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ABSTRACT

Mislabeled samples in training datasets severely degrade the performance of deep
networks, as overparameterized models tend to memorize erroneous labels. We
address this challenge by proposing a novel approach for mislabeled data detection
that leverages training dynamics. Our method is grounded in the key observation
that correctly labeled samples exhibit consistent entropy decrease during training,
while mislabeled samples maintain relatively high entropy throughout the training
process. Building on this insight, we introduce a signed entropy integral (SEI)
statistic that captures both the magnitude and temporal trend of prediction entropy
across training epochs. SEI is broadly applicable to classification networks and
demonstrates particular effectiveness when integrated with contrastive language-
image pretraining (CLIP) architectures. Through extensive experiments on three
medical imaging datasets—a domain particularly susceptible to labeling errors
due to diagnostic complexity—spanning diverse modalities and pathologies, we
demonstrate that SEI achieves state-of-the-art performance in mislabeled data
identification, outperforming existing methods while maintaining computational
efficiency and implementation simplicity.

1 INTRODUCTION

Deep networks have achieved remarkable results in medical imaging, enabling applications from
tumor segmentation to disease classification (Litjens et al., |2017). Yet, their performance hinges
on the quality of training data (Shi et al.,|2024). In practice, medical datasets often contain misla-
beled samples due to the complexity of diagnosis, inter-observer variability, and limited annotation
resources (Shi et al., [2024; |/Alderman et al.,2025). For instance, in dermatology, the visual appear-
ance of skin lesions can overlap heavily between malignant and benign conditions; melanomas may
resemble benign nevi in early stages, and fungal infections can mimic inflammatory skin disorders.
Even experienced dermatologists may disagree without histopathological confirmation. Similarly,
in ophthalmology, subtle retinal changes in early diabetic retinopathy can be challenging to grade
consistently, especially when annotation guidelines differ across graders. Such challenges mean that
noisy labels are a realistic concern in many medical imaging datasets.

Noisy labels pose a particular risk for overparameterized deep networks, which can fit even randomly
assigned labels given sufficient capacity (Zhang et al.,|2017). When this happens, a model effectively
memorizes mislabeled samples by learning overly specific, non-generalizable features. For example,
if an image of a benign skin nevus is mistakenly labeled as melanoma, the model may latch onto
spurious visual patterns unique to that single image—such as lighting artifacts or sensor noise—
rather than features indicative of melanoma. These spurious correlations will lead to overfitting and
degraded performance.

Our aim is to automatically identify and remove mislabeled samples from training data. This not only
uncovers systematic annotation errors but also improves overall label quality. Moreover, because
large medical datasets are often too extensive for exhaustive manual inspection, automated methods
are essential for isolating mislabeled samples without overburdening domain experts.

Prior works on mislabeled data detection typically involve multi-stage pipelines and tailored loss
functions or modules (Chen et al.L[2019;2024;|[Huang et al.| [2019; |Li et al., 2020;|(Cheng et al., 2021}
Wei et al.| |2024), which can be tightly coupled to specific architectures or disrupt standard training
workflows. We take a different approach: a simple yet effective plug-and-play method that works
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Figure 1: Training dynamics of prediction entropy for correctly labeled versus mislabeled samples.
Left: Nevus images from the ISIC dataset, comparing correctly labeled samples (ground truth:
nevus; given label: nevus) with mislabeled samples (ground truth: nevus; given label: other skin
lesion categories). Right: Grade 4 diabetic retinopathy (DR) images from the DeepDRiD dataset. In
both cases, correctly labeled samples exhibit steadily decreasing entropy throughout training, while
mislabeled samples maintain persistently high entropy, demonstrating the potential of entropy as an
indicator for noisy label detection.

with existing training setups and requires minimal changes. Our method tracks training dynamics
of a classification model with a contrastive loss (Radford et al., |2021) to align medical images and
labels. We observe that the evolution of prediction entropy encodes subtle cues for distinguishing
noisy from clean samples. Correctly labeled samples tend to exhibit a steady entropy decrease as
learning progresses, whereas mislabeled samples often maintain relatively high entropy.

However, entropy alone is insufficient to separate mislabeled data from hard but valuable clean
samples, which may also retain high entropy despite having correct labels. To address this, we
propose a signed entropy integral (SEI) statistic that captures both the magnitude and trend of
entropy evolution. This signed formulation provides a richer characterization of training dynamics:
hard clean samples and mislabeled samples exhibit distinct patterns in how their entropy changes
over time, allowing SEI to differentiate the two.

Our work makes three key contributions:

* Through large-scale analysis of training dynamics, we identify two informative signals for
distinguishing mislabeled from correctly labeled samples: entropy evolution and label-
prediction consistency over time.

* Building on these insights, we introduce signed entropy, a novel extension of Shannon
entropy that incorporates label consistency, and propose the SEI statistic that captures the
cumulative training behavior of different sample types.

* we demonstrate that our simple yet effective method achieves state-of-the-art performance
on three medical imaging datasets spanning different modalities and pathologies, without
requiring architectural modifications or complex training procedures.

2 METHODOLOGY

2.1 ProBLEM FORMULATION

We consider the task of K-class image classification, where the objective is to train a model that
predicts a label y for an input image x. The training dataset D..,:, = {(x;, y;)} contains two types
of samples. A mislabeled sample is one whose assigned label does not match its underlying semantic
content (e.g., x is an image of a melanoma but the label y is “nevus”). A correctly labeled sample
is one where the assigned label aligns with the true category. Our goal is to identify mislabeled data
in D¢ 514 by exploiting differences in their training dynamics compared to correctly labeled data.
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2.2  PreLIMINARY: CLIP ForR IMAGE CLASSIFICATION

CLIP (Radford et al., |2021) demonstrates strong zero-shot performance by learning joint visual-
textual representations from large-scale image-text pairs using a contrastive objective. Classification
is performed by measuring the similarity between image features and text embeddings derived from
prompts such as “a photo of [CLS]”, where [CLS] denotes a class name. The prediction probability
is computed as

exp(sim(v, tg)/7)
Z;il exp(sim(v,t;)/7)

p(y =klz) = )

where sim(w, t;) denotes the cosine similarity between image feature v and text embedding %,
and 7 is a temperature parameter. In this framework, each image is compared against all K class-
specific text embeddings, allowing us to incorporate dataset labels directly while preserving the
representational benefits of visual-textual alignment.

