
Published as a conference paper at ICLR 2018

ALTERNATING MULTI-BIT QUANTIZATION FOR
RECURRENT NEURAL NETWORKS

Chen Xu1,∗, Jianqiang Yao2, Zhouchen Lin1,3,†, Wenwu Ou2, Yuanbin Cao4, Zhirong Wang2,

Hongbin Zha1,3
1 Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, China
2 Search Algorithm Team, Alibaba Group, China
3 Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China
4 AI-LAB, Alibaba Group, China
xuen@pku.edu.cn,tianduo@taobao.com,zlin@pku.edu.cn,santong.oww@taobao.com
lingzun.cyb@alibaba-inc.com, qingfeng@taobao.com,zha@cis.pku.edu.cn

ABSTRACT

Recurrent neural networks have achieved excellent performance in many applica-
tions. However, on portable devices with limited resources, the models are often
too large to deploy. For applications on the server with large scale concurrent
requests, the latency during inference can also be very critical for costly computing
resources. In this work, we address these problems by quantizing the network, both
weights and activations, into multiple binary codes {−1,+1}. We formulate the
quantization as an optimization problem. Under the key observation that once the
quantization coefficients are fixed the binary codes can be derived efficiently by
binary search tree, alternating minimization is then applied. We test the quantiza-
tion for two well-known RNNs, i.e., long short term memory (LSTM) and gated
recurrent unit (GRU), on the language models. Compared with the full-precision
counter part, by 2-bit quantization we can achieve ∼16× memory saving and ∼6×
real inference acceleration on CPUs, with only a reasonable loss in the accuracy.
By 3-bit quantization, we can achieve almost no loss in the accuracy or even
surpass the original model, with ∼10.5× memory saving and ∼3× real inference
acceleration. Both results beat the exiting quantization works with large margins.
We extend our alternating quantization to image classification tasks. In both RNNs
and feedforward neural networks, the method also achieves excellent performance.

1 INTRODUCTION

Recurrent neural networks (RNNs) are specific type of neural networks which are designed to model
the sequence data. In last decades, various RNN architectures have been proposed, such as Long-
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units Cho
et al. (2014). They have enabled the RNNs to achieve state-of-art performance in many applications,
e.g., language models (Mikolov et al., 2010), neural machine translation (Sutskever et al., 2014;
Wu et al., 2016), automatic speech recognition (Graves et al., 2013), image captions (Vinyals et al.,
2015), etc. However, the models often build on high dimensional input/output,e.g., large vocabulary
in language models, or very deep inner recurrent networks, making the models have too many
parameters to deploy on portable devices with limited resources. In addition, RNNs can only be
executed sequentially with dependence on current hidden states. This causes large latency during
inference. For applications in the server with large scale concurrent requests, e.g., on-line machine
translation and speech recognition, large latency leads to limited requests processed per machine to
meet the stringent response time requirements. Thus much more costly computing resources are in
demand for RNN based models.

To alleviate the above problems, several techniques can be employed, i.e., low rank approximation
(Sainath et al., 2013; Jaderberg et al., 2014; Lebedev et al., 2014; Tai et al., 2016), sparsity (Liu
∗Work performed while interning at Alibaba search algorithm team.
†Corresponding author.

1

Published as a conference paper at ICLR 2018

et al., 2015; Han et al., 2015; 2016; Wen et al., 2016), and quantization. All of them are build
on the redundancy of current networks and can be combined. In this work, we mainly focus on
quantization based methods. More precisely, we are to quantize all parameters into multiple binary
codes {−1,+1}.
The idea of quantizing both weights and activations is firstly proposed by (Hubara et al., 2016a).
It has shown that even 1-bit binarization can achieve reasonably good performance in some visual
classification tasks. Compared with the full precision counterpart, binary weights reduce the memory
by a factor of 32. And the costly arithmetic operations between weights and activations can then
be replaced by cheap XNOR and bitcount operations(Hubara et al., 2016a), which potentially leads
to much acceleration. Rastegari et al. (2016) further incorporate a real coefficient to compensate
for the binarization error. They apply the method to the challenging ImageNet dataset and achieve
better performance than pure binarization in (Hubara et al., 2016a). However, it is still of large gap
compared with the full precision networks. To bridge this gap, some recent works (Hubara et al.,
2016b; Zhou et al., 2016; 2017) further employ quantization with more bits and achieve plausible
performance. Meanwhile, quite an amount of works, e.g., (Courbariaux et al., 2015; Li et al., 2016;
Zhu et al., 2017; Guo et al., 2017), quantize the weights only. Although much memory saving can be
achieved, the acceleration is very limited in modern computing devices (Rastegari et al., 2016).

