boy hits a baseball
13. draw sword: a person draws a sword
14. sit: a person sits in a char
15. fencing: two men are fencing
16. dribble: a boy dribbles a basketball
17. stand: a person stands up
18. pushup: a man does pushups
19. sword: two people are fighting with swords
20. pullup: a boy does pullups in a doorway
21. smile: a man smiles
22. shake hands: two people shake hands
23. shoot ball: a person shoots a basketball
24. kick: a person kicks another person
25. somersault: a person does a somersault
26. flic flac: a boy does a backflip
27. hug: two people hug
28. hit: a boy swings a baseball bat
29. dive: a person jumps into a lake
30. drink: a man drinks from a bottle
31. punch: a woman punches a man
32. wave: a person waves their hand
33. talk: a person is talking
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34. kiss: a man and woman kiss
35. catch: a boy catches a ball
36. smoking: a woman smokes a cigarette
37. eat: a man eats pizza
38. throw: a person throws a ball
39. climb stairs: a man is running down the stairs
40. kick ball: a person kicks a soccer ball
41. ride horse: a girl is riding a horse
42. fall floor: a man is pushed onto the ground
43. brush hair: a girl is brushing her hair
44. situp: a man does situps
45. cartwheel: a guy runs and jumps and flips
46. pick: a man picks a book
47. push: a boy pushes a table
48. climb: a man is climbing up a wall
49. handstand: three girls do handstands
50. clap: a woman claps her hands
51. shoot bow: a person shows a bow and arrow

UCF101:

1. MilitaryParade: people are marching and waving a flag
2. TrampolineJumping: kids are jumping on a trampoline
3. PlayingDaf: a person moves a circle and hits it
4. SalsaSpin: poeple are dancing and spinning
5. CuttingInKitchen: a person is in the kitchen using a knife
6. ApplyEyeMakeup: a woman is putting on makeup
7. PlayingViolin: a person plays the violin
8. YoYo: a person plays with a yoyo
9. PlayingCello: a person is playing the cello

10. Bowling: a person is bowling
11. UnevenBars: a woman is spinning and flying on bars
12. BalanceBeam: a woman is on the balance beam
13. SkyDiving: people are falling out of the sky
14. SumoWrestling: two fat people are wrestling
15. PushUps: a man does pushups
16. FloorGymnastics: a girl does gymnastics
17. ApplyLipstick: a woman is putting on lipstick
18. BreastStroke: a woman is swimming
19. GolfSwing: a man swings a golf club
20. PlayingDohl: a person hits on a drum
21. HorseRiding: a woman rides a horse
22. PlayingFlute: a person blow into a flute
23. PizzaTossing: a man is making a pizza
24. CleanAndJerk: a person is lifting weights
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25. WritingOnBoard: a person is writing on the wall
26. CricketShot: a person hits a ball with a bat
27. FieldHockeyPenalty: a girl in the field shoots a ball
28. HammerThrow: a person spins and throws an object
29. BodyWeightSquats: a man is squatting
30. CliffDiving: a person jumps off a cliff
31. Typing: a person is typing at a computer
32. MoppingFloor: a man mops the floor
33. TaiChi: people are doing tai chi
34. PlayingPiano: a person plays piano
35. Punch: someone punches another person
36. Nunchucks: a person swings nun chucks
37. RopeClimbing: a person climbs a rope
38. Swing: a baby is swinging
39. Knitting: a woman is knitting
40. Rafting: people are rafting on a river
41. PlayingGuitar: a person strums a guitar
42. ShavingBeard: a man shaves his beard
43. JugglingBalls: a person is juggling balls
44. Diving: a boy dives into a pool
45. JumpingJack: a person jumps and swings his arms
46. VolleyBallSpiking: people hit a volleyball
47. PoleValut: a person runs with a pole and launches into the air
48. SkateBoarding: a man is skateboarding
49. BoxingPunchingBag: a man is punching a bag
50. IceDancing: people are ice skating
51. WallPushups: a person does pushups against a wall
52. FrisbeeCatch: a person jumps and catches a frisbee
53. Drumming: people are drumming
54. JumpRope: a girl is jumping rope
55. HeadMassage: a person gets their head massaged
56. PlayingTabla: a person plays two drums
57. TableTennisShot: people are playing table tennis
58. PommelHorse: a person spins around on their hands
59. HighJump: a man jumps over a bar and lands on his back
60. BasketballDunk: a man jumps and dunks the basketball
61. BoxingSpeedBag: a man punches a bad in the air quickly
62. PullUps: a person does hangs on a bar and pulls up
63. RockClimbingIndoor: a person is climbing up rocks
64. BlowingCandles: a boy blows out candles on a cake
65. Skiing: people are skiing on a mountain
66. WalkingWithDog: a person walks a dog
67. Basketball: men are playing basketball
68. SoccerJuggling: a person is playing with a soccer ball
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69. Fencing: people are fencing
70. Billiards: a man is playing billiards
71. BaseballPitch: a man throws a baseball
72. BlowDryHair: a woman is drying her hair
73. CricketBowling: a person throws a cricket ball
74. BandMarching: people are walking down the street playing music
75. PlayingSitar: a person plays a funny guitar
76. ThrowDiscus: a person spins and throws a disk
77. StillRings: a man holds in the air on rings
78. Lunges: a person bends to the ground with one knee
79. Skijet: a person rides a jetski in the ocean
80. BabyCrawling: a baby is crawling on the floor
81. Mixing: a woman is mixing in a bowl
82. Hammering: a person is hitting nails with a hammer
83. Shotput: a person spins and launches a ball
84. Archery: a man shoots a bow and arrow
85. Surfing: a man is surfing in the ocean
86. FrontCrawl: a person is swimming freestyle
87. HulaHoop: a person spins a hoop around their waist
88. JavelinThrow: a person throws a spear
89. Rowing: people are in a canoe and rowing
90. Kayaking: a person is kayaking on a lake
91. ParallelBars: a man does gymnastics on the parallel bars
92. HorseRace: horses are racing around a track
93. HandstandWalking: a person stands on their hands and walk
94. BrushingTeeth: a boy brushes his teeth
95. LongJump: a person runs and jumps into a sand pit
96. Biking: people are riding bikes
97. HandstandPushups: a person does pushups upside down
98. BenchPress: a man is lifting weights
99. Haircut: a person is getting a hair cut

100. TennisSwing: a woman hits a tennis ball
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