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ABSTRACT

This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep
learning model able to predict structured sequences of data. Precisely, GCRN is
a generalization of classical recurrent neural networks (RNN) to data structured
by an arbitrary graph. Such structured sequences can represent series of frames in
videos, spatio-temporal measurements on a network of sensors, or random walks
on a vocabulary graph for natural language modeling. The proposed model com-
bines convolutional neural networks (CNN) on graphs to identify spatial structures
and RNN to find dynamic patterns. We study two possible architectures of GCRN,
and apply the models to two practical problems: predicting moving MNIST data,
and modeling natural language with the Penn Treebank dataset. Experiments show
that exploiting simultaneously graph spatial and dynamic information about data
can improve both precision and learning speed.

1 INTRODUCTION

Many real-world data can be cast as structured sequences, with spatio-temporal sequences being a
special case. A well-studied example of spatio-temporal data are videos, where succeeding frames
share temporal and spatial structures. Many works, such as Donahue et al. (2015); Karpathy & Fei-
Fei (2015); Vinyals et al. (2015), leveraged a combination of CNN and RNN to exploit such spatial
and temporal regularities. Their models are able to process possibly time-varying visual inputs for
variable-length prediction. These neural network architectures consist of combining a CNN for
visual feature extraction followed by a RNN for sequence learning. Such architectures have been
successfully used for video activity recognition, image captioning and video description.

More recently, interest has grown in properly fusing the CNN and RNN models for spatio-temporal
sequence modeling. Inspired by language modeling, Ranzato et al. (2014) proposed a model to
represent complex deformations and motion patterns by discovering both spatial and temporal cor-
relations. They showed that prediction of the next video frame and interpolation of intermediate
frames can be achieved by building a RNN-based language model on the visual words obtained by
quantizing the image patches. Their highest-performing model, recursive CNN (rCNN), uses convo-
lutions for both inputs and states. Shi et al. (2015) then proposed the convolutional LSTM network
(convLSTM), a recurrent model for spatio-temporal sequence modeling which uses 2D-grid convo-
lution to leverage the spatial correlations in input data. They successfully applied their model to the
prediction of the evolution of radar echo maps for precipitation nowcasting.

The spatial structure of many important problems may however not be as simple as regular grids.
For instance, the data measured from meteorological stations lie on a irregular grid, i.e. a network of
heterogeneous spatial distribution of stations. More challenging, the spatial structure of data may not
even be spatial, as it is the case for social or biological networks. Eventually, the interpretation that
sentences can be regarded as random walks on vocabulary graphs, a view popularized by Mikolov
et al. (2013), allows us to cast language analysis problems as graph-structured sequence models.
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Figure 1: Illustration of the proposed GCRN model for
spatio-temporal prediction of graph-structured data. The
technique combines at the same time CNN on graphs and
RNN. RNN can be easily exchanged with LSTM or GRU
networks.
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Figure 2: Illustration of the neigh-
borhood on an 8-nearest-neighbor
grid graph. Isotropic spectral filters
of support K have access to nodes at
most at K − 1 hops.

This work leverages on the recent models of Defferrard et al. (2016); Ranzato et al. (2014); Shi et al.
(2015) to design the GCRN model for modeling and predicting time-varying graph-based data. The
core idea is to merge CNN for graph-structured data and RNN to identify simultaneously meaningful
spatial structures and dynamic patterns. A generic illustration of the proposed GCRN architecture
is given by Figure 1.

2 PRELIMINARIES

2.1 STRUCTURED SEQUENCE MODELING

Sequence modeling is the problem of predicting the most likely future length-K sequence given the
previous J observations:

x̂t+1, . . . , x̂t+K = arg max
xt+1,...,xt+K

P (xt+1, . . . , xt+K |xt−J+1, . . . , xt), (1)

where xt ∈ D is an observation at time t and D denotes the domain of the observed fea-
tures. The archetypal application being the n-gram language model (with n = J + 1), where
P (xt+1|xt−J+1, . . . , xt) models the probability of word xt+1 to appear conditioned on the past J
words in the sentence (Graves, 2013).