Among all existing quantization works, most of them focus on convolutional neural networks
(CNNs) while pay less attention to RNNs. As mentioned earlier, the latter is also very demanding.
Recently, (Hou et al., 2017) showed that binarized LSTM with preconditioned coefficients can achieve
promising performance in some easy tasks such as predicting the next character. However, for RNNs
with large input/output, e.g., large vocabulary in language models, it is still very challenging for
quantization. Both works of Hubara et al. (2016b) and Zhou et al. (2017) test the effectiveness of
their multi-bit quantized RNNs to predict the next word. Although using up to 4-bits, the results with
quantization still have noticeable gap with those with full precision. This motivates us to find a better
method to quantize RNNs. The main contribution of this work is as follows:

(a) We formulate the multi-bit quantization as an optimization problem. The binary codes {−1,+1}
are learned instead of rule-based. For the first time, we observe that the codes can be optimally
derived by the binary search tree once the coefficients are knowns in advance, see, e.g., Algorithm
1. Thus the whole optimization is eased by removing the discrete unknowns, which are very
difficult to handle.

(b) We propose to use alternating minimization to tackle the quantization problem. By separating
the binary codes and real coefficients into two parts, we can solve the subproblem efficiently
when one part is fixed. With proper initialization, we only need two alternating cycles to get high
precision approximation, which is effective enough to even quantize the activations on-line.

(c) We systematically evaluate the effectiveness of our alternating quantization on language models.
Two well-known RNN structures, i.e., LSTM and GRU, are tested with different quantization
bits. Compared with the full-precision counterpart, by 2-bit quantization we can achieve ∼16×
memory saving and ∼6× real inference acceleration on CPUs, with a reasonable loss on the
accuracy. By 3-bit quantization, we can achieve almost no loss in accuracy or even surpass
the original model with ∼10.5× memory saving and ∼3× real inference acceleration. Both
results beat the exiting quantization works with large margins. To illustrate that our alternating
quantization is very general to extend, we apply it to image classification tasks. In both RNNs
and feedforward neural networks, the technique still achieves very plausible performance.

2 EXISTING MULTI-BIT QUANTIZATION METHODS

Before introducing our proposed multi-bit quantization, we first summarize existing works as follows:

(a) Uniform quantization method (Rastegari et al., 2016; Hubara et al., 2016b) firstly scales its value
in the range x ∈ [−1, 1]. Then it adopts the following k-bit quantization:

qk(x) = 2

(
round[(2k − 1)(x+1

2)]

2k − 1
− 1

2

)
, (1)

after which the method scales back to the original range. Such quantization is rule based
thus is very easy to implement. The intrinsic benefit is that when computing inner product

2

Published as a conference paper at ICLR 2018

Quantize to

-α1 α10

Quantize toQuantize to Quantize to

α1-α2-α1+α2 α1+α2-α1-α2

Figure 1: Illustration of the optimal 2-bit quantization when α1 and α2 (α1 ≥ α2) are known in
advance. The values are quantized into −α1 − α2, −α1 + α2, α1 − α2, and α1 + α2, respectively.
And the partition intervals are optimally separated by the middle points of adjacent quantization
codes, i.e., −α1, 0, and α1, correspondingly.

of two quantized vectors, it can employ cheap bit shift and count operations to replace costly
multiplications and additions operations. However, the method can be far from optimum when
quantizing non-uniform data, which is believed to be the trained weights and activations of deep
neural network (Zhou et al., 2017).

(b) Balanced quantization (Zhou et al., 2017) alleviates the drawbacks of the uniform quantization
by firstly equalizing the data. The method constructs 2k intervals which contain roughly the same
percentage of the data. Then it linearly maps the center of each interval to the corresponding
quantization code in (1). Although sounding more reasonable than the uniform one, the affine
transform on the centers can still be suboptimal. In addition, there is no guarantee that the evenly
spaced partition is more suitable if compared with the non-evenly spaced partition for a specific
data distribution.

(c) Greedy approximation (Guo et al., 2017) instead tries to learn the quantization by tackling the
following problem:

min
{αi,bi}ki=1

∥∥∥∥∥w −
k∑
i=1

αibi

∥∥∥∥∥
2

, with bi ∈ {−1,+1}n. (2)

For k = 1, the above problem has a closed-form solution (Rastegari et al., 2016). Greedy
approximation extends to k-bit (k > 1) quantization by sequentially minimizing the residue.
That is

min
αi,bi

‖ri−1 − αibi‖2 , with ri−1 = w −
i−1∑
j=1

αjbj . (3)

Then the optimal solution is given as

αi =
1

n
‖ri−1‖1 and bi = sign(ri−1). (4)

Greedy approximation is very efficient to implement in modern computing devices. Although
not able to reach a high precision solution, the formulation of minimizing quantization error is
very promising.

(d) Refined greedy approximation (Guo et al., 2017) extends to further decrease the quantization
error. In the j-th iteration after minimizing problem (3), the method adds one extra step to refine
all computed {αi}ji=1 with the least squares solution:

[α1, . . . , αj] =
(
(BT

j Bj)
−1BT

j w
)T
, with Bj = [b1, . . . ,bj], (5)

In experiments of quantizing the weights of CNN, the refined approximation is verified to be
better than the original greedy one. However, as we will show later, the refined method is still far
from satisfactory for quantization accuracy.

