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ABSTRACT

It is well known that it is possible to construct “adversarial examples” for neu-
ral networks: inputs which are misclassified by the network yet indistinguishable
from true data. We propose a simple modification to standard neural network ar-
chitectures, thermometer encoding, which significantly increases the robustness
of the network to adversarial examples. We demonstrate this robustness with ex-
periments on the MNIST, CIFAR-10, CIFAR-100, and SVHN datasets, and show
that models with thermometer-encoded inputs consistently have higher accuracy
on adversarial examples, without decreasing generalization. State-of-the-art accu-
racy under the strongest known white-box attack was increased from 93.20% to
94.30% on MNIST and 50.00% to 79.16% on CIFAR-10. We explore the proper-
ties of these networks, providing evidence that thermometer encodings help neural
networks to find more-non-linear decision boundaries.

1 INTRODUCTION AND RELATED WORK

Adversarial examples are inputs to machine learning models that are intentionally designed to cause
the model to produce an incorrect output. The term was introduced by Szegedy et al. (2014) in the
context of neural networks for computer vision. In the context of spam and malware detection, such
inputs have been studied earlier under the name evasion attacks (Biggio et al., 2013). Adversarial
examples are interesting from a scientific perspective, because they demonstrate that even machine
learning models that have superhuman performance on I.I.D. test sets fail catastrophically on in-
puts that are modified even slightly by an adversary. Adversarial examples also raise concerns in
the emerging field of machine learning security because malicious attackers could use adversarial
examples to cause undesired behavior (Papernot et al., 2016).

Unfortunately, there is not yet any known strong defense against adversarial examples. Adversarial
examples that fool one model often fool another model, even if the two models are trained on dif-
ferent training examples (corresponding to the same task) or have different architectures (Szegedy
et al., 2014), so an attacker can fool a model without access to it. Attackers can improve their success
rate by sending inputs to a model, observing its output, and fitting their own own copy of the model
to the observed input-output pairs (Papernot et al., 2016). Attackers can also improve their success
rate by searching for adversarial examples that fool multiple different models—such adversarial ex-
amples are then much more likely to fool the unknown target model (Liu et al., 2016). Szegedy et al.
(2014) proposed to defend the model using adversarial training (training on adversarial examples as
well as regular examples) but it was not feasible to generate enough adversarial examples in the in-
ner loop of the training process for the method to be effective at the time. Szegedy et al. (2014) used
a large number of iterations of L-BFGS to produce their adversarial examples. Goodfellow et al.
(2014) developed the fast gradient sign method (FGSM) of generating adversarial examples and
demonstrated that adversarial training is effective for reducing the error rate on adversarial exam-
ples. A major difficulty of adversarial training is that it tends to overfit to the method of adversarial
example generation used at training time. For example, models trained to resist FGSM adversarial
examples usually fail to resist L-BFGS adversarial examples. Kurakin et al. (2016) introduced the
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basic iterative method (BIM) which lies between FGSM and L-BFGS on a curve trading speed for
effectiveness (the BIM consists of running FGSM for a medium number of iterations). Adversarial
training using BIM still overfits to the BIM, unfortunately, and different iterative methods can still
successfully attack the model. Recently, Madry et al. (2017) showed that adversarial training using
adversarial examples created by adding random noise before running BIM results in a model that is
highly robust against all known attacks on the MNIST dataset. However, it is less effective on more
complex datasets, such as CIFAR. A strategy for training networks which are robust to adversarial
attacks across all contexts is still unknown. In this work, we demonstrate that thermometer code dis-
cretization and one-hot code discretization of real-valued inputs to a model significantly improves
its robustness to adversarial attack, advancing the state of the art in this field.

2 INPUT DISCRETIZATION

We propose to break the linear extrapolation behavior of machine learning models by preprocessing
the input with an extremely nonlinear function. This function must still permit the machine learning
model to function successfully on naturally occurring inputs. The recent success of the PixelRNN
model (Oord et al., 2016) has demonstrated that one-hot discrete codes for 256 possible values
of color pixels are effective representations for input data. Other extremely nonlinear functions
may also defend against adversarial examples, but we focused attention on vector-valued discrete
encoding as our nonlinear function because of the evidence from PixelRNN that it would support
successful machine learning.

Images are often encoded as a 3D tensor of integers in the range [0, 255]. The tensor’s three di-
mensions correspond to the image’s height, width, and color channels (e.g. three for RGB, one for
greyscale). Each value represents an intensity value for a given color at a given horizontal/vertical
position. For classification tasks, these values are typically normalized to floating-point approxima-
tions in the range (0, 1). Input discretization refers to the process of separating these continuous-
valued pixel inputs into a set of non-overlapping buckets, which are each mapped to a fixed binary
vector.

Past work, for example depth-color-squeezing (Xu et al., 2017), has explored what we will refer to
as quantization of inputs as a potential defense against adversarial examples. In that approach, each
pixel value is mapped to the low-bit version of its original value, which is a fixed scalar. The key
novel aspect of our approach is that rather than replacing a real number with a number of low bit
depth, we replace each real number with a binary vector. Different values of the real number activate
different bits of the input vector. Multiplying the input vector by the network’s weights thus performs
an operation similar to an embedding lookup in a language model, so different input values actually
use different parameters of the network. To avoid confusion, we will consistently refer to scalar-to-
scalar precision reduction as quantization and scalar-to-vector encoding schemes as discretization
throughout this work. A comparison of these techniques can be seen in Table 1. Note that, unlike
depth-color-squeezing, discretization makes a meaningful change to the model, even when it is
configured to use enough discretization levels to avoid losing any information from a traditionally
formatted computer vision training set; discretizing each pixel to 256 levels will preserve all of the
information contained in the original image. Discretization defends against adversarial examples by
changing which parameters of the model are used, and may also discard information if the number
of discretization levels is low; quantization can only defend the model by discarding information.