In this paper, we are interested in special structured sequences, i.e. sequences where features of
the observations xt are not independent but linked by pairwise relationships. Such relationships are
universally modeled by weighted graphs.

Data xt can be viewed as a graph signal, i.e. a signal defined on an undirected and weighted graph
G = (V, E , A), where V is a finite set of |V| = n vertices, E is a set of edges and A ∈ Rn×n
is a weighted adjacency matrix encoding the connection weight between two vertices. A signal
xt : V → Rdx defined on the nodes of the graph may be regarded as a matrix xt ∈ Rn×dx whose
column i is the dx-dimensional value of xt at the ith node. While the number of free variables in
a structured sequence of length K is in principle O(nKdx

K), we seek to exploit the structure of
the space of possible predictions to reduce the dimensionality and hence make those problems more
tractable.
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2.2 LONG SHORT-TERM MEMORY

A special class of recurrent neural networks (RNN) that prevents the gradient from vanishing too
quickly is the popular long short-term memory (LSTM) introduced by Hochreiter & Schmidhuber
(1997). This architecture has proven stable and powerful for modeling long-range dependencies in
various general-purpose sequence modeling tasks (Graves, 2013; Srivastava et al., 2015; Sutskever
et al., 2014). A fully-connected LSTM (FC-LSTM) may be seen as a multivariate version of LSTM
where the input xt ∈ Rdx , cell output ht ∈ [−1, 1]dh and states ct ∈ Rdh are all vectors. In this
paper, we follow the FC-LSTM formulation of Graves (2013), that is:

i = σ(Wxixt +Whiht−1 + wci � ct−1 + bi),

f = σ(Wxfxt +Whfht−1 + wcf � ct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc),

o = σ(Wxoxt +Whoht−1 + wco � ct + bo),

ht = o� tanh(ct),

(2)

where � denotes the Hadamard product, σ(·) the sigmoid function σ(x) = 1/(1 + e−x) and
i, f, o ∈ [0, 1]dh are the input, forget and output gates. The weights Wx· ∈ Rdh×dx , Wh· ∈ Rdh×dh ,
wc· ∈ Rdh and biases bi, bf , bc, bo ∈ Rdh are the model parameters.1 Such a model is called fully-
connected because the dense matricesWx· andWh· linearly combine all the components of x and h.
The optional peephole connections wc· � ct, introduced by Gers & Schmidhuber (2000), have been
found to improve performance on certain tasks.

2.3 CONVOLUTIONAL NEURAL NETWORKS ON GRAPHS

Generalizing convolutional neural networks (CNNs) to arbitrary graphs is a recent area of interest.
Two approaches have been explored in the literature: (i) a generalization of the spatial definition
of a convolution (Masci et al., 2015; Niepert et al., 2016) and (ii), a multiplication in the graph
Fourier domain by the way of the convolution theorem (Bruna et al., 2014; Defferrard et al., 2016).
Masci et al. (2015) introduced a spatial generalization of CNNs to 3D meshes. The authors used
geodesic polar coordinates to define convolution operations on mesh patches, and formulated a
deep learning architecture which allows comparison across different meshes. Hence, this method
is tailored to manifolds and is not directly generalizable to arbitrary graphs. Niepert et al. (2016)
proposed a spatial approach which may be decomposed in three steps: (i) select a node, (ii) construct
its neighborhood and (iii) normalize the selected sub-graph, i.e. order the neighboring nodes. The
extracted patches are then fed into a conventional 1D Euclidean CNN. As graphs generally do not
possess a natural ordering (temporal, spatial or otherwise), a labeling procedure should be used to
impose it. Bruna et al. (2014) were the first to introduce the spectral framework described below in
the context of graph CNNs. The major drawback of this method is itsO(n2) complexity, which was
overcome with the technique of Defferrard et al. (2016), which offers a linear complexity O(|E|)
and provides strictly localized filters. Kipf & Welling (2016) took a first-order approximation of
the spectral filters proposed by Defferrard et al. (2016) and successfully used it for semi-supervised
classification of nodes. While we focus on the framework introduced by Defferrard et al. (2016), the
proposed model is agnostic to the choice of the graph convolution operator ∗G .