2.3 FINDINGS

To understand training dynamics of mislabeled samples, we first examine their prediction entropy.
Figure [T] shows entropy trajectories for nevus images in the ISIC dataset and grade 4 diabetic
retinopathy images in the DeepDRIiD dataset (L1u et al., 2022}, comparing correctly labeled samples
with mislabeled ones. Early in training, the two groups are entangled, exhibiting similar levels
of uncertainty. As training progresses, however, a clear separation emerges: entropy for correctly
labeled data decreases steadily, while mislabeled samples maintain elevated entropy. This suggests
that entropy provides a promising signal for distinguishing mislabeled samples from clean ones. We
observe similar trends across other classes and datasets (see Appendix [C).

Nevertheless, entropy alone proves insufficient for reliable
detection. Figure [2]illustrates this limitation by compar- 2.0 HevuS/nevus .
ing a mislabeled sample with a hard-to-learn but correctly

labeled sample. Despite their fundamentally different
ground-truth status, their entropy curves are nearly indis-
tinguishable, making it difficult to separate the two based
solely on this statistic.

Entropy

o
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2.4 IDENTIFYING MISLABELED DATA

2.4.1 SioNED ENTROPY

The observations in Section [2.3] suggest that two complementary cues—entropy dynamics and
label-prediction consistency—can be jointly exploited for identifying mislabeled data. We therefore
introduce signed entropy, a quantity that extends Shannon entropy with a label consistency term.
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Figure 3: Training dynamics analysis through label-prediction alignment patterns over time. Bubble
timeline charts illustrate the evolution of three sample categories during training: (a) easy clean
samples, (b) hard clean samples, and (c) mislabeled samples. At each time step, @ green circles
indicate alignment between predicted and given labels, while © red circles denote misalignment.
Circle size and opacity encode frequency.

Formally, for any (x,y) € Dirain, let p(x) = (p1(x),..., px(x)) denote the model’s posterior
distribution over K classes (cf. Eq.[I)). We define signed entropy as

K
H(p(x),y) = (-)D=memsere@l X", (3) log pi(x) @)
k=1

where the exponent introduces a sign depending on whether the assigned label y matches the model’s
prediction. In other words, H reduces to Shannon entropy when y agrees with the prediction, but
flips its sign under misalignment.

Discussion Shannon’s entropy is always nonnegative and only reflects distributional uncertainty,
making it blind to label correctness: both hard clean samples and mislabeled ones may exhibit high
entropy. In contrast, the signed entropy in Eq. [2] attaches a directionality:

* Positive signed entropy indicates both uncertainty and label consistency, as typically seen
in clean samples (easy or hard).

* Negative signed entropy emerges when the model contradicts the given label, flagging
potential annotation errors.

2.4.2 SioNED ENTROPY INTEGRAL

While signed entropy at a single epoch can provide useful information, training dynamics often
fluctuate, making individual snapshots unreliable for detecting mislabeled samples. Moreover, it
is unclear a priori which epochs contain the most discriminative signals. Aggregating cumulative
behavior across training offers a more stable criterion, as it naturally smooths out such fluctuations.
To this end, we introduce SEI, which accumulates signed entropy values over the entire training
trajectory.

Let p*) () denote the posterior distribution at epoch ¢. SEI is defined as

T

SEl(@,y) = ), H(p" (®),), (3)

t=1

where T is the total number of training epochs.

Analysis  Figure [ illustrates how SEI separates different sample types. For an easy clean sample,
the signed entropy remains mostly positive, as predictions stay consistent with its assigned label,
resulting in a large positive integral. A hard clean sample may initially exhibit misalignment and
accumulate negative contributions, but as training progresses, the signed entropy turns positive;
the resulting positive and negative areas partly cancel, leading to a smaller integral. By contrast, a
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Figure 4: Illustration of SEI. The plots depict signed entropy curves over training epochs for easy
clean (left), hard clean (middle), and mislabeled (right) samples. Each curve is averaged over 200
samples, and the signed area under each curve corresponds to the SEI. Correctly labeled samples
yield larger SEIs than mislabeled ones.

mislabeled sample typically shows persistent disagreement, so its signed entropy curve stays negative
throughout training, yielding a strongly negative integral.

In this way, SEI produces a single scalar that naturally ranks samples: mislabeled ones cluster at
the negative end, while correctly labeled ones occupy positive values. This simple measure proves
effective across datasets and modalities for isolating annotation errors from both easy and hard clean
samples (see Appendix [D).

2.5 THRESHOLDING

We require a threshold to distinguish between clean and mislabeled data. A fixed threshold is
impractical since the distribution of SEI values varies across datasets and training configurations.
Instead, we use an adaptive thresholding strategy that leverages artificially mislabeled samples as
reference points.

Concretely, given N training samples across K classes, we randomly select N/(K + 1) instances and
reassign their labels to an auxiliary class K + 1 that does not exist in the dataset. In the CLIP setting,
this corresponds to using a synthetic prompt such as “a dermoscopic image showing other lesions”.
Since the auxiliary class is designed to be semantically meaningless, these relabeled samples serve
as natural surrogates for mislabeled data. Moreover, choosing N/(K + 1) instances ensures that the
auxiliary class appears with a frequency comparable to the original classes, preventing imbalance in
calibration.

We then compute SEIs for all auxiliary-class samples and use their average value as the decision
threshold. Any sample whose SEI falls below this threshold is flagged as mislabeled. This simple
scheme yields an adaptive, data-driven cutoff without requiring manual tuning.

3 RELATED WORK

Addressing noisy labels in datasets has spawned two primary research directions: (1) Explicit
mislabeled data detection aims to identify and remove incorrectly labeled instances to improve data
quality, while (2) Noise robust learning develops algorithms that maintain performance despite label
noise.

Mislabeled Data Detection Most methods exploit training signals as proxies for label correctness.
Loss-based approaches leverage the intuition that higher losses often indicate incorrect labels. O2U-
Net (Huang et al.,[2019) alternates between overfitting and underfitting phases, identifying mislabeled
samples through consistently higher normalized losses. CORES (Cheng et al., [2021)) progressively
filters incorrectly labeled instances using training loss in a proposed sample sieve framework. Beyond
loss, various proxy measures have been developed, including gradient-based metrics (Zhang &
Sabuncul [2018)) and prediction-based statistics (Northcutt et al., 2021} Pleiss et al.,|2020; Song et al.,
2019). For instance, Northcutt et al.| (2021)) filter low-confidence samples using class-conditional
thresholds on predicted probabilities.
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Recent work has explored training-free approaches. SIMIFEAT (Zhu et al.|[2022)) detects noisy labels
through k-nearest neighbors in the feature space of a pre-trained model, while DEFT (Wei et al.,
2024) leverages CLIP’s image-text alignment to learn class-specific prompts for mislabel detection.
LEMOoN (Zhang et al.,|2025) exploits multimodal neighborhoods of image-caption pairs in the latent
space of CLIP to automatically identify label errors. However, the effectiveness of these methods
depends heavily on the generalization capacity of pre-trained models, which may be limited in
specialized domains like medical imaging. ReCoV (Chen et al.,[2024)) identifies mislabeled medical
data through cross-validation, though this increases computational overhead for large datasets. Some
approaches (Wang et al.,|2024) assume access to clean subsets, while we consider the more restrictive
but realistic setting where no training data can be trusted.