Besides the general multi-bit quantization as summarized above, Li et al. (2016) propose ternary
quantization by extending 1-bit binarization with one more feasible state, 0. It does quantization by
tackling minα,t ‖w − αt‖22 with t ∈ {−1, 0,+1}n. However, no efficient algorithm is proposed in
(Li et al., 2016). They instead empirically set the entries w with absolute scales less than 0.7/n‖w‖1
to 0 and binarize the left entries as (4). In fact, ternary quantization is a special case of the 2-bit
quantization in (2), with an additional constraint that α1 = α2. When the binary codes are fixed, the
optimal coefficient α1 (or α2) can be derived by least squares solution similar to (5).

3

Published as a conference paper at ICLR 2018

-α1-α2 -α1+α2 α1-α2 α1+α2

-α1 α1

0

Figure 2: Illustration of binary search tree to determine the optimal quantization.

Algorithm 1: Binary Search Tree (BST) to determine to optimal code

BST(w,v)
{w is the real value to be quantized}
{v is the vector of quantization codes in ascending order}

1 m = length(v)
2 if m == 1 then
3 return v1

4 end
5 if w ≥ (vm/2 + vm/2+1)/2 then
6 BST(w,vm/2+1:m)
7 else
8 BST(w,v1:m/2)
9 end

In parallel to the binarized quantization discussed here, vector quantization is applied to compress the
weights for feedforward neural networks (Gong et al., 2014; Han et al., 2016). Different from ours
where all weights are directly constraint to {−1,+1}, vector quantization learns a small codebook by
applying k-means clustering to the weights or conducting product quantization. The weights are then
reconstructed by indexing the codebook. It has been shown that by such a technique, the number of
parameters can be reduced by an order of magnitude with limited accuracy loss (Gong et al., 2014). It
is possible that the multi-bit quantized binary weight can be further compressed by using the product
quantization.

3 OUR ALTERNATING MULTI-BIT QUANTIZATION

Now we introduce our quantization method. We tackle the same minimization problem as (2). For
simplicity, we firstly consider the problem with k = 2. Suppose that α1 and α2 are known in advance
with α1 ≥ α2 ≥ 0, then the quantization codes are restricted to v = {−α1 − α2,−α1 + α2, α1 −
α2, α1 + α2}. For any entry w of w in problem (2), its quantization code is determined by the least
distance to all codes. Consequently, we can partition the number axis into 4 intervals. And each
interval corresponds to one particular quantization code. The common point of two adjacent intervals
then becomes the middle point of the two quantization codes, i.e., −α1, 0, and α1. Fig. 1 gives an
illustration.

For the general k-bit quantization, suppose that {αi}ki=1 are known and we have all possible codes
in ascending order, i.e., v = {−

∑k
i=1 αi, . . . ,

∑k
i=1 αi}. Similarly, we can partition the number

axis into 2k intervals, in which the boundaries are determined by the centers of two adjacent codes in
v, i.e., {(vi + vi+1)/2}2

k−1
i=1 . However, directly comparing per entry with all the boundaries needs

2k comparisons, which is very inefficient. Instead, we can make use of the ascending property in
v. Hierarchically, we partition the codes of v evenly into two ordered sub-sets, i.e., v1:m/2 and
vm/2+1:m with m defined as the length of v. If w < (vm/2 + vm/2+1)/2, its feasible codes are then
optimally restricted to v1:m/2. And ifw ≥ (vm/2+vm/2+1)/2 , its feasible codes become vm/2+1:m.
By recursively evenly partition the ordered feasible codes, we can then efficiently determine the

4

Published as a conference paper at ICLR 2018

Algorithm 2: Alternating Multi-bit Quantization
Require :Full precision weight w ∈ Rn, number of bits k, total iterations T
Ensure :{αi,bi}ki=1

1 Greedy Initialize {αi,bi}ki=1 as (4)
2 for iter← 1 to T do
3 Update {αi}ki=1 as (5)
4 Construct v of all feasible codes in accending order
5 Update {bi}ki=1 as Algorithm 1.
6 end

optimal code for per entry by only k comparisons. The whole procedure is in fact a binary search tree.
We summarize it in Algorithm 1. Note that once getting the quantization code, it is straightforward to
map to the binary code b. Also, by maintaining a mask vector with the same size as w to indicate the
partitions, we could operate BST for all entries simultaneously. To give a better illustration, we give
a binary tree example for k = 2 in Fig. 2. Note that for k = 2, we can even derive the optimal codes
by a closed form solution, i.e., b1 = sign(w) and b2 = sign(w − α1b1) with α1 ≥ α2 ≥ 0.

