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ABSTRACT

We introduce a new algorithm for reinforcement learning called Maximum a-
posteriori Policy Optimisation (MPO) based on coordinate ascent on a relative-
entropy objective. We show that several existing methods can directly be related
to our derivation. We develop two off-policy algorithms and demonstrate that
they are competitive with the state-of-the-art in deep reinforcement learning. In
particular, for continuous control, our method outperforms existing methods with
respect to sample efficiency, premature convergence and robustness to hyperpa-
rameter settings.

1 INTRODUCTION

Model free reinforcement learning algorithms can acquire sophisticated behaviours by interacting
with the environment while receiving simple rewards. Recent experiments (Mnih et al., 2015; Jader-
berg et al., 2016; Heess et al., 2017) successfully combined these algorithms with powerful deep
neural-network approximators while benefiting from the increase of compute capacity.

Unfortunately, the generality and flexibility of these algorithms comes at a price: They can require
a large number of samples and – especially in continuous action spaces – suffer from high gradi-
ent variance. Taken together these issues can lead to unstable learning and/or slow convergence.
Nonetheless, recent years have seen significant progress, with improvements to different aspects of
learning algorithms including stability, data-efficiency and speed, enabling notable results on a vari-
ety of domains, including locomotion (Heess et al., 2017; Peng et al., 2016), multi-agent behaviour
(Bansal et al., 2017) and classical control (Duan et al., 2016).

Two types of algorithms currently dominate scalable learning for continuous control problems: First,
Trust-Region Policy Optimisation (TRPO; Schulman et al. 2015) and the derivative family of Proxi-
mal Policy Optimisation algorithms (PPO; Schulman et al. 2017b). These policy-gradient algorithms
are on-policy by design, reducing gradient variance through large batches and limiting the allowed
change in parameters. They are robust, applicable to high-dimensional problems, and require mod-
erate parameter tuning, making them a popular first choice (Ho & Ermon, 2016). However, as
on-policy algorithms, they suffer from poor sample efficiency.

In contrast, off-policy value-gradient algorithms such as the Deep Deterministic Policy Gradient
(DDPG, Silver et al. 2014; Lillicrap et al. 2016), Stochastic Value Gradient (SVG, Heess et al.
2015), and the related Normalized Advantage Function formulation (NAF, Gu et al. 2016b) rely on
experience replay and learned (action-)value functions. These algorithms exhibit much better data
efficiency, approaching the regime where experiments with real robots are possible (Gu et al., 2016a;
Andrychowicz et al., 2017). While also popular, these algorithms can be difficult to tune, especially
for high-dimensional domains like general robot manipulation tasks.

In this paper we propose a novel off-policy algorithm that benefits from the best properties of both
classes. It exhibits the scalability, robustness and hyperparameter insensitivity of on-policy algo-
rithms, while offering the data-efficiency of off-policy, value-based methods.

To derive our algorithm, we take advantage of the duality between control and estimation by using
Expectation Maximisation (EM), a powerful tool from the probabilistic estimation toolbox, in order
to solve control problems. This duality can be understood as replacing the question “what are the
actions which maximise future rewards?” with the question “assuming future success in maximising
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rewards, what are the actions most likely to have been taken?”. By using this estimation objective
we have more control over the policy change in both E and M steps, yielding robust learning. We
show below that several algorithms, including TRPO, can be directly related to this perspective.
We leverage the fast convergence properties of EM-style coordinate ascent by alternating a non-
parametric data-based E-step which re-weights state-action samples, with a supervised, parametric
M-step using deep neural networks.

We evaluate our algorithm on a broad spectrum of continuous control problems including a 56
DoF humanoid body. All experiments used the same optimisation hyperparameters 1. Our al-
gorithm shows remarkable data efficiency often solving the tasks we consider an order of mag-
nitude faster than the state-of-the-art. A video of some resulting behaviours can be found here
dropbox.com/s/pgcmjst7t0zwm4y/MPO.mp4.

2 BACKGROUND AND NOTATION

2.1 RELATED WORK

Casting Reinforcement Learning (RL) as an inference problem has a long history dating back at least
two decades (Dayan & Hinton, 1997). The framework presented here is inspired by a variational
inference perspective on RL that has previously been utilised in multiple studies; c.f. Dayan &
Hinton (1997); Neumann (2011); Deisenroth et al. (2013); Rawlik et al. (2012); Levine & Koltun
(2013); Florensa et al. (2017).

Particular attention has been paid to obtaining maximum entropy policies as the solution to an in-
ference problem. The penalisation of determinism can be seen encouraging both robustness and
simplicity. Among these are methods that perform trajectory optimisation using either linearised
dynamics (Todorov, 2008; Toussaint, 2009; Levine & Koltun, 2013) or general dynamics as in path
integral control (Kappen, 2005; Theodorou et al., 2010). In contrast to these algorithms, here we
do not assume the availability of a transition model and avoid on-policy optimisation. A number
of other authors have considered the same perspective but in a model-free RL setting (Neumann,
2011; Peters et al., 2010a; Florensa et al., 2017; Daniel et al., 2016) or inverse RL problems (Ziebart
et al., 2008). These algorithms are more directly related to our work and can be cast in the same
(EM-like) alternating optimisation scheme on which we base our algorithm. However, they typi-
cally lack the maximisation (M)-step – with the prominent exception of REPS, AC-REPS, PI2-GPS
and MDGPS (Peters et al., 2010a; Wirth et al., 2016; Chebotar et al., 2016; Montgomery & Levine,
2016) to which our algorithm is closely related as outlined below. An interesting recent addition to
these approaches is an EM-perspective on the PoWER algorithm (Roux, 2016) which uses the same
iterative policy improvement employed here, but commits to parametric inference distributions and
avoids an exponential reward transformation, resulting in a harder to optimise lower bound.