Noise Robust Learning Rather than targeting specific noisy instances, robust learning methods
design modules enabling effective training on noisy datasets. This includes novel architectures
(Chengetal.l[2020; Xiao et al.,|2015)), loss functions (Wang et al.,|2019;|Ye et al., 2023)), regularization
techniques (Cheng et al., 2022; [Liu et al., [2020), and training strategies (Lukasik et al., [2020; [Xia
et al., 20215 |Yuan et al., 2024)). Some works integrate noisy label detection into training pipelines
through loss re-weighting (Ren et al., 2018} Bae et al.,[2024) or re-annotation (Han et al.,|2019;|Arazo
et al., 2019; [Englesson & Azizpour, 2024). Our work focuses on identifying reliably labeled data
rather than recycling mislabeled samples. For simplicity, we discard instances flagged as mislabeled;
nevertheless, our method is compatible with approaches that attempt to reuse them (cf. Section

4 EXPERIMENTS

We evaluate our approach through two complementary assessments: first, we measure mislabeled
data detection performance on synthetically corrupted datasets to directly assess identification capa-
bility; second, we evaluate downstream classification performance.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We conduct experiments on three medical imaging datasets spanning different modalities and diag-
nostic tasks.

ISIC 2018. We use the ISIC 2018 Challenge[] Task 3 dataset for skin lesion diagnosis, containing
dermoscopic images across seven categories: melanoma, nevus, basal cell carcinoma, actinic ker-
atosis/intraepithelial carcinoma, benign keratosis, dermatofibroma, and vascular lesion. The dataset
comprises 10,015 training images and 1,512 test images.

DeepDRiD. This fundus photography dataset (Liu et al.,[2022) targets diabetic retinopathy severity
grading using a 5-point scale (0-4) following the International Clinical Diabetic Retinopathy standard.
Each patient contributes dual-view images (macula-centered and optic disc-centered) for both eyes.
We use 1,200 training images and 400 test images from the official split.

PANDA. This dataselﬂ contains 10,616 whole slide images (WSIs) of digitized H&E-stained prostate
biopsies from Radboud University Medical Center and Karolinska Institute. We focus on the Radboud
subset, which provides pixel-level annotations distinguishing background, stroma, benign epithelium,
and cancerous epithelium (subdivided into Gleason patterns 3, 4, and 5). Since Gleason grading
depends solely on epithelial architecture, we consider four classes: benign epithelium, Gleason 3,
Gleason 4, and Gleason 5. Each WSI is tiled into 224 x 224 patches, with background-dominated
patches discarded. For remaining patches, we compute area proportions of epithelial categories from
pixel-level masks and apply a dominant-label rule: patches are assigned the highest-grade category
present (priority: Gleason 5 > Gleason 4 > Gleason 3 > benign epithelium) if it covers more than 80%
of non-background pixels; otherwise, patches are discarded. This yields 4,102 benign epithelium
patches and 6,914, 6,413, and 6,956 patches for Gleason grades 3, 4, and 5, respectively. We use a
4:1 train/test split.

https://challenge.isic-archive.com/data/#2018
Znttps://kaggle.com/competitions/prostate-cancer-grade-assessment
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Table 1: Comparison with state-of-the-art mislabeled data detection methods under symmetric noise.
Results are reported in F1 score (%) across five noise rates (7 € {0.1,0.2,0.3,0.4,0.5}) on three
medical datasets (ISIC, DeepDRiD, and PANDA). The best results for each dataset and noise rate
are highlighted in bold.

ISIC DeepDRiD PANDA
0.1 02 03 04 05 0.1 0.2 0.3 04 05 0.1 0.2 0.3 04 05
INCV 38.60 42.72 47.21 5593 61.67|33.05 44.56 49.29 57.87 63.32|53.30 57.69 6123 6845 67.11
BMM 30.49 39.59 40.65 55.89 55.73|30.23 39.44 46.11 50.66 56.21|54.37 62.88 66.19 71.09 72.43
GMM 36.31 4749 49.67 64.79 67.10| 3589 4539 52.28 58.87 66.27|59.60 62.79 68.24 71.11 70.76
AUM 48.65 6297 72.60 77.70 81.67 |39.66 54.96 60.92 69.20 75.75|65.23 7239 7595 7530 77.18
CORES 36.20 56.90 67.84 76.72 82.67|26.21 42.68 56.38 69.22 68.26|60.73 63.61 66.28 73.43 7051
CL 34.15 3998 43.53 4455 43.56|33.99 47.12 53.84 51.28 62.17|54.81 59.87 62.40 69.09 72.30
SIMIFEAT | 32.01 39.33 4395 44.82 41.62|36.04 45.72 53.67 55.06 61.53 5582 61.15 68.12 70.56 69.76
DEFT 25.67 38.06 44.01 52.78 55.40|29.84 4236 45.14 52.08 62.95|53.69 59.87 62.25 67.99 69.59
ReCoV 42.15 46.78 5290 61.12 64.31|37.09 5094 5475 57.69 63.30|69.24 68.84 73.06 72.09 72.49
LEMoN 38.41 55.86 61.97 73.70 75.35|31.82 41.64 4820 64.35 69.55|59.60 62.54 73.95 7430 7558
Ours 50.44 65.64 74.80 80.07 83.93 | 45.20 56.53 63.43 71.26 78.19 |72.57 77.22 81.46 83.11 81.18

4.1.2 SyNTHETIC NOISE GENERATION

To simulate real-world annotation errors, we synthesize mislabeled samples at five noise rates
n € {0.1,0.2,0.3,0.4,0.5} using two corruption strategies:

Symmetric Noise. In a K-class setting, each sample with ground-truth label a € {1, ..., K} retains
its correct label with probability 1 — . With probability 7, it is corrupted to a different class b # a,
chosen uniformly from the K — 1 alternatives:

Pa—>b=—K711, b#a. 4)

Confusion-Calibrated Noise. To simulate realistic errors, we first train a reference ResNet-50
classifier and compute an empirical confusion matrix T' € RX*X from its predictions. For a sample
with ground-truth label a, the label remains unchanged with probability 1 — 7. With probability 7,
it is corrupted to class b (b # a) according to:

exp(Tab)

— ) p#a. (5)
7 Zk#.a exp(Tak)

Pa—sb =

This preserves the target corruption rate 7 while aligning errors with observed class confusions.