As it is difficult to express a meaningful translation operator in the vertex domain (Bruna et al.,
2014; Niepert et al., 2016), Defferrard et al. (2016) chose a spectral formulation for the convolution
operator on graph ∗G . By this definition, a graph signal x ∈ Rn×dx is filtered by a non-parametric
kernel gθ(Λ) = diag(θ), where θ ∈ Rn is a vector of Fourier coefficients, as

y = gθ ∗G x = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx ∈ Rn×dx , (3)

where U ∈ Rn×n is the matrix of eigenvectors and Λ ∈ Rn×n the diagonal matrix of eigenvalues
of the normalized graph Laplacian L = In − D−1/2AD−1/2 = UΛUT ∈ Rn×n, where In is
the identity matrix and D ∈ Rn×n is the diagonal degree matrix with Dii =

∑
j Aij (Chung,

1997). Note that the signal x is filtered by gθ with an element-wise multiplication of its graph
Fourier transform UTx with gθ (Shuman et al., 2013). Evaluating (3) is however expensive, as
the multiplication with U is O(n2). Furthermore, computing the eigendecomposition of L might

1A practical trick is to initialize the biases bi, bf and bo to one such that the gates are initially open.
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be prohibitively expensive for large graphs. To circumvent this problem, Defferrard et al. (2016)
parametrizes gθ as a truncated expansion, up to order K − 1, of Chebyshev polynomials Tk such
that

gθ(Λ) =

K−1∑
k=0

θkTk(Λ̃), (4)

where the parameter θ ∈ RK is a vector of Chebyshev coefficients and Tk(Λ̃) ∈ Rn×n is the
Chebyshev polynomial of order k evaluated at Λ̃ = 2Λ/λmax − In. The graph filtering operation
can then be written as

y = gθ ∗G x = gθ(L)x =

K−1∑
k=0

θkTk(L̃)x, (5)

where Tk(L̃) ∈ Rn×n is the Chebyshev polynomial of order k evaluated at the scaled Laplacian
L̃ = 2L/λmax − In. Using the stable recurrence relation Tk(x) = 2xTk−1(x) − Tk−2(x) with
T0 = 1 and T1 = x, one can evaluate (5) in O(K|E|) operations, i.e. linearly with the number
of edges. Note that as the filtering operation (5) is an order K polynomial of the Laplacian, it is
K-localized and depends only on nodes that are at maximum K hops away from the central node,
the K-neighborhood. The reader is referred to Defferrard et al. (2016) for details and an in-depth
discussion.

3 RELATED WORKS

Shi et al. (2015) introduced a model for regular grid-structured sequences, which can be seen as
a special case of the proposed model where the graph is an image grid where the nodes are well
ordered. Their model is essentially the classical FC-LSTM (2) where the multiplications by dense
matrices W have been replaced by convolutions with kernels W :

i = σ(Wxi ∗ xt +Whi ∗ ht−1 + wci � ct−1 + bi),

f = σ(Wxf ∗ xt +Whf ∗ ht−1 + wcf � ct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc),

o = σ(Wxo ∗ xt +Who ∗ ht−1 + wco � ct + bo),

ht = o� tanh(ct),

(6)

where ∗ denotes the 2D convolution by a set of kernels. In their setting, the input tensor xt ∈
Rnr×nc×dx is the observation of dx measurements at time t of a dynamical system over a spatial
region represented by a grid of nr rows and nc columns. The model holds spatially distributed
hidden and cell states of size dh given by the tensors ct, ht ∈ Rnr×nc×dh . The size m of the
convolutional kernels Wh· ∈ Rm×m×dh×dh and Wx· ∈ Rm×m×dh×dx determines the number of
parameters, which is independent of the grid size nr × nc. Earlier, Ranzato et al. (2014) proposed a
similar RNN variation which uses convolutional layers instead of fully connected layers. The hidden
state at time t is given by

ht = tanh(σ(Wx2 ∗ σ(Wx1 ∗ xt)) + σ(Wh ∗ ht−1)), (7)

where the convolutional kernels Wh ∈ Rdh×dh are restricted to filters of size 1x1 (effectively a fully
connected layer shared across all spatial locations).