As an alternative to these policy gradient inspired algorithms, the class of recent algorithms for soft
Q-learning (e.g. Rawlik et al. (2012); Haarnoja et al. (2017); Fox et al. (2016) parameterise and
estimate a so called “soft” Q-function directly, implicitly inducing a maximum entropy policy. A
perspective that can also be extended to hierarchical policies (Florensa et al., 2017), and has recently
been used to establish connections between Q-learning and policy gradient methods (O’Donoghue
et al., 2016; Schulman et al., 2017a). In contrast, we here rely on a parametric policy, our bound and
derivation is however closely related to the definition of the soft (entropy regularised) Q-function.

A line of work, that is directly related to the “RL as inference” perspective, has focused on using
information theoretic regularisers such as the entropy of the policy or the Kullback-Leibler diver-
gence (KL) between policies to stabilise standard RL objectives. In fact, most state-of-the-art policy
gradient algorithms fall into this category. For example see the entropy regularization terms used in
Mnih et al. (2016) or the KL constraints employed by work on trust-region based methods (Schul-
man et al., 2015; 2017b; Gu et al., 2017; Wang et al., 2017). The latter methods introduce a trust
region constraint, defined by the KL divergence between the new policy and the old policy, so that
the expected KL divergence over state space is bounded. From the perspective of this paper these
trust-region based methods can be seen as optimising a parametric E-step, as in our algorithm, but
are “missing” an explicit M-step.

1With the exception of the number of samples collected between updates.
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Finally, the connection between RL and inference has been invoked to motivate work on exploration.
The most prominent examples for this are formed by work on Boltzmann exploration such as Kael-
bling et al. (1996); Perkins & Precup (2002); Sutton (1990); O’Donoghue et al. (2017), which can
be connected back to soft Q-learning (and thus to our approach) as shown in Haarnoja et al. (2017).

2.2 MARKOV DECISION PROCESSES

We consider the problem of finding an optimal policy π for a discounted reinforcement learning
(RL) problem; formally characterized by a Markov decision process (MDP). The MDP consists of:
continuous states s, actions a, transition probabilities p(st+1|st, at) – specifying the probability of
transitioning from state st to st+1 under action at –, a reward function r(s, a) ∈ R as well as the
discounting factor γ ∈ [0, 1). The policy π(a|s,θ) (with parameters θ) is assumed to specify a prob-
ability distribution over action choices given any state and – together with the transition probabilities
– gives rise to the stationary distribution µπ(s).

Using these basic quantities we can now define the notion of a Markov sequence or trajec-
tory τπ = {(s0, a0) . . . (sT , aT )} sampled by following the policy π; i.e. τπ ∼ pπ(τ) with
pπ(τ) = p(s0)

∏
t>0 p(st+1|st, at)π(at|st); and the expected return Eτπ [

∑∞
t=0 γ

tr(st, st)]. We
will use the shorthand rt = r(st, at).

3 MAXIMUM A POSTERIORI POLICY OPTIMISATION

Our approach is motivated by the well established connection between RL and probabilistic infer-
ence. This connection casts the reinforcement learning problem as that of inference in a particular
probabilistic model. Conventional formulations of RL aim to find a trajectory that maximizes ex-
pected reward. In contrast, inference formulations start from a prior distribution over trajectories,
condition a desired outcome such as achieving a goal state, and then estimate the posterior distribu-
tion over trajectories consistent with this outcome.

A finite-horizon undiscounted reward formulation can be cast as inference problem by constructing
a suitable probabilistic model via a likelihood function p(O = 1|τ) ∝ exp(

∑
t rt/α), where α is a

temperature parameter. Intuitively, O can be interpreted as the event of obtaining maximum reward
by choosing an action; or the event of succeeding at the RL task (Toussaint, 2009; Neumann, 2011).
With this definition we can define the following lower bound on the likelihood of optimality for the
policy π:

log pπ(O = 1) = log

∫
pπ(τ)p(O = 1|τ)dτ ≥

∫
q(τ)

[
log p(O = 1|τ) + log

pπ(τ)

q(τ)

]
dτ (1)

= Eq
[∑

t

rt/α
]
−KL

(
q(τ)||pπ(τ)

)
= J (q, π), (2)

where pπ is the trajectory distribution induced by policy π(a|s) as described in section 2.2 and q(τ)
is an auxiliary distribution over trajectories that will discussed in more detail below. The lower
bound J is the evidence lower bound (ELBO) which plays an important role in the probabilistic
modeling literature. It is worth already noting here that optimizing (2) with respect to q can be seen
as a regularized RL problem.

An important motivation for transforming a RL problem into an inference problem is that this allows
us draw from the rich toolbox of inference methods: For instance, J can be optimized with the
familiy of expectation maximization (EM) algorithms which alternate between improving J with
respect to q and π. In this paper we follow classical (Dayan & Hinton, 1997) and more recent works
(e.g. Peters et al. 2010b; Levine & Koltun 2013; Daniel et al. 2016; Wirth et al. 2016) and cast policy
search as a particular instance of this family. Our algorithm then combines properties of existing
approaches in this family with properties of recent off-policy algorithms for neural networks.

