
Under review as a conference paper at ICLR 2018

FORCED APART: DISCOVERING DISENTANGLED REP-
RESENTATIONS WITHOUT EXHAUSTIVE LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning a better representation with neural networks is a challenging problem,
which has been tackled from different perspectives in the past few years. In this
work, we focus on learning a representation that would be useful in a clustering
task. We introduce two novel loss components that substantially improve the qual-
ity of produced clusters, are simple to apply to arbitrary models and cost functions,
and do not require a complicated training procedure. We perform an extensive set
of experiments, supervised and unsupervised, and evaluate the proposed loss com-
ponents on two most common types of models, Recurrent Neural Networks and
Convolutional Neural Networks, showing that the approach we propose consis-
tently improves the quality of KMeans clustering in terms of mutual information
scores and outperforms previously proposed methods.

1 INTRODUCTION

Representation learning is an important part of deep learning research, and the ability of deep neural
networks to transform the input data into a space that is more suitable to the target task is one of
the key reasons for their success. Consider the case of binary classification with a neural network
with sigmoid activation function on the last layer, where a network transforms the input data x ∈
Rn into a space R where two classes are linearly separable by applying a sequence of non-linear
transformations

f(x) : Rn → Rk1 → Rk2 → · · · → Rkj → R
Note that all representations, learned by the network in the sequence of transformations Ri →
Rj , are devoted to one goal: binary classification. The learned intermediate representations can
easily be used in tasks similar to the binary classification, but using them in a different task may be
problematic.

Consider the case of multivariate time series classification with an RNN model, depicted in Figure 1
with a sigmoid activation function in the last FC2 layer and a ReLU activation function in the layer
FC1. Note that ReLU activation produces non-negative vectors. During a regular training procedure
with binary cross-entropy loss, the model will learn weights that produce two patterns of activation
of the layer FC1: roughly orthogonal vectors for the samples that belong to different classes, and
roughly parallel vectors for the samples that belong to the same class. Indeed, the value of the
output scalar is the result of taking the dot product between the weights w of the final layer FC2 (a
single vector in this case) and the output h of the penultimate hidden layer FC1. Via the geometric
interpretation of the dot product, this value is highest when the cosine between the vectors 1, and
minimized when the cosine is −1. However, since the penultimate layer has the ReLU activation,
the vectors cannot point in opposite directions, therefore, they must be orthogonal.

maxwTh = max‖w‖‖h‖ cos θ ⇒ θ = 0 (1)

minwTh,h ≥ 0 = min‖w‖‖h‖ cos θ ⇒ θ =
π

2
(2)

hi||hj , if yi = yj (3)
hi⊥hi, if yi 6= yj (4)

where yi is the corresponding binary label for hidden state hi.

1

Under review as a conference paper at ICLR 2018

In this work, we focus on learning a better representation of the input that could be used in down-
stream tasks such as clustering. Specifically, we are interested in learning the representation that
would enable clustering by virtue of revealing its latent structure, while using the limited informa-
tion provided by the binary classification task. In order to force the network to learn such diverged
representations, we propose two novel loss components that can be applied to an arbitrary cost func-
tion and work in both weakly-supervised and unsupervised settings. We evaluate the proposed loss
components empirically on two most common types of models, Recurrent Neural Networks (RNN)
and Convolutional Neural Networks (CNN) and different types of input data (time series, images,
texts). Our approach shows consistent improvement of the quality of KMeans clustering in terms of
mutual information scores, outperforming previous methods.

RNN FC1 FC2

Output size: 128

Output size: 15

Multivariate

time series

Output size: 1

Classification

decision

Figure 1: An RNN model with two fully-connected layers for binary classification of time series

2 RELATED WORK

In the past few years, a substantial amount of work has been dedicated to learning a better repre-
sentation of the input data that can be either used in downstream tasks, such as KMeans clustering,
or to improve generalizability or performance of the model. In general, these works can be divided
into three categories: (1) approaches that introduce a new loss component that can be easily applied
to an arbitrary cost function (discriminative models), (2) approaches that require a complicated or
cumbersome training procedure (discriminative models), and (3) probabilistic generative and/or ad-
versarial models.