Real-valued Quantized Discretized (one-hot) Discretized (thermometer)
0.13 0.15 [0100000000] [0111111111]
0.66 0.65 [0000001000] [0000001111]
0.92 0.95 [0000000001] [0000000001]

Table 1: Examples mapping from continuous-valued inputs to quantized inputs, one-hot codes, and
thermometer codes, with ten evenly-spaced levels.

2.1 DISCRETIZATION AS A DEFENSE

In Goodfellow et al. (2014), the authors provide evidence that several network architectures, in-
cluding LSTMs (Hochreiter & Schmidhuber, 1997), sigmoid networks (Han & Moraga, 1995), and
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maxout networks (Goodfellow et al., 2013), are vulnerable to adversarial examples due to the empir-
ical fact that, when trained, the loss function of these networks tends to be highly linear with respect
to its inputs.

We briefly recall the reasoning of Goodfellow et al. (2014). Assume that we have a logistic regressor
with weight matrix w. Consider an image x ∈ Rn which is perturbed into x̃ = x+ η by some noise
η such that ‖η‖∞ ≤ ε for some ε. The probability that the model assigns to the true class is equal
to:

L(x̃) = σ(w>x̃) = σ(w>(x+ η)) = σ(w>x+ w>η)

If the perturbation η is adversarial, such as in the case where ηi := ε · sign
(
∂L(x)
∂xi

)
, then the input

to the sigmoid is increased by ε · n. If n is large, as is typically the case in images and other high-
dimensional spaces of interest, this linearity implies that even imperceptibly small values of ε can
have a large effect on the model’s prediction, making the model vulnerable to adversarial attacks.

Though neural networks in principle have the capacity to represent highly nonlinear functions, net-
works trained via stochastic gradient descent on real-world datasets tend to converge to mostly-linear
solutions. This is illustrated in the empirical studies conducted by Goodfellow et al. (2014). One
hypothesis proposed to explain this phenomenon is that the nonlinearities typically used in networks
are either piecewise linear, like ReLUs, or approximately linear in the parts of their domain in which
training takes place, like the sigmoid function.

One potential solution to this problem is to use more non-linear activation functions, such as
quadratic or RBF units. Indeed, it was shown by Goodfellow et al. (2014) that such units were
more resistant to adversarial perturbations of their inputs. However, these units are difficult to train,
and the resulting models do not generalize very well (Goodfellow et al., 2014), sacrificing accuracy
on clean examples. As an alternative to introducing highly non-linear activation functions in the
network, we propose applying a non-differentiable and non-linear transformation (discretization) to
the input, before passing it into the model. A comparison of the input to the model under various
regimes can be seen in Figure 1, highlighting the strong non-linearity of discretization techniques.

(a) One hot encoding (b) Thermometer encoding

Figure 1: Comparison of regular inputs, quantized inputs, and discretized inputs (16 levels, projected
to one dimension) on MNIST, adversarially trained with ε = 0.3. The x-axis represents the true pixel
value of the image, and the y-axis represents the value that is passed as input to the network after the
input transformation has been applied. For real-valued inputs, the inputs to the network are affected
linearly by perturbations to the input. Quantized inputs are also affected approximately linearly by
perturbations where ε is greater than the bucket width. Discretizing the input, and then using learned
weights to project the discretized value back to a single scalar, we see that the model has learned
a highly non-linear function to represent the input in a fashion that is effective for resisting the
adversarial perturbations it has seen. When starting at the most common pixel-values for MNIST,
0 and 1, any perturbation of the pixels (where ε ≤ 0.3) has barely any effect on the input to the
network.
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2.2 TYPES OF DISCRETIZATION

In this work we consider two approaches to constructing discretized representations f(x) of the
input image x. Assume for the sake of simplicity that the entries of x take values in the continuous
domain [0, 1].

We first describe a quantization function b. Choose 0 < b1 < b2 < · · · < bk = 1 in some fashion.
(In this work, we simply divide the domain evenly, i.e. bi = i

k .) For a real number θ ∈ [0, 1] define
b(θ) to be the largest index α ∈ {1, . . . , k} such that θ ≤ bα.

2.2.1 ONE-HOT ENCODINGS

For an index j ∈ {1, . . . , k} let χ(j) ∈ Rk be the indicator or one-hot vector of j, i.e.,

χ(j)l =

{
1 if l = j

0 otherwise.

The discretization function is defined pixel-wise for a pixel i ∈ {1, . . . , n} as:

fonehot(xi) = χ (b(xi)) .

One-hot encodings are simple to compute and understand, and are often used when it is necessary to
represent a categorical variable in a neural network. However, one-hot encodings are not well suited
for representing categorical variables with an interpretation of ordering between them. Note that the
ordering information between two pixels xi and xj is lost by applying the transformation fonehot;
for a pair of pixels i, j whenever b(xi) 6= b(xj)), we see:

‖χ(b(xi))‖2 = ‖χ(b(xj))‖2 = 1.