The algorithm alternates between two phases which we refer to as E and M step in reference to an
EM-algorithm. The E-step improves J with respect to q. Existing EM policy search approaches
perform this step typically by reweighting trajectories with sample returns (Kober & Peters, 2009)
or via local trajectory optimization (Levine & Koltun, 2013). We show how off-policy deep RL
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techniques and value-function approximation can be used to make this step both scalable as well as
data efficient. The M-step then updates the parametric policy in a supervised learning step using the
reweighted state-action samples from the E-step as targets.

These choices lead to the following desirable properties: (a) low-variance estimates of the expected
return via function approximation; (b) low-sample complexity of value function estimate via robust
off-policy learning; (c) minimal parametric assumption about the form of the trajectory distribution
in the E-step; (d) policy updates via supervised learning in the M step; (e) robust updates via hard
trust-region constraints in both the E and the M step.

3.1 POLICY IMPROVEMENT

The derivation of our algorithm then starts from the infinite-horizon analogue of the KL-regularized
expected reward objective from Equation (2). In particular, we consider variational distributions
q(τ) that factor in the same way as pπ , i.e. q(τ) = p(s0)

∏
t>0 p(st+1|st, at)q(at|st) which yields:

J (q,θ) = Eq
[ ∞∑
t=0

γt
[
rt − αKL

(
q(a|st)‖π(a|st,θ)

)]]
+ log p(θ). (3)

Note that due to the assumption about the structure of q(τ) the KL over trajectories decomposes
into a KL over the individual state-conditional action distributions. This objective has also been
considered e.g. by Haarnoja et al. (2017); Schulman et al. (2017a). The additional log p(θ) term is
a prior over policy parameters and can be motivated by a maximum a-posteriori estimation problem
(see appendix for more details).

We also define the regularized Q-value function associated with (3) as

Qqθ(s, a) = r0 + Eq(τ),s0=s,a0=a

 ∞∑
t≥1

γt
[
rt − αKL(qt‖πt)

] , (4)

with KL
(
qt||πt

)
= KL

(
q(a|st)

)
‖π(a|st,θ)

)
. Note that KL

(
q0||π0

)
and p(θ) are not part of the

Q-function as they are not a function of the action.

We observe that optimizing J with respect to q is equivalent to solving an expected reward RL
problem with augmented reward r̃t = rt−α log q(at|st)

π(at|st,θ) . In this view π represents a default policy
towards which q is regularized – i.e. the current best policy. The MPO algorithm treats π as the
primary object of interest. In this case q serves as an auxiliary distribution that allows optimizing J
via alternate coordinate ascent in q and πθ, analogous to the expectation-maximization algorithm in
the probabilistic modelling literature. In our case, the E-step optimizes J with respect to q while
the M-step optimizes J with respect to π. Different optimizations in the E-step and M-step lead to
different algorithms. In particular, we note that for the case where p(θ) is an uninformative prior a
variant of our algorithm has a monotonic improvement guarantee as show in the Appendix A.

3.2 E-STEP

In the E-step of iteration i we perform a partial maximization of J (q,θ) with respect to q given
θ = θi. We start by setting q = πθi and estimate the unregularized action-value function:

Qqθi(s, a) = Qθi(s, a) = Eτπi ,s0=s,a0=a

[ ∞∑
t

γtrt

]
, (5)

since KL(q||πi) = 0. In practice we estimate Qθi from off-policy data (we refer to Section 4 for
details about the policy evaluation step). This greatly increases the data efficiency of our algorithm.
Given Qθi we improve the lower bound J w.r.t. q by first expanding Qθi(s, a) via the regularized
Bellman operator Tπ,q = Eq(a|s)

[
r(s, a) − αKL(q‖πi) + γEp(s′|s,a)[Vθi(s

′)]], and optimize the
“one-step” KL regularised objective

max
q
J̄s(q, θi) = max

q
Tπ,qQθi(s, a)

= max
q

Eµ(s)

[
Eq(·|s)[Qθi(s, a)]− αKL(q‖πi)

]
,

(6)
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since Vθi(s) = Eq(a|s[Qθi(s, a)] and thus Qθi(s, a) = r(s, a) + γVθi(s).

Maximizing Equation (6), thus obtaining qi = arg max J̄ (q, θi), does not fully optimize J since
we treat Qθi as constant with respect to q. An intuitive interpretation qi is that it chooses the soft-
optimal action for one step and then resorts to executing policy π. In the language of the EM
algorithm this optimization implements a partial E-step. In practice we also choose µq to be the
stationary distribution as given through samples from the replay buffer.

CONSTRAINED E-STEP

The reward and the KL terms are on an arbitray relative scale. This can make it difficult to choose
α. We therefore replace the soft KL regularization with a hard constraint with parameter ε, i.e,

max
q

Eµ(s)

[
Eq(a|s)

[
Qθi(s, a)

]]
s.t.Eµ(s)

[
KL(q(a|s), π(a|s,θi))

]
< ε.

(7)

If we choose to explicitly parameterize q(a|s) – option 1 below – the resulting optimisation is similar
to that performed by the recent TRPO algorithm for continuous control (Schulman et al., 2015); only
in an off-policy setting. Analogously, the unconstrained objective (6) is similar to the objective used
by PPO (Schulman et al., 2017b). We note, however, that the KL is reversed when compared to the
KL used by TRPO and PPO.

To implement (7) we need to choose a form for the variational policy q(a|s). Two options arise:

1. We can use a parametric variational distribution q(a|s,θq), with parameters θq , and op-
timise Equation (7) via the likelihood ratio or action-value gradients. This leads to an
algorithm similar to TRPO/PPO and an explicit M-step becomes unnecessary (see. Alg. 3).

2. We can choose a non-parametric representation of q(a|s) given by one probability factor
per sample. To achieve generalization in state space we then fit a parametric policy in the
M-step.