4.1.3 EVALUATION METRICS

For mislabeled data detection, we use F1 score as our primary metric, following prior works (Zhu
et al.| [2022; Kim et al., 2024). F1 score balances precision and recall, providing a more reliable
assessment. For downstream image classification, we report accuracy, F1 score, and AUC for
comprehensive evaluation.

4.1.4 IMPLEMENTATION DETAILS

All experiments use PyTorch and run on a single NVIDIA RTX 4090 GPU. For mislabeled data
identification, we employ CLIP with a Transformer text encoder and ResNet-50 vision encoder.
Training uses SGD with momentum 0.9, weight decay 1 x 104, batch size 128, and initial learning
rate 1x 1073 for 150 epochs. The learning rate decays by 0.1 at epochs 75 and 115. Images are resized
to 224 x 224 and normalized using ImageNet statistics (Russakovsky et al.,|2015). For downstream
classification tasks, we use the official dataset splits.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We evaluate our approach against existing mislabeled data indentification methods, including
INCV (Chen et al., [2019), BMM (Arazo et al.,|[2019), GMM (L1 et al., [2020), AUM (Pleiss et al.,
2020), CORES (Cheng et al.,[2021)), CL (Northcutt et al.,[2021), SIMIFEAT (Zhu et al.;|2022), DeFT
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Table 2: Comparison with state-of-the-art mislabeled data detection methods under confusion-
calibrated noise.

ISIC DeepDRiD PANDA
0.1 02 03 0.4 0.5 0.1 0.2 0.3 04 05 0.1 0.2 0.3 04 05
INCV 3299 40.44 44.03 51.62 56.64|33.15 43.50 46.54 48.60 50.68 |41.19 50.44 59.96 63.54 66.90
BMM 37.01 2692 36.10 57.36 5222|3150 36.63 45.24 50.18 52.09|46.59 63.23 5536 60.51 65.10
GMM 31.17 36.38 42.14 4894 59.09|37.82 47.33 54.34 56.46 57.72|54.15 58.11 64.58 67.93 69.24
AUM 4296 5724 6596 64.54 7142|4135 4821 56.47 60.55 61.84|61.30 6829 7231 76.08 76.52
CORES 35.75 55.64 65.56 6249 42.87|26.59 39.93 44.01 36.17 47.67|45.66 54.72 60.25 63.09 65.64
CL 38.14 43.44 48.66 4546 43.28|34.06 37.60 43.06 42.78 51.58|51.87 60.77 69.19 71.53 72.35
SIMIFEAT | 38.54 48.21 49.66 50.65 46.17 |32.13 40.98 41.57 42.38 48.57|59.97 61.08 68.25 69.10 71.94
DEFT 1533 24.67 32.72 37.03 34.41|18.46 28.74 39.68 46.53 50.34 |40.66 54.72 65.48 67.83 69.93
ReCoV 40.90 4421 61.16 64.66 66.61 | 42.63 48.49 5093 52.67 61.79 |59.50 63.15 64.58 6591 69.87
LEMoN 30.59 42.50 56.70 6191 67.07|34.06 42.62 55.80 63.86 66.82|56.40 66.66 70.22 74.80 75.13
Ours 47.75 59.35 67.25 74.98 79.91|46.59 52.65 62.84 68.35 73.04 |73.17 78.21 81.86 81.96 81.85

Table 3: Ablation study on the effectiveness of the signed term and temporal integration. EI denotes
the unsigned entropy integral (standard Shannon entropy), SE@T represents signed entropy at the
final epoch, SE@T/2 denotes signed entropy at mid-training, and SEI is our full signed entropy
integral method.

ISIC DeepDRiD PANDA
0.1 0.2 0.3 04 05 0.1 0.2 0.3 04 05 0.1 02 03 0.4 0.5
EI 35.31 45.05 5046 60.77 63.65|4291 47.86 53.85 59.28 61.14|51.76 61.50 64.26 67.26 65.86

SE@T |3573 44.64 52.01 57.89 63.20 |39.16 4433 51.96 57.93 61.29 |41.69 56.26 62.27 6291 56.85
SE@T/2 | 3697 48.19 56.30 63.72 68.73 |40.32 48.87 54.89 62.84 66.58 |57.35 60.06 64.80 66.26 66.88
SEI 47.75 59.35 67.25 74.98 79.91 | 46.59 52.65 62.84 68.35 73.04 |73.17 78.21 81.86 81.96 81.85

(Wei et al.;2024), ReCoV (Chen et al.}[2024), and LEMoN (Zhang et al.||2025)). As summarized in
Tabels|1|and 2] our approach consistently outperforms all competing methods across all datasets and
noise levels.

Under the more challenging confusion-calibrated noise setting, our method delivers significant
improvements in mislabeled data detection. On the ISIC dataset, it outperforms the second-best
approach by 4.79%, 2.11%, 1.29%, 10.32%, and 8.49% across different noise rates. On DeepDRiD,
the gains are 3.96%, 4.16%, 6.37%, 4.49%, and 6.22%, while on PANDA, our method achieves
improvements of 11.87%, 9.92%, 9.55%, 5.88%, and 5.33%. Under the symmetric noise setting, we
again observe consistent and notable performance boosts, further confirming the effectiveness of our
approach.

4.3  ANALYSIS AND DiscussioN

4.3.1 EFFECTIVENESS OF THE SIGNED TERM

To assess the contribution of the signed component in Eq. 2| we compare SEI against an unsigned
counterpart using standard Shannon entropy. As reported in Table[3] SEI consistently outperforms
the unsigned variant, validating the effectiveness of signed entropy.

We further visualize score distributions for clean and mislabeled samples under both formulations
in Appendix [F1]

4.3.2 EFFECTIVENESS OF TEMPORAL INTEGRATION

To evaluate the integral component, we compare SEI with two single-epoch baselines: SE@T (signed
entropy at the final epoch) and SE@T/2 (signed entropy at mid-training). Table [3|demonstrates that
SEI achieves superior F1 scores, indicating that single snapshots provide unreliable signals while
temporal integration yields robust detection.

The integral accumulates directional evidence over time, with each epoch contributing a signed
cue: positive when predictions align with assigned labels, negative otherwise. Mislabeled samples
accumulate predominantly negative values, while hard clean samples eventually offset early negative
contributions through later positive ones. Single-epoch measurements suffer from training fluctu-
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Table 4: Architecture generalizability of SEI. We compare performance using standard classification
networks (ResNet-50, ViT-B/16) and CLIP with different visual backbones (ResNet-50, ViT-B/16).
Results demonstrate that SEI remains effective across diverse architectures.