In the case of pixel values, this is not a good inductive bias, as there is a clear reason to believe that
neighboring buckets are more similar to each other than distant buckets.

2.2.2 THERMOMETER ENCODINGS

In order to discretize the input image x without losing the relative distance information, we propose
thermometer encodings. For an index j ∈ {1, . . . , k}, let τ(j) ∈ Rk be the thermometer vector
defined as

τ(j)l =

{
1 if l ≥ j
0 otherwise.

Then the discretization function f is defined pixel-wise for a pixel i ∈ {1, . . . , n} as:

ftherm(x)i = τ (b(xi)) = C(fonehot(xi))

where C is the cumulative sum function, C(c)l =
l∑

j=0

cl.

Note that the thermometer encoding preserves pairwise ordering information, i.e., for pixels i, j if
b(xj) 6= b(xk) and xi < xj then

‖τ(b(xi))‖2 < ‖τ(b(xj))‖2 .

2.3 WHITE-BOX ATTACKS ON DISCRETIZED INPUTS

Discretizing the input makes it difficult to attack the model with standard white-box attack algo-
rithms, such as FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017), since it is impossible
to backpropagate through our discretization function to determine how to adversarially modify the
model’s input. In this section, we describe two novel iterative attacks which allow us to construct
adversarial examples for networks trained on discretized inputs.

Constructing white-box attacks on discretized inputs serves two primary purposes. First, it allows
us to more completely evaluate whether the model is robust to all adversarial attacks, as white-box
attacks are typically more powerful than their black-box counterparts. Secondly, adversarial training
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is typically performed in a white-box fashion, and so in order to utilize and properly compare against
the adversarial training techniques of Madry et al. (2017), it is important to have strong white-box
attacks.

For ease of presentation, we will describe the attacks assuming that f : R → Rk discretizes inputs
into thermometer encodings; in order to attack one-hot encodings, simply replace all instances of
ftherm with fonehot, τ with χ, and C with the identity function I. We represent the adversarial
image after t steps of the attack as zt, where the value of the ith pixel is zti .

The first attack, Discrete Gradient Ascent (DGA), follows the direction of the gradient of the loss
with respect to f(x), but is constrained at every step to be a discretized vector. If we have discretized
the input image into k-dimensional vectors using the one-hot encoding, this corresponds to moving
to a vertex of the simplex (∆k)

n at every step. The second attack, Logit-Space Projected Gradient
Ascent (LS-PGA), relaxes this assumption, allowing intermediate iterates to be in the interior of the
simplex. The final adversarial image is obtained by projecting the final point back to the nearest
vertex of the simplex.

Note that if the number of attack steps is 1, then the two attacks are equivalent; however, for larger
numbers of attack steps, LS-PGA is a generalization of DGA.

2.3.1 DISCRETE GRADIENT ASCENT (DGA)

Following PGD (Madry et al., 2017), we initialize DGA by placing each pixel into a random bucket
that is within ε of the pixel’s true value. At each step of the attack, we look at all buckets that are
within ε of the true value, and select the bucket that is likely to do the most ‘harm’, as estimated by
the gradient of setting that bucket’s indicator variable to 1, with respect to the model’s loss at the
previous step.

z0i = ftherm(xi + U(−ε, ε))

harm(zti)l =

{
(zti − τ(l))> · ∂L(z

t)
∂zti

if ∃(−ε ≤ η ≤ ε) s.t. b(xi + η) = l

0 otherwise.

zt+1
i = τ

(
arg max

(
harm

(
zti
)))

Because the outcome of this optimization procedure will vary depending on the initial random per-
turbation, we suggest strengthening the attack by re-running it several times and using the pertur-
bation with the greatest loss. The pseudo-code for the DGA attack is given in Section B of the
appendix.

2.3.2 LOGIT-SPACE PROJECTED GRADIENT ASCENT (LS-PGA)

To perform LS-PGA, we soften the discrete encodings into continuous relaxations, and then perform
standard Projected Gradient Ascent (PGA) on these relaxed values. We represent the distribution
over embeddings as a softmax over logits u, each corresponding to the unnormalized log-weight
of a specific bucket’s embedding. To improve the attack, we scale the logits with temperature T ,
allowing us to trade off between how closely our softmax approximates a true one-hot distribution
as in the Gumbel-softmax trick (Jang et al., 2016; Maddison et al., 2016), and how much gradient
signal the logits receive. At each step of a multi-step attack, we anneal this value via exponential
decay with rate δ.

zti = C
(
σ

(
uti
T t

))
zfinali = τ

(
arg max

(
ufinali

))
T t = T t−1 · δ

We initialize each of the logits randomly with values sampled from a standard normal distribution.
At each step, we ensure that the model does not assign any probability to buckets which are not
within ε of the true value by fixing the logits to be−∞. The model’s loss is a continuous function of
the logits, so we can simply utilize attacks designed for continuous-valued inputs, in this case PGA
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with step-size ξ.

u0i =

{
N (0;1) if ∃(−ε ≤ η ≤ ε) s.t. b(xi + η) = l

−∞ otherwise.(
ut+1
i

)
l

=

{
(uti)l + ξ · sign

(
∂L(zt)
∂ut

i

)
l

if ∃(−ε ≤ η ≤ ε) s.t. b(xi + η) = l

−∞ otherwise.

