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ABSTRACT

Aligning knowledge graphs from different sources or languages, which aims to
align both the entity and relation, is critical to a variety of applications such
as knowledge graph construction and question answering. Existing methods of
knowledge graph alignment usually rely on a large number of aligned knowledge
triplets to train effective models. However, these aligned triplets may not be avail-
able or are expensive to obtain for many domains. Therefore, in this paper we
study how to design fully-unsupervised methods or weakly-supervised methods,
i.e., to align knowledge graphs without or with only a few aligned triplets. We
propose an unsupervised framework based on adversarial training, which is able
to map the entities and relations in a source knowledge graph to those in a tar-
get knowledge graph. This framework can be further seamlessly integrated with
existing supervised methods, where only a limited number of aligned triplets are
utilized as guidance. Experiments on real-world datasets prove the effectiveness of
our proposed approach in both the weakly-supervised and unsupervised settings.

1 INTRODUCTION

Knowledge graphs represent a collection of knowledge facts and are quite popular in the real world.
Each fact is represented as a triplet (h,r,t), meaning that the head entity % has the relation r with
the tail entity . Examples of real-world knowledge graphs include instances which contain knowl-
edge facts from general domain in different languages (Freebase B DBPedia (Auer et al., [2007),
Yago (Suchanek et al.| 2007), WordNet or facts from specific domains such as biomedical ontol-
ogy (UMLS . Knowledge graphs are critical to a variety of applications such as question answering
(Bordes et al.[{(2014)) and semantic search (Guha et al.|(2003))), which are attracting growing interest
recently in both academia and industry communities.

In practice, each knowledge graph is usually constructed from a single source or language, the
coverage of which is limited. To enlarge the coverage and construct more unified knowledge graphs,
a natural idea is to integrate multiple knowledge graphs from different sources or languages (Arens
et al.[(1993))). However, different knowledge graphs use distinct symbol systems to represent entities
and relations, which are not compatible. As a result, it is necessary to align entities and relations
across different knowledge graphs (a.k.a., knowledge graph alignment) before integrating them.

Indeed, there are some recent studies focusing on aligning entities and relations from a source knowl-
edge graph to a target knowledge graph ((Zhu et al., 2017a); (Chen et al., 2017a); (Chen et al.,
2017b)). These methods typically represent entities and relations in a low-dimensional space, and
meanwhile learn a mapping function to align entities and relations from the source knowledge graph
to the target one. However, these methods usually rely on a large number of aligned triplets as la-
beled data to train effective alignment models. In reality, the aligned triplets may not be available
or can be expensive to obtain, making existing methods fail to achieve satisfactory results. There-
fore, we are seeking for an unsupervised or weakly-supervised approach, which is able to align
knowledge graphs with a few or even without labeled data.

"https://developers.google.com/freebase/
2https://wordnet .princeton.edu/
3https://www.nlm.nih.gov/research/umls/
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In this paper, we propose an unsupervised approach for knowledge graph alignment with the adver-
sarial training framework Goodfellow et al.|(2014). Our proposed approach aims to learn alignment
functions, i.e., P.(€!9|e*"¢) and P,(r'9¢|r*7¢), to map the entities and relations ("¢ and r*"¢) from
the source knowledge graph to those (¢?9% and r9%) in the target graph, without any labeled data.
Towards this goal, we notice that we can align each triplet in the source knowledge graph with
one in the target knowledge graph by aligning the head/tail entities and relation respectively. Ide-
ally, the optimal alignment functions would align all the source triplets to some valid triplets (i.e.,
triplets expressing true facts). Therefore, we can enhance the alignment functions by improving the
plausibility of the aligned triplets. With this intuition, we train a triplet discriminator to distinguish
between the real triplets in the target knowledge graph and those aligned from the source graph,
which provides a reward function to measure the plausibility of a triplet. Meanwhile, the alignment
functions are optimized to maximize the reward. The above process naturally forms an adversarial
training procedure (Goodfellow et al.|(2014)). By alternatively optimizing the alignment functions
and the discriminator, the discriminator can consistently enhance the alignment functions.