Under the above observation, let us reconsider the refined greedy approximation (Guo et al., 2017)
introduced in Section 2. After modification on the computed {αi}ji=1 as (5), {bi}ji=2 are no longer
optimal while the method keeps all of them fixed. To improve the refined greedy approximation,
alternating minimizing {αi}ki=1 and {bi}ki=1 becomes a natural choice. Once getting {bi}ki=1 as
described above, we can optimize {αi}ki=1 as (5). In real experiments, we find that by greedy
initialization as (4), only two alternating cycles is good enough to find high precision quantization.
For better illustration, we summarize our alternating minimization in Algorithm 2. For updating
{αi}ki=1, we need 2k2n binary operations and kn non-binary operations. Combining kn non-binary
operations to determine the binary code, for total T alternating cycles, we thus need 2Tk2n binary
operations and 2(T + 1)kn non-binary operations to quantize w ∈ Rn into k-bit, with the extra 2kn
corresponding to greedy initialization.

4 APPLY ALTERNATING MULTI-BIT QUANTIZATION TO RNNS

Implementation. We firstly introduce the implementation details for quantizing RNN. For simplicity,
we consider the one layer LSTM for language model. The goal is to predict the next word indexed by
t in a sequence of one-hot word tokens (y∗1 , . . . , y

∗
N) as follows:

xt = WT
e y
∗
t−1,

it, ft,ot,gt = σ(Wixt + bi +Whht−1 + bh),

ct = ft � ct−1 + it � gt, ht = ot � tanh(ct),

yt = softmax(Wsht + bs).

(6)

where σ represents the activation function. In the above formulation, the multiplication between
the weight matrices and the vectors xt and ht occupy most of the computation. This is also where
we apply quantization to. For the weight matrices, We do not apply quantization on the full but
rather row by row. During the matrix vector product, we can firstly execute the binary multiplication.
Then element-wisely multiply the obtained binary vector with the high precision scaling coefficients.
Thus little extra computation results while much more freedom is brought to better approximate
the weights. We give an illustration on the left part of Fig. 3. Due to one-hot word tokens, xt
corresponds to one specific row in the quantized We. It needs no more quantization. Different from
the weight matrices, ht depends on the input, which needs to be quantized on-line during inference.
For consistent notation with existing work, e.g., (Hubara et al., 2016b; Zhou et al., 2017), we also
call quantizing on ht as quantizing on activation.

For W ∈ Rm×n and ht ∈ Rn, the standard matrix-vector product needs 2mn operations. For the
quantized product between kw-bit W and kh-bit ht, we have 2kwkhmn+ 4k2hn binary operations
and 6khn + 2kwkhm non-binary operations, where 6khn corresponds to the cost of alternating
approximation (T = 2) and 2kwkhm corresponds to the final product with coefficients. As the binary

5

Published as a conference paper at ICLR 2018

 0.16 - 0.21 … - 0.05

 - 0.32 0.09 … 0.13

 0.07 - 0.17 … - 0.02

…

 0.03

 - 0.17

 0.20

*

…

 1 - 1 … -1

 -1 1 … 1

 1 - 1 … -1

…

 0.15

 0.30

 0.10

 1 - 1 … 1

 -1 -1 … -1

 -1 - 1 … 1

 0.08

 0.12

 0.06

 -1

 -1

 1

* (+) …

…

 1

 -1

 1

…

 0.13 0.05

) (+

 0.15

 0.30

 0.10

 1 - 1 … -1

 -1 1 … 1

 1 - 1 … -1

…

 0.08

 0.12

 0.06
…

 1 - 1 … 1

 -1 -1 … -1

 -1 - 1 … 1

 -1

 -1

 1

…

 0.05

 1

 -1

 1

 0.13

…

*

Standard Matrix

Vector Product

Multi-bit Binary Product Modified Multi-bit Binary Product

Figure 3: Illustration of quantized matrix vector multiplication (left part). The matrix is quantized
row by row, which provides more freedom to approximate while adds little extra computation. By
reformulating as the right part, we can make full use of the intrinsic parallel binary matrix vector
multiplication for further acceleration.

multiplication operates in 1 bit, whereas the full precision multiplication operates in 32 bits, despite
the feasible implementations, the acceleration can be 32× in theory. For alternating quantization
here, the overall theoretical acceleration is thus computed as γ = 2mn

1
32 (2kwkhmn+4k2nn)+6khn+2kwkhm

.

Suppose that LSTM has hidden states n = 1024, then we have Wh ∈ R4096×1024. The acceleration
ratio becomes roughly 7.5× for (kh, kw) = (2, 2) and 3.5× for (kh, kw) = (3, 3). In addition to
binary operations, the acceleration in real implementations can be largely affected by the size of the
matrix, where much memory reduce can result in better utilizing in the limited faster cache. We
implement the binary multiplication kernel in CPUs. Compared with the much optimized Intel Math
Kernel Library (MKL) on full precision matrix vector multiplication, we can roughly achieve 6× for
(kh, kw) = (2, 2) and 3× for (kh, kw) = (3, 3). For more details, please refer to Appendix A.