ISIC DeepDRiD PANDA
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
RNet-50 45.68 57.58 65.07 73.04 76.33|43.99 5134 61.17 66.89 71.75|71.21 75.64 79.21 79.28 78.25

ViT-B/16 4425 56.71 64.57 72.12 7591|4288 50.47 60.71 65.68 71.31|69.44 74.17 78.89 78.86 76.03
CLIPgyer-s50 |47.75 59.35 67.25 74.98 79.91|46.59 52.65 62.84 68.35 73.04 | 73.17 78.21 81.86 81.96 81.85
CLIPyi1-5/16 | 46.66 5836 66.89 73.59 77.25|44.58 51.78 61.27 67.74 7241|7192 76.52 80.63 81.28 79.45
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Figure 5: F1 score comparison between baseline noisy label learning methods (green) and their
SEl-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.

ations, which temporal integration effectively smooths. This enables the integral to better capture
long-term consistency patterns and reduces false detection of hard clean samples.

Besides, we analyze the timing of temporal evidence in Appendix[F.2] comparing windowed integrals:
SEI@Edarly (epochs 1-75) and SEI@Late (epochs 76-150).

4.3.3 ARCHITECTURE GENERALIZABILITY

To assess the broader applicability of our approach beyond CLIP, we evaluate SEI with standard
classification networks including ResNet-50 (He et al), 2016) and ViT (Dosovitskiy et al.| [2021).
Table shows that while performance decreases, results remain competitive. This demonstrates that:
(1) strong mislabeled data detection performance stems primarily from our proposed SEI rather than
the CLIP architecture itself; (2) CLIP nevertheless provides advantages, likely due to its contrastive
learning objective.

We also evaluate CLIP with various vision encoder backbone to assess generalization across both
CNN and Transformer architectures, confirming consistent performance.

4.3.4 SyNERGY BETWEEN SEI AND LEARNING wITH Noisy LABELS

To further demonstrate the utility of our approach, we integrate SEI as a data cleaning module with
four representative noisy label learning methods: SCE (Wang etal.,2019), M-correction (Arazo et al.,
2019)), DivideMix (Li et al.,[2020), and ProMix (Xiao et al.,[2023)). The resulting variants, SCE+SEI,
M-correction+SEI, DivideMix+SEI, and ProMix+SEI are evaluated against their respective baselines
on the ISIC dataset under confusion-calibrated noise. As shown in Figure [5| incorporating SEI
consistently improves performance in F1 score (results on accuracy and AUC are provided in
Appendix [G). These gains highlight the plug-and-play nature of SEI: it is architecture-agnostic
and integrates seamlessly into diverse noisy label learning frameworks.

5 CONCLUSION

We present SEI, a simple yet effective metric for detecting mislabeled data by leveraging signed
entropy dynamics during training, which integrates seamlessly into standard training workflows.
Extensive experiments on diverse medical imaging datasets demonstrate that SEI achieves state-of-
the-art performance while remaining efficient and easy to apply.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors acknowledge that this work adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

Code to reproduce all experiments is available athttps://anonymous.4open.science/r/
SEI-03E8/.

REFERENCES

Joseph E Alderman, Joanne Palmer, Elinor Laws, Melissa D McCradden, Johan Ordish, Marzyeh
Ghassemi, Stephen R Pfohl, Negar Rostamzadeh, Heather Cole-Lewis, Ben Glocker, et al. Tackling
algorithmic bias and promoting transparency in health datasets: the standing together consensus
recommendations. The Lancet Digital Health, 7:e64—e88, 2025.

Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Unsupervised
label noise modeling and loss correction. In ICML, 2019.

HeeSun Bae, Seungjae Shin, Byeonghu Na, and I1-Chul Moon. Dirichlet-based per-sample weighting
by transition matrix for noisy label learning. In /CLR, 2024.

Jianan Chen, Vishwesh Ramanathan, Tony Xu, and Anne L. Martel. Detecting noisy labels with
repeated cross-validations. In MICCAI, 2024.

Pengfei Chen, Benben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing
deep neural networks trained with noisy labels. In ICML, 2019.

De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du, Bo Han, and
Tongliang Liu. Class-dependent label-noise learning with cycle-consistency regularization. In
NeurIPS, 2022.

Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning with instance-
dependent label noise: A sample sieve approach. In ICLR, 2021.

Lele Cheng, Xiangzeng Zhou, Liming Zhao, Dangwei Li, Hong Shang, Yun Zheng, Pan Pan, and
Yinghui Xu. Weakly supervised learning with side information for noisy labeled images. In
ECCV, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Erik Englesson and Hossein Azizpour. Robust classification via regression for learning with noisy
labels. In ICLR, 2024.

Jiangfan Han, Ping Luo, and Xiaogang Wang. Deep Self-Learning from noisy labels. In /CCV, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Jinchi Huang, Lie Qu, Rongfei Jia, and Binqiang Zhao. O2U-Net: A simple noisy label detection
approach for deep neural networks. In ICCV, 2019.

Suyeon Kim, Dongha Lee, SeongKu Kang, Sukang Chae, Sanghwan Jang, and Hwanjo Yu. Learning
discriminative dynamics with label corruption for noisy label detection. In CVPR, 2024.

Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R.
Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger.
A probabilistic U-Net for segmentation of ambiguous images. In NeurlIPS, 2018.

10


https://anonymous.4open.science/r/SEI-03E8/
https://anonymous.4open.science/r/SEI-03E8/

Under review as a conference paper at ICLR 2026

Junnan Li, Richard Socher, and Steven C. H. Hoi. DivideMix: Learning with noisy labels as
semi-supervised learning. In ICLR, 2020.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken, and Clara I.
Sénchez. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:
60-88, 2017.

Ruhan Liu, Xiangning Wang, Qiang Wu, Ling Dai, Xi Fang, Tao Yan, Jaemin Son, Shiqi Tang, Jiang
Li, Zijian Gao, Adrian Galdran, J. M. Poorneshwaran, Hao Liu, Jie Wang, Yerui Chen, Prasanna
Porwal, Gavin Siew Wei Tan, Xiaokang Yang, Chao Dai, Haitao Song, Mingang Chen, Huating Li,
Weiping Jia, Dinggang Shen, Bin Sheng, and Ping Zhang. Deepdrid: Diabetic retinopathy-grading
and image quality estimation challenge. Patterns, 3:100512, 2022.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
regularization prevents memorization of noisy labels. In NeurIPS, 2020.

Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, and Sanjiv Kumar. Does label
smoothing mitigate label noise? In ICML, 2020.

Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating uncertainty in
dataset labels. Journal of Artificial Intelligence Research, 70:1373-1411, 2021.

Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, and Kilian Q. Weinberger. Identifying mislabeled
data using the area under the margin ranking. In NeurIPS, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, 2021.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In /ICML, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115:211-252, 2015.

