Entropy Never Lies: Signed Entropy Integral Unmasks Mislabeled Data

Anonymous authorsPaper under double-blind review

ABSTRACT

Mislabeled samples in training datasets severely degrade the performance of deep networks, as overparameterized models tend to memorize erroneous labels. We address this challenge by proposing a novel approach for mislabeled data detection that leverages training dynamics. Our method is grounded in the key observation that correctly labeled samples exhibit consistent entropy decrease during training, while mislabeled samples maintain relatively high entropy throughout the training process. Building on this insight, we introduce a signed entropy integral (SEI) statistic that captures both the magnitude and temporal trend of prediction entropy across training epochs. SEI is broadly applicable to classification networks and demonstrates particular effectiveness when integrated with contrastive languageimage pretraining (CLIP) architectures. Through extensive experiments on three medical imaging datasets—a domain particularly susceptible to labeling errors due to diagnostic complexity—spanning diverse modalities and pathologies, we demonstrate that SEI achieves state-of-the-art performance in mislabeled data identification, outperforming existing methods while maintaining computational efficiency and implementation simplicity.

1 Introduction

Deep networks have achieved remarkable results in medical imaging, enabling applications from tumor segmentation to disease classification (Litjens et al., 2017). Yet, their performance hinges on the quality of training data (Shi et al., 2024). In practice, medical datasets often contain mislabeled samples due to the complexity of diagnosis, inter-observer variability, and limited annotation resources (Shi et al., 2024; Alderman et al., 2025). For instance, in dermatology, the visual appearance of skin lesions can overlap heavily between malignant and benign conditions; melanomas may resemble benign nevi in early stages, and fungal infections can mimic inflammatory skin disorders. Even experienced dermatologists may disagree without histopathological confirmation. Similarly, in ophthalmology, subtle retinal changes in early diabetic retinopathy can be challenging to grade consistently, especially when annotation guidelines differ across graders. Such challenges mean that noisy labels are a realistic concern in many medical imaging datasets.

Noisy labels pose a particular risk for overparameterized deep networks, which can fit even randomly assigned labels given sufficient capacity (Zhang et al., 2017). When this happens, a model effectively memorizes mislabeled samples by learning overly specific, non-generalizable features. For example, if an image of a benign skin nevus is mistakenly labeled as melanoma, the model may latch onto spurious visual patterns unique to that single image—such as lighting artifacts or sensor noise—rather than features indicative of melanoma. These spurious correlations will lead to overfitting and degraded performance.

Our aim is to automatically identify and remove mislabeled samples from training data. This not only uncovers systematic annotation errors but also improves overall label quality. Moreover, because large medical datasets are often too extensive for exhaustive manual inspection, automated methods are essential for isolating mislabeled samples without overburdening domain experts.

Prior works on mislabeled data detection typically involve multi-stage pipelines and tailored loss functions or modules (Chen et al., 2019; 2024; Huang et al., 2019; Li et al., 2020; Cheng et al., 2021; Wei et al., 2024), which can be tightly coupled to specific architectures or disrupt standard training workflows. We take a different approach: a simple yet effective plug-and-play method that works

Figure 1: Training dynamics of prediction entropy for correctly labeled versus mislabeled samples. Left: Nevus images from the ISIC dataset, comparing correctly labeled samples (ground truth: nevus; given label: nevus) with mislabeled samples (ground truth: nevus; given label: other skin lesion categories). Right: Grade 4 diabetic retinopathy (DR) images from the DeepDRiD dataset. In both cases, correctly labeled samples exhibit steadily decreasing entropy throughout training, while mislabeled samples maintain persistently high entropy, demonstrating the potential of entropy as an indicator for noisy label detection.

with existing training setups and requires minimal changes. Our method tracks training dynamics of a classification model with a contrastive loss (Radford et al., 2021) to align medical images and labels. We observe that the evolution of prediction entropy encodes subtle cues for distinguishing noisy from clean samples. Correctly labeled samples tend to exhibit a steady entropy decrease as learning progresses, whereas mislabeled samples often maintain relatively high entropy.

However, entropy alone is insufficient to separate mislabeled data from hard but valuable clean samples, which may also retain high entropy despite having correct labels. To address this, we propose a signed entropy integral (SEI) statistic that captures both the magnitude and trend of entropy evolution. This signed formulation provides a richer characterization of training dynamics: hard clean samples and mislabeled samples exhibit distinct patterns in how their entropy changes over time, allowing SEI to differentiate the two.

Our work makes three key contributions:

- Through large-scale analysis of training dynamics, we identify two informative signals for distinguishing mislabeled from correctly labeled samples: entropy evolution and labelprediction consistency over time.
- Building on these insights, we introduce signed entropy, a novel extension of Shannon entropy that incorporates label consistency, and propose the SEI statistic that captures the cumulative training behavior of different sample types.
- we demonstrate that our simple yet effective method achieves state-of-the-art performance on three medical imaging datasets spanning different modalities and pathologies, without requiring architectural modifications or complex training procedures.

2 Methodology

2.1 Problem Formulation

We consider the task of K-class image classification, where the objective is to train a model that predicts a label y for an input image x. The training dataset $\mathcal{D}_{\texttt{train}} = \{(x_i, y_i)\}$ contains two types of samples. A *mislabeled* sample is one whose assigned label does not match its underlying semantic content (e.g., x is an image of a melanoma but the label y is "nevus"). A *correctly labeled* sample is one where the assigned label aligns with the true category. Our goal is to identify mislabeled data in $\mathcal{D}_{\texttt{train}}$ by exploiting differences in their training dynamics compared to correctly labeled data.