However, the above approach may suffer from the problem of mode collapse (Salimans et al.|(2016)).
Specifically, many entities in the source knowledge graph may be aligned to only a few entities in the
target knowledge graph. This problem can be addressed if the aggregated posterior entity distribution
Y esre Pe(€9%]e57¢) P(e°¢) derived by the alignment functions matches the prior entity distribution
P(e!9") in the target knowledge graph. Therefore, we match them with another adversarial training
framework, which shares similar idea with adversarial auto-encoders (Makhzani et al.| (2015)).

The whole framework can also be seamlessly integrated with existing supervised methods, in which
we can use a few aligned entities or relations as guidance, yielding a weakly-supervised approach.
Our approach can be effectively optimized with stochastic gradient descent, where the gradient
for the alignment functions is calculated by the REINFORCE algorithm (Williams| (1992))). We
conduct extensive experiments on several real-world knowledge graphs. Experimental results prove
the effectiveness of our proposed approach in both the weakly-supervised and unsupervised settings.

2 RELATED WORK

Our work is related to knowledge graph embedding, that is, embedding knowledge graphs into low-
dimensional spaces, in which each entity and relation is represented as a low-dimensional vector
(ak.a., embedding). A variety of knowledge graph embedding approaches have been proposed
(Bordes et al.| (2013); [Wang et al.| (2013)), which can effectively preserve the semantic similarities
of entities and relations into the learned embeddings. We treat these techniques as tools to learn
entity and relation embeddings, which are further used as features for knowledge graph alignment.

In literature, there are also some studies focusing on knowledge graph alignment. Most of them
perform alignment by considering contextual features of entities and relations, such as their names
(Lacoste-Julien et al.|(2013))) or text descriptions (Chen et al.|(2018));|Wang et al.|(2012)); [Wang et al.
(2013))). However, such contextual features are not always available, and therefore these methods
cannot generalize to most knowledge graphs. In this paper, we consider the most general case, in
which only the triplets in knowledge graphs are used for alignment. The studies most related to
ours are Zhu et al.[(2017a)) and |Chen et al.| (2017a). Similar to our approach, they treat the entity
and relation embeddings as features, and jointly train an alignment model. However, they totally
rely on the labeled data (e.g., aligned entities or relations) to train the alignment model, whereas our
approach incorporates additional signals by using adversarial training, and therefore achieves better
results in the weakly-supervised and unsupervised settings.

More broadly, our work belongs to the family of domain alignment, which aims at mapping data
from one domain to data in the other domain. With the success of generative adversarial networks
(Goodfellow et al.|(2014))), many researchers have been bringing the idea to domain alignment, get-
ting impressive results in many applications, such as image-to-image translation (Zhu et al.| (2017b);
Zhu et al.| (2017c)), word-to-word translation (Conneau et al.| (2017))) and text style transfer (Shen
et al.|(2017)). They typically train a domain discriminator to distinguish between data points from
different domains, and then the alignment function is optimized by fooling the discriminator. Our
approach shares similar idea, but is designed with some specific intuitions in knowledge graphs.
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Figure 1: Framework overview. By applying the alignment functions to the triplets in the source
knowledge graph, we obtain an aligned knowledge graph. The alignment functions are learned
through two GANs. (1) We expect all triplets in the aligned knowledge graph are valid, therefore
we train a triplet discriminator to distinguish between valid and invalid triplets, and further use it to
facilitate the alignment functions. (2) We also expect the entity distribution in the aligned knowledge
graph matches the one in the target knowledge graph, which is achieved with another GAN.

3  PROBLEM DEFINITION

Definition 1 (KNOWLEDGE GRAPH.) A knowledge graph is denoted as G = (E, R, T, where E
is a set of entities, R is a set of relations and T is a set of triplets. Each triplet (h,r,t) consists of a
head entity h, a relation r and a tail entity t, meaning that entity h has relation r with entity t.