Jialin Shi, Kailai Zhang, Chenyi Guo, Youquan Yang, Yali Xu, and Ji Wu. A survey of label-noise
deep learning for medical image analysis. Medical Image Analysis, 95:103166, 2024.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE: Refurbishing unclean samples for robust
deep learning. In ICML, 2019.

Haoyu Wang, Zhuo Huang, Zhiwei Lin, and Tongliang Liu. Noisegpt: Label noise detection and
rectification through probability curvature. In NeurlPS, 2024.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
entropy for robust learning with noisy labels. In ICCV, 2019.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
noisy labels revisited: A study using real-world human annotations. In /ICLR, 2022.

Tong Wei, Hao-Tian Li, Chun-Shu Li, Jiang-Xin Shi, Yufeng Li, and Min-Ling Zhang. Vision-
Language models are strong noisy label detectors. In NeurIPS, 2024.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
Robust early-learning: Hindering the memorization of noisy labels. In ICLR, 2021.

Ruixuan Xiao, Yiwen Dong, Haobo Wang, Lei Feng, Runze Wu, Gang Chen, and Junbo Zhao.
ProMix: Combating label noise via maximizing clean sample utility. In ZJJCAI, 2023.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In CVPR, 2015.

11



Under review as a conference paper at ICLR 2026

Xichen Ye, Xiaoqgiang Li, Songmin Dai, Tong Liu, Yan Sun, and Weiqin Tong. Active negative loss
functions for learning with noisy labels. In NeurIPS, 2023.

Sugqin Yuan, Lei Feng, and Tongliang Liu. Early stopping against label noise without validation data.
In ICLR, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

Haoran Zhang, Aparna Balagopalan, Nassim Oufattole, Hyewon Jeong, Yan Wu, Jiacheng Zhu, and
Marzyeh Ghassemi. LEMoN: Label error detection using multimodal neighbors. In ICML, 2025.

Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In NeurlPS, 2018.

Zhaowei Zhu, Zihao Dong, and Yang Liu. Detecting corrupted labels without training a model to
predict. In ICML, 2022.

APPENDIX

A UsE orF LARGE LANGUAGE MODELS

Large language models were used solely for light editing tasks including grammar correction, spelling
checks, and minor phrasing improvements to enhance clarity and concision.

B DATASETS

Figure [6] presents representative samples from each class across the three datasets employed in our
study: ISIC, DeepDRiD, and PANDA. We display one exemplar image per class, organized with rows
corresponding to individual datasets and columns representing distinct classes. This visualization
facilitates direct comparison of class-specific visual characteristics. The corresponding text prompts
utilized for training CLIP models are detailed in Table 3] including auxiliary class prompts for each
dataset.

Figure 6: Representative images from the datasets used in this work. Rows correspond to ISIC,
DeepDRiD, and PANDA datasets (top to bottom) and columns to class labels.
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Table 5: Text prompts for each class in the datasets. Prompts highlighted in gray are auxiliary class
prompts.

Dataset | Text Prompts

A dermoscopic image showing melanoma.

A dermoscopic image showing nevus.

A dermoscopic image showing basal cell carcinoma.

A dermoscopic image showing actinic keratosis/intraepithelial carcinoma.
A dermoscopic image showing benign keratosis.

A dermoscopic image showing dermatofibroma.

A dermoscopic image showing vascular lesion.

A dermoscopic image showing other lesions.

ISIC

A fundus image showing no evidence of diabetic retinopathy.
A fundus image exhibiting mild diabetic retinopathy.

A fundus image exhibiting moderate diabetic retinopathy.

A fundus image exhibiting severe diabetic retinopathy.

A fundus image exhibiting proliferative diabetic retinopathy.
A fundus image showing other retinal conditions.

DeepDRiD

A histology image showing benign glandular epithelium.

A histology image showing Gleason pattern 3 adenocarcinoma.
PANDA | A histology image showing Gleason pattern 4 adenocarcinoma.
A histology image showing Gleason pattern 5 adenocarcinoma.
A histology image showing other conditions.

C ADDITIONAL ANALYSIS OF ENTROPY TRAJECTORIES

In this section, we visualize entropy trajectories for more representative categories across the three
datasets. For ISIC and DeepDRiD, we additionally show trajectories for other classes, comparing
correctly labeled samples with mislabeled ones. As shown in Figure [/} we plot entropy trajectories
for melanoma cases from the ISIC dataset, grade O diabetic retinopathy images from the DeepDRiD
dataset, benign epithelium samples from the PANDA dataset, and Gleason 5 cancerous epithelium
images from the PANDA dataset. Across all examined cases, we consistently observe the regularity
described in Section2.3]

D ExtenDED EvaLuATiON OF SEI FOR MISLABELED SAMPLE DETECTION

We present additional empirical evidence demonstrating the effectiveness of SEL Figures [8] 0] and
illustrate the discriminative power of SEI in separating different sample types within the ISIC,
DeepDRiD, and PANDA datasets, respectively. The results consistently validate the theoretical
framework outlined in Section [2.4.2} samples with correct labels that are easily classified exhibit
large positive SEI values, challenging but correctly labeled samples demonstrate moderate SEI
values, while mislabeled samples consistently display strongly negative SEI values.

E TuHeORETICAL PROPERTIES OF SIGNED ENTROPY

In this section, we provide a short theoretical analysis of the proposed signed entropy (Eq.[2)). Recall
that for (x, y) € Drrain With posterior p(x), we define

K
H(p(@),y) = (- @1 by (@) log pi (@)
k=1

E.1 REeLATION TO SHANNON ENTROPY

Proposition 1 (Reduction to Shannon Entropy) If y = arg maxy pi(x), then
H(p(x),y) = H(p(x)),
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Figure 7: Training dynamics of prediction entropy for correctly labeled versus mislabeled samples.
Top-left: melanoma images from the ISIC dataset. Top-right: grade O diabetic retinopathy (DR)
images from the DeepDRiD dataset. Bottom-left: benign glandular epithelium images from the
PANDA dataset. Bottom-right: Gleason 5 cancerous epithelium images from the PANDA dataset.
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Figure 8: Illustration of SEI using melanoma images from the ISIC dataset. The plots show signed
entropy curves across training epochs for easy clean (left), hard clean (middle), and mislabeled (right)
samples. Each curve is averaged over 200 samples, and the signed area under the curve represents
the SEI. Correctly labeled samples consistently exhibit larger SEIs than mislabeled ones.

where H(p) = — Y. px log pi is Shannon’s entropy.
Proof 1 By definition, the sign exponent equals (=1)' = —1 when the prediction agrees with v,

yielding the standard Shannon entropy.