As indicated in the left part of Fig. 3, the binary multiplication can be conducted sequentially by
associativity. Although the operation is suitable for parallel computing by synchronously conducting
the multiplication, this needs extra effort for parallelization. We instead concatenate the binary codes
as shown in the right part of Fig. 3. Under such modification, we are able to make full use of the much
optimized inner parallel matrix multiplication, which gives the possibility for further acceleration.
The final result is then obtained by adding all partitioned vectors together, which has little extra
computation.

Training. As firstly proposed by Courbariaux et al. (2015), during the training of quantized neural
network, directly adding the moderately small gradients to quantized weights will result in no change
on it. So they maintain a full precision weight to accumulate the gradients then apply quantization
in every mini-batch. In fact, the whole procedure can be mathematically formulated as a bi-level
optimization (Colson et al., 2007) problem:

min
w,{αi,bi}ki=1

f

(
k∑
i=1

αibi

)

s.t. {αi,bi}ki=1 = argmin
{α′

i,b
′
i}ki=1

∥∥∥∥∥w −
k∑
i=1

α′ib
′
i

∥∥∥∥∥
2

.

(7)

Denote the quantized weight as ŵ =
∑k
i=1 αibi. In the forward propagation, we derive ŵ from

the full precision w in the lower-level problem and apply it to the upper-level function f(·), i.e.,
RNN in this paper. During the backward propagation, the derivative ∂f

∂ŵ is propagated back to w
through the lower-level function. Due to the discreteness of bi, it is very hard to model the implicit
dependence of ŵ on w. So we also adopt the “straight-through estimate” as (Courbariaux et al.,
2015), i.e., ∂f

∂w = ∂f
∂ŵ . To compute the derivative on the quantized hidden state ht, the same trick

is applied. During the training, we find the same phenomenon as Hubara et al. (2016b) that some

6

Published as a conference paper at ICLR 2018

Table 1: Measurement on the approximation of different quantization methods, e.g., Uniform (Hubara
et al., 2016b), Balanced (Zhou et al., 2017), Greedy (Guo et al., 2017), Refined (Guo et al., 2017),
and our Alternating method, see Section 2. We apply these methods to quantize the full precision
pre-trained weight of LSTM on the PTB dataset. The best values are in bold. W-bits represents the
number of weight bits and FP denotes full precision.

Relative MSE Testing PPW

W-Bits 2 3 4 2 3 4 FP

Uniform 1.070 0.404 0.302 283.2 227.3 216.3

89.8

Balanced 0.891 0.745 0.702 10287.6 9106.4 8539.8

Greedy 0.146 0.071 0.042 118.9 99.4 95.0

Refined 0.137 0.060 0.030 105.3 95.4 93.1

Alternating (ours) 0.125 0.043 0.019 103.1 93.8 91.4

Table 2: Quantization on the full precision pre-trained weight of GRU on the PTB dataset.

Relative MSE Testing PPW

W-Bits 2 3 4 2 3 4 FP

Uniform 6.138 3.920 3.553 3161906.6 771259.6 715781.9

92.5

Balanced 1.206 1.054 1.006 2980.4 3396.3 3434.1

Greedy 0.377 0.325 0.304 135.7 105.5 99.2

Refined 0.128 0.055 0.030 111.6 99.1 97.0

Alternating (ours) 0.120 0.044 0.021 110.3 97.3 95.2

entries of w can grow very large, which become outliers and harm the quantization. Here we simply
clip w in the range of [−1, 1].

5 EXPERIMENTS ON THE LANGUAGE MODELS

In this section, we conduct quantization experiments on language models. The two most well-known
recurrent neural networks, i.e., LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al., 2014),
are evaluated. As they are to predict the next word, the performance is measured by perplexity per
word (PPW) metric. For all experiments, we initialize with the pre-trained model and using vanilla
SGD. The initial learning rate is set to 20. Every epoch we evaluate on the validation dataset and
record the best value. When the validation error exceeds the best record, we decrease learning rate by
a factor of 1.2. Training is terminated once the learning rate less than 0.001 or reaching the maximum
epochs, i.e., 80. The gradient norm is clipped in the range [−0.25, 0.25]. We unroll the network for
30 time steps and regularize it with the standard dropout (probability of dropping out units equals
to 0.5) (Zaremba et al., 2014). For simplicity of notation, we denote the methods using uniform,
balanced, greedy, refined greedy, and our alternating quantization as Uniform, Balanced, Greedy,
Refined, and Alternating, respectively.

Peen Tree Bank. We first conduct experiments on the Peen Tree Bank (PTB) corpus (Marcus et al.,
1993), using the standard preprocessed splits with a 10K size vocabulary (Mikolov, 2012). The
PTB dataset contains 929K training tokens, 73K validation tokens, and 82K test tokens. For fair
comparison with existing works, we also use LSTM and GRU with 1 hidden layer of size 300. To
have a glance at the approximation ability of different quantization methods as detailed in Section
2, we firstly conduct experiments by directly quantizing the trained full precision weight (neither
quantization on activation nor retraining). Results on LSTM and GRU are shown in Table 1 and Table
2, respectively. The left parts record the relative mean squared error of quantized weight matrices
with full precision one. We can see that our proposed Alternating can get much lower error across all

7

Published as a conference paper at ICLR 2018

Table 3: Testing PPW of multi-bit quantized LSTM and GRU on the PTB dataset. W-Bits and A-Bits
represent the number of weight and activation bits, respectively.