2.2 Preliminary: CLIP for Image Classification

CLIP (Radford et al., 2021) demonstrates strong zero-shot performance by learning joint visual-textual representations from large-scale image-text pairs using a contrastive objective. Classification is performed by measuring the similarity between image features and text embeddings derived from prompts such as "a photo of [CLS]", where [CLS] denotes a class name. The prediction probability is computed as

$$p(y = k|\mathbf{x}) = \frac{\exp(\sin(\mathbf{v}, \mathbf{t}_k)/\tau)}{\sum_{j=1}^{K} \exp(\sin(\mathbf{v}, \mathbf{t}_j)/\tau)},$$
 (1)

where $sim(v, t_k)$ denotes the cosine similarity between image feature v and text embedding t_k , and τ is a temperature parameter. In this framework, each image is compared against all K class-specific text embeddings, allowing us to incorporate dataset labels directly while preserving the representational benefits of visual-textual alignment.

2.3 Findings

To understand training dynamics of mislabeled samples, we first examine their prediction *entropy*. Figure 1 shows entropy trajectories for nevus images in the ISIC dataset and grade 4 diabetic retinopathy images in the DeepDRiD dataset (Liu et al., 2022), comparing correctly labeled samples with mislabeled ones. Early in training, the two groups are entangled, exhibiting similar levels of uncertainty. As training progresses, however, a clear separation emerges: entropy for correctly labeled data decreases steadily, while mislabeled samples maintain elevated entropy. This suggests that entropy provides a promising signal for distinguishing mislabeled samples from clean ones. We observe similar trends across other classes and datasets (see Appendix C).

Nevertheless, entropy alone proves insufficient for reliable detection. Figure 2 illustrates this limitation by comparing a mislabeled sample with a hard-to-learn but correctly labeled sample. Despite their fundamentally different ground-truth status, their entropy curves are nearly indistinguishable, making it difficult to separate the two based solely on this statistic.

To address this limitation, we investigate an additional aspect of training dynamics: the *alignment between given labels and model predictions over time*. Figure 3 presents alignment statistics for three distinct sample categories: easy clean, hard clean, and mislabeled data, where circle size and opacity reflect frequency. We observe that: (1) most easy clean samples exhibit consistent alignment, with predictions typically matching their labels throughout training; (2) hard clean samples generally demonstrate mixed dynamics; (3) mislabeled samples are predominantly characterized by persistent misalignment with their given labels. These distinctive alignment patterns provide complementary information beyond entropy, enabling better discrimination between mislabeled samples and challenging yet correctly labeled ones.

Figure 2: Entropy trajectories for a mislabeled sample (ground truth: nevus; given label: melanoma) and a hard clean sample (ground truth: nevus; given label: nevus). Despite differing label correctness, their entropy curves are nearly indistinguishable. This illustrates that entropy alone cannot reliably distinguish mislabeled data from challenging but clean examples.

2.4 IDENTIFYING MISLABELED DATA

2.4.1 SIGNED ENTROPY

The observations in Section 2.3 suggest that two complementary cues—entropy dynamics and label-prediction consistency—can be jointly exploited for identifying mislabeled data. We therefore introduce *signed entropy*, a quantity that extends Shannon entropy with a label consistency term.

Figure 3: Training dynamics analysis through label-prediction alignment patterns over time. Bubble timeline charts illustrate the evolution of three sample categories during training: (a) easy clean samples, (b) hard clean samples, and (c) mislabeled samples. At each time step, • green circles indicate alignment between predicted and given labels, while • red circles denote misalignment. Circle size and opacity encode frequency.

Formally, for any $(x, y) \in \mathcal{D}_{train}$, let $p(x) = (p_1(x), \dots, p_K(x))$ denote the model's posterior distribution over K classes (cf. Eq. 1). We define signed entropy as

$$\mathcal{H}(\boldsymbol{p}(\boldsymbol{x}), y) = (-1)^{\mathbb{I}[y = \arg\max_{k} p_{k}(\boldsymbol{x})]} \sum_{k=1}^{K} p_{k}(\boldsymbol{x}) \log p_{k}(\boldsymbol{x}),$$
(2)

where the exponent introduces a sign depending on whether the assigned label y matches the model's prediction. In other words, \mathcal{H} reduces to Shannon entropy when y agrees with the prediction, but flips its sign under misalignment.

Discussion Shannon's entropy is always nonnegative and only reflects distributional uncertainty, making it blind to label correctness: both hard clean samples and mislabeled ones may exhibit high entropy. In contrast, the signed entropy in Eq. 2 attaches a directionality:

- Positive signed entropy indicates both uncertainty and label consistency, as typically seen
 in clean samples (easy or hard).
- **Negative signed entropy** emerges when the model contradicts the given label, flagging potential annotation errors.

2.4.2 SIGNED ENTROPY INTEGRAL

While signed entropy at a single epoch can provide useful information, training dynamics often fluctuate, making individual snapshots unreliable for detecting mislabeled samples. Moreover, it is unclear a priori which epochs contain the most discriminative signals. Aggregating *cumulative behavior* across training offers a more stable criterion, as it naturally smooths out such fluctuations. To this end, we introduce SEI, which accumulates signed entropy values over the entire training trajectory.

Let $p^{(t)}(x)$ denote the posterior distribution at epoch t. SEI is defined as

$$SEI(\boldsymbol{x}, y) = \sum_{t=1}^{T} \mathcal{H}(\boldsymbol{p}^{(t)}(\boldsymbol{x}), y), \qquad (3)$$

where *T* is the total number of training epochs.