Fitting a parametric policy in the M-step is a supervised learning problem, allowing us to employ
various regularization techniques at that point. It also makes it easier to enforce the hard KL con-
straint.

NON PARAMETRIC VARIATIONAL DISTRIBUTION

In the non-parametric case we can obtain the optimal sample based q distribution – the solution to
Equation (7) – in closed form (see the appendix for a full derivation), as,

qi(a|s) ∝ π(a|s,θi) exp
(Qθi(s, a)

η∗

)
, (8)

where we can obtain η∗ by minimising the following convex dual function,

g(η) = ηε+ η

∫
µ(s) log

∫
π(a|s,θi) exp

(Qθi(s, a)

η

)
dads, (9)

after the optimisation of which we can evaluate qi(a|s) on given samples.

This optimization problem is similar to the one solved by relative entropy policy search (REPS)
(Peters et al., 2010a) with the difference that we optimise only for the conditional variational dis-
tribution q(a|s) instead of a joint distribution q(a, s) – effectively fixing µq(s) to the stationary
distribution given by previously collected experience – and we use the Q function of the old policy
to evaluate the integral over a. While this might seem unimportant it is crucial as it allows us to
estimate the integral over actions with multiple samples without additional environment interaction.
This greatly reduces the variance of the estimate and allows for fully off-policy learning at the cost
of performing only a partial optimization of J as described above.
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3.3 M-STEP

Given qi from the E-step we can optimize the lower bound J with respect to θ to obtain an updated
policy θi+1 = arg maxθ J (qi,θ). Dropping terms independent of θ this entails solving for the
solution of

max
θ
J (qi, θ) = max

θ
Eµq(s)

[
Eq(a|s)

[
log π(a|s,θ)

]]
+ log p(θ), (10)

which corresponds to a weighted maximum a-posteriroi estimation (MAP) problem where sam-
ples are weighted by the variational distribution from the E-step. Since this is essentially a su-
pervised learning step we can choose any policy representation in combination with any prior
for regularisation. In this paper we set p(θ) to a Gaussian prior around the current policy, i.e,
p(θ) ≈ N

(
µ = θi,Σ =

Fθi

λ

)
, where θi are the parameters of the current policy distribution, Fθi

is the empirical Fisher information matrix and λ is a positive scalar. As shown in the appendix this
suggests the following generalized M-step:

max
π

Eµq(s)
[
Eq(a|s)

[
log π(a|s,θ)

]
− λKL

(
π(a|s,θi), π(a|s,θ)

)]
(11)

which can be re-written as the hard constrained version:

max
π

Eµq(s)
[
Eq(a|s)

[
log π(a|s,θ)

]]
s.t. Eµq(s)

[
KL(π(a|s,θi), π(a|s,θ))

]
< ε.

(12)

This additional constraint minimises the risk of overfitting the samples, i.e. it helps us to obtain a
policy that generalises beyond the state-action samples used for the optimisation. In practice we
have found the KL constraint in the M step to greatly increase stability of the algorithm. We also
note that in the E-step we are using the reverse, mode-seeking, KL while in the M-step we are using
the forward, moment-matching, KL which reduces the tendency of the entropy of the parametric
policy to collapse. This is in contrast to other RL algorithms that use M-projection without KL
constraint to fit a parametric policy (Peters et al., 2010a; Wirth et al., 2016; Chebotar et al., 2016;
Montgomery & Levine, 2016). Using KL constraint in M-step has also been shown effective for
stochastic search algorithms (Abdolmaleki et al., 2017).

4 POLICY EVALUATION

Our method is directly applicable in an off-policy setting. For this, we have to rely on a stable
policy evaluation operator to obtain a parametric representation of the Q-function Qθ(s, a). We
make use of the policy evaluation operator from the Retrace algorithm Munos et al. (2016), which
we found to yield stable policy evaluation in practice2. Concretely, we fit the Q-functionQθi(s, a, φ)
as represented by a neural network, with parameters φ, by minimising the squared loss:

min
φ
L(φ) = min

φ
Eµb(s),b(a|s)

[(
Qθi(st, at, φ)−Qret

t

)2]
,with

Qret
t = Qφ′(st, at) +

∞∑
j=t

γj−t
( j∏
k=t+1

ck

)[
r(sj , aj) + Eπ(a|sj+1)[Qφ′(sj+1, a)]−Qφ′(sj , aj)

]
,

ck = min
(

1,
π(ak|sk)

b(ak|sk)

)
,

(13)

2We note that, despite this empirical finding, Retrace may not be guaranteed to be stable with function
approximation (Touati et al., 2017).
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whereQφ′(s, a) denotes the output of a target Q-network, with parameters φ′, that we copy from the
current parameters φ after each M-step. We truncate the infinite sum after N steps by bootstrapping
with Qφ′ (rather than considering a λ return). Additionally, b(a|s) denotes the probabilities of an
arbitrary behaviour policy. In our case we use an experience replay buffer and hence b is given by
the action probabilities stored in the buffer; which correspond to the action probabilities at the time
of action selection.

5 EXPERIMENTS

For our experiments we evaluate our MPO algorithm across a wide range of tasks. Specifically, we
start by looking at the continuous control tasks of the DeepMind Control Suite (Tassa et al. (2018),
see Figure 1), and then consider the challenging parkour environments recently published in Heess
et al. (2017). In both cases we use a Gaussian distribution for the policy whose mean and covariance
are parameterized by a neural network (see appendix for details). In addition, we present initial
experiments for discrete control using ATARI environments using a categorical policy distribution
(whose logits are again parameterized by a neural network) in the appendix.