Approaches from the first group propose new loss components that can be applied in a straight-
forward manner to an arbitrary cost function, supervised or unsupervised. Cheung et al. (2014)
proposed a cross-covariance penalty (XCov) to force the network to produce representations with
disentangled factors. The proposed penalty is, essentially, cross-covariance between the predicted
labels and the activations of samples in a batch. Their experiments showed that the network can
produce a representation, with components that are responsible to different characteristics of the
input data. For example, in case of the MNIST dataset, there was a class-invariant factor that was
responsible for the style of the digit, and in case of the Toronto Faces Dataset (Susskind et al.,
2010), there was a factor responsible for the subject’s identity. Similarly, but with a different goal in
mind, Cogswell et al. (2015) proposed a new regularizer (DeCov), that minimizes cross-covariance
of hidden activations, leading to non-redundant representations and, consequently, less overfitting
and better generalization. DeCov loss is trying to minimize the Frobenius norm of the covariance

(a) Without the proposed loss component (b) With the proposed loss component Lsingle

Figure 2: Number of samples for which the neurons on the y axis were active the most in a binary
classification task on MNIST strokes sequences dataset. The classes 0-4 have the label 0, and the
classes 5-9 have the label 1. See the subsection 4.1 and subsection 5.2 for details.

2

Under review as a conference paper at ICLR 2018

matrix between all pairs of activations in the given layer. The authors’ experiments showed that the
proposed loss significantly reduced overfitting and led to a better classification performance on a
variety of datasets.

The second group of methods requires a modification of the standard training procedure with back-
propagation and stochastic gradient descent optimizers. Liao et al. (2016) proposed a method to
learn parsimonious representations. Essentially, the proposed algorithm iteratively calculates cluster
centroids, which are updated every M iterations and used in the cost function. The authors’ exper-
iments showed that such algorithm leads to a better generalization and a higher test performance
of the model in case of supervised learning, as well as unsupervised and even zero-shot learning.
Similarly, Xie et al. (2016) proposed an iterative algorithm that first calculates soft cluster assign-
ments, then updates the weights of the network and cluster centroids. This process is repeated until
convergence. In contrast to Liao et al. (2016), the authors specifically focused on the task of learn-
ing better representations for clustering, and showed that the proposed algorithm gives a significant
improvement in clustering accuracy.

Finally, a new group of recently emerged methods focus on disentangling the factors of variation
(e.g., style and class). Kingma et al. (2014) proposed deep generative models for semi-supervised
learning and showed that is possible to generate samples from the target class with variations in
style, and vice versa. Makhzani et al. (2015) proposed a new approach, called adversarial autoen-
coder (AAE) and performed a variety of experiments, including semi-supervised and unsupervised
clustering, achieving impressive results on MNIST (LeCun et al., 1998) and Street View House
Numbers (Netzer et al., 2011) datasets. However, since this methods includes adversarial networks,
the training of such systems is rather cumbersome. For example, in the semi-supervised autoen-
coders experiments, the training of the system consisted of three different phases: a reconstruction
phase, a regularization phase, and a semi-supervised classification phase, where the regularization
phase itself consists of two sub-phases of updating discriminator and generator respectively. Fi-
nally, (Mathieu et al., 2016) proposed a conditional generative model that is a combination of Vari-
ational Autoencoder (Kingma & Welling, 2013) and Generative Adversarial Networks (Goodfellow
et al., 2014) for disentangling factors of variations.

Our proposed loss components belong to the first group and, in contrast to the other methods do not
require a complicated training procedure, can easily be used with any cost function, and work in
both weakly-supervised and unsupervised settings.

(a) Without the proposed loss component (b) With the proposed loss component Lmulti

Figure 3: Number of samples for which the neurons on the y axis were active the most in a binary
classification task on the CIFAR-10 dataset. See the subsection 4.2 for details.

3 THE PROPOSED METHOD

Inspired by Equation 1 and the work of Cheung et al. (2014) and Cogswell et al. (2015), we propose
two novel loss components, which despite their simplicity, significantly improve the quality of the
clustering over the representations produced by the model. The first loss component Lsingle works on
a single layer and does not affect the other layers in the network, which may be a desirable behaviour
in some cases. The second loss component Lmulti affects the entire network behind the target layer

3

Under review as a conference paper at ICLR 2018

and forces it to produce disentangled representations in more complex and deep networks in which
the first loss may not give the desired improvements.