LSTM GRU

W-Bits / A-Bits 2/2 2/3 3/3 4/4 FP/FP 2/2 2/3 3/3 4/4 FP/FP

Uniform − 220 − 100 97 − − − − −
Balanced 126 123 − 114 107 142 − − 116 100

Refined 100.3 95.6 91.3 −
89.8

105.1 100.3 95.9 −
92.5

Alternating (ours) 95.8 91.9 87.9 − 101.2 97.0 92.9 −

Table 4: Testing PPW of multi-bit quantized LSTM and GRU on the WikiText-2 dataset.

LSTM GRU

W-Bits / A-Bits 2/2 2/3 3/3 FP/FP 2/2 2/3 3/3 FP/FP

Refined 108.7 105.8 102.2
100.1

117.2 114.1 111.8
106.7

Alternating (ours) 106.1 102.7 98.7 113.7 110.2 106.4

Table 5: Testing PPW of multi-bit quantized LSTM and GRU on the Text8 dataset.

LSTM GRU

W-Bits / A-Bits 2/2 2/3 3/3 FP/FP 2/2 2/3 3/3 FP/FP

Refined 135.6 122.3 110.2
101.1

135.8 126.9 118.3
111.6

Alternating (ours) 108.8 105.1 98.8 124.5 118.7 114.0

varying bit. We also measure the testing PPW for the quantized weight as shown in the right parts of
Table 1 and 2. The results are in consistent with the left part, where less errors result in lower testing
PPW. Note that Uniform and Balanced quantization are rule-based and not aim at minimizing the
error. Thus they can have much worse result by direct approximation. We also repeat the experiment
on other datasets. For both LSTM and GRU, the results are very similar to here.

We then conduct experiments by quantizing both weights and activations. We train with the batch
size 20. The final result is shown in Table 3. Besides comparing with the existing works, we also
conduct experiment for Refined as a competitive baseline. We do not include Greedy as it is already
shown to be much inferior to the refined one, see, e.g., Table 1 and 2. As Table 3 shows, our full
precision model can attain lower PPW than the existing works. However, when considering the gap
between quantized model with the full precision one, our alternating quantized neural network is
still far better than existing works, i.e., Uniform (Hubara et al., 2016b) and Balanced (Zhou et al.,
2017). Compared with Refined, our Alternating quantization can achieve compatible performance
using 1-bit less quantization on weights or activations. In other words, under the same tolerance of
accuracy drop, Alternating executes faster and uses less memory than Refined. We can see that our
3/3 weights/activations quantized LSTM can achieve even better performance than full precision one.
A possible explanation is due to the regularization introduced by quantization (Hubara et al., 2016b).

WikiText-2 (Merity et al., 2017) is a dataset released recently as an alternative to PTB. It contains
2088K training, 217K validation, and 245K test tokens, and has a vocabulary of 33K words, which is
roughly 2 times larger in dataset size, and 3 times larger in vocabulary than PTB. We train with one
layer’s hidden state of size 512 and set the batch size to 100. The result is shown in Table 4. Similar
to PTB, our Alternating can use 1-bit less quantization to attain compatible or even lower PPW than
Refined.

8

Published as a conference paper at ICLR 2018

Text8. In order to determine whether Alternating remains effective with a larger dataset, we perform
experiments on the Text8 corpus (Mikolov et al., 2014). Here we follow the same setting as (Xie
et al., 2017). The first 90M characters are used for training, the next 5M for validation, and the final
5M for testing, resulting in 15.3M training tokens, 848K validation tokens, and 855K test tokens. We
also preprocess the data by mapping all words which appear 10 or fewer times to the unknown token,
resulting in a 42K size vocabulary. We train LSTM and GRU with one hidden layer of size 1024
and set the batch size to 100. The result is shown in Table 5. For LSTM on the left part, Alternating
achieves excellent performance. By only 2-bit quantization on weights and activations, it exceeds
Refined with 3-bit. The 2-bit result is even better than that reported in (Xie et al., 2017), where LSTM
adding noising schemes for regularization can only attain 110.6 testing PPW. For GRU on the right
part, although Alternating is much better than Refined, the 3-bit quantization still has gap with full
precision one. We attribute that to the unified setting of hyper-parameters across all experiments.
With specifically tuned hyper-parameters on this dataset, one may make up for that gap.

Note that our alternating quantization is a general technique. It is not only suitable for language
models here. For a comprehensive verification, we apply it to image classification tasks. In both
RNNs and feedforward neural networks, our alternating quantization also achieves the lowest testing
error among all compared methods. Due to space limitation, we deter the results to Appendix B.