Because the outcome of this optimization procedure will vary depending on the initial perturbation,
we suggest strengthening the attack by re-running it several times and using the perturbation with
the greatest loss. The pseudo-code for the LS-PGA attack is given in Section B of the appendix.

3 EXPERIMENTS

We compare models trained with input discretization to state-of-the-art adversarial defenses on a
variety of datasets. We match the experimental setup of the prior literature as closely as possible.
Rows labeled with “Vanilla (Madry)” give the numbers reported in Madry et al. (2017); other rows
contain results of our own experiments, with “Vanilla” containing a direct replication. For our
MNIST experiments, we use a convolutional network; for CIFAR-10, CIFAR-100, and SVHN we
use a Wide ResNet (Zagoruyko & Komodakis, 2016). We use a network of depth 30 for the CIFAR-
10 and CIFAR-100 datasets, while for SVHN we use a network of depth 15. The width factor of all
the Wide ResNets is set to k = 4. 1 Unless otherwise specified, all quantized and discretized models
use 16 levels.

We found that in all cases, LS-PGA was strictly more powerful than DGA, so all attacks on dis-
cretized models use LS-PGA with ξ = 0.01, δ = 1.2, and 1 random restart. To be consistent with
Madry et al. (2017), we describe attacks in terms of the maximum `∞-norm of the attack, ε. All
MNIST experiments used ε = 0.3 and 40 steps for iterative attacks; experiments on CIFAR used
ε = 0.031 and 7 steps for iterative attacks; experiments on SVHN used ε = 0.047 and 10 steps
for iterative attacks. These settings were used for adversarial training, white-box attacks, and black-
box attacks. Figure 3 plots the effectiveness of the iterated PGD/LS-PGA attacks on vanilla and
discretized models for MNIST and shows that increasing the number of iterations beyond 40 would
have no effect on the performance of the model on `∞-bounded adversarial examples for MNIST.

In Madry et al. (2017), adversarially-trained models are trained using exclusively adversarial inputs.
This led to a small but noticeable loss in accuracy on clean examples, dropping from 99.2% to 98.8%
on MNIST and from 95.2% to 87.3% on CIFAR-10 in return for more robustness towards adversarial
examples. Past work has also sometimes performed adversarial training on batches composed of half
clean examples and half adversarial examples (Goodfellow et al., 2014; Cisse et al., 2017). To be
consistent with Madry et al. (2017), we list experiments on models trained only on adversarial inputs
in the main paper; additional experiments on a mix of clean and adversarial inputs can be found in
the appendix.

We also run experiments exploring the model’s relationship with the number of distinct levels to
which we quantize the input before discretizing it, and exploring various settings of hyperparameters
for LS-PGA.

4 RESULTS

Our adversarially-trained baseline models were able to approximately replicate the results of Madry
et al. (2017). On all datasets, discretizing the inputs of the network dramatically improves resistance
to adversarial examples, while barely sacrificing any accuracy on clean examples. Quantized models
also beat the baseline, but with lower accuracy on clean examples. Discretization via thermometer
encodings outperformed one-hot encodings in most settings. See Tables 2,3,4 and 5 for results on
MNIST and CIFAR-10. Additional results on CIFAR-100 and SVHN are included in the appendix.

1A full list of hyperparameters can be found in the appendix. Source code is available at http://anonymized
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In Figures 2 and 5 (located in appendix), we plot the test-set accuracy across training timesteps for
various adversarially trained models on the SVHN and CIFAR-10 datasets, and observe that the
discretized models become robust against adversarial examples more quickly.

Model Clean FGSM PGD/LS-PGA

C
le

an

Vanilla (Madry) 99.20 6.40 -
Vanilla 99.30 0.19 0

Quantized 99.19 1.10 0
One-hot 99.13 0 0

Thermometer 99.20 0 0
A

dv
.t

ra
in

Vanilla (Madry) 98.80 95.60 93.20
Vanilla 98.67 96.17 93.30

Quantized 98.75 96.29 94.23
One-hot 98.61 96.22 94.30

Thermometer 99.03 95.84 94.02

Table 2: Comparison of adversarial robustness to white-box attacks on MNIST .

XXXXXXXXXTarget
Source Clean Adv. train

Vanilla One-hot Thermometer Vanilla One-hot Thermometer

C
le

an

Vanilla 2.04 36.02 24.58 3.48 80.44 57.69
Quantized 39.22 32.39 25.63 75.02 75.92 52.32
One-hot 14.57 6.91 8.11 39.02 39.60 18.02

Thermometer 41.12 14.30 10.98 61.84 59.16 32.93

A
dv

.t
ra

in

Vanilla (Madry) - - - 96.0 - -
Quantized 97.65 98.16 97.14 95.27 95.31 96.53

Vanilla 97.62 98.05 97.06 95.43 95.38 96.23
One-hot 97.78 98.48 97.87 96.87 96.60 96.87

Thermometer 98.07 98.75 98.02 97.05 96.88 97.13

Table 3: Comparison of adversarial robustness to black-box attacks on MNIST .

Model Clean FGSM PGD/LS-PGA

C
le

an

Vanilla (Madry) 95.20 25.10 4.10
Vanilla 94.29 46.15 1.66

Quantized 93.49 43.89 3.57
One-hot 93.26 52.07 53.11

Thermometer 94.22 48.50 50.50

A
dv

.t
ra

in

Vanilla (Madry) 87.3 60.3 50.0
Vanilla 87.67 59.7 41.78

Quantized 85.75 53.53 42.09
One-hot 88.67 68.76 67.83

Thermometer 89.88 80.96 79.16

Table 4: Comparison of adversarial robustness to white-box attacks on CIFAR-10 .