Analysis Figure 4 illustrates how SEI separates different sample types. For an easy clean sample, the signed entropy remains mostly positive, as predictions stay consistent with its assigned label, resulting in a large positive integral. A hard clean sample may initially exhibit misalignment and accumulate negative contributions, but as training progresses, the signed entropy turns positive; the resulting positive and negative areas partly cancel, leading to a smaller integral. By contrast, a

Figure 4: Illustration of SEI. The plots depict signed entropy curves over training epochs for easy clean (left), hard clean (middle), and mislabeled (right) samples. Each curve is averaged over 200 samples, and the signed area under each curve corresponds to the SEI. Correctly labeled samples yield larger SEIs than mislabeled ones.

mislabeled sample typically shows persistent disagreement, so its signed entropy curve stays negative throughout training, yielding a strongly negative integral.

In this way, SEI produces a single scalar that naturally ranks samples: mislabeled ones cluster at the negative end, while correctly labeled ones occupy positive values. This simple measure proves effective across datasets and modalities for isolating annotation errors from both easy and hard clean samples (see Appendix D).

2.5 Thresholding

We require a threshold to distinguish between clean and mislabeled data. A fixed threshold is impractical since the distribution of SEI values varies across datasets and training configurations. Instead, we use an adaptive thresholding strategy that leverages artificially mislabeled samples as reference points.

Concretely, given N training samples across K classes, we randomly select N/(K+1) instances and reassign their labels to an auxiliary class K+1 that does not exist in the dataset. In the CLIP setting, this corresponds to using a synthetic prompt such as "a dermoscopic image showing other lesions". Since the auxiliary class is designed to be semantically meaningless, these relabeled samples serve as natural surrogates for mislabeled data. Moreover, choosing N/(K+1) instances ensures that the auxiliary class appears with a frequency comparable to the original classes, preventing imbalance in calibration.

We then compute SEIs for all auxiliary-class samples and use their average value as the decision threshold. Any sample whose SEI falls below this threshold is flagged as mislabeled. This simple scheme yields an adaptive, data-driven cutoff without requiring manual tuning.

3 Related Work

Addressing noisy labels in datasets has spawned two primary research directions: (1) Explicit mislabeled data detection aims to identify and remove incorrectly labeled instances to improve data quality, while (2) Noise robust learning develops algorithms that maintain performance despite label noise.

Mislabeled Data Detection Most methods exploit training signals as proxies for label correctness. Loss-based approaches leverage the intuition that higher losses often indicate incorrect labels. O2U-Net (Huang et al., 2019) alternates between overfitting and underfitting phases, identifying mislabeled samples through consistently higher normalized losses. CORES (Cheng et al., 2021) progressively filters incorrectly labeled instances using training loss in a proposed sample sieve framework. Beyond loss, various proxy measures have been developed, including gradient-based metrics (Zhang & Sabuncu, 2018) and prediction-based statistics (Northcutt et al., 2021; Pleiss et al., 2020; Song et al., 2019). For instance, Northcutt et al. (2021) filter low-confidence samples using class-conditional thresholds on predicted probabilities.

Recent work has explored training-free approaches. SIMIFEAT (Zhu et al., 2022) detects noisy labels through k-nearest neighbors in the feature space of a pre-trained model, while DEFT (Wei et al., 2024) leverages CLIP's image-text alignment to learn class-specific prompts for mislabel detection. LEMoN (Zhang et al., 2025) exploits multimodal neighborhoods of image-caption pairs in the latent space of CLIP to automatically identify label errors. However, the effectiveness of these methods depends heavily on the generalization capacity of pre-trained models, which may be limited in specialized domains like medical imaging. ReCoV (Chen et al., 2024) identifies mislabeled medical data through cross-validation, though this increases computational overhead for large datasets. Some approaches (Wang et al., 2024) assume access to clean subsets, while we consider the more restrictive but realistic setting where no training data can be trusted.

Noise Robust Learning Rather than targeting specific noisy instances, robust learning methods design modules enabling effective training on noisy datasets. This includes novel architectures (Cheng et al., 2020; Xiao et al., 2015), loss functions (Wang et al., 2019; Ye et al., 2023), regularization techniques (Cheng et al., 2022; Liu et al., 2020), and training strategies (Lukasik et al., 2020; Xia et al., 2021; Yuan et al., 2024). Some works integrate noisy label detection into training pipelines through loss re-weighting (Ren et al., 2018; Bae et al., 2024) or re-annotation (Han et al., 2019; Arazo et al., 2019; Englesson & Azizpour, 2024). Our work focuses on identifying reliably labeled data rather than recycling mislabeled samples. For simplicity, we discard instances flagged as mislabeled; nevertheless, our method is compatible with approaches that attempt to reuse them (cf. Section 4.3.4).

4 Experiments

We evaluate our approach through two complementary assessments: first, we measure mislabeled data detection performance on synthetically corrupted datasets to directly assess identification capability; second, we evaluate downstream classification performance.

4.1 Experimental Setup

4.1.1 Datasets

We conduct experiments on three medical imaging datasets spanning different modalities and diagnostic tasks.

ISIC 2018. We use the ISIC 2018 Challenge¹ Task 3 dataset for skin lesion diagnosis, containing dermoscopic images across seven categories: melanoma, nevus, basal cell carcinoma, actinic keratosis/intraepithelial carcinoma, benign keratosis, dermatofibroma, and vascular lesion. The dataset comprises 10,015 training images and 1,512 test images.

DeepDRiD. This fundus photography dataset (Liu et al., 2022) targets diabetic retinopathy severity grading using a 5-point scale (0-4) following the International Clinical Diabetic Retinopathy standard. Each patient contributes dual-view images (macula-centered and optic disc-centered) for both eyes. We use 1,200 training images and 400 test images from the official split.

