
Workshop track - ICLR 2017

LOSS IS ITS OWN REWARD:
SELF-SUPERVISION FOR REINFORCEMENT LEARNING

Evan Shelhamer†‡ Parsa Mahmoudieh†, Max Argus†, Trevor Darrell†
†UC Berkeley
‡OpenAI
{shelhamer,trevor}@cs.berkeley.edu; parsa.m@berkeley.edu; argus.max@gmail.com

ABSTRACT

Reinforcement learning, driven by reward, addresses tasks by optimizing policies
for expected return. Need the supervision be so narrow? Reward is delayed and
sparse for many tasks, so we argue that reward alone is a noisy and impover-
ished signal for end-to-end optimization. To augment reward, we consider self-
supervised tasks that incorporate states, actions, and successors to provide auxil-
iary losses. These losses offer ubiquitous and instantaneous supervision for rep-
resentation learning even in the absence of reward. Self-supervised pre-training
improves the data efficiency and returns of end-to-end reinforcement learning.

1 INTRODUCTION

End-to-end reinforcement learning (RL) addresses representation learning at the same time as policy
optimization and value estimation. Of these dual pursuits, current work focuses on the reinforcement
learning aspects of the problem such as stochastic optimization, exploration, and more. Having
defined a loss on reward, the representation is delegated to backpropagation without further attention.
However, representation learning is a bottleneck in current approaches that are bound by reward.

To illustrate the critical role of representation learning, we show that re-training an agent after de-
stroying the action and value outputs is far faster than the initial training (Figure 1). Although the
policy distribution and value function are lost, they are readily recovered given a representation from
RL, even though the optimization and exploration issues remain. We turn to self-supervision to take
an ambient approach to RL attuned to reward and environment alike.

Self-supervision defines losses via surrogate annotations that are readily synthesized from bare, un-
labeled inputs. In the context of RL, reward captures the task while self-supervision helps capture
the environment. In this setting, every transition contributes gradients of ambient environmental
signals. While loss from reward might be delayed and sparse, the losses from self-supervision are
instantaneous and ubiquitous. Augmenting RL with these auxiliary losses enriches the representa-
tion through multi-task learning and improves policy optimization.

We focus on auxiliary losses with discriminative formulations for state, dynamics, inverse dynamics,
and reward. We transfer pre-training by these self-supervised tasks to RL. Policy optimization to
95% of best return is sped-up 1.4× on average for a number of Atari environments.

2 SELF-SUPERVISION OF POLICIES

Self-supervised learning defines surrogate losses and synthesizes the targets from the data. To relate
it to supervised and unsupervised learning, consider the general form of the objectives:

• supervised learning minθ E [Ldis(fθ(x), y)]

• unsupervised learning minθ E [Lgen(fθ(x), x)]

• self-supervised learning minθ E [Ldis(fθ(x), s(x))] with surrogate annotation function s(·)

for data x, annotation y, losses L either discriminative or generative, and parametric model fθ.
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Figure 1: To separate reinforcement learning from representation learning, we decapitate trained
agents by destroying the policy and value output weights, and then re-train end-to-end. Although
the policy distribution and value estimates are obliterated, most of the weights are preserved and
the policy is swiftly recovered. The gap between the initial optimization and recovery illustrates a
representation learning bottleneck.

The state, action, successor, and reward (s, a, s′, r) transition standard to RL admits many kinds of
self-supervision. We explore the use of surrogate annotations that span different parts of the transi-
tions to gauge what is informative for RL. These diverse, ambient losses mine further supervision
from the same data available to existing RL methods.

2.1 TASKS

Our self-supervised tasks define auxiliary losses for pre-training an actor-critic network for RL.

Reward Reward can be cast into a proxy task as instantaneous prediction by regression or binning
into positive, zero, and negative classes. This is equivalent to one-step value function estimation, and
so may seem redundant for value methods. However, the gradient of the instantaneous prediction
task is less noisy as it sidesteps bootstrapping error. Our self-supervised reward task is to bin rt into
r′t ∈ {0,+,−} with equal balancing of the classes as done independently by Jaderberg et al. (2017).