6 CONCLUSIONS

In this work, we address the limitations of RNNs, i.e., large memory and high latency, by quantization.
We formulate the quantization by minimizing the approximation error. Under the key observation
that some parameters can be singled out when others fixed, a simple yet effective alternating method
is proposed. We apply it to quantize LSTM and GRU on language models. By 2-bit weights and
activations, we achieve only a reasonably accuracy loss compared with full precision one, with ∼16×
reduction in memory and ∼6× real acceleration on CPUs. By 3-bit quantization, we can attain
compatible or even better result than the full precision one, with ∼10.5× reduction in memory and
∼3× real acceleration. Both beat existing works with a large margin. We also apply our alternating
quantization to image classification tasks. In both RNNs and feedforward neural networks, the
method can still achieve very plausible performance.

7 ACKNOWLEDGEMENTS

We would like to thank the reviewers for their suggestions on the manuscript. Zhouchen Lin is
supported by National Basic Research Program of China (973 Program) (grant no. 2015CB352502),
National Natural Science Foundation (NSF) of China (grant nos. 61625301 and 61731018), Qual-
comm, and Microsoft Research Asia. Hongbin Zha is supported by Natural Science Foundation
(NSF) of China (No. 61632003).

REFERENCES

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv:1406.1078, 2014.

Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
Operations Research, 153(1):235–256, 2007.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Recurrent
batch normalization. In ICLR, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In NIPS, pp. 3123–3131, 2015.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv:1412.6115, 2014.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In ICASSP, pp. 6645–6649. IEEE, 2013.

9

Published as a conference paper at ICLR 2018

Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Network sketching: Exploiting binary
structure in deep cnns. In CVPR, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NIPS, pp. 1135–1143, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. In ICLR,
2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In NIPS, pp. 4107–4115. 2016a.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations.
arXiv:1609.07061, 2016b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 448–456, 2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv:1405.3866, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-
up convolutional neural networks using fine-tuned cp-decomposition. arXiv:1412.6553, 2014.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv:1605.04711, 2016.

Zefan Li, Bingbing Ni, Wenjun Zhang, Xiaokang Yang, and Wen Gao. Performance guaranteed
network acceleration via high-order residual quantization. In ICCV, pp. 2584–2592, 2017.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In CVPR, pp. 806–814, 2015.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR, 2017.

Tomáš Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis, Brno University
of Technology, 2012.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent
neural network based language model. In INTERSPEECH, pp. 1045–1048, 2010.

Tomáš Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio Ranzato.
Learning longer memory in recurrent neural networks. arXiv:1412.7753, 2014.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet
classification using binary convolutional neural networks. In ECCV, pp. 525–542. Springer, 2016.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
ICASSP, pp. 6655–6659. IEEE, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

10

Published as a conference paper at ICLR 2018

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In NIPS, pp. 3104–3112, 2014.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and Weinan E. Convolutional neural networks
with low-rank regularization. In ICLR, 2016.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator. In CVPR, pp. 3156–3164, 2015.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NIPS, pp. 2074–2082, 2016.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv:1609.08144, 2016.

Ziang Xie, Sida I Wang, Jiwei Li, Daniel Lévy, Aiming Nie, Dan Jurafsky, and Andrew Y Ng. Data
noising as smoothing in neural network language models. In ICLR, 2017.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv:1409.2329, 2014.

Shu-Chang Zhou, Yu-Zhi Wang, He Wen, Qin-Yao He, and Yu-Heng Zou. Balanced quantization:
An effective and efficient approach to quantized neural networks. Journal of Computer Science
and Technology, 32(4):667–682, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv:1606.06160, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In ICLR,
2017.

11

Published as a conference paper at ICLR 2018

APPENDIX

A BINARY MATRIX VECTOR MULTIPLICATION IN CPUS

Table 6: Computing time of the binary matrix vector multiplication in CPUs, where Quant represents
the cost to execute our alternating quantization on-line.