5.1 EVALUATION ON CONTROL SUITE

Figure 1: Control Suite domains used for benchmarking. Top: Acrobot, Ball-in-cup, Cart-pole,
Cheetah, Finger, Fish, Hopper. Bottom: Humanoid, Manipulator, Pendulum, Point-mass, Reacher,
Swimmers (6 and 15 links), Walker.

The suite of continuous control tasks that we are evaluating against contains 18 tasks, compris-
ing a wide range of domains including well known tasks from the literature. For example, the
classical cart-pole and acrobot dynamical systems, 2D and Humanoid walking as well as simple
low-dimensional planar reaching and manipulation tasks. This suite of tasks was built in python on
top of mujoco and will also be open sourced to the public by the time of publication.

While we include plots depicting the performance of our algorithm on all tasks below; comparing it
against the state-of-the-art algorithms in terms of data-efficiency. We want to start by directing the
attention of the reader to a more detailed evaluation on three of the harder tasks from the suite.

5.1.1 DETAILED ANALYSIS ON WALKER-2D, ACROBOT, HOPPER

We start by looking at the results for the classical Acrobot task (two degrees of freedom, one con-
tinuous action dimension) as well as the 2D walker (which has 12 degrees of freedom and thus a
12 dimensional action space and a 21 dimensional state space) and the hopper standing task. The
reward in the Acrobot task is the distance of the robots end-effector to an upright position of the
underactuated system. For the walker task it is given by the forward velocity, whereas in the hopper
the requirement is to stand still.

Figure 2 shows the results for this task obtained by applying our algorithm MPO as well as several
ablations – in which different parts were removed from the MPO optimization – and two baselines:
our implementation of Proximal Policy Optimization (PPO) (Schulman et al., 2017b) and DDPG.
The hyperparameters for MPO were kept fixed for all experiments in the paper (see the appendix for
hyperparameter settings).
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As a first observation, we can see that MPO gives stable learning on all tasks and, thanks to its
fully off-policy implementation, is significantly more sample efficient than the on-policy PPO base-
line. Furthermore, we can observe that changing from the non-parametric variational distribution
to a parametric distribution3 (which, as described above, can be related to PPO) results in only a
minor asymptotic performance loss but slowed down optimisation and thus hampered sample effi-
ciency; which can be attributed to the fact that the parametric q distribution required a stricter KL
constraint. Removing the automatically tuned KL constraint and replacing it with a manually set
entropy regulariser then yields an off-policy actor-critic method with Retrace. This policy gradient
method still uses the idea of estimating the integral over actions – and thus, for a gradient based
optimiser, its likelihood ratio derivative – via multiple action samples (as judged by a Q-Retrace
critic). This idea has previously been coined as using the expected policy gradient (EPG) (Ciosek
& Whiteson, 2017) and we hence denote the corresponding algorithm with EPG + Retrace, which
no-longer follows the intuitions of the MPO perspective. EPG + Retrace performed well when the
correct entropy regularisation scale is used. This, however, required task specific tuning (c.f. Fig-
ure 4 where this hyperparameter was set to the one that performed best in average across tasks).
Finally using only a single sample to estimate the integral (and hence the likelihood ratio gradient)
results in an actor-critic variant with Retrace that is the least performant off-policy algorithm in our
comparison.

Figure 2: Ablation study of the MPO algorithm and comparison to common baselines from the liter-
ature on three domains from the control suite. We plot the median performance over 10 experiments
with different random seeds.

5.1.2 COMPLETE RESULTS ON THE CONTROL SUITE

The results for MPO (non-parameteric) – and a comparison to an implementation of state-of-the-art
algorithms from the literature in our framework – on all the environments from the control suite that
we tested on are shown in Figure 4. All tasks have rewards that are scaled to be between 0 and 1000.
We note that in order to ensure a fair comparison all algorithms ran with exactly the same network
configuration, used a single learner (no distributed computation), used the same optimizer and were
tuned w.r.t. their hyperparameters for best performance across all tasks. We refer to the appendix for
a complete description of the hyperparameters. Our comparison is made in terms of data-efficiency.

From the plot a few trends are readily apparent: i) We can clearly observe the advantage in terms
of data-efficiency that methods relying on a Q-critic obtain over the PPO baseline. This difference
is so extreme that in several instances the PPO baseline converges an order of magnitude slower
than the off-policy algorithms and we thus indicate the asymptotic performance of each algorithm
of PPO and DDPG (which also improved significantly later during training in some instances) with a
colored star in the plot; ii) the difference between the MPO results and the (expected) policy gradient
(EPG) with entropy regularisation confirm our suspicion from Section 5.1.1: finding a good setting
for the entropy regulariser that transfers across environments without additional constraints on the
policy distribution is very difficult, leading to instabilities in the learning curves. In contrast to this
the MPO results appear to be stable across all environments; iii) Finally, in terms of data-efficiency
the methods utilising Retrace obtain a clear advantage over DDPG. The single learner vanilla DDPG
implementation learns the lower dimensional environments quickly but suffers in terms of learning

3We note that we use a value function baseline Eπ[Q(s, ·)] in this setup. See appendix for details.
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speed in environments with sparse rewards (finger, acrobot) and higher dimensional action spaces.
Overall, MPO is able to solve all environments using surprisingly moderate amounts of data. On
average less than 1000 trajectories (or 106 samples) are needed to reach the best performance.