5 DISCUSSION

In Goodfellow et al. (2014), the seeming linearity of deep neural networks was shown by visualizing
the networks in several different ways. To test our hypothesis that discretization breaks some of this
linearity, we replicate these visualizations and contrast them to visualizations of discretized models.
See Appendix G for an illustration of these properties.

For non-discretized, clean trained models, test-set examples always yield a linear boundary between
correct and incorrect classification; in contrast, non-adversarially-trained models have a more inter-
esting parabolic shape (see Figure 9).
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XXXXXXXXXTarget
Source Clean Adv. train

Vanilla One-hot Thermometer Vanilla One-hot Thermometer

C
le

an
Vanilla (Madry) 0.0 - - 79.7 - -

Vanilla 3.38 60.10 52.60 45.48 37.21 49.91
Quantized 70.54 62.46 55.38 51.74 45.37 55.64
One-hot 83.00 56.25 63.94 54.59 49.21 57.28

Thermometer 80.33 66.22 53.45 57.04 51.03 60.90

A
dv

.t
ra

in

Vanilla (Madry) 85.60 - - 67.0 - -
Vanilla 85.60 74.99 73.78 67.0 50.09 71.03

Quantized 84.56 82.43 82.22 72.52 72.29 79.43
One-hot 86.01 77.19 77.70 61.92 60.02 72.89

Thermometer 88.25 81.59 80.80 67.96 67.43 77.68

Table 5: Comparison of adversarial robustness to black-box attacks on CIFAR-10 .

(a) Clean examples (b) Adversarial examples (iterative white-box)

Figure 2: Comparison of the convergence rate of various adversarially trained models on the SVHN
dataset.

(a) Loss over steps of LS-PGA (b) Loss over steps of PGD

Figure 3: Loss for iterated white-box attacks on various models on a randomly chosen data point
from MNIST. By step 40, which is where we evaluate, the loss of the point found by iterative attacks
has converged.

When discretizing the input, we introduce Cw · Ch · Co · c · (k − 1) extra parameters, where c is
the number of channels in the image, k is the number of levels of discretization, and Cw, Ch, Co
are the width, height, and output channels of the first convolutional layer. Discretizing using 16
levels introduced 0.03% extra parameters for MNIST, 0.08% for CIFAR-10 and CIFAR-100, and
2.3% for SVHN. This increase is negligible, so it is likely that the robustness comes from the input
discretization, and is not merely a byproduct of having a slightly higher-capacity model.
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6 CONCLUSION

Our findings convincingly demonstrate that the use of thermometer encodings, in combination with
adversarial training, can reduce the vulnerability of neural network models to adversarial attacks.
Our analysis reveals that the resulting networks are significantly less linear with respect to their
inputs, supporting the hypothesis of Goodfellow et al. (2014) that many adversarial examples are
caused by over-generalization in networks that are too linear.
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A HYPERPARAMETERS

In this section, we describe the hyperparameters used in our experiments. For CIFAR-10 and
CIFAR-100 we follow the standard data augmenting scheme as in (Lin et al., 2013; He et al., 2016;
Huang et al., 2016; Zagoruyko & Komodakis, 2016): each training image is zero-padded with 4
pixels on each side and randomly cropped to a new 32× 32 image. The resulting image is randomly
flipped with probability 0.5, it’s brightness is adjusted with a delta chosen uniformly at random
in the interval [−63, 63) and it’s contrast is adjusted using a random contrast factor in the interval
[0.2, 1.8]. For MNIST we use the Adam optimizer with a fixed learning rate of 1e−4 as in Madry
et al. (2017). For CIFAR-10 and CIFAR-100 we use the Momentum optimizer with momentum 0.9,
`2 weight decay of λ = 0.0005 and an initial learning rate of 0.1 which is annealed by a factor of
0.2 after epochs 60, 120 and 160 respectively as in Zagoruyko & Komodakis (2016). For SVHN
we use the same optimizer with initial learning rate of 1e−2 which is annealed by a factor of 0.1
after epochs 80 and 120 respectively. We also use a dropout of 0.3 for CIFAR-10, CIFAR-100 and
SVHN.

B PSEUDO-CODE

The DGA attack is described in Algorithm 2 and the LS-PGA attack is described in Algorithm 3.
Both these algorithms make use of a getMask() sub-routine which is described in Algorithm 1.

Input: Image x, parameter ε
Output: ε-discretized mask around x

1 mask← (0)
n×k

2 low← max{0, x− ε}
3 high← min{1, x+ ε}
4 for α← 0 to 1 by 1

k do
5 mask← mask + fonehot (α ∗ low + (1− α) ∗ high)
6 end
7 return mask

Algorithm 1: Sub-routine for getting an ε-discretized mask of an image.

C ADDITIONAL EXPERIMENTS ON MNIST

In this section we list the additional experiments we performed using discretized models on MNIST.
The main hyperparameters of Algorithm 3 are the step size ξ used to perform the projected gradient
ascent, and the annealing rate of δ. We found that the choice of these hyperparameters was not
critical to the robustness of the model. In particular, we performed experiments with ξ = 1.0 and
ξ = 0.001, and both achieved similar accuracies as in Table 2 and Table 3. Additionally, we found
that without annealing, i.e., δ = 1.0, the performance was only slightly worse than with δ = 1.2.