Weight Size W-Bits / A-Bits Total (ms) Quant (ms) Quant / Total Acceleration

4096× 1024

2/2 0.35 0.07 20% 5.6×
3/3 0.72 0.11 15% 2.7×

FP/FP 1.95 − − 1.0×

42000× 1024

2/2 3.17 0.07 2.2% 6.0×
3/3 6.46 0.11 1.7% 3.0×

FP/FP 19.10 − − 1.0×

In this section, we discuss the implementation of the binary multiplication kernel in CPUs. The
binary multiplication is divided into two steps: Entry-wise XNOR operation (corresponding to
entry-wise product in the full precision multiplication) and bit count operation for accumulation
(corresponding to compute the sum of all multiplied entries in the full precision multiplication). We
test it on Intel Xeon E5-2682 v4 @ 2.50 GHz CPU. For the XNOR operation, we use the Single
instruction, multiple data (SIMD) _mm256_xor_ps , which can execute 256 bit simultaneously. For
the bit count operation, we use the function _popcnt64 (Note that this step can further be accelerated
by the up-coming instruction _mm512_popcnt_epi64 , which can execute 512 bits simultaneously.
Similarly, the XNOR operation can also be further accelerated by the up-coming _mm512_xor_ps
instruction to execute 512 bits simultaneously). We compare with the much optimized Intel Math
Kernel Library (MKL) on full precision matrix vector multiplication and execute all codes in the
single-thread mode. We conduct two scales of experiments: a matrix of size 4096× 1024 multiplying
a vector of size 1024 and a matrix of size 42000 × 1024 multiplying a vector of size 1024, which
respectively correspond to the hidden state product Whht−1 and the softmax layer Wsht for Text8
dataset during inference with batch size of 1 (See Eq. (6)). The results are shown in Table 6. We
can see that our alternating quantization step only accounts for a small portion of the total executing
time, especially for the larger scale matrix vector multiplication. Compared with the full precision
one, the binary multiplication can roughly achieve 6× acceleration with 2-bit quantization and 3×
acceleration with 3-bit quantization. Note that this is only a simple test on CPU. Our alternating
quantization method can also be extended to GPU, ASIC, and FPGA.

B IMAGE CLASSIFICATION

Sequential MNIST. As a simple illustration to show that our alternating quantization is not limited
for texts, we conduct experiments on the sequential MNIST classification task (Cooijmans et al.,
2017). The dataset consists of a training set of 60K and a test set of 10K 28× 28 gray-scale images.
Here we divide the last 5000 training images for validation. In every time, we sequentially use one
row of the image as the input (28×1), which results in a total of 28 time steps. We use 1 hidden layer’s
LSTM of size 128 and the same optimization hyper-parameters as the language models. Besides the
weights and activations, the inputs are quantized. The testing error rates for 1-bit input, 2-bit weight,
and 2-bit activation are shown in 7, where our alternating quantized method still achieves plausible
performance in this task.

MLP on MNIST. The alternating quantization proposed in this work is a general technique. It is
not only suitable for RNNs, but also for feed-forward neural networks. As an example, we firstly
conduct a classification task on MNIST and compare with existing work (Li et al., 2017). The
method proposed in (Li et al., 2017) is intrinsically a greedy multi-bit quantization method. For fair
comparison, we follow the same setting. We use the MLP consisting of 3 hidden layers of 4096 units
and an L2-SVM output layer. No convolution, preprocessing, data augmentation or pre-training is

12

Published as a conference paper at ICLR 2018

Table 7: Testing error rate of LSTM on MNIST with 1-bit input, 2-bit weight, and 2-bit activation.

Methods Testing Error Rate
Full Precision 1.10 %

Refined (Guo et al., 2017) 1.39 %

Alternating (ours) 1.19%

Table 8: Testing error rate of MLP on MNIST with 2-bit input, 2-bit weight, and 1-bit activation.

Methods Testing Error Rate
Full Precision 0.97 %

Greedy (reported in (Li et al., 2017)) 1.25 %

Refined (Guo et al., 2017) 1.22 %

Alternating (ours) 1.13 %

Table 9: Testing error rate of CNN on CIFAR-10 with 2-bit weight and 1-bit activation.

Methods Testing Error Rate
Full Precision (reported in (Hou et al., 2017)) 11.90 %

XNOR-Net (1-bit weight & activation, reported in (Hou et al., 2017)) 12.62 %

Refined (Guo et al., 2017) 12.08 %

Alternating (ours) 11.70 %

used. We also use ADAM (Kingma & Ba, 2015) with an exponentially decaying learning rate and
Batch Normalization (Ioffe & Szegedy, 2015) with a batch size 100. The testing error rates for 2-bit
input, 2-bit weight, and 1-bit activation are shown in Table 8. Among all the compared multi-bit
quantization methods, our alternating one achieves the lowest testing error.

CNN on CIFAR-10. We then conduct experiments on CIFAR-10 and follow the same setting as
(Hou et al., 2017). That is, we use 45000 images for training, another 5000 for validation, and the
remaining 10000 for testing. The images are preprocessed with global contrast normalization and
ZCA whitening. We also use the VGG-like architecture (Simonyan & Zisserman, 2015):

(2× 128 C3)−MP2−(2× 256 C3)−MP2−(2× 512 C3)−MP2−(2× 1024 FC)−10 SVM

where C3 is a 3× 3 convolution layer, and MP2 is a 2× 2 max-pooling layer. Batch Normalization,
with a mini-batch size of 50, and ADAM are used. The maximum number of epochs is 200. The
learning rate starts at 0.02 and decays by a factor of 0.5 after every 30 epochs. The testing error
rates for 2-bit weight and 1-bit activation are shown in Table 9, where our alternating method again
achieves the lowest test error rate among all compared quantization methods.

13

	Introduction
	Existing Multi-bit Quantization Methods
	Our Alternating Multi-bit Quantization
	Apply Alternating Multi-bit Quantization to RNNs
	Experiments on the Language Models
	Conclusions
	Acknowledgements
	Binary Matrix Vector Multiplication in CPUs
	Image Classification