5.2 HIGH-DIMENSIONAL CONTINUOUS CONTROL

Next we turn to evaluating our algorithm on two higher-dimensional continuous control problems;
humanoid and walker. To make computation time bearable in these more complicated domains we
utilize a parallel variant of our algorithm: in this implementation K learners are all independently
collecting data from an instance of the environment. Updates are performed at the end of each
collected trajectory using distributed synchronous gradient descent on a shared set of policy and
Q-function parameters (we refer to the appendix for an algorithm description). The results of this
experiment are depicted in Figure 3.

For the Humanoid running domain we can observe a similar trend to the experiments from the
previous section: MPO quickly finds a stable running policy, outperforming all other algorithms in
terms of sample efficiency also in this high-dimensional control problem.

The case for the Walker-2D parkour domain (where we compare against a PPO baseline) is even
more striking: where standard PPO requires approximately 1M trajectories to find a good policy
MPO finds a solution that is asymptotically no worse than the PPO solution in in about 70k tra-
jectories (or 60M samples), resulting in an order of magnitude improvement. In addition to the
walker experiment we have also evaluated MPO on the Parkour domain using a humanoid body
(with 22 degrees of freedom) which was learned successfully (not shown in the plot, please see the
supplementary video).

Figure 3: MPO on high-dimensional control problems (Parkour Walker2D and Humanoid walking
from control suite).
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5.3 DISCRETE CONTROL

As a proof of concept – showcasing the robustness of our algorithm and its hyperparameters – we
performed an experiment on a subset of the games contained contained in the "Arcade Learning
Environment" (ALE) where we used the same hyperparameter settings for the KL constraints as for
the continuous control experiments. The results of this experiment can be found in the Appendix.

6 CONCLUSION

We have presented a new off-policy reinforcement learning algorithm called Maximum a-posteriori
Policy Optimisation (MPO). The algorithm is motivated by the connection between RL and infer-
ence and it consists of an alternating optimisation scheme that has a direct relation to several existing
algorithms from the literature. Overall, we arrive at a novel, off-policy algorithm that is highly data
efficient, robust to hyperparameter choices and applicable to complex control problems. We demon-
strated the effectiveness of MPO on a large set of continuous control problems.
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Figure 4: Complete comparison of results for the control suite. We plot the median performance
over 10 random seeds together with 5 and 95 % quantiles (shaded area). Note that for DDPG we
only plot the median to avoid clutter in the plots. For DDPG and PPO final performance is marked
by a star).
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A PROOF OF MONOTONIC IMPROVEMENT FOR THE KL-REGULARIZED
POLICY OPTIMIZATION PROCEDURE

In this section we prove a monotonic improvement guarantee for KL-regularized policy optimization
via alternating updates on π and q under the assumption that the prior on θ is uninformative.

A.1 REGULARIZED REINFORCEMENT LEARNING

Let π be an arbitrary policy. For any other policy q such that, for all x, a, {π(a|x) > 0} =⇒
{q(a|x) > 0}, define the π-regularized reward for policy q:

rπ,qα (x, a) = r(x, a)− α log
q(a|x)

π(a|x)
,

where α > 0.

Bellman operators: Define the π-regularized Bellman operator for policy q

Tπ,qα V (x) = Ea∼q(·|x)

[
rπ,qα (x, a) + γEy∼p(·|x,a)V (y)

]
,

and the non-regularized Bellman operator for policy q

T qV (x) = Ea∼q(·|x)

[
r(x, a) + γEy∼p(·|x,a)V (y)

]
.

Value function: Define the π-regularized value function for policy q as

V π,qα (x) = Eq
[∑
t≥0

γtrπ,qα (xt, at)|x0 = x, q
]
.

and the non-regularized value function

V q(x) = Eq
[∑
t≥0

γtr(xt, at)|x0 = x, q
]
.

Proposition 1. For any q, π, V , we have V π,qα ≤ V q and Tπ,qα V ≤ T qV . Indeed

Eq
[

log
q(at|xt)
π(at|xt)

]
= KL

(
q(·|xt)‖π(·|xt)

)
≥ 0.

Optimal value function and policy Define the optimal regularized value function: V π,∗α (x) =
maxq V

π,q
α (x), and the optimal (non-regularized) value function: V ∗(x) = maxq V

q(x).

The optimal policy of the π-regularized problem qπ,∗α (·|x) = arg maxq V
π,q
α (x) and the optimal

policy of the non-regularized problem q∗(·|x) = arg maxq V
q .

Proposition 2. We have that V π,qα is the unique fixed point of Tπ,qα , and V q is the unique fixed point
of T q . Thus we have the following Bellman equations: For all x ∈ X ,

V π,qα (x) =
∑
a

q(a|x)
[
rπ,qα (x, a) + γEy∼p(·|x,a)

[
V π,qα (y)

]]
(14)

V q(x) =
∑
a

q(a|x)
[
r(x, a) + γEy∼p(·|x,a)

[
V q(y)

]]
(15)

V π,∗α (x) = r
π,qπ,∗α
α (x, a) + γEy∼p(·|x,a)

[
V π,∗α (y)

]
for all a ∈ A, (16)

V ∗(x) = max
a∈A

[
r(x, a) + γEy∼p(·|x,a)

[
V ∗(y)

]]
. (17)

Notice that (16) holds for all actions a ∈ A, and not in expectation w.r.t. a ∼ q(·|x) only.
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A.2 REGULARIZED JOINT POLICY GRADIENT

We now consider a parametrized policy πθ and consider maximizing the regularized joint policy
optimization problem for a given initial state x0 (this could be a distribution over initial states).
Thus we want to find a parameter θ that (locally) maximizes

J (θ, q) = V πθ,q(x0) = Eq
[∑
t≥0

γt
(
r(xt, at)− αKL(q(·|xt)‖πθ(·|xt))

)∣∣x0, q
]
.