In practice, the coverage of each individual knowledge graph is usually limited, since it is typically
constructed from a single source or language. To construct knowledge graphs with broader coverage,
a straightforward way is to integrate multiple knowledge graphs from different sources or languages.
However, each knowledge graph uses a unique symbol system to represent entities and relations,
which is not compatible with other knowledge graphs. Therefore, a prerequisite for knowledge graph
integration is to align entities and relations across different knowledge graphs (a.k.a., knowledge
graph alignment). In this paper, we study how to align entities and relations from a source knowledge
graph to those in a target knowledge graph, and the problem is formally defined below:

Definition 2 (KNOWLEDGE GRAPH ALIGNMENT.) Given a source knowledge graph G°™¢ =
(Esr¢, R8¢ T*"¢) and a target knowledge graph G'9' = (E'9! R'9t T'9)  the problem aims at
learning an entity alignment function P, and a relation alignment function P,. Given an entity e*™®
in the source knowledge graph and an entity e'9¢ in the target knowledge graph, P.(et9|e5¢) gives
the probability that e*" aligns to e'9*. Similarly, for a source relation r*"¢ and a target relation rt9¢,
P, (rt9t|rsv¢) gives the probability that r*"¢ aligns to r*9t.

4 MODEL

In this paper we propose an unsupervised approach to learning the alignment functions, i.e.,
P, (et9|e57¢) and P,(r'9t|rs7¢), for knowledge graph alignment. To learn them without any su-
pervision, we notice that we can align each triplet in the source knowledge graph with one in the
target knowledge graph by aligning the head/tail entities and relation respectively. For an ideal
alignment model, all the aligned triplets should be valid ones (i.e., triplets expressing true facts). As
a result, we can improve the alignment functions by raising the plausibility of the aligned triplets.
With the intuition, our approach trains a triplet discriminator to distinguish between valid triplets
and other ones. Then we build a reward function from the discriminator to facilitate the alignment
functions. However, using the triplet discriminator alone may cause the problem of mode collapse.
More specifically, many entities in the source knowledge graph are aligned to only a few entities
in the target knowledge graph. This problem can be addressed if the aggregated posterior distri-
bution of entities derived by the alignment functions matches the prior entity distribution from the
target knowledge graph. Therefore, we follow the idea in adversarial auto-encoders (Makhzani et al.
(2015)), and leverage another adversarial training framework to regularize the distribution.

The above strategies yield an unsupervised approach. However, in many cases, the structures of
the source and target knowledge graphs (e.g., entity and triplet distributions) can be very different,
making our unsupervised approach unable to perform effective alignment. In such cases, we can
integrate our approach with existing supervised methods, and use a few labeled data as guidance,
which further yields a weakly-supervised approach.
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Formally, our approach starts by learning entity and relation embeddings with existing knowl-
edge graph embedding techniques, which are denoted as {Xcsre fesrecgere, {Xetat Fetatepar and

Xpsre ppsrec Rsre, {Xptat frtate gtat. The learned embeddings preserve the semantic correlations of
entities and relations, hence we treat them as features and build our alignment functions on top of
them. Specifically, we define the probability that a source entity e®"¢ or relation r°"° aligns to a
target entity e'9% or relation 19" as follows:

exp(—7||[Wxeore — Xetat|[3) exp(—y||Wxrore — X, tat|[3)
Z Z

where v is a temperature parameter, Z is a normalization term. W is a linear projection matrix,
which maps an embedding in the source knowledge graph (e.g., X.sr<) to one in the target graph
(e.g., Wxesre), so that we can perform alignment by calculating the distance between the mapped
source embeddings (e.g., Wx,src) and the embeddings in the target graph (e.g., X.ts¢). Note that W
is the only parameter to be learned, and it is shared across the entity and relation alignment functions.
We also try independent projection matrices or nonlinear projections, but get inferior results.