3.1 SINGLE LAYER LOSS

Consider the model in Figure 1. The layer FC2 has output size of 1 and produces a binary classifi-
cation decision. The output of the layer FC1 is used to perform KMeans clustering. Recall from the
example in the introduction that we want to force the model to produce divergent representations for
the samples that belong to the same class, but are in fact substantively different from each other. One
way to do it would be to force the rows of the weight matrix WFC1

of the FC1 layer to be different
from each other, leading to different patterns of activations in the output of the FC1 layer.

Formally, it can be expressed as follows:

Lsingle =

k∑
i=1

k∑
j=i+1

fl(di, dj) + fl(dj , di) (5)

where dk are normalized weights of the row k of the weights matrix W of the given layer:

dk = softmax(W [k]) (6)

and fl(di, dj) is a component of the loss between the rows i and j:

fl(xi, xj) = max(0,m−DKL(xi||xj)) (7)

wherem is a hyperparameter that defines the desired margin of the loss component andDKL(di||dj)
is the Kullback–Leibler divergence1 between the probability distributions di and dj .

PoolCNNs CNNs Pool PoolCNNs CNN1 CNN2 CNN3 FC1 FC2

Output size: 15

Output size: 1

Classification

decisionCIFAR-10

pictures

VGG-16 layers

conv1

pool1

conv2

pool2

conv3
3x3 convolutions

256 filters

3x3 convolutions

128 filters

1x1 convolutions

8 filters

pool3

Figure 4: A CNN model used in the CIFAR-10 experiments

3.2 MULTILAYER LOSS

Note that the loss component Lsingle affects only the weights of the specific layer, as it operates
not on the outputs of the layer but directly on its weights, similar to, for example, `2 regularization.
Therefore, this loss component may help to learn a better representation only if the input to the target
layer still contains the information about latent characteristics of the input data. This might be the
case in simple shallow networks, but in case of very deep complex networks the input data is non-
linearly transformed so many times that only the information that is needed for binary classification
left, and all the remaining latent characteristics of the input data were lost as not important for binary
classification (see the Figure 3a). Indeed, as we can see from the experiments in Section 4, the loss
component described above substantially improves the quality of clustering in a simple baseline
case. However, in the case of a more complex model, this improvement is much less impressive.
Therefore, we also propose a loss component that can influence not only one specific layer, but all
layers before it, in order to force the network to produce a better representation.

Recall again that we want to force the model to produce disentangled representations of the input
data. Namely, that these representations should be sufficiently different from each other even if two

1Note that the proposed framework does not limit the choice of divergence measure between the two distri-
butions, for example, the Jensen-Shannon divergence can be used, etc.

4

Under review as a conference paper at ICLR 2018

samples have the same label. We propose the following loss component in order to produce such
properties:

Lmulti =
1

N2
s

N∑
i=1

N∑
j=1

{
fl(h

s
i , h

s
j) + fl(h

s
j , h

s
i) yi = yj

0 yi 6= yj
(8)

where hsk is a normalized output of the target layer h for the sample k:

hsk = softmax(hk) (9)

yk is its the ground truth label, N is the number of samples in the batch, Ns is number of samples
that have the same label, and fl(hi, hj) is the function defined in Equation 7. Note that this loss
component Lmulti works on the outputs of the target layer, and therefore, it affects the whole network
behind the layer on which it is applied, overcoming the local properties of the Lsingle loss.

3.3 UNSUPERVISED LEARNING

Although our main focus in the presented experiments is on a binary classification task, both of our
proposed loss components can be used in unsupervised learning as well. The loss component Lsingle
does not require any labels so it can be used without modifications. The loss component Lmulti can
be applied to unlabeled data by just taking the summations without consideration of labels of the
samples as follows:

Lmulti2 =
1

N2

N∑
i=1

N∑
j=1

fl(h
s
i , h

s
j) + fl(h

s
j , h

s
i) (10)

For example, as autoencoder models are a common choice to learn representations to use in a down-
stream task, the proposed loss components can be easily applied to its cost function as follows:

Lae = (1− α) ∗ 1

N

N∑
i=1

||Xi − X̂i||2 + α ∗ Lmulti (11)

where the first part is a standard reconstruction cost for autoencoder, the second is the proposed loss
component, and α is a hyperparameter reflecting how much importance is given to it.

3.4 THE MARGIN HYPERPARAMETER m

One important choice to be made while using the proposed loss components is the value of the
margin hyperparameter m. A larger value of m corresponds to a larger margin between the rows of
the weights matrix in case of Lsingle and a larger margin between the activations of the target layer
in case of Lmulti. The smaller the value of m, the less influence the proposed loss components have.