We start with an initial parameter θ0 and define a sequence of policies πi = πθi parametrized by θi,
in the following way:

• Given θi, define
qi = arg max

q
T
πθi ,q
α V πθi ,

• Define θi+1 as

θi+1 = θi − β∇θEπi
[∑
t≥0

γtKL
(
qk(·|xt)‖πθ(·|xt)

)
|θ=θi

∣∣x0, πi

]
. (18)

Proposition 3. We have the following properties:

• The policy qi satisfies:

qi(a|x) =
πi(a|x)e

1
αQ

πi (x,a)

Eb∼πi(·|x)

[
e

1
αQ

πi (x,b)
] , (19)

where Qπ(x, a) = r(x, a) + γEy∼p(·|x,a)V
π(y).

• We have
V πi,qiα ≥ V πi . (20)

• For η sufficiently small, we have

J (θi+1, qi+1) ≥ J (θi, qi) + cgi, (21)

where c is a numerical constant, and gi is the norm of the gradient (minimized by the
algorithm):

gi =
∥∥∥∇θEπi[∑

t≥0

γtKL
(
qi(·|xt)‖πθ(·|xt)

)
|θ=θi

∣∣x0, πi

]∥∥∥.
Thus we build a sequence of policies (πθi , qi) whose values J (θi, qi) are non-decreasing
thus converge to a local maximum. In addition, the improvement is lower-bounded by a
constant times the norm of the gradient, thus the algorithm keeps improving the perfor-
mance until the gradient vanishes (when we reach the limit of the capacity of our represen-
tation).

Proof. We have

qi(·|x) = arg max
q

Ea∼q(·|x)

[
r(x, a) + γEy∼p(·|x,a)V

πi(y)︸ ︷︷ ︸
Qπi (x,a)

−α log
q(a|x)

πi(a|x)

]
,

from which we deduce (19). Now, from the definition of qi, we have

Tπi,qiα V πi ≥ Tπi,πiα V πi = TπiV πi = V πi .

Now, since Tπi,qiα is a monotone operator (i.e. if V1 ≥ V2 elementwise, then Tπi,qiα V1 ≥ Tπi,qiα V2)
and its fixed point is V πi,qiα , we have

V πi,qiα = lim
t→∞

(Tπi,qiα )tV πi ≥ V πi ,

which proves (20).

Now, in order to prove (21) we derive the following steps.
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Step 1: From the definition of qi+1 we have, for any x,
Ea∼qi+1

[
Qπi+1(x, a)

]
−αKL

(
qi+1(·|x)‖πi+1(·|x)

)
≥ Ea∼qi

[
Qπi+1(x, a)

]
−αKL

(
qi(·|x)‖πi+1(·|x)

)
.

(22)

Writing the functional that we minimize

f(π, q, θ) = Eπ
[∑
t≥0

γtKL
(
q(·|xt)‖πθ(·|xt)

)∣∣x0, π
]
,

the update rule is θi+1 = θi − β∇θf(πi, qi, θi). Thus we have that for sufficiently small β,
f(πi, qi, θi+1) ≤ f(πi, qi, θi)− βgi, (23)

where gi = 1
2

∥∥∇θf(πi, qi, θi)
∥∥.

Step 2: Now define F :

F(π, q, θ, π′) = Eπ
[∑
t≥0

γt
(
Ea∼q

[
Qπ
′
(xt, a)

]
− αKL

(
q(·|xt)‖πθ(·|xt)

))∣∣x0, π
]

= δx0
(I − γPπ)−1Tπθ,qα V π

′

= δx0
(I − γPπ)−1T qV π

′
− f(π, q, θ),

where δx0
is a Dirac (in the row vector x0), and Pπ is the transition matrix for policy π.

From (22) and (23) we deduce that
F(πi, qi+1, θi+1, πi+1) ≥ F(πi, qi, θi+1, πi+1)

≥ F(πi, qi, θi, πi+1) + βgi.

We deduce
F(πi, qi+1, θi+1, πi)

≥ F(πi, qi, θi, πi) + βgi

+F(πi, qi+1, θi+1, πi)−F(πi, qi+1, θi+1, πi+1) + F(πi, qi, θi, πi+1)−F(πi, qi, θi, πi)

= F(πi, qi, θi, πi) + βgi +

Eπi
[∑
t≥0

γt
(
Ea∼qi+1

[
Qπi(xt, a)−Qπi+1(xt, a)

]
− Ea∼qi

[
Qπi(xt, a)−Qπi+1(xt, a)

])]
︸ ︷︷ ︸

=O(β2) since πi=πi+1+O(β) and qi=qi+1+O(β)

This rewrites:
δx0

(I − γπi)−1
(
T qi+1,πi+1
α V πi − T qi,πiα V πi

)
≥ ηgi +O(β2). (24)

Step 3: Now a bit of algebra. For two stochastic matrices P and P ′, we have
(I − γP )−1

= (I − γP ′)−1 + γ(I − γP )−1(P − P ′)(I − γP ′)−1

= (I − γP ′)−1 + γ
[
(I − γP ′)−1 + γ(I − γP )−1(P − P ′)(I − γP ′)−1

]
(P − P ′)(I − γP ′)−1

= (I − γP ′)−1 + γ(I − γP ′)−1(P − P ′)(I − γP ′)−1

+γ2(I − γP )−1(P − P ′)(I − γP ′)−1(P − P ′)(I − γP ′)−1.