Pe(etgt|es'r3) — 7PT(7’tgt|'f'STc) — , (1)

In the following chapters, we first briefly introduce the method for learning entity and relation em-
beddings (Section[d.T). Then, we introduce how we leverage the triplet discriminator (Section
and the regularization mechanism (Section [4.3) to facilitate training the alignment functions. Af-
terwards, we introduce a simple supervised method as an example, to illustrate how to incorporate
labeled data (Section4.4). Finally, we introduce our optimization algorithm (Section [4.5).

4.1 ENTITY AND RELATION EMBEDDING LEARNING

In this paper, we leverage the TransE algorithm (Bordes et al.|(2013)) for entity and relation embed-
ding learning, due to its simplicity and effectiveness in a wide range of datasets. In general, we can
also use other knowledge graph embedding algorithms as well.

Given a triplet t = (ey, 7, e;), TransE defines its score as follows:
score(t) = —||Xe, + Xr — Xe, ||2- (2)

Then the model is trained by maximizing the margin between the scores of real triplets and random
triplets, and the objective function is given below:

O7ranse = Eier e min(score(t) — score(t') — m,0), 3)

where T is the set of real triplets in the knowledge graph, T is the set of random triplets, and m is
a parameter controlling the margin.

4.2 LEARNING WITH TRIPLET DISCRIMINATORS

By defining the alignment functions for entity and relation (Eqn. [I)), we are able to align each triplet
in the source knowledge graph to the target knowledge graph by aligning the entities and relation
respectively. An ideal alignment function would align all the source triplets to some valid triplets.
Therefore, we can enhance the alignment functions by raising the plausibility of the aligned triplets.

Formally, for each triplet (e;™°, 7, e;"¢) in the source knowledge graph, we can sample an aligned

triplet (ezgt7 rtat, e,fgt) by mapping the entities and relation to the target knowledge graph with the

alignment functions (Eqn.[I). The process is defined below:
(e;gt7 Ttgt’ eigt) ~ 14(6?-L1”c7,'a.<>'7"c7 efrC) .= eth ~ Pe('|€irc),’f‘tgt ~ P,-(-|Tsrc), e]tﬁgt ~ Pe('lefrc)- (4)

Ideally, we would wish that all the aligned triplets are valid ones. Towards this goal, we train a
triplet discriminator to distinguish between valid triplets and other ones. Then the discriminator
is used to define different reward functions for guiding the alignment functions. In our approach,
we train the discriminator by treating the real triplets in knowledge graphs as positive examples,
and the aligned triplets generated by our approach as negative examples. Following existing studies
(Goodfellow et al.|(2014)), we define the objective function below:

ODt = EttgtNTtgt [log Dt (ttgt)] + EtsTcNTsrz:,tNA(tsrc) [log(l — Dt (tﬂ, (5)

where t ~ A(t°7¢) is a triplet aligned from ¢*"¢ and A is defined in Eqn. Dy is the triplet
discriminator, which concatenates the embeddings of the head/tail entities and relation in a triplet ¢,
and further predicts the probability that ¢ is a valid triplet.
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Based on the discriminator, we can construct a scalar-to-scalar reward function R to measure the
plausibility of a triplet. Then the alignment functions can be trained by maximizing the reward:

OT — ]EtSTCNTSTC’tNA(tSTC) [R(Dt (t))] . (6)

There are several ways to define the reward function R, which essentially yields different adversarial
training frameworks. For example, Goodfellow et al.|(2014) and[Ho & Ermonl (2016) treat R(z) =
log = as the reward function. [Finn et al.| (2016) uses R(z) = log ﬁ Che et al.[|(2017) considers
R(z) = % Besides, we may also leverage R(z) = x, which is the first-order Taylor’s expansion
of —log(1—=x) atz = 1 and has a limited range when x € (0, 1). All different reward functions have
the same optimal solution, i.e, the derived distribution of the aligned triplets matching the real triplet
distribution in the target knowledge graph. In practice, these reward functions may have different
variance, and we empirically compare them in the experiments (Table [5).