Observing that natural language exhibits syntactic properties that naturally combine words into
phrases, Tai et al. (2015) proposed a model for tree-structured topologies, where each LSTM has
access to the states of its children. They obtained state-of-the-art results on semantic relatedness and
sentiment classification. Liang et al. (2016) followed up and proposed a variant on graphs. Their
sophisticated network architecture obtained state-of-the-art results for semantic object parsing on
four datasets. In those models, the states are gathered from the neighborhood by way of a weighted
sum with trainable weight matrices. Those weights are however not shared across the graph, which
would otherwise have required some ordering of the nodes, alike any other spatial definition of graph
convolution. Moreover, their formulations are limited to the one-neighborhood of the current node,
with equal weight given to each neighbor.

Motivated by spatio-temporal problems like modeling human motion and object interactions, Jain
et al. (2016) developed a method to cast a spatio-temporal graph as a rich RNN mixture which
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essentially associates a RNN to each node and edge. Again, the communication is limited to directly
connected nodes and edges.

The closest model to our work is probably the one proposed by Li et al. (2015), which showed
stat-of-the-art performance on a problem from program verification. Whereas they use the iterative
procedure of the Graph Neural Networks (GNNs) model introduced by Scarselli et al. (2009) to
propagate node representations until convergence, we instead use the graph CNN introduced by
Defferrard et al. (2016) to diffuse information across the nodes. While their motivations are quite
different, those models are related by the fact that a spectral filter defined as a polynomial of order
K can be implemented as a K-layer GNN.2

4 PROPOSED GCRN MODELS

We propose two GCRN architectures that are quite natural, and investigate their performances in
real-world applications in Section 5.

Model 1. The most straightforward definition is to stack a graph CNN, defined as (5), for feature
extraction and an LSTM, defined as (2), for sequence learning:

xCNN
t = CNNG(xt)

i = σ(Wxix
CNN
t +Whiht−1 + wci � ct−1 + bi),

f = σ(Wxfx
CNN
t +Whfht−1 + wcf � ct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxcx
CNN
t +Whcht−1 + bc),

o = σ(Wxox
CNN
t +Whoht−1 + wco � ct + bo),

ht = o� tanh(ct).

(8)

In that setting, the input matrix xt ∈ Rn×dx may represent the observation of dx measurements at
time t of a dynamical system over a network whose organization is given by a graph G. xCNN

t is the
output of the graph CNN gate. For a proof of concept, we simply choose here xCNN

t = WCNN ∗G xt,
where WCNN ∈ RK×dx×dx are the Chebyshev coefficients for the graph convolutional kernels of
support K. The model also holds spatially distributed hidden and cell states of size dh given by the
matrices ct, ht ∈ Rn×dh . Peepholes are controlled by wc· ∈ Rn×dh . The weights Wh· ∈ Rdh×dh
and Wx· ∈ Rdh×dx are the parameters of the fully connected layers. An architecture such as (8)
may be enough to capture the data distribution by exploiting local stationarity and compositionality
properties as well as the dynamic properties.

Model 2. To generalize the convLSTM model (6) to graphs we replace the Euclidean 2D convo-
lution ∗ by the graph convolution ∗G :

i = σ(Wxi ∗G xt +Whi ∗G ht−1 + wci � ct−1 + bi),

f = σ(Wxf ∗G xt +Whf ∗G ht−1 + wcf � ct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxc ∗G xt +Whc ∗G ht−1 + bc),

o = σ(Wxo ∗G xt +Who ∗G ht−1 + wco � ct + bo),

ht = o� tanh(ct).

(9)

In that setting, the support K of the graph convolutional kernels defined by the Chebyshev coeffi-
cients Wh· ∈ RK×dh×dh and Wx· ∈ RK×dh×dx determines the number of parameters, which is
independent of the number of nodes n. To keep the notation simple, we write Wxi ∗G xt to mean a
graph convolution of xt with dhdx filters which are functions of the graph Laplacian L parametrized
by K Chebyshev coefficients, as noted in (4) and (5). In a distributed computing setting, K controls
the communication overhead, i.e. the number of nodes any given node i should exchange with in
order to compute its local states.