PANDA. This dataset² contains 10,616 whole slide images (WSIs) of digitized H&E-stained prostate biopsies from Radboud University Medical Center and Karolinska Institute. We focus on the Radboud subset, which provides pixel-level annotations distinguishing background, stroma, benign epithelium, and cancerous epithelium (subdivided into Gleason patterns 3, 4, and 5). Since Gleason grading depends solely on epithelial architecture, we consider four classes: benign epithelium, Gleason 3, Gleason 4, and Gleason 5. Each WSI is tiled into 224 × 224 patches, with background-dominated patches discarded. For remaining patches, we compute area proportions of epithelial categories from pixel-level masks and apply a dominant-label rule: patches are assigned the highest-grade category present (priority: Gleason 5 > Gleason 4 > Gleason 3 > benign epithelium) if it covers more than 80% of non-background pixels; otherwise, patches are discarded. This yields 4,102 benign epithelium patches and 6,914, 6,413, and 6,956 patches for Gleason grades 3, 4, and 5, respectively. We use a 4:1 train/test split.

https://challenge.isic-archive.com/data/#2018

²https://kaggle.com/competitions/prostate-cancer-grade-assessment

Table 1: Comparison with state-of-the-art mislabeled data detection methods under symmetric noise. Results are reported in F1 score (%) across five noise rates ($\eta \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$) on three medical datasets (ISIC, DeepDRiD, and PANDA). The best results for each dataset and noise rate are highlighted in **bold**.

			ISIC				D	eepDRi	iD		PANDA					
	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	
INCV	38.60	42.72	47.21	55.93	61.67	33.05	44.56	49.29	57.87	63.32	53.30	57.69	61.23	68.45	67.11	
BMM	30.49	39.59	40.65	55.89	55.73	30.23	39.44	46.11	50.66	56.21	54.37	62.88	66.19	71.09	72.43	
GMM	36.31	47.49	49.67	64.79	67.10	35.89	45.39	52.28	58.87	66.27	59.60	62.79	68.24	71.11	70.76	
AUM	48.65	62.97	72.60	77.70	81.67	39.66	54.96	60.92	69.20	75.75	65.23	72.39	75.95	75.30	77.18	
CORES	36.20	56.90	67.84	76.72	82.67	26.21	42.68	56.38	69.22	68.26	60.73	63.61	66.28	73.43	70.51	
CL	34.15	39.98	43.53	44.55	43.56	33.99	47.12	53.84	51.28	62.17	54.81	59.87	62.40	69.09	72.30	
SIMIFEAT	32.01	39.33	43.95	44.82	41.62	36.04	45.72	53.67	55.06	61.53	55.82	61.15	68.12	70.56	69.76	
DEFT	25.67	38.06	44.01	52.78	55.40	29.84	42.36	45.14	52.08	62.95	53.69	59.87	62.25	67.99	69.59	
ReCoV	42.15	46.78	52.90	61.12	64.31	37.09	50.94	54.75	57.69	63.30	69.24	68.84	73.06	72.09	72.49	
LEMoN	38.41	55.86	61.97	73.70	75.35	31.82	41.64	48.20	64.35	69.55	59.60	62.54	73.95	74.30	75.58	
Ours	50.44	65.64	74.80	80.07	83.93	45.20	56.53	63.43	71.26	78.19	72.57	77.22	81.46	83.11	81.18	

4.1.2 Synthetic Noise Generation

To simulate real-world annotation errors, we synthesize mislabeled samples at five noise rates $\eta \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ using two corruption strategies:

Symmetric Noise. In a K-class setting, each sample with ground-truth label $a \in \{1, ..., K\}$ retains its correct label with probability $1 - \eta$. With probability η , it is corrupted to a different class $b \neq a$, chosen uniformly from the K - 1 alternatives:

$$p_{a \to b} = \frac{\eta}{K - 1}, \quad b \neq a. \tag{4}$$

Confusion-Calibrated Noise. To simulate realistic errors, we first train a reference ResNet-50 classifier and compute an empirical confusion matrix $T \in \mathbb{R}^{K \times K}$ from its predictions. For a sample with ground-truth label a, the label remains unchanged with probability $1 - \eta$. With probability η , it is corrupted to class b ($b \neq a$) according to:

$$p_{a \to b} = \eta \frac{\exp(T_{ab})}{\sum_{k \neq a} \exp(T_{ak})}, \quad b \neq a.$$
 (5)

This preserves the target corruption rate η while aligning errors with observed class confusions.

4.1.3 Evaluation Metrics

For mislabeled data detection, we use F1 score as our primary metric, following prior works (Zhu et al., 2022; Kim et al., 2024). F1 score balances precision and recall, providing a more reliable assessment. For downstream image classification, we report accuracy, F1 score, and AUC for comprehensive evaluation.

4.1.4 Implementation Details

All experiments use PyTorch and run on a single NVIDIA RTX 4090 GPU. For mislabeled data identification, we employ CLIP with a Transformer text encoder and ResNet-50 vision encoder. Training uses SGD with momentum 0.9, weight decay 1×10^{-4} , batch size 128, and initial learning rate 1×10^{-3} for 150 epochs. The learning rate decays by 0.1 at epochs 75 and 115. Images are resized to 224×224 and normalized using ImageNet statistics (Russakovsky et al., 2015). For downstream classification tasks, we use the official dataset splits.

4.2 Comparison with State-of-the-Art Methods

We evaluate our approach against existing mislabeled data indentification methods, including INCV (Chen et al., 2019), BMM (Arazo et al., 2019), GMM (Li et al., 2020), AUM (Pleiss et al., 2020), CORES (Cheng et al., 2021), CL (Northcutt et al., 2021), SIMIFEAT (Zhu et al., 2022), DeFT

Table 2: Comparison with state-of-the-art mislabeled data detection methods under confusion-calibrated noise.