During optimization, the gradient with respect to the alignment functions cannot be calculated di-
rectly, as the triplets sampled from the alignment functions are discrete variables. Therefore, we
leverage the REINFORCE algorithm (Williams| (1992))), which calculates the gradient as follows:

VWOT == EtsrcNTs'r'u’tNA(ts'rc) [R(Dt (t))VW log _P(t|té’”/)]7 (7)

where P(t[t°7%) = P.(ep|e) ) Pr(r|r®7¢) Pe(er]ef7°) with t = (en, 1, €4), t°7° = (7%, 1°7°, 57°).

4.3 CONSTRAINING THE AGGREGATED POSTERIOR DISTRIBUTION

Although the triplet discriminator provides effective reward to the alignment functions, many entities
in the source knowledge graph can be aligned to only a few entities in the target knowledge graph.
Such problems can be solved by constraining the aggregated posterior entity distribution derived by
the alignment functions to match the prior entity distribution in the target knowledge graph.

Formally, the aggregated posterior distribution of entities is given below:

If)(etgt) — Z P, (etgt|esrc)P(esrc)’ (8)

esrec

where P(e®"¢) is the entity distribution in the source knowledge graph. We expect this distribution
to match the prior distribution P(e9"), which is the entity distribution in the target knowledge graph.

Following Makhzani et al.|(2015), we regularize the distribution with another adversarial training
framework (Goodfellow et al|(2014)). During training, an entity discriminator D, is learned to
distinguish between the posterior and prior distributions using the following objective function:

ODe = Eetgtwp(etgt)[log De(etgt)} + ]Eewﬁ(etgt)[log(l — De(e)], )]

where D, takes the embedding of an entity as features to predict the probability that the entity is
sampled from prior distribution P(e'9%). To enforce the posterior distribution to match the prior
distribution, the entity alignment function is trained to fool the discriminator by maximizing the
following objective:

O = EeN[D(etgt)[R(De(e))]a (10)

where R is the same reward function as used in the triplet discriminator (Eqn. [6)), and the gradient
for the alignment functions can be similarly calculated with the REINFORCE algorithm.

4.4 WEAKLY-SUPERVISED LEARNING

The above sections introduce an unsupervised approach to knowledge graph alignment. In many
cases, the source and target knowledge graphs may have very different structures (e.g., entity or
triplet distributions), making our approach fail to perform effective alignment. In these cases, we
can integrate our approach with any supervised methods, and leverage a few labeled data (e.g.,
aligned entity or relation pairs) as guidance, which yields a weakly-supervised approach. In this
section, we introduce a simple yet effective method to show how to utilize the labeled data.

Suppose we are given some aligned entity pairs, and the aligned relation pairs can be handled in a
similar way. We define our objective function as follows:

OL = ]E(esrr:’etgt)es 1nge(€tgt|esrc) - AH(Pe(etgt‘esrC))7 (11)
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where S is the set of aligned entity pairs, " and e'9! are random variables of entities in the
source and target knowledge graphs, H is the entropy of a distribution. The first term corresponds
to a softmax classifier, which aims at maximizing the probability of aligning a source entity to the
ground-truth target entity. The second term minimizes the entropy of the probability distribution
calculated by the alignment function, which encourages the alignment function to make confident
predictions. Such an entropy minimization strategy is used in many semi-supervised learning studies
(Grandvalet & Bengio| (2005)).

4.5 OPTIMIZATION

We leverage the stochastic gradient descent algorithm for optimization. In practice, we find that first
pre-training the alignment functions with the given labeled data (Eqn. [TT), then fine-tuning them
with the triplet discriminator (Eqn. [6)) and the regularization mechanism (Eqn. [§) leads to better
performance, compared with jointly training all of them (Table [6). Consequently, we adopt the
pre-training and fine-tuning framework for optimization, which is summarized in Alg.

Algorithm 1 Optimization algorithm.