In our experiments, we found that the proposed loss component Lsingle is relatively stable with re-
spect to the choice ofm, and generally performs better with larger values (in the range 5-10). In case
of the loss component Lmulti, we found that even a small value of the marginm (0.1 - 1) disentangles
the learned representations better and consequently leads to substantial improvements in the AMI
score.

In all of the reported experiments, we found that the proposed loss component with a reasonably
chosen m does not hurt the model’s performance in the classification task.

4 EXPERIMENTS

We performed an extensive set of experiments that covers the two most commonly used in mod-
ern research: Recurrent Neural Networks and Convolutional Neural Networks, as well as entirely
different modalities of the input data: time series, images, and texts.

In all experiments, we used an RNN or an CNN model without any additional loss components
as the baseline and compared our proposed loss components Lsingle and Lmulti with the DeCov
regularizer (Cogswell et al., 2015) and XCov penalty (Cheung et al., 2014), as those works are most

5

Under review as a conference paper at ICLR 2018

(a) Without the proposed loss component, colored by
binary labels

(b) Without the proposed loss component, colored by
classes

(c) With the proposed loss component Lmulti, colored
by binary labels

(d) With the proposed loss component Lmulti, colored
by classes

Figure 5: PCA visualizations of the learned representations on the MNIST strokes sequences dataset.
See the subsection 5.2 for details.

similar to ours. After the model were trained on the binary classification task, we use the output of
the penultimate layer to perform a KMeans clustering.

We implemented the models used in all experiments with TensorFlow (Abadi et al., 2016) and used
Adam optimizer (Kingma & Ba, 2014) to train the them.

4.1 MNIST STROKES SEQUENCES EXPERIMENTS

We performed experiments on the MNIST strokes sequences dataset de Jong (2016)2 to evaluate
the proposed loss components the in case of an RNN model and time series data. This dataset
contains pen strokes, automatically generated from the original MNIST dataset LeCun et al. (1998).
Although the generated sequences do not always reflect a choice a human would made in order to
write a digit, the strokes are consistent across the dataset.

For this experiment, we split the examples into two groups: samples belonging to the classes from 0
to 4 were assigned to the first group, and samples belonging to the classes from 5 to 9 were assigned
to the second group. The model is trained to predict the group of a given sample and does not have
any access to the underlying classes.

We used the model depicted in Figure 1 for this experiment. After the models were trained on the
binary classification task, we used the output of the penultimate layer FC2 to perform the KMeans
clustering and evaluated the quality of the produced clustering using the original class labels as
ground truth assignments.

Autoencoder experiments In order to investigate the influence of the proposed loss components
in the autoencoder settings, we applied them to an autoencoder model that reconstructs the input
sequences from the MNIST strokes sequences dataset. We did not use any label information during
this experiments, and used the representation from the intermediate layer of the autoencoder to
perform KMeans clustering.

4.2 CIFAR-10 EXPERIMENTS

In order to evaluate the proposed loss components on a different type of model and data, we pre-
formed experimented with the CIFAR-10 dataset Krizhevsky & Hinton (2009) using an CNN model.

2https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data

6

https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data

Under review as a conference paper at ICLR 2018

As in the MNIST strokes sequences experiments, we split the examples in two groups: samples
belonging to the classes “airplan”, “automobile”, “bird”, “cat”, and “deer” were assigned to the first
group, and samples belonging to the classes “dog”, “frog”, “horse”, “ship”, “truck” were assigned
to the second group. Note that this assignment is quite arbitrary as it simply reflects the order of the
labels of the classes in the dataset (namely, the labels 0-4 for the first group and the labels 4-9 for the
second group). All groups contain rather different types of objects, both natural and human-made.

For these experiments, we used a CNN model based on the VGG-16 architecture (Simonyan & Zis-
serman, 2014), depicted on the Figure 4. We discarded the bottom fully connected and convolutional
layers as, perhaps, they are too big for this dataset. Instead, we appended three convolutional layers
to the output of pool3 layer with number of filters 256, 128 and 8 correspondingly. The first two
layers use 3x3 convolutions, and the last layer uses 1x1 convolutions. After that, we pass the output
through a fully-connected layer of size 15 (FC1), which produces the representations used in clus-
tering, and a fully connected layer of size 1 (FC2) with the sigmoid activation function to produce a
binary classification decision.