The proposed blend of RNNs and graph CNNs is not limited to LSTMs and is straightforward to
apply to any kind of recursive networks. For example, a vanilla RNN ht = tanh(Wxxt +Whht−1)

2The basic idea is to set the transition function as a diffusion and the output function such as to realize the
polynomial recurrence, then stack K of those. See Defferrard et al. (2016) for details.
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Architecture Structure Filter size Parameters Runtime Test(w/o Rot) Test(Rot)

FC-LSTM N/A N/A 142,667,776 N/A 4832 -
LSTM+CNN N/A 5× 5 13,524,496 2.10 3851 4339
LSTM+CNN N/A 9× 9 43,802,128 6.10 3903 4208
LSTM+GCNN knn = 8 K = 3 1,629,712 0.82 3866 4367
LSTM+GCNN knn = 8 K = 5 2,711,056 1.24 3495 3932
LSTM+GCNN knn = 8 K = 7 3,792,400 1.61 3400 3803
LSTM+GCNN knn = 8 K = 9 4,873,744 2.15 3395 3814
LSTM+GCNN knn = 4 K = 7 3,792,400 1.61 3446 3844
LSTM+GCNN knn = 16 K = 7 3,792,400 1.61 3578 3963

Table 1: Comparison between models. Runtime is the time spent per each mini-batch in seconds.
Test cross-entropies correspond to moving MNIST, and rotating and moving MNIST. LSTM+GCNN
is Model 2 defined in (9). Cross-entropy of FC-LSTM is taken from Shi et al. (2015).

would be modified as
ht = tanh(Wx ∗G xt +Wh ∗G ht−1), (10)

and a Gated Recurrent Unit (GRU) (Cho et al., 2014) as

z = σ(Wxz ∗G xt +Whz ∗G ht−1),

r = σ(Wxr ∗G xt +Whr ∗G ht−1),

h̃ = tanh(Wxh ∗G xt +Whh ∗G (r � ht−1)),

ht = z � ht−1 + (1− z)� h̃.

(11)

As demonstrated by Shi et al. (2015), structure-aware LSTM cells can be stacked and used as
sequence-to-sequence models using an architecture composed of an encoder, which processes the
input sequence, and a decoder, which generates an output sequence. A standard practice for machine
translation using RNNs (Cho et al., 2014; Sutskever et al., 2014).

5 EXPERIMENTS

5.1 SPATIO-TEMPORAL SEQUENCE MODELING ON MOVING-MNIST

For this synthetic experiment, we use the moving-MNIST dataset generated by Shi et al. (2015).
All sequences are 20 frames long (10 frames as input and 10 frames for prediction) and contain
two handwritten digits bouncing inside a 64 × 64 patch. Following their experimental setup, all
models are trained by minimizing the binary cross-entropy loss using back-propagation through
time (BPTT) and RMSProp with a learning rate of 10−3 and a decay rate of 0.9. We choose the
best model with early-stopping on validation set. All implementations are based on their Theano
code and dataset.3 The adjacency matrix A is constructed as a k-nearest-neighbor (knn) graph with
Euclidean distance and Gaussian kernel between pixel locations. For a fair comparison with Shi
et al. (2015) defined in (6), all GCRN experiments are conducted with Model 2 defined in (9), which
is the same architecture with the 2D convolution ∗ replaced by a graph convolution ∗G . To further
explore the impact of the isotropic property of our filters, we generated a variant of the moving
MNIST dataset where digits are also rotating (see Figure 4).