E.2 CoNcAvITY AND SIGN SYMMETRY

Proposition 2 (Concavity up to Sign) Let P denote the probability simplex in RX. For a fixed label
y, the signed entropy H(-,y) is concave on P if y matches the prediction, and is convex on P if y

disagrees with the prediction.
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Figure 9: Illustration of SEI using Grade O diabetic retinopathy (DR) images from the DeepDRiD
dataset.
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Figure 10: Illustration of SEI using Gleason 5 images from the PANDA dataset.

Proof 2 The Shannon entropy H(p) is strictly concave on P (classical result). Multiplying by —1
flips concavity to convexity. Since the sign of H depends only on alignment, the stated property

Jollows.

E.3 ImpLicaTION FOR SEI

These properties imply that SEI (Eq.[3) can be interpreted as a signed, temporally averaged measure
of prediction uncertainty. Its sign encodes long-term label alignment, while its magnitude captures
how confidently the model reaches this alignment (or misalignment). This dual role is what enables
SEI to separate mislabeled data from both easy and hard clean samples.

F AppitioNAL ABLATION RESULTS

F.1 VisuaL EVIDENCE FOR THE SIGNED TERM

We further visualize score distributions for clean and mislabeled samples under both formulations
(see Figure [TI). The unsigned variant exhibits heavily overlapping positive-only distributions,
making separation difficult. In contrast, SEI introduces a clear negative tail for mislabeled samples,
creating a bimodal structure with reduced overlap and more distinguishable groups.

F.2 FuLL-TRAJECTORY INTEGRATION vS. WINDOWED INTEGRALS

Table[6]shows that both windowed variants (SEI@Early and SEI@Late) perform worse than the full-
trajectory SEIL. Restricting to either an early or late window discards complementary cues present in
the other phase.

G AbpbpITioNAL RESULTS ON DOWNSTREAM IMAGE CLASSIFICATION

Beyond F1 score, we also report accuracy and AUC for SCE, M-correction, DivideMix, and ProMix,
both with and without SEI, under the same protocol as Section Results are presented in
Figure [12]and Figure
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Figure 11: Score distributions for clean and noisy samples on the PANDA dataset. We compare
our proposed SEI statistic (bottom row) against the unsigned Shannon entropy integral baseline (top
row) for noise rates 7 € {0.1,0.2,0.3,0.4,0.5}. Each column corresponds to increasing noise levels
from left to right. The SEI statistic demonstrates better separation between clean and noisy sample
distributions at all noise levels.

Table 6: Evaluation of windowed integrals—SEI@Early (epochs 1-75) and SEI@Late (epochs
76—150)—compared to the full SEIL.

ISIC DeepDRiD PANDA
01 02 03 04 O05]01 02 03 04 05|01 02 03 04 05
SE@Early | 44.88 56.15 63.50 69.88 73.80|36.05 42.69 54.30 60.63 66.48 | 68.01 70.89 75.05 76.36 76.11

SE@Late |37.98 51.23 62.57 65.77 69.56 | 41.11 47.08 58.81 63.96 70.81|70.46 73.50 77.10 77.91 78.66
SEI 47.75 59.35 67.25 74.98 79.91|46.59 52.65 62.84 68.35 73.04|73.17 78.21 81.86 81.96 81.85
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Figure 12: Accuracy comparison under confusion-calibrated noise between baseline noisy label
learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-
correction, DivideMix, and ProMix.
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Figure 13: AUC comparison under confusion-calibrated noise between baseline noisy label learning

methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction,
DivideMix, and ProMix.

In addition, we provide comprehensive results (F1 score, accuracy, and AUC) under symmetric noise,

which are reported in Figures and[16]
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Figure 14: F1 score comparison under symmetric noise between baseline noisy label learning

methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction,
DivideMix, and ProMix.
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Figure 15: Accuracy comparison under symmetric noise between baseline noisy label learning

methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction,
DivideMix, and ProMix.
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Figure 16: AUC comparison under symmetric noise between baseline noisy label learning methods

(green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix,
and ProMix.

H Sensitivity To TRAINING CONFIGURATION

We conducted a series of hyperparameter sensitivity experiments on the PANDA dataset under

the confusion-calibrated 50% noise setting to assess how SEI behaves under different training
configurations.

Training duration and early stopping. We first varied the number of training epochs while
keeping all other hyperparameters fixed. As shown in Table[7] the small standard deviation (0.42%)
indicates that SEI is insensitive to moderate changes in training duration as long as the model reaches
convergence. In contrast, early stopping at epoch 75 leads to a noticeable drop (Table[6)), confirming
that SEI assumes a reasonably converged model rather than an undertrained one.

Learning rate. We investigate the sensitivity of SEI to the choice of initial learning rate by

sweeping it from le-4 to le-2. As shown in Table[§] we observe that the performance of SEI remains
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Table 7: Sensitivity of SEI to training duration on PANDA (confusion-calibrated noise, n = 0.5).
The default setting is 150 epochs.

Epochs | 100 150 200 mean std
F1 (%) ‘81.34 81.85 81.02 81.40 0.42

very stable within the range typically used for training CLIP and standard classifiers (5e-4—1e-3), and
only starts to degrade when the learning rate is excessively large (5e-3 or le-2). This trend mirrors
standard classification training, where an appropriate learning rate is needed for effective learning of
the base model itself.

Table 8: Sensitivity of SEI to learning rate on PANDA (confusion-calibrated noise, = 0.5). The
default learning rate is le-3.

Learning rate \ le-4 5S5e4 1e-3 5e-3 le-2
F1 (%) | 80.06 81.50 81.85 78.86 77.00

Data augmentation, label smoothing, and weight decay. We also examined several common
regularization choices. For data augmentation, as shown in Table[9] “Strong aug.” adds random affine
transforms and random erasing. SEI remains robust under both weak and strong augmentations, with
a slight gain under stronger augmentation. MixUp—whose heavy mixing disrupts label-prediction
alignment—slightly reduces performance. For label smoothing, as shown in Table [T0] moderate
label smoothing slightly degrades performance, and stronger smoothing further weakens entropy
signals, as expected. As shown in Tabel [T1] weight decay within [5e-5, Se-4] has only mild impact,
with slightly higher F1 at the upper end.

Table 9: Effect of data augmentation on SEI (PANDA, confusion-calibrated noise, n = 0.5). The
default setting is weak augmentation.

Augmentation setting | Strong aug. Weak aug. MixUp
F1 (%) \ 82.38 81.85 80.88

Table 10: Effect of label smoothing on SEI (PANDA, confusion-calibrated noise, n = 0.5). The
default setting is 0.0.

Label smoothing | 0.0 0.1 0.2
F1 (%) ‘81.85 81.45 80.36

Table 11: Effect of weight decay on SEI (PANDA, confusion-calibrated noise, n = 0.5). The default
setting is le — 4.