			ISIC				D	eepDRi	D		PANDA					
	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	
INCV	32.99	40.44	44.03	51.62	56.64	33.15	43.50	46.54	48.60	50.68	41.19	50.44	59.96	63.54	66.90	
BMM	37.01	26.92	36.10	57.36	52.22	31.50	36.63	45.24	50.18	52.09	46.59	63.23	55.36	60.51	65.10	
GMM	31.17	36.38	42.14	48.94	59.09	37.82	47.33	54.34	56.46	57.72	54.15	58.11	64.58	67.93	69.24	
AUM	42.96	57.24	65.96	64.54	71.42	41.35	48.21	56.47	60.55	61.84	61.30	68.29	72.31	76.08	76.52	
CORES	35.75	55.64	65.56	62.49	42.87	26.59	39.93	44.01	36.17	47.67	45.66	54.72	60.25	63.09	65.64	
CL	38.14	43.44	48.66	45.46	43.28	34.06	37.60	43.06	42.78	51.58	51.87	60.77	69.19	71.53	72.35	
SIMIFEAT	38.54	48.21	49.66	50.65	46.17	32.13	40.98	41.57	42.38	48.57	59.97	61.08	68.25	69.10	71.94	
DEFT	15.33	24.67	32.72	37.03	34.41	18.46	28.74	39.68	46.53	50.34	40.66	54.72	65.48	67.83	69.93	
ReCoV	40.90	44.21	61.16	64.66	66.61	42.63	48.49	50.93	52.67	61.79	59.50	63.15	64.58	65.91	69.87	
LEMoN	30.59	42.50	56.70	61.91	67.07	34.06	42.62	55.80	63.86	66.82	56.40	66.66	70.22	74.80	75.13	
Ours	47.75	59.35	67.25	74.98	79.91	46.59	52.65	62.84	68.35	73.04	73.17	78.21	81.86	81.96	81.85	

Table 3: Ablation study on the effectiveness of the signed term and temporal integration. EI denotes the unsigned entropy integral (standard Shannon entropy), SE@T represents signed entropy at the final epoch, SE@T/2 denotes signed entropy at mid-training, and SEI is our full signed entropy integral method.

	ISIC						D	eepDRi	D		PANDA					
	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	
EI	35.31	45.05	50.46	60.77	63.65	42.91	47.86	53.85	59.28	61.14	51.76	61.50	64.26	67.26	65.86	
SE@T	35.73	44.64	52.01	57.89	63.20	39.16	44.33	51.96	57.93	61.29	41.69	56.26	62.27	62.91	56.85	
SE@T/2	36.97	48.19	56.30	63.72	68.73	40.32	48.87	54.89	62.84	66.58	57.35	60.06	64.80	66.26	66.88	
SEI	47.75	59.35	67.25	74.98	79.91	46.59	52.65	62.84	68.35	73.04	73.17	78.21	81.86	81.96	81.85	

(Wei et al., 2024), ReCoV (Chen et al., 2024), and LEMoN (Zhang et al., 2025). As summarized in Tabels 1 and 2, our approach consistently outperforms all competing methods across all datasets and noise levels.

Under the more challenging confusion-calibrated noise setting, our method delivers significant improvements in mislabeled data detection. On the ISIC dataset, it outperforms the second-best approach by 4.79%, 2.11%, 1.29%, 10.32%, and 8.49% across different noise rates. On DeepDRiD, the gains are 3.96%, 4.16%, 6.37%, 4.49%, and 6.22%, while on PANDA, our method achieves improvements of 11.87%, 9.92%, 9.55%, 5.88%, and 5.33%. Under the symmetric noise setting, we again observe consistent and notable performance boosts, further confirming the effectiveness of our approach.

4.3 Analysis and Discussion

4.3.1 Effectiveness of the Signed Term

To assess the contribution of the signed component in Eq. 2, we compare SEI against an unsigned counterpart using standard Shannon entropy. As reported in Table 3, SEI consistently outperforms the unsigned variant, validating the effectiveness of signed entropy.

We further visualize score distributions for clean and mislabeled samples under both formulations in Appendix F.1.

4.3.2 Effectiveness of Temporal Integration

To evaluate the integral component, we compare SEI with two single-epoch baselines: SE@T (signed entropy at the final epoch) and SE@T/2 (signed entropy at mid-training). Table 3 demonstrates that SEI achieves superior F1 scores, indicating that single snapshots provide unreliable signals while temporal integration yields robust detection.

The integral accumulates directional evidence over time, with each epoch contributing a signed cue: positive when predictions align with assigned labels, negative otherwise. Mislabeled samples accumulate predominantly negative values, while hard clean samples eventually offset early negative contributions through later positive ones. Single-epoch measurements suffer from training fluctu-

Table 4: Architecture generalizability of SEI. We compare performance using standard classification networks (ResNet-50, ViT-B/16) and CLIP with different visual backbones (ResNet-50, ViT-B/16). Results demonstrate that SEI remains effective across diverse architectures.

	ISIC						D	D		PANDA					
	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
RNet-50	45.68	57.58	65.07	73.04	76.33	43.99	51.34	61.17	66.89	71.75	71.21	75.64	79.21	79.28	78.25
ViT-B/16	44.25	56.71	64.57	72.12	75.91	42.88	50.47	60.71	65.68	71.31	69.44	74.17	78.89	78.86	76.03
$CLIP_{RNet-50}$	47.75	59.35	67.25	74.98	79.91	46.59	52.65	62.84	68.35	73.04	73.17	78.21	81.86	81.96	81.85
$CLIP_{\text{ViT-B/16}}$	46.66	58.36	66.89	73.59	77.25	44.58	51.78	61.27	67.74	72.41	71.92	76.52	80.63	81.28	79.45

Figure 5: F1 score comparison between baseline noisy label learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.

ations, which temporal integration effectively smooths. This enables the integral to better capture long-term consistency patterns and reduces false detection of hard clean samples.