4.3 TEXT CLASSIFICATION EXPERIMENTS

Finally, to prove a wide generalizability of the proposed loss components, we performed text classi-
fication experiments using an RNN model again, but on an entirely different type of data. Namely,
we used the DBPedia ontology dataset dataset (Zhang et al., 2015), which contains titles and abstract
of Wikipedia articles labeled by 14 ontology classes.

Again, we split the samples into two groups and trained the model on the binary classification task.
Classes “Company”, “EducationalInstitution”, “Artist”, “Athlete”, “OfficeHolder”, “MeanOfTrans-
portation”, “Building” belong to the first group, and the classes “NaturalPlace”, “Village”, “Ani-
mal”, “Plant”, “Album”, “Film”, “WrittenWork” belong to the second group. As in subsection 4.1,
we used the model depicted on Figure 1.

4.4 IMPLEMENTATION DETAILS

Despite the fact the proposed loss components can be directly implemented using two nested for
loops, such implementation will not be computationally efficient, as it will lead to a big computa-
tional graph operating on separate vectors without using full advantages of highly optimized parallel
matrix computations on GPU. Therefore, it is desirable to have an efficient implementation that can
use full advantage of modern GPUs. We have developed such an efficient implementation that
significantly accelerates the computation of the loss component in return for a higher memory con-
sumption by creating two matrices that contain all combinations of di and dj from the summations
in the Equation 5 and performing the operations to calculate the loss on them. We have made our
implementation for TensorFlow (Abadi et al., 2016) publicly available on GitHub3 alongside with
aforementioned models from the subsection 4.1 and the subsection 4.2.

It is worth noting that since the loss component Lsingle operates directly on the weights of the target
layer, its computational complexity does not depend on the size of the batch. Instead, it depends
on the size of that layer. In contrast, the Lmulti operates on the activations of the target layer on all
samples in the batch, and its computational complexity depends on the number of samples in the
batch. In practice, using the implementation described above, we were able to train models with
batch size of 512 and higher without exhausting the GPU’s memory.

5 RESULTS AND DISCUSSION

5.1 QUANTITATIVE ANALYSIS

We report the average of the Adjusted Mutual Information (AMImax) and Normalized Mutual Infor-
mation (NMIsqrt) scores (Vinh et al., 2010) across three runs in Table 1. On the simplest MNIST
strokes sequences dataset Lsingle outperforms all other methods, whereas on more challenging and
complex datasets Lmilti works the best, probably due to its ability to influence the learned repre-

3http://github.com/placeholder/

7

http://github.com/placeholder/

Under review as a conference paper at ICLR 2018

Table 1: Adjusted Mutual Information (AMI) and Normalized Mutual Information (NMI) scores for
KMeans clustering on different datasets

Model
MNIST MNIST

Autoencoder CIFAR-10 DBPedia

Test set Test set Validation set Test set Validation set Test set

AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI

Baseline 0.467 0.477 0.454 0.460 0.198 0.204 0.194 0.199 0.348 0.361 0.349 0.362
DeCov 0.287 0.313 0.443 0.450 0.175 0.191 0.176 0.191 0.271 0.322 0.27 0.323
Xcov 0.525 0.547 0.414 0.420 0.320 0.327 0.321 0.326 0.379 0.391 0.379 0.393
L single 0.544 0.553 0.457 0.463 0.238 0.245 0.239 0.246 0.455 0.464 0.451 0.461
L multi 0.502 0.523 0.463 0.470 0.376 0.384 0.376 0.385 0.520 0.523 0.529 0.533

sentations on all layers of the network behind the target layer. The proposed loss components also
improves the quality of clustering in the autoencoder settings, although the gain is marginal.

It is also important to note that in all our experiments accuracy of models was not affected in a
harmful way when we applied the proposed loss components, or the effect was negligible (less than
0.5%).