Table 1 shows the performance of various models: (i) the baseline FC-LSTM from Shi et al. (2015),
(ii) the 1-layer LSTM+CNN from Shi et al. (2015) with different filter sizes, and (iii) the proposed
LSTM+graph CNN(GCNN) defined in (9) with different supports K. These results show the ability
of the proposed method to capture spatio-temporal structures. Perhaps surprisingly, GCNNs can
offer better performance than regular CNNs, even when the domain is a 2D grid and the data is
images, the problem CNNs were initially developed for. The explanation is to be found in the
differences between 2D filters and spectral graph filters. While a spectral filter of support K = 3
corresponds to the reach of a patch of size 5×5 (see Figure 2), the difference resides in the isotropic
nature of the former and the number of parameters: K = 3 for the former and 52 = 25 for the later.

3http://www.wanghao.in/code/SPARNN-release.zip

6

http://www.wanghao.in/code/SPARNN-release.zip


Under review as a conference paper at ICLR 2017

0 5 10 15 20 25 30 35
#Epoch

3000

3500

4000

4500

5000

5500

6000

6500

V
a
lid

a
ti

o
n
 c

ro
ss

-e
n
tr

o
p
y

LSTM+CNN(5X5)
LSTM+CNN(5X5)+rotation
LSTM+CNN(9X9)
LSTM+GCNN+rotation, knn=8, K=3
LSTM+GCNN, knn=8, K=3
LSTM+GCNN, knn=8, K=5
LSTM+GCNN, knn=8, K=7
LSTM+GCNN, knn=8, K=9

0 5 10 15 20 25 30 35
#Epoch

3000

3500

4000

4500

5000

5500

6000

V
a
lid

a
ti

o
n
 c

ro
ss

-e
n
tr

o
p
y

LSTM+CNN(5X5)
LSTM+GCNN, knn=4, K=7
LSTM+GCNN, knn=8, K=7
LSTM+GCNN, knn=16, K=7

Figure 3: Cross-entropy on validation set: Left: performance of graph CNN with various filter
support K. Right: performance w.r.t. graph construction.
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Figure 4: Qualitative results for moving MNIST, and rotating and moving MNIST. First row
is the input sequence, second the ground truth, and third and fourth are the predictions of the
LSTM+CNN(5× 5) and LSTM+GCNN(knn = 8,K = 7).

Table 1 indeed shows that LSTM+CNN(5 × 5) rivals LSTM+GCNN with K = 3. However, when
increasing the filter size to 9× 9 or K = 5, the GCNN variant clearly outperforms the CNN variant.
This experiment demonstrates that graph spectral filters can obtain superior performance on regular
domains with much less parameters thanks to their isotropic nature, a controversial property. Indeed,
as the nodes are not ordered, there is no notion of an edge going up, down, on the right or on the
left. All edges are treated equally, inducing some sort of rotation invariance. Additionally, Table 1
shows that the computational complexity of each model is linear with the filter size, and Figure 3
shows the learning dynamic of some of the models.

5.2 NATURAL LANGUAGE MODELING ON PENN TREEBANK

The Penn Treebank dataset has 1,036,580 words. It was pre-processed in Zaremba et al. (2014) and
split4 into a training set of 929k words, a validation set of 73k words, and a test set of 82k words. The
size of the vocabulary of this corpus is 10,000. We use the gensim library5 to compute a word2vec
model (Mikolov et al., 2013) for embedding the words of the dictionary in a 200-dimensional space.
Then we build the adjacency matrix of the word embedding using a 4-nearest neighbor graph with
cosine distance. Figure 6 presents the computed adjacency matrix, and its 3D visualization. We used
the hyperparameters of the small configuration given by the code6 based on Zaremba et al. (2014):
the size of the data mini-batch is 20, the number of temporal steps to unroll is 20, the dimension of
the hidden state is 200. The global learning rate is 1.0 and the norm of the gradient is bounded by
5. The learning decay function is selected to be 0.5max(0,#epoch−4). All experiments have 13 epochs,
and dropout value is 0.75. For Zaremba et al. (2014), the input representation xt can be either the
200-dim embedding vector of the word, or the 10,000-dim one-hot representation of the word. For

4https://github.com/wojzaremba/lstm
5https://radimrehurek.com/gensim/models/word2vec.html
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Figure 5: Learning dynamic of LSTM with and without graph structure and dropout regularization.