Input: Two knowledge graphs G*"¢ and G'9¢, some aligned entity/relation pairs .S (optional).
Qutput: The learned alignment functions P, and P,.
1: Pre-train entity and relation embeddings by optimizing Eqn. [3]
2: Pre-train the alignment functions by optimizing Eqn.[TT]or using any other supervised methods.
3: while not converge do
4: Update the triplet discriminator D, and the alignment functions with Eqn. [5[[6]
5: Update the entity discriminator D, and the alignment functions with Eqn. [9[[10]
6: end while

5 EXPERIMENT

5.1 EXPERIMENT SETUP

In experiment, we use four datasets for evaluation. In FB15k-1 and FB15k-2, the knowledge graphs
have very different triplets, which can be seen as constructed from different sources; in WK15k(en-
fr) and WK15k(en-de), the knowledge graphs are from different languages. The statistics are sum-
marized in Tablem Following existing studies (Zhu et al.| (2017a)); |Chen et al.| (2017a))), we con-
sider the task of entity alignment, and three different settings are considered, including supervised,
weakly-supervised and unsupervised settings. Hit@ 1 and Hit@ 10 are reported.

Table 1: Statistics of the Datasets.

Dataset [ FBISk-1__ |  FBISk2 | WKI15k(en-fr) [ WKI5K(en-de)
| sre tgt [ src tgt | en fr | en de
#Entities 14,951 14,951 14,951 14,951 15,169 15,392 15,125 14,602
#Relations 1,345 1,345 1,345 1,345 2,217 2,416 1,833 594
#Triplets 444,159 444,160 | 325,717 325,717 203,226 170,441 210,611 145,567
#Training Pairs (full) 5,000 500 3,874 (en2fr) 3,856 (fr2en) | 7,853 (en2de) 5,606 (de2en)
#Training Pairs (weak) 50 50 500 (en2fr) 500 (fr2en) 50 (en2de) 50 (de2en)
#Test Pairs 9,951 14,451 3,731 (en2fr) 3,809 (fr2en) | 1,832 (en2de) 1,609 (de2en)

Datasets

o FB15k-1, FB15k-2: Following [Zhu et al.| (2017a), we construct two datasets from the FB15k
dataset (Bordes et al.|(2013)). In FB15k-1, the two knowledge graphs share 50% triplets, and in
FB15k-2 10% triplets are shared. According to the study, we use 5000 and 500 aligned entity
pairs as labeled data in FB15k-1 and FB15k-2 respectively, and the rest for evaluation.

o WKI15k(en-fr): A bi-lingual (English and French) dataset in (Chen et al.| (2017a). Some aligned
triplets are provided as labeled data, and some aligned entity pairs as test data. The labeled data
and test data have some overlaps, so we delete the overlapped pairs from labeled data.

o WKI15k(en-de): A bi-lingual (English and German) dataset used in (Chen et al|(2017a)). The
dataset is similar to WK15k(en-fr), so we perform preprocessing in the same way.

Compared Algorithms
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(1) iTransE (Zhu et al| (2017a))): A supervised method for knowledge graph alignment. (2)
MLKGA (Chen et al. (2017a)): Another supervised method for multi-lingual knowledge graph
alignment. (3) Procrustes (Artetxe et al.|(2017)): A supervised method for word translation, which
learns the translation in a bootstrapping way. We apply the method on the pre-trained entity and
relation embeddings to perform knowledge graph alignment. (4) UWT (Conneau et al.| (2017)):
An unsupervised word translation method, which leverages adversarial training and a refinement
strategy. We apply the method to the entity and relation embeddings to perform alignment. (5)
KAGAN-sup: The supervised method introduced in Section .4} which is simple but effective, and
can be easily integrated with our unsupervised approach. (6) KAGAN: Our proposed Knowledge-
graph Alignment GAN, which leverages the labeled data for pre-training, and then fine-tunes the
model with the triplet discriminator and the regularization mechanism. (7) KAGAN-t: A variant
with only the triplet GAN, which first performs pre-training with the labeled data, and then per-
forms fine-tuning with the triplet discriminator. (8) KAGAN-e: A variant with only the entity GAN,
which first pre-trains with the labeled data, and then fine-tunes with the regularization mechanism.