We also experimented with discretizing by using percentile information per color channel instead of
using uniformly distributed buckets. This did not result in any significant changes in robustness or
accuracy for the MNIST dataset.
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Input: Image x, label y, discretization function f , loss L(θθθ, f(x), y), l attack steps, parameter ε
Output: Adversarial input to the network z′

1 η ← U(−ε, ε)
2 z0 ← f(x+ η)
3 mask← getMask(x, ε)
4 for t← 1 to l do

/* Loop invariant: zti is discretized for every pixel i */
5 grad← ∇zt−1L(θθθ, zt−1, y)
6 if f is one-hot then
7 harml ← (zt−1 − χ(l))>grad
8 else
9 harml ← (zt−1 − τ(l))>grad

10 end
11 harm← harm ∗mask− (1−mask) ∗∞
12 zt ← f(arg max(harm))
13 end
14 return z′ ← zl

Algorithm 2: Discrete Gradient Ascent (DGA)

Input: Image x, label y, discretization function f , loss L(θθθ, f(x), y), l attack steps, parameters
ε, δ

Output: Adversarial input to the network z′
1 mask← getMask(x, ε)

2 u0 ←
(
N (0k;1k)

)n ∗mask− (1−mask) ∗∞
3 T ← 1
4 if f is one-hot then
5 F← I
6 else
7 F← C
8 end
9 z0 ← F

(
σ
(
u0

T

))
10 for t← 1 to l do
11 grad← ∇ut−1L(θθθ, zt−1, y)
12 ut ← ut−1 + ξ · sign (grad)

13 zt ← F
(
σ
(
ut

T

))
14 T ← T · δ
15 end
16 return z′ ← τ(arg max(uli))

Algorithm 3: Logit-Space Projected Gradient Ascent (LS-PGA)

Model ξ δ White-box Black-box
One-hot 1.0 1.2 93.08 98.39
One-hot 0.001 1.2 93.50 98.42
One-hot 1.0 1.0 93.02 98.21

Thermometer 1.0 1.2 93.74 98.45
Thermometer 0.001 1.2 93.88 98.24
Thermometer 1.0 1.0 93.75 98.22

Table 6: Comparison of adversarial robustness to white-box attacks on MNIST using 16 levels and
with various choices of the hyperparameters ξ and δ for Algorithm 3. The models are evaluated on
white-box attacks and on black-box attacks using a vanilla, clean trained model; both use LS-PGA.
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Finally, we also trained on a mix of clean and adversarial examples: this resulted in significantly
higher accuracy on clean examples, but decreased accuracy on white-box and black-box attacks
compared to Tables 2 and 3.

Model Clean FGSM PGD/LS-PGA
Vanilla 99.03 95.70 91.36
One-hot 99.01 96.14 93.77

Thermometer 99.13 96.10 93.70

Table 7: Comparison of adversarial robustness to white-box attacks on MNIST using a mix of clean
and adversarial examples.

XXXXXXXXXTarget
Source Clean Adv. train

Vanilla One-hot Thermometer Vanilla One-hot Thermometer
Vanilla 97.88 97.87 96.99 93.07 90.97 96.46
One-hot 98.28 98.83 98.08 95.73 95.96 97.25

Thermometer 98.45 98.70 98.08 96.35 95.72 96.97

Table 8: Comparison of adversarial robustness to black-box attacks on MNIST of various models
using a mix of clean and adversarial examples.

White-box Black-box
Levels Clean PGD/LS-PGA Vanilla, Clean Vanilla, PGD

One-hot (4) 99.09 92.95 98.23 95.64
One-hot (8) 99.10 92.65 98.49 96.37

One-hot (16) 99.14 93.08 98.39 96.26
One-hot (32) 99.06 93.51 98.38 95.78
One-hot (64) 98.89 93.63 98.35 95.74

Thermometer (4) 99.11 92.62 98.23 95.67
Thermometer (8) 99.08 93.45 98.44 95.93

Thermometer (16) 99.07 93.88 98.24 95.28
Thermometer (32) 99.02 94.14 98.24 95.49
Thermometer (64) 99.00 94.62 98.33 95.71

Table 9: Comparison of adversarial robustness on MNIST as the number of levels of discretization
is varied. All models are trained mix of adversarial examples and clean examples.

D ADDITIONAL EXPERIMENTS ON CIFAR-10

In this section we list the additional experiments we performed on CIFAR-10. Firstly, we trained
models on a mix of both clean and adversarial examples. The results for mixed training are listed in
Tables 10 and 11; as expected it has lower accuracy on adversarial examples, but higher accuracy on
clean examples, compared to training on only adversarial examples (Tables 4 and 5).

Model Clean FGSM PGD/LS-PGA
Vanilla 87.16 54.50 34.71
One-hot 92.19 58.87 58.96

Thermometer 92.32 66.60 65.67

Table 10: Comparison of adversarial robustness to white-box attacks on CIFAR-10 of various models
using a mix of regular and adversarial training.
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XXXXXXXXXTarget
Source Clean Adv. train

Vanilla One-hot Thermometer Vanilla One-hot Thermometer
Vanilla 83.62 82.06 74.31 52.83 58.73 65.24
One-hot 88.16 75.11 75.49 61.89 59.17 69.73

Thermometer 87.50 75.91 74.84 61.39 58.51 68.22

Table 11: Comparison of adversarial robustness to black-box attacks on CIFAR-10 of various models
using a mix of clean and adversarial examples.