Architecture Representation Parameters Train Perplexity Test Perplexity

Zaremba et al. (2014) code6 embedding 681,800 36.96 117.29
Zaremba et al. (2014) code6 one-hot 34,011,600 53.89 118.82
LSTM embedding 681,800 48.38 120.90
LSTM one-hot 34,011,600 54.41 120.16
LSTM, dropout one-hot 34,011,600 145.59 112.98
GCRN-M1 one-hot 42,011,602 18.49 177.14
GCRN-M1, dropout one-hot 42,011,602 114.29 98.67

Table 2: Comparison of models in terms of perplexity. Zaremba et al. (2014) code6 is ran as bench-
mark algorithm. The original Zaremba et al. (2014) code used as input representation for xt the
200-dim embedding representation of words, computed here by the gensim library5. As our model
runs on the 10,000-dim one-hot representation of words, we also ran Zaremba et al. (2014) code on
this representation. We re-implemented Zaremba et al. (2014) code with the same architecture and
hyperparameters. We remind that GCRN-M1 refers to GCRN Model 1 defined in (8).

our models, the input representation is a one-hot representation of the word. This choice allows us
to use the graph structure of the words.

Table 2 reports the final train and test perplexity values for each investigated model and Figure 5
plots the perplexity value vs. the number of epochs for the train and test sets with and without
dropout regularization. Numerical experiments show:

1. Given the same experimental conditions in terms of architecture and no dropout regulariza-
tion, the standalone model of LSTM is more accurate than LSTM using the spatial graph
information (120.16 vs. 177.14), extracted by graph CNN with the GCRN architecture of
Model 1, Eq. (8).

2. However, using dropout regularization, the graph LSTM model overcomes the standalone
LSTM with perplexity values 98.67 vs. 112.98.

3. The use of spatial graph information found by graph CNN speeds up the learning process,
and overfits the training dataset in the absence of dropout regularization. The graph struc-
ture likely acts a constraint on the learning system that is forced to move in the space of
language topics.

4. We performed the same experiments with LSTM and Model 2 defined in (9). Model 1
significantly outperformed Model 2, and Model 2 did worse than standalone LSTM. This
bad performance may be the result of the large increase of dimensionality in Model 2, as
the dimension of the hidden and cell states changes from 200 to 10,000, the size of the
vocabulary. A solution would be to downsize the data dimensionality, as done in Shi et al.
(2015) in the case of image data.

6https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
models/rnn/ptb/ptb_word_lm.py
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Figure 6: Left: adjacency matrix of word embeddings. Right: 3D visualization of words’ structure.

6 CONCLUSION AND FUTURE WORK

This work aims at learning spatio-temporal structures from graph-structured and time-varying data.
In this context, the main challenge is to identify the best possible architecture that combines simul-
taneously recurrent neural networks like vanilla RNN, LSTM or GRU with convolutional neural
networks for graph-structured data. We have investigated here two architectures, one using a stack
of CNN and RNN (Model 1), and one using convLSTM that considers convolutions instead of fully
connected operations in the RNN definition (Model 2). We have then considered two applications:
video prediction and natural language modeling. Model 2 has shown good performances in the
case of video prediction, by improving the results of Shi et al. (2015). Model 1 has also provided
promising performances in the case of language modeling, particularly in terms of learning speed.
It has been shown that (i) isotropic filters, maybe surprisingly, can outperform classical 2D filters
on images while requiring much less parameters, and (ii) that graphs coupled with graph CNN and
RNN are a versatile way of introducing and exploiting side-information, e.g. the semantic of words,
by structuring a data matrix.

Future work will investigate applications to data naturally structured as dynamic graph signals, for
instance fMRI and sensor networks. The graph CNN model we have used is rotationally-invariant
and such spatial property seems quite attractive in real situations where motion is beyond translation.
We will also investigate how to benefit of the fast learning property of our system to speed up
language modeling models. Eventually, it will be interesting to analyze the underlying dynamical
property of generic RNN architectures in the case of graphs. Graph structures may introduce stability
to RNN systems, and prevent them to express unstable dynamic behaviors.
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