Weight decay | Se -5 le—-4 5e—4
F1 (%) ‘ 81.36 81.85 82.21

Temporal integration window. We compare the full-trajectory SEI with variants that integrate
signed entropy over fixed 50-epoch windows with a stride of 20. As reported in Table [T2] all
window-based variants perform significantly worse than full-trajectory SEI, consistent with the
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Table 12: SEI with different 50-epoch integration windows (PANDA, confusion-calibrated noise,
n =0.5).

Window (epochs) | [0,49] [20,69] [40,89] [60,109] [80,129] [100, 149]
F1 (%) | 7534 5078 4992 51.03 54.09 56.81

SEI@Early/SEI@Late results in Table[f] This confirms that SEI benefits from integrating the entire
training trajectory rather than relying on a narrow early or late slice.

In summary, SEIis robust under standard training-to-convergence settings and typical hyperparameter
choices. The ranking is stable with respect to reasonable training lengths, LR schedules, and
regularization. Our recommendation is to use the full training trajectory; extreme early stopping or
highly atypical hyperparameters are not ideal conditions for SEI.

I SeNsITIVITY TO THE AUXILIARY-CLASS SAMPLING RATIO

To evaluate the robustness of the auxiliary-class—based threshold, we performed a sensitivity anal-
ysis on the PANDA dataset with 50% confusion-calibrated noise by varying the sampling ratio of
auxiliary-class samples. In our default setting, the number of auxiliary samples is N/(K+1). We
scaled this number using factors of 0.5x, 0.75x, 1.0%, 1.5x, and 2.0x. As shown in Tabel the F1
scores remain within a tight range, with a mean of 81.87% and a standard deviation of only 0.72%,
even when the number of auxiliary samples varies by a factor of four. This indicates that SEI is
not sensitive to the exact sampling ratio: as long as a reasonable number of auxiliary samples is
used, the estimated mean SEI for the auxiliary class remains stable. It is also worth noting that
although the sampling ratio is manually specified, the threshold itself is entirely data-driven and
learned adaptively.

Table 13: Sensitivity of SEI to the auxiliary-class sampling ratio on PANDA (confusion-calibrated
noise, 7 = 0.5). The ratio is expressed as a multiplier of the default N/(K + 1) setting. The default
setting is 1.0x.

Ratio factor | 0.5x  0.75x  1.0x  15x  2.0x
F1 (%) ‘81.94 83.01 81.85 8141 81.12

J  GENERALIZATION OF SEI TO NATURAL IMAGES WiTH REAL-WORLD NOISE

To assess the generalization ability of SEI beyond the medical domain and to evaluate its behavior
under real-world human annotation noise, we conducted additional experiments on the CIFAR-
100N 2022)), a natural-image dataset with real human annotation noise. CIFAR-100N is
a noisy-label variant of CIFAR-100 where each training image is re-annotated by human annotators,
while the original CIFAR-100 labels are kept as clean ground truth.

On CIFAR-100N, we compare SEI against the same set of noisy label detection baselines used
in the main paper. As shown in Table SEI again achieves the best F1 score for mislabeled
data detection, outperforming the second-best method by 2.2%. These results indicate that SEI is
not domain-specific. The signed entropy dynamics remain effective on a standard natural image
dataset, and SEI robustly handles real human annotation noise—not only synthetic symmetric or
confusion-calibrated noise.

K INTER-OBSE VARIABILITY VS. LABEL NOISE
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Table 14: Mislabeled sample detection on CIFAR-100N. We report F1 scores (%) for identifying
mislabeled samples. The best result is highlighted in bold.

Method | INCY BMM GMM AUM CORES CL SIMIFEAT DeFT ReCoV LEMoN Ours
F1(%) | 59.77 63.55 63.83 74.54 3852  67.64 79.21 75.03  67.59 78.40 81.41

Inter-observer variability and label noise are related but not identical. Variability across annotators
often reflects inherent uncertainty, whereas noisy label detection assumes a single hard label per
sample and seeks to identify cases where that label is incorrect. Learning with uncertain or proba-
bilistic labels—such as modeling annotator distributions or ambiguity—is an important but distinct

problem setting (Kohl et al., 2018)) and is not the focus of this work.

Our work operates strictly under the standard hard-label noise detection setting, where each training
sample is associated with one label, and the goal is to detect mislabeled instances under this
assumption. SEI is therefore designed and evaluated within this framework.

L SEI unpER EXTREME NOISE RATES

In clinical practice, datasets with more than 50% label disagreement are typically considered unre-
liable for training. Accordingly, our main experiments focus on noise rates up to 0.5. To further
assess robustness, we additionally evaluate SEI on the PANDA dataset under more extreme noise
levels 7 € {0.6,0.7,0.8}, for both confusion-calibrated noise and symmetric noise. The F1 scores
for mislabeled-data detection are summarized in Table

Table 15: SEI performance on PANDA under extreme noise rates. We report F1 scores (%) for
mislabeled data detection.

Noise rate | 0.6 0.7 0.8
Confusion-calibrated | 81.07 79.93 81.83
Symmetric 81.66 80.95 80.51

Even at very high noise rates (60—80%), SEI remains stable around 80% F1, without a significant
performance collapse. Performance does not degrade monotonically; instead, it fluctuates slightly
within a narrow band, suggesting that SEI can still capture useful training-dynamics signals even
when a large fraction of labels is corrupted.

M Per-Crass ANALYSIS OF Noisy-LABEL DETECTION

We perform a per-class analysis of noisy label detection performance on PANDA with 50% confusion-
calibrated noise. For each class, we report the class-wise false positive rate (FPR) and per-class F1
score as shown in Table[T6

Table 16: Per-class false positive rate and F1 for noisy-label detection on PANDA (confusion-
calibrated noise, = 0.5).

Class \ Per-class FPR (%) Per-class F1 (%)
Benign epithelium 13.66 85.47
Gleason 3 22.87 80.38
Gleason 4 25.87 80.14
Gleason 5 21.63 82.91

These results show that SEI does not systematically over-filter any particular class. Notably, benign
epithelium—the smallest class—has the lowest false positive rate (13.66%), suggesting that minority
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patterns are not disproportionately removed. Overall, SEI achieves consistently strong detection
quality across all classes.

This outcome aligns with the design of SEI: by integrating signed entropy over the entire training
trajectory, SEI naturally separates hard-but-correct samples from mislabeled ones. Hard, correctly
labeled samples may have high entropy early in training but eventually align with their labels and
accumulate positive signed contributions. In contrast, mislabeled samples remain misaligned for
most of training and accumulate negative contributions. This reduces the risk of misclassifying
intrinsically hard or minority-subtype samples as noisy.
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