In order to explore whether the number of levels of discretization affected the performance of the
model, we trained several models which varied this number. As expected, we found that models with
fewer levels had worse accuracy on clean examples, likely because there was not enough information
to correctly classify the image, but greater robustness to adversarial examples, likely because larger
buckets mean a greater chance that a given perturbation will not yield any change in input to the
network (Xu et al., 2017). Results can be seen in Tables 12, and are visualized in Figure 4.

White-box Black-box
Levels Clean PGD/LS-PGA Vanilla, Clean Vanilla, PGD

Vanilla (Madry) 87.3 50.00 85.60 67.00
One-hot (4) 83.67 59.59 83.03 72.03
One-hot (8) 85.62 61.98 84.92 72.10

One-hot (16) 88.54 67.83 86.01 61.92
One-hot (32) 88.56 67.82 85.69 66.64
One-hot (64) 89.63 65.63 86.94 65.77

Thermometer (4) 84.47 61.88 83.64 72.96
Thermometer (8) 85.17 67.23 83.41 71.11

Thermometer (16) 89.88 79.16 88.25 67.96
Thermometer (32) 90.30 72.91 86.06 59.32
Thermometer (64) 89.95 69.37 83.85 51.82

Table 12: Comparison of adversarial robustness on CIFAR-10 as the number of levels of discretiza-
tion is varied. All models are trained only on adversarial examples.

E EXPERIMENTS ON CIFAR-100

We list the experimental results on CIFAR-100 in Table 13. We choose ξ = 0.01 and δ = 1.2 for the
LS-PGA attack hyperparameters. For the discretized models, we used 16 levels. All adversarially
trained models were trained on a mix of clean and adversarial examples.

XXXXXXXXXTarget
Source White-box Black-box

Clean PGD/LS-PGA Vanilla, Clean-trained Vanilla, PGD-trained

C
le

an

Vanilla 74.32 0 0.4 9.40
One-hot 73.25 16.55 55.72 19.33

Thermometer 74.44 16.50 50.33 18.49

A
dv

. Vanilla 64.46 6.02 7.46 11.77
One-hot 66.54 25.11 63.09 42.46

Thermometer 68.44 28.14 63.21 41.97

Table 13: Comparison of adversarial robustness on CIFAR-100. All adversarially trained models
were trained on a mix of clean and adversarial examples.

F EXPERIMENTS ON SVHN

We list the experimental results on SVHN in Table 14. All adversarially trained models were trained
only on adversarial examples.

13



Published as a conference paper at ICLR 2018

XXXXXXXXXTarget
Source White-box Black-box

Clean PGD/LS-PGA Vanilla, Clean-trained Vanilla, PGD-trained

C
le

an
Vanilla 97.90 6.99 73.94 42.04
One-hot 97.59 56.02 75.77 41.59

Thermometer 97.87 56.37 78.04 41.69

A
dv

. Vanilla 94.79 59.63 81.24 46.77
One-hot 95.12 87.34 83.84 43.40

Thermometer 97.74 94.77 84.97 48.67

Table 14: Comparison of adversarial robustness on SVHN.

G SUPPLEMENTARY FIGURES

In Figure 4 we plot the effect of increasing the levels of discretization for the MNIST and CIFAR-10
datasets.

(a) MNIST (b) CIFAR-10

Figure 4: The effect of increasing the number of distinct discretization levels on the accuracy of the
model on MNIST and CIFAR-10. (4a) shows the accuracy on on MNIST for discretized models
trained on a mix of legitimate and adversarial examples. (4b) shows the accuracy on CIFAR-10 for
discretized models trained only on adversarial examples.

In Figure 5 we plot the convergence rate of clean trained and adversarially trained models on the
CIFAR-10 dataset. Note that thermometer encoded inputs converge much faster in accuracy on both
clean and adversarial inputs.

Figure 6 plots the norm of the gradient as a function of the number of iterations of the attack on
MNIST. Note that the gradient vanishes at around 40 iterations, which coincides with the loss stabi-
lizing in Figure 3.

In Figure 7, we create a linear interpolation between a clean image and an adversarial example, and
then continue to extrapolate along this line, evaluating probability of each class at each point. In
models trained on unquantized inputs, the class probabilities are all mostly piecewise linear in both
the positive and negative directions. In contrast, the discretized model has a much more jagged and
irregular shape.

In Figure 8, we plot the error for different models on various values of ε. The discretized models
are extremely robust to all values less-than-or-equal-to the values that they have been exposed to
during training. However, beyond this threshold, discretized models collapse immediately, while
real-valued models still maintain some semblance of robustness. This exposes a weakness of the
discretization approach; the same nonlinearity that helps it learn to become robust to all attacks it
sees during training-time causes its behavior is unpredictable beyond that.

However, we believe that the fact that the performance of thermometer-encoded models degrades
more quickly than that of vanilla models beyond the training epsilon is a significant weakness in
practice, but no worse than other defenses. The “standard setting” for the adversarial example prob-
lem (in which we constrain the L-infinity norm of the perturbed image to an epsilon ball around the
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(a) (b)

Figure 5: Comparison of the convergence rate of various adversarially trained models on the
CIFAR-10 dataset. The discretized models use 16 levels per color channel. (5a) shows the ac-
curacy on clean examples, while (5b) shows the accuracy on white-box PGD/LS-PGA examples, in
wall-clock time.