Besides, we analyze the timing of temporal evidence in Appendix F.2, comparing windowed integrals: SEI@Early (epochs 1–75) and SEI@Late (epochs 76–150).

4.3.3 Architecture Generalizability

To assess the broader applicability of our approach beyond CLIP, we evaluate SEI with standard classification networks including ResNet-50 (He et al., 2016) and ViT (Dosovitskiy et al., 2021). Table 4 shows that while performance decreases, results remain competitive. This demonstrates that: (1) strong mislabeled data detection performance stems primarily from our proposed SEI rather than the CLIP architecture itself; (2) CLIP nevertheless provides advantages, likely due to its contrastive learning objective.

We also evaluate CLIP with various vision encoder backbone to assess generalization across both CNN and Transformer architectures, confirming consistent performance.

4.3.4 Synergy between SEI and Learning with Noisy Labels

To further demonstrate the utility of our approach, we integrate SEI as a data cleaning module with four representative noisy label learning methods: SCE (Wang et al., 2019), M-correction (Arazo et al., 2019), DivideMix (Li et al., 2020), and ProMix (Xiao et al., 2023). The resulting variants, SCE+SEI, M-correction+SEI, DivideMix+SEI, and ProMix+SEI are evaluated against their respective baselines on the ISIC dataset under confusion-calibrated noise. As shown in Figure 5, incorporating SEI consistently improves performance in F1 score (results on accuracy and AUC are provided in Appendix G). These gains highlight the plug-and-play nature of SEI: it is architecture-agnostic and integrates seamlessly into diverse noisy label learning frameworks.

5 Conclusion

We present SEI, a simple yet effective metric for detecting mislabeled data by leveraging signed entropy dynamics during training, which integrates seamlessly into standard training workflows. Extensive experiments on diverse medical imaging datasets demonstrate that SEI achieves state-of-the-art performance while remaining efficient and easy to apply.

The authors acknowledge that this work adheres to the ICLR Code of Ethics.

ETHICS STATEMENT

486

487 488

489

534

535

537

538

490 Reproducibility statement 491 492 Code to reproduce all experiments is available at https://anonymous.4open.science/r/ 493 SEI-03E8/. 494 495 496 References 497 Joseph E Alderman, Joanne Palmer, Elinor Laws, Melissa D McCradden, Johan Ordish, Marzyeh 498 Ghassemi, Stephen R Pfohl, Negar Rostamzadeh, Heather Cole-Lewis, Ben Glocker, et al. Tackling 499 algorithmic bias and promoting transparency in health datasets: the standing together consensus 500 recommendations. The Lancet Digital Health, 7:e64–e88, 2025. 501 Eric Arazo, Diego Ortego, Paul Albert, Noel E. O'Connor, and Kevin McGuinness. Unsupervised label noise modeling and loss correction. In *ICML*, 2019. 504 HeeSun Bae, Seungjae Shin, Byeonghu Na, and Il-Chul Moon. Dirichlet-based per-sample weighting 505 by transition matrix for noisy label learning. In ICLR, 2024. 506 507 Jianan Chen, Vishwesh Ramanathan, Tony Xu, and Anne L. Martel. Detecting noisy labels with 508 repeated cross-validations. In MICCAI, 2024. 509 510 Pengfei Chen, Benben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing deep neural networks trained with noisy labels. In *ICML*, 2019. 511 512 De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du, Bo Han, and 513 Tongliang Liu. Class-dependent label-noise learning with cycle-consistency regularization. In 514 NeurIPS, 2022. 515 516 Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning with instance-517 dependent label noise: A sample sieve approach. In *ICLR*, 2021. 518 Lele Cheng, Xiangzeng Zhou, Liming Zhao, Dangwei Li, Hong Shang, Yun Zheng, Pan Pan, and 519 Yinghui Xu. Weakly supervised learning with side information for noisy labeled images. In 520 ECCV, 2020. 521 522 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 523 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-524 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at 525 scale. In *ICLR*, 2021. 526 Erik Englesson and Hossein Azizpour. Robust classification via regression for learning with noisy 527 labels. In ICLR, 2024. 528 529 Jiangfan Han, Ping Luo, and Xiaogang Wang. Deep Self-Learning from noisy labels. In ICCV, 2019. 530 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 531 recognition. In CVPR, 2016. 532 533

Jinchi Huang, Lie Qu, Rongfei Jia, and Binqiang Zhao. O2U-Net: A simple noisy label detection

Suyeon Kim, Dongha Lee, SeongKu Kang, Sukang Chae, Sanghwan Jang, and Hwanjo Yu. Learning

Junnan Li, Richard Socher, and Steven C. H. Hoi. DivideMix: Learning with noisy labels as

discriminative dynamics with label corruption for noisy label detection. In CVPR, 2024.

approach for deep neural networks. In ICCV, 2019.

semi-supervised learning. In ICLR, 2020.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken, and Clara I. Sánchez. A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42: 60–88, 2017.

Ruhan Liu, Xiangning Wang, Qiang Wu, Ling Dai, Xi Fang, Tao Yan, Jaemin Son, Shiqi Tang, Jiang Li, Zijian Gao, Adrian Galdran, J. M. Poorneshwaran, Hao Liu, Jie Wang, Yerui Chen, Prasanna Porwal, Gavin Siew Wei Tan, Xiaokang Yang, Chao Dai, Haitao Song, Mingang Chen, Huating Li, Weiping Jia, Dinggang Shen, Bin Sheng, and Ping Zhang. Deepdrid: Diabetic retinopathy-grading and image quality estimation challenge. *Patterns*, 3:100512, 2022.

- Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning regularization prevents memorization of noisy labels. In *NeurIPS*, 2020.
- Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, and Sanjiv Kumar. Does label smoothing mitigate label noise? In *ICML*, 2020.
- Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating uncertainty in dataset labels. *Journal of Artificial Intelligence Research*, 70:1373–1411, 2021.
- Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, and Kilian Q. Weinberger. Identifying mislabeled data using the area under the margin ranking. In *NeurIPS*, 2020.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *ICML*, 2021.
- Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for robust deep learning. In *ICML*, 2018.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision*, 115:211–252, 2015.
- Jialin Shi, Kailai Zhang, Chenyi Guo, Youquan Yang, Yali Xu, and Ji Wu. A survey of label-noise deep learning for medical image analysis. *Medical Image Analysis*, 95:103166, 2024.
- Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE: Refurbishing unclean samples for robust deep learning. In *ICML*, 2019.
- Haoyu Wang, Zhuo Huang, Zhiwei Lin, and Tongliang Liu. Noisegpt: Label noise detection and rectification through probability curvature. In *NeurIPS*, 2024.
- Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross entropy for robust learning with noisy labels. In *ICCV*, 2019.
- Tong Wei, Hao-Tian Li, Chun-Shu Li, Jiang-Xin Shi, Yufeng Li, and Min-Ling Zhang. Vision-Language models are strong noisy label detectors. In *NeurIPS*, 2024.
- Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang. Robust early-learning: Hindering the memorization of noisy labels. In *ICLR*, 2021.
- Ruixuan Xiao, Yiwen Dong, Haobo Wang, Lei Feng, Runze Wu, Gang Chen, and Junbo Zhao. ProMix: Combating label noise via maximizing clean sample utility. In *IJCAI*, 2023.
- Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy labeled data for image classification. In *CVPR*, 2015.
 - Xichen Ye, Xiaoqiang Li, Songmin Dai, Tong Liu, Yan Sun, and Weiqin Tong. Active negative loss functions for learning with noisy labels. In *NeurIPS*, 2023.
 - Suqin Yuan, Lei Feng, and Tongliang Liu. Early stopping against label noise without validation data. In *ICLR*, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. In *ICLR*, 2017.

Haoran Zhang, Aparna Balagopalan, Nassim Oufattole, Hyewon Jeong, Yan Wu, Jiacheng Zhu, and Marzyeh Ghassemi. LEMoN: Label error detection using multimodal neighbors. In *ICML*, 2025.

Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. In *NeurIPS*, 2018.

Zhaowei Zhu, Zihao Dong, and Yang Liu. Detecting corrupted labels without training a model to predict. In *ICML*, 2022.

APPENDIX

A Use of Large Language Models

Large language models were used solely for light editing tasks including grammar correction, spelling checks, and minor phrasing improvements to enhance clarity and concision.

B Datasets

Figure 6 presents representative samples from each class across the three datasets employed in our study: ISIC, DeepDRiD, and PANDA. We display one exemplar image per class, organized with rows corresponding to individual datasets and columns representing distinct classes. This visualization facilitates direct comparison of class-specific visual characteristics. The corresponding text prompts utilized for training CLIP models are detailed in Table 5, including auxiliary class prompts for each dataset.

Figure 6: Representative images from the datasets used in this work. Rows correspond to ISIC, DeepDRiD, and PANDA datasets (top to bottom) and columns to class labels.

C Additional Analysis of Entropy Trajectories

In this section, we visualize entropy trajectories for more representative categories across the three datasets. For ISIC and DeepDRiD, we additionally show trajectories for other classes, comparing correctly labeled samples with mislabeled ones. As shown in Figure 7, we plot entropy trajectories for melanoma cases from the ISIC dataset, grade 0 diabetic retinopathy images from the DeepDRiD dataset, benign epithelium samples from the PANDA dataset, and Gleason 5 cancerous epithelium

Table 5: Text prompts for each class in the datasets. Prompts highlighted in gray are auxiliary class prompts.

Dataset	Text Prompts
ISIC	A dermoscopic image showing melanoma. A dermoscopic image showing nevus. A dermoscopic image showing basal cell carcinoma. A dermoscopic image showing actinic keratosis/intraepithelial carcinoma. A dermoscopic image showing benign keratosis. A dermoscopic image showing dermatofibroma. A dermoscopic image showing vascular lesion. A dermoscopic image showing other lesions.
DeepDRiD	A fundus image showing no evidence of diabetic retinopathy. A fundus image exhibiting mild diabetic retinopathy. A fundus image exhibiting moderate diabetic retinopathy. A fundus image exhibiting severe diabetic retinopathy. A fundus image exhibiting proliferative diabetic retinopathy. A fundus image showing other retinal conditions.
PANDA	A histology image showing benign glandular epithelium. A histology image showing Gleason pattern 3 adenocarcinoma. A histology image showing Gleason pattern 4 adenocarcinoma. A histology image showing Gleason pattern 5 adenocarcinoma. A histology image showing other conditions.

images from the PANDA dataset. Across all examined cases, we consistently observe the regularity described in Section 2.3.

D Extended Evaluation of SEI for Mislabeled Sample Detection

We present additional empirical evidence demonstrating the effectiveness of SEI. Figures 8, 9, and 10 illustrate the discriminative power of SEI in separating different sample types within the ISIC, DeepDRiD, and PANDA datasets, respectively. The results consistently validate the theoretical framework outlined in Section 2.4.2: samples with correct labels that are easily classified exhibit large positive SEI values, challenging but correctly labeled samples demonstrate moderate SEI values, while mislabeled samples consistently display strongly negative SEI values.