Parameter Settings

The dimension of entity and relation embeddings is set as 512 for all compared methods. For our
proposed approach, A is set as 1, the temperature parameter +y is set as 1, and the reward function
is set as x by default. SGD is used for optimization. The learning rate is set as 0.1 for pre-training
and 0.001 for fine-tuning. 10% labeled pairs are treated as the validation set. The training process is
terminated if the performance on the validation set drops. For the compared methods, the parameters
are chosen according to the performance on the validation set.

5.2 QUANTITATIVE RESULTS

Table 2: Quantitative Results of Entity Alignment.

FB15k-1 FB15k-2 WK15k fr2en | WK15k en2fr | WK15k de2en | WK15k en2de
P@l P@I0 | P@l P@I0 | P@l P@I0| P@l P@I0O | P@Ql P@I0 | P@l P@I0
iTransE 64.47 80.74 | 9.64 29.08 | 0.63 843 [ 043 9.33 3.79 8.89 568 11.30
MLKGA 7873 90.50 | 53.33 7841 | 17.83 41.80 | 17.53 4197 | 4276 57.55 | 32.86  50.98

Setting Algorithm

Supervised Procrustes | 82.36 92.13 | 72.08 87.15 | 21.82 4421 | 20.72 43.74 | 4562 58.11 | 3428 51.15
KAGAN-sup | 82.27 92.01 | 71.86 8730 | 2239 44.11 | 22.46 43.50 | 44.81 58.17 | 3412  50.93

KAGAN | 8493 9373 | 7404 8821 | 2515 45.16 | 25.03 4479 | 48.10 5879 | 3947 52.57

Unsapervised UWT 7933 9143 | 70.03 86.86 | 0.66 297 | 003 046 | 044 155 | 055 3.06
KAGAN | 84.12 93.14 | 7329 8789 | 173 333 | 027 129 | 131 218 | 207 415

Weakd i | Procrustes | 81.97 9204 | 7164 87.03 | 1785 39.62 | 1772 4077 | 40.71 5382 | 30.57 4580
cakly-supervise KAGAN | 84.60 9351 | 7375 88.10 | 20.82 42.16 | 20.69 4350 | 4568 58.11 | 3483 49.95

Table 3: Ablation Study (Full Supervision). Table 4: Ablation Study (Weak/No Supervision).

Algorithm FBI5k-2 | WKI15k fr2en | WKI15k de2Zen Algorithm FBI5k-2 | WKI15k fr2en | WKI5k deZen
P@I P@I0 | P@QI P@I0 | P@T P@IO & P@I P@I0 | P@QI P@I0O | P@QI P@IO
KAGAN-sup | 71.86 8730 | 22.39 44.11 | 4481 58.17 KAGAN-sup 0 0 17.35 39.12 | 40.27 5339
KAGAN-e | 72.82 8823 | 23.92 4474 | 4723 58.67 KAGAN-e | 70.51 86.26 | 18.93 40.14 | 4220 55.38
KAGAN-t | 7397 88.06 | 24.65 44.84 | 47.92 59.04 KAGAN-t 0.09 1.02 | 19.74 4145 | 4425 5755
KAGAN 74.04 88.21 | 2515 45.16 | 48.10 58.79 KAGAN 73.29 87.89 | 20.82 42.16 | 45.68 58.11

The main results are presented in Table [2] In the supervised setting, our approach significantly
outperforms all the compared methods. On the FB15k-1 and FB15k-2 datasets, without using any
labeled data, our approach already achieves close results as in the supervised setting. On the WK15k
datasets under the weakly-supervised setting, our performance is comparable or even superior to the
performance of other methods in the supervised setting, but with much fewer labeled data (about
13% in WK15k(en-fr) and 1% in WK15k(en-de)). Overall, our approach is quite effective in the
weakly-supervised and unsupervised settings, outperforming all the baseline approaches.