(a) (b)

Figure 6: Gradient norm for iterated white-box attacks on various models on a randomly chosen
data point from MNIST. (6a) shows the gradient norm on discretized models as a function of steps
of LS-PGA, while (6b) shows the gradient norm on a vanilla model as a function of steps of PGD.

original image) was designed to ensure that any adversarially-perturbed image is still recognizable
as its original image by a human. However, this artificial constraint excludes many other poten-
tial attacks that also result in human-recognizable images. State-of-the art defenses in the standard
setting can still be easily defeated by non-standard attacks; for an example of this, see appendix A
of ICLR submission “Adversarial Spheres”. A “larger epsilon” attack is just one special case of a
“non-standard” attack. If we permit non-standard attacks, a fair comparison would show that all cur-
rent approaches are easily breakable. There is nothing special about the “larger epsilon” attack that
makes a vulnerability to this non-standard attack in particular more problematic than vulnerabilities
to other non-standard attacks.

In Figures 9, 10 , 11, 12 , 13 and 14 we plot several examples of church-window plots for MNIST
(Goodfellow et al., 2014). Each plot is crafted by taking several test-set images, calculating the
vector corresponding to an adversarial attack on each image, and then choosing an additional random
orthogonal direction. In each plot, the clean image is at the center and corresponds to the color white,
the x-axis corresponds to the magnitude of a perturbation in the adversarial direction, and the y-axis
corresponds to the magnitude of a perturbation in the orthogonal direction. Note that we use the
same random seed to generate the test set examples and the adversarial directions across different
church-window plots.
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(a) (b)

Figure 7: Linear extrapolation plot as in Goodfellow et al. (2014) for MNIST. (7a) shows the behav-
ior of a vanilla model while (7b) for a discretized model using 16 levels and thermometer encoding.
The ε-bound is [−1.5, 1.5].

(a) (b)

Figure 8: Plot showing the accuracy of various adversarially trained models on MNIST with ε =
0.3 (8a) and on CIFAR-10 with ε = 0.031 (8b), when attacked with increasing values of ε using
PGD/LS-PGA.
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(a) Vanilla (b) Quantized

(c) One-hot (d) Thermometer

Figure 9: Church-window plots of clean-trained models on MNIST. The x-axis of each sub-plot
represents the adversarial direction, while the y-axis represents a random orthogonal direction. The
correct class is represented by white. Every row in the plot contains a training data point chosen
uniformly at random, while each column uses a different random orthogonal vector for the y-axis.
The ε bound for both axes is [−1.0, 1.0]. Notice the almost-linear decision boundaries on non-
discretized models.
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(a) Vanilla (b) Quantized

(c) One-hot (d) Thermometer

Figure 10: Church-window plots of adversarially-trained models on MNIST, trained on only adver-
sarial examples. The x-axis of each sub-plot represents the adversarial direction, while the y-axis
represents a random orthogonal direction. The correct class is represented by white. Every row
in the plot contains a training data point chosen uniformly at random, while each column uses a
different random orthogonal vector for the y-axis. The ε bound for both axes is [−1.0, 1.0].
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(a) Vanilla (b) Quantized

(c) One-hot (d) Thermometer

Figure 11: Church-window plots of adversarially-trained models on MNIST, trained using a mix
of clean and adversarial examples. The x-axis of each sub-plot represents the adversarial direction,
while the y-axis represents a random orthogonal direction. The correct class is represented by white.
Every row in the plot contains a training data point chosen uniformly at random, while each column
uses a different random orthogonal vector for the y-axis. The ε bound for both axes is [−1.0, 1.0].
Notice the almost-linear decision boundaries on non-discretized models.
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(a) Vanilla (b) Quantized

(c) One-hot (d) Thermometer

Figure 12: Church-window plots of clean-trained models on CIFAR-10. The x-axis of each sub-plot
represents the adversarial direction, while the y-axis represents a random orthogonal direction. The
correct class is represented by white. Every row in the plot contains a training data point chosen
uniformly at random, while each column uses a different random orthogonal vector for the y-axis.
The ε bound for both axes is [−1.0, 1.0]. Notice the almost-linear decision boundaries on non-
discretized models.
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(a) Vanilla (b) Quantized

(c) One-hot (d) Thermometer

Figure 13: Church-window plots of adversarially-trained models on CIFAR-10, trained on only
adversarial examples. The x-axis of each sub-plot represents the adversarial direction, while the
y-axis represents a random orthogonal direction. The correct class is represented by white. Every
row in the plot contains a training data point chosen uniformly at random, while each column uses a
different random orthogonal vector for the y-axis. The ε bound for both axes is [−1.0, 1.0].
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(a) Vanilla (b) Quantized

(c) One-hot (d) Thermometer

Figure 14: Church-window plots of adversarially-trained models on CIFAR-10, trained using a mix
of clean and adversarial examples. The x-axis of each sub-plot represents the adversarial direction,
while the y-axis represents a random orthogonal direction. The correct class is represented by white.
Every row in the plot contains a training data point chosen uniformly at random, while each column
uses a different random orthogonal vector for the y-axis. The ε bound for both axes is [−1.0, 1.0].
Notice the almost-linear decision boundaries on non-discretized models.
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