5.2 QUALITATIVE ANALYSIS

To examine the influence of the proposed loss components to the activations of the network, we
plot the number of samples, belonging to different underlying classes on the x axis for which the
neurons on the y axis were active the most in the binary classification task on Figure 2 and Figure 3
for on MNIST strokes sequences and CIFAR-10 datasets correspondingly. As we can see from these
figures, during a regular training with the binary classification objective, without the proposed loss
component the models tend to learn representations that is specific to the target binary label, even
though the samples within one group come from different classes. The model learns to use mostly
just two neurons to discriminate between the target groups and hardly uses the rest of the neurons in
the layer. We observe this behaviour across different types of models and datasets: an RNN model
applied to a timeseries dataset and an CNN model applied to an image classification dataset behave
in the exactly the same way. Both proposed loss components Lsingle and Lmulti force the model
to produce diverged representations, and we can see how it changes the patterns of activations in
the target layer. It is easy to observe in Figure 2b that the patterns of activations learned by the
networks roughly correspond to underlying classes, despite the fact that the network did not have
access to them during the training. This pattern is not as easy to see in case of CIFAR-10 dataset
(see the Figure 3b), but we can observe that the proposed loss component nevertheless forced the
network to activate different neurons for different classes, leading to a better AMI score on the
clustering task.

In order to further investigate the representations learned by the model, we visualized the represen-
tations of samples from the MNIST strokes sequences dataset in Figure 5 using TensorBoard. Fig-
ure 5a and Figure 5b in the top row depict the representations learned by the baseline model, colored
according to the binary label and the underlying classes, respectively. Figure 5c and Figure 5d in
the bottom row depict the representations of the same samples, learned by the model with the Lmulti
loss component, colored in the same way. It is easy to see that the Lmulti indeed forced the model
to learn disentangled representations of the input data. Note how the baseline model learned dense
clusters of objects, with samples from the same group (but different classes) compactly packed in
the same area. In contrast, the model with the proposed loss component learned considerably better
representations which disentangle samples belonging to different classes and placed the them more
uniformly in the space.

In the real world, the number of clusters is rarely known beforehand. To systematically examine the
stability of the proposed loss component, we plotted the Adjusted Mutual Information scores for the
baselines methods andLmulti loss component with respect to the number of clusters in Figure 6, using
the CIFAR-10 dataset. As can be seen from Figure 6, our loss component consistently outperforms
the previously proposed methods regardless the number of clusters.

8

Under review as a conference paper at ICLR 2018

Figure 6: Number of clusters and the corresponding AMI score on the CIFAR-10 dataset

6 CONCLUSION

In this paper, we propose two novel loss components that substantially improve the quality of
KMeans clustering, which uses representations of the input data learned by a given model. We per-
formed a comprehensive set of experiments using two popular neural network architectures (RNNs
and CNNs), and different modalities of data (image and text). Our results demonstrate that the pro-
posed loss components consistently increase the Mutual Information scores by a significant margin,
and outperform previously proposed methods. In addition, we qualitatively analyzed the represen-
tations learned by the network by visualizing the activation patterns and relative positions of the
samples in the learned space, showing that the proposed loss components indeed force the network
to learn diverged representations.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Brian Cheung, Jesse A Livezey, Arjun K Bansal, and Bruno A Olshausen. Discovering hidden
factors of variation in deep networks. arXiv preprint arXiv:1412.6583, 2014.

Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. Reducing overfit-
ting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068, 2015.

Edwin D de Jong. Incremental sequence learning. arXiv preprint arXiv:1611.03068, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in Neural Information Processing Systems,
pp. 3581–3589, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,
1998.

Renjie Liao, Alex Schwing, Richard Zemel, and Raquel Urtasun. Learning deep parsimonious
representations. In Advances in Neural Information Processing Systems, pp. 5076–5084, 2016.

9

Under review as a conference paper at ICLR 2018

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and Yann
LeCun. Disentangling factors of variation in deep representation using adversarial training. In
Advances in Neural Information Processing Systems, pp. 5041–5049, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Joshua Susskind, Adam Anderson, and Geoffrey E Hinton. The toronto face dataset. U. Toronto,
Tech. Rep. UTML TR, 1:2010, 2010.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal of Machine
Learning Research, 11(Oct):2837–2854, 2010.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International Conference on Machine Learning (ICML), 2016.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in neural information processing systems, pp. 649–657, 2015.

10

	Introduction
	Related Work
	The proposed method
	Single layer loss
	Multilayer loss
	Unsupervised learning
	The margin hyperparameter m

	Experiments
	MNIST strokes sequences experiments
	CIFAR-10 experiments
	Text classification experiments
	Implementation details

	Results and Discussion
	Quantitative analysis
	Qualitative analysis

	Conclusion