To understand the effect of each part in our approach, we further conduct some ablation studies. Ta-
ble[3|presents the results in the supervised setting. Both the triplet discriminator (KAGAN-t) and the
regularization mechanism (KAGAN-e) improves the pre-trained alignment models (KAGAN-pre).
Combining them (KAGAN) leads to even better results. Table [] gives the results in the unsuper-
vised (FB15k-2) and weakly-supervised (WK15k-fr2en, WK15k-de2en) settings. On the FB15k-2
dataset, using the regularization mechanism alone (KAGAN:-e) already achieves impressive results.
This is because the source and target knowledge graphs in FB15k-2 share similar structures, and
our regularization mechanism can effectively leverage such similarity for alignment. However, the
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performance of using only the triplet discriminator (KAGAN-t) is very poor, which is caused by the
problem of mode collapse. The problem is effectively solved by integrating the approach with the
regularization mechanism (KAGAN), which achieves the best results in all cases.

Table 5: Comparison of Reward Functions. Table 6: Comparison of Optimization Methods.

Reward Function | WK15k fr2en  WK15k de2en Nethod WKISK foen  WKISK deZen
0 (w/o reward) 22.39 44.81 - -

. Joint train 23.47 45.99

log x 23.92 47.36 .
log & 24.05 47.30 Pre-train and fine-tune 25.15 48.10
A7 w embedding tuning 24.21 47.42
e 2507 47.98 wlo embedding tuning | 25.15 48.10

T 25.15 48.10

5.3 PERFORMANCE ANALYSIS

Comparison of the reward functions. In our approach, we can choose different reward functions,
leading to different adversarial training frameworks. These frameworks have the same optimal so-
lutions, but with different variance. In this section we compare them on the WK15k datasets, and
the results of Hit@1 are presented in Table[5] We notice that all reward functions lead to significant
improvement compared with using no reward. Among them, 1*- and x obtain the best results.

Comparison of the optimization methods. During training, our approach fixes the entity/relation
embeddings, and uses a pre-training and fine-tuning framework for optimization. In this section,
we compare the framework with some variants, and the results of Hit@1 are presented in Table [
We see that our framework (pre-training and fine-tuning) outperforms the joint training framework.
Besides, fine-tuning entity/relation embeddings yields worse results than fixing them during training.

Case study. In this section, we present some visualization results to intuitively show the effect of the
triplet discriminator and regularization mechanism in our approach. We consider the unsupervised
setting on the FB15k-2 dataset, and leverage the PCA algorithm to visualize certain embeddings.
Figure 2| compares the entity embeddings obtained with and without the regularization mechanism,
where red is for the mapped source entity embeddings (Wx.sr) , and green for the target embed-
dings (x.tst). We see that without the mechanism, many entities from the source knowledge graph
are mapped to a small region (the red region), leading to the problem of mode collapse. The problem
is addressed with the regularization mechanism. Figure [3]compares the triplet embeddings obtained
with and without the triplet discriminator, where the triplet embedding is obtained by concatenating
the entity and relation embeddings in a triplet. Red color is for triplets aligned from the source
knowledge graph, and green is for triplets in the target graph. Without the triplet discriminator, the
aligned triplets look quite different from the real ones (under different distributions). With the triplet
discriminator, the aligned triplets look like the real ones (under similar distributions).

i, i
(a) Without (b) With (a) Without (b) With
Figure 2: The Regularization Mechanism. Figure 3: The Triplet Discriminator.

6 CONCLUSION

This paper studied knowledge graph alignment. We proposed an unsupervised approach based on the
adversarial training framework, which is able to align entities and relations from a source knowledge
graph to those in a target knowledge graph. In practice, our approach can be seamlessly integrated
with existing supervised methods, which enables us to leverage a few labeled data as guidance,
leading to a weakly-supervised approach. Experimental results on several real-world datasets proved
the effectiveness of our approach in both the unsupervised and weakly-supervised settings. In the
future, we plan to learn alignment functions from two directions (source to target and target to
source) to further improve the results, which is similar to CycleGAN (Zhu et al.|(2017b)).
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