Dynamics and Inverse Dynamics Dynamics can be cast into a verification task by recognizing
whether state-successor (s, s′) pairs are drawn from the environment or not. Our self-supervised
dynamics verification task is to identify the corrupted observation otc in a history from t0 to tk,
where otc is corrupted by swapping it with ot′ for t′ /∈ {t0, . . . , tk}. Inverse dynamics, mapping
S × S → A, can be reduced to classification (for discrete actions) or regression (for continuous
actions). Our self-supervised inverse dynamics task is to infer the intervening actions given a history
of observations.

Reconstruction Auto-encoding (AE) and variational auto-encoding (VAE) learn to reconstruct the
input subject to a representational bottleneck. While a popular line of attack for unsupervised learn-
ing, the representations learned by reconstruction are relatively poor for transfer (Donahue et al.,
2017). Nevertheless we include reconstruction for comparison with our self-supervised tasks.

3 POLICY PRE-TRAINING RESULTS

We show results on self-supervision for policy pre-training on Atari. The data for pre-training on
each environment is collected by executing a random policy for 100, 000 transitions. The optimiza-
tion of the auxiliary losses converges quickly (< 10 epochs) to reasonable task accuracy. Policies
pre-trained by self-supervision converge to same or better return and do so in fewer updates.

Our self-supervised policies are instantiated as variations of the asynchronous advantage actor-critic
(A3C) architecture of Mnih et al. (2016). The actor-critic network is taken as an encoder to which
each task attaches its own decoder. For the environment we follow the specification from Mnih et al.
(2015) by our own re-implementation with the OpenAI Gym (Brockman et al., 2016).

We compare simple initialization strategies—random initialization as well as calibrated and data-
dependent initialization (Krähenbühl et al., 2016)—with our self-supervised tasks. These tasks in-
clude auxiliary losses that are agnostic to reward, letting learning make progress while waiting for
reward. Table 1 reports data efficiency, and Figure 2 shows policy optimization progress.
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Figure 2: Policy optimization from self-supervised pre-training. Progress is reported as the per-
centage of the best baseline return. The mean and standard error (shading) are shown for three runs.
Multi-task self-supervision reliably improves data efficiency and converges to comparable returns.

Pong Qbert Seaquest S. Invaders

Data-Dep. Init. 1.51× 0.69× 1.13× 0.93×
Reward 1.32× 1.16× 1.17× 1.01×

Dyn. Ver. 1.61× 1.09× 1.14× 1.00×
Inv. Dyn. 0.38× 1.02× 1.26× 1.04×

VAE 0.38× 0.46× 0.86× 1.02×
Multi-task 1.55× 1.32× 1.18× 1.04×

Table 1: We examine the data efficiency of RL with self-supervised pre-training. We calculate the
area under the score/iteration curve and report the ratio to the baseline. Multi-task self-supervision
improves 1.3× on average, and early on it gives 3× improvement for the first 10M iterations.

4 RELATED WORK

Representation learning for reinforcement learning, robotics, and control is commonly known as
state representation learning, as it yields the state for modeling the task as an MDP. This can be
summarized formally as seeking a mapping φ such that the current state st = φ(o1:t, a1:t, r1:t) as in
Jonschkowski & Brock (2015).

Unsupervised learning by auto-encoding is a common approach to state representation learning
(Watter et al., 2015; Finn et al., 2016). These approaches optimize policies to achieve a goal state
without a task reward, so it is not possible to fine-tune the representation to optimize return. In
contrast our auxiliary, discriminative losses capture dynamics, inverse dynamics, and other aspects
of the environment in tandem with RL.

The robotic priors of Jonschkowski & Brock (2015) are auxiliary losses for temporal coherence,
repeatability, proportionality, and causality. Multi-task optimization of these losses defines a linear,
low-dimensional state representation for RL. These losses are distances between states conditioned
on action and reward, while we define discriminative losses on the (s, a, r, s′) of transitions.

Concurrent work explores different methods to augment reinforcement learning with auxiliary losses
(Jaderberg et al., 2017; Mirowski et al., 2017; Dosovitskiy & Koltun, 2017). In the same spirit as
our work, these approaches seek to improve policy returns, data efficiency, and robustness of end-
to-end RL. Our tasks do not require additional privileged information, we focus on discriminative
formulations of auxiliary losses, and we compare a variety of ambient signals for self-supervision.

5 DISCUSSION

It is encouraging that pre-training alone, with and without reward, can improve optimization for
reinforcement learning. By augmenting reinforcement learning with self-supervision, transitions
without reward need not be so unrewarding for the representation.
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