E THEORETICAL PROPERTIES OF SIGNED ENTROPY

In this section, we provide a short theoretical analysis of the proposed signed entropy (Eq. 2). Recall that for $(x, y) \in \mathcal{D}_{train}$ with posterior p(x), we define

$$\mathcal{H}(\boldsymbol{p}(\boldsymbol{x}), y) = (-1)^{\mathbb{I}[y = \arg\max_{k} p_k(\boldsymbol{x})]} \sum_{k=1}^{K} p_k(\boldsymbol{x}) \log p_k(\boldsymbol{x}).$$

E.1 RELATION TO SHANNON ENTROPY

Proposition 1 (Reduction to Shannon Entropy) If $y = \arg \max_k p_k(x)$, then

$$\mathcal{H}(\mathbf{p}(\mathbf{x}), \mathbf{y}) = H(\mathbf{p}(\mathbf{x})),$$

where $H(p) = -\sum_k p_k \log p_k$ is Shannon's entropy.

Proof 1 By definition, the sign exponent equals $(-1)^1 = -1$ when the prediction agrees with y, yielding the standard Shannon entropy.

Figure 7: Training dynamics of prediction entropy for correctly labeled versus mislabeled samples. Top-left: melanoma images from the ISIC dataset. Top-right: grade 0 diabetic retinopathy (DR) images from the DeepDRiD dataset. Bottom-left: benign glandular epithelium images from the PANDA dataset. Bottom-right: Gleason 5 cancerous epithelium images from the PANDA dataset.

Figure 8: Illustration of SEI using melanoma images from the ISIC dataset. The plots show signed entropy curves across training epochs for easy clean (left), hard clean (middle), and mislabeled (right) samples. Each curve is averaged over 200 samples, and the signed area under the curve represents the SEI. Correctly labeled samples consistently exhibit larger SEIs than mislabeled ones.

E.2 CONCAVITY AND SIGN SYMMETRY

Proposition 2 (Concavity up to Sign) Let \mathcal{P} denote the probability simplex in \mathbb{R}^K . For a fixed label y, the signed entropy $\mathcal{H}(\cdot,y)$ is concave on \mathcal{P} if y matches the prediction, and is convex on \mathcal{P} if y disagrees with the prediction.

Proof 2 The Shannon entropy H(p) is strictly concave on \mathcal{P} (classical result). Multiplying by -1 flips concavity to convexity. Since the sign of \mathcal{H} depends only on alignment, the stated property follows.

Figure 9: Illustration of SEI using Grade 0 diabetic retinopathy (DR) images from the DeepDRiD dataset.

Figure 10: Illustration of SEI using Gleason 5 images from the PANDA dataset.

E.3 IMPLICATION FOR SEI

These properties imply that SEI (Eq. 3) can be interpreted as a signed, temporally averaged measure of prediction uncertainty. Its sign encodes long-term label alignment, while its magnitude captures how confidently the model reaches this alignment (or misalignment). This dual role is what enables SEI to separate mislabeled data from both easy and hard clean samples.

F Additional Ablation Results

F.1 VISUAL EVIDENCE FOR THE SIGNED TERM

We further visualize score distributions for clean and mislabeled samples under both formulations (see Figure 11). The unsigned variant exhibits heavily overlapping positive-only distributions, making separation difficult. In contrast, SEI introduces a clear negative tail for mislabeled samples, creating a bimodal structure with reduced overlap and more distinguishable groups.

F.2 Full-Trajectory Integration vs. Windowed Integrals

Table 6 shows that both windowed variants (SEI@Early and SEI@Late) perform worse than the full-trajectory SEI. Restricting to either an early or late window discards complementary cues present in the other phase.

Table 6: Evaluation of windowed integrals—SEI@Early (epochs 1–75) and SEI@Late (epochs 76–150)—compared to the full SEI.

	ISIC						D	eepDRi	D		PANDA					
	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	
SE@Early	44.88	56.15	63.50	69.88	73.80	36.05	42.69	54.30	60.63	66.48	68.01	70.89	75.05	76.36	76.11	
SE@Late	37.98	51.23	62.57	65.77	69.56	41.11	47.08	58.81	63.96	70.81	70.46	73.50	77.10	77.91	78.66	
SEI	47.75	59.35	67.25	74.98	79.91	46.59	52.65	62.84	68.35	73.04	73.17	78.21	81.86	81.96	81.85	

Figure 11: Score distributions for clean and noisy samples on the PANDA dataset. We compare our proposed SEI statistic (bottom row) against the unsigned Shannon entropy integral baseline (top row) for noise rates $\eta \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$. Each column corresponds to increasing noise levels from left to right. The SEI statistic demonstrates better separation between clean and noisy sample distributions at all noise levels.

Figure 12: Accuracy comparison under confusion-calibrated noise between baseline noisy label learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.

G Additional Results on Downstream Image Classification

Beyond F1 score, we also report accuracy and AUC for SCE, M-correction, DivideMix, and ProMix, both with and without SEI, under the same protocol as Section 4.3.4. Results are presented in Figure 12 and Figure 13.

In addition, we provide comprehensive results (F1 score, accuracy, and AUC) under symmetric noise, which are reported in Figures 14, 15, and 16.

Figure 13: AUC comparison under confusion-calibrated noise between baseline noisy label learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.

Figure 14: F1 score comparison under symmetric noise between baseline noisy label learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.

Figure 15: Accuracy comparison under symmetric noise between baseline noisy label learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.

Figure 16: AUC comparison under symmetric noise between baseline noisy label learning methods (green) and their SEI-enhanced variants (red). From left to right: SCE, M-correction, DivideMix, and ProMix.