Applying this equality to the transition matrices Pπk and Pπk+1 and since ‖Pπk+1 −Pπk‖ = O(η),
we have:

V qi+1,πi+1
α

= (I − γPπi)−1rqi+1,πi+1
α

= (I − γPπi)−1rqi+1,πi+1
α + γ(I − γPπi)−1(Pπi+1 − Pπi)(I − γPπi)−1rqi+1,πi+1

α +O(β2)

= (I − γPπi)−1rqi,πiα + (I − γPπi)−1(rqi+1,πi+1
α − rqi,πiα + γPπi+1 − γPπi)(I − γPπi)−1rqi,πiα +O(β2)

= V qi,πiα + (I − γPπi)−1(T qi+1,πi+1
α V πi − T qi,πiα V πk) +O(β2).
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Table 1: Results on a subset of the ALE environments in comparison to baselines taken from (Belle-
mare et al., 2017)

Game/Agent Human DQN Prior. Dueling C51 MPO

Pong 14.6 19.5 20.9 20.9 20.9
Breakout 30.5 385.5 366.0 748 360.5
Q*bert 13,455.0 13,117.3 18,760.3 23,784 10,317.0
Tennis -8.3 12.2 0.0 23.1 22.2
Boxing 12.1 88.0 98.9 97.8 82.0

Finally, using (24), we deduce that

J (θi+1, qi+1) = V qi+1,πi+1
α (x0)

= V qi,πiα (x0) + δx0(I − γPπi)−1(T qi+1,πi+1
α V πi − T qi,πiα V πi) +O(β2)

≥ J (θi, qi) + ηgi +O(β2)

≥ J (θi, qi) +
1

2
ηgi,

for small enough η.

B ADDITIONAL EXPERIMENT: DISCRETE CONTROL

As a proof of concept – showcasing the robustness of our algorithm and its hyperparameters – we
performed an experiment on a subset of the games contained contained in the "Arcade Learning
Environment" (ALE). For this experiment we used the same hyperparameter settings for the KL
constraints as for the continuous control experiments as well as the same learning rate and merely
altered the network architecture to the standard network structure used by DQN Mnih et al. (2015)
– and created a seperate network with the same architecture, but predicting the parameters of the
policy distribution. A comparison between our algorithm and well established baselines from the
literature, in terms of the mean performance, is listed in Table 1. While we do not obtain state-of-
the-art performance in this experiment, the fact that MPO is competitive, out-of-the-box in these
domains suggests that combining the ideas presented in this paper with recent advances for RL with
discrete actions (Bellemare et al., 2017) could be a fruitful avenue for future work.

C EXPERIMENT DETAILS

In this section we give the details on the hyper-parameters used for each experiment. All the contin-
uous control experiments use a feed-forward network except for Parkour-2d were we used the same
network architecture as in Heess et al. (2017). Other hyper parameters for MPO with non parametric
variational distribution were set as follows,

Hyperparameter control suite humanoid
Policy net 100-100 200-200

Q function net 200-200 300-300
ε 0.1 "
εµ 0.1 "
εΣ 0.0001 "

Discount factor (γ) 0.99 "
Adam learning rate 0.0005 "

Table 2: Parameters for non-parametric variational distribution

Hyperparameters for MPO with parametric variational distribution were as follows,
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Hyperparameter control suite tasks humanoid
Policy net 100-100 200-200

Q function net 200-200 300-300
εµ 0.1 "
εΣ 0.0001 "

Discount factor (γ) 0.99 "
Adam learning rate 0.0005 "

Table 3: Parameters for parametric variational distribution

D DERIVATION OF UPDATE RULES FOR A GAUSSIAN POLICY

For continuous control we assume that the policy is given by a Gaussian distribution with a full
covariance matrix, i.e, π(a|s,θ) = N (µ,Σ). Our neural network outputs the mean µ = µ(s) and
Cholesky factor A = A(s), such that Σ = AAT . The lower triagular factor A has positive diagonal
elements enforced by the softplus transform Aii ← log(1 + exp(Aii)).

D.1 NON-PARAMETRIC VARIATIONAL DISTRIBUTION

In this section we provide the derivations and implementation details for the non-parametric varia-
tional distribution case for both E-step and M-step.

D.2 E-STEP

The E-step with a non-parametric variational solves the following program, where we have replaced
expectations with integrals to simplify the following derivations:

max
q

∫
µq(s)

∫
q(a|s)Qθi(s, a)dads

s.t.

∫
µq(s)KL(q(a|s), π(a|s,θi))da < ε,∫∫

µq(s)q(a|s)dads = 1.

First we write the Lagrangian equation, i.e,

L(q, η, γ) =

∫
µq(s)

∫
q(a|s)Qθi(s, a)dads+

η

(
ε−

∫
µq(s)

∫
q(a|s) log

q(a|s)
π(a|s,θi)

)
+ γ

(
1−

∫∫
µq(s)q(a|s)dads

)
.

Next we maximise the Lagrangian L w.r.t the primal variable q. The derivative w.r.t q reads,

∂qL(q, η, γ) = Qθi(a, s)− η log q(a|s) + η log π(a|s,θi)− (η − γ).

Setting it to zero and rearranging terms we get

q(a|s) = π(a|s,θi) exp

(
Qθi(a, s)

η

)
exp

(
−η − γ

η

)
.

However the last exponential term is a normalisation constant for q. Therefore we can write,

exp(−η − γ
η

) =

∫
π(a|s,θi) exp(

Qθi(a, s)

η
)da,
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γ = η − η log

(∫
π(a|s,θi) exp(

Qθi(a, s)

η
)da

)
.

Note that we could write γ based on π and η. At this point we can derive the dual function,

g(η) = ηε+ η

∫
µq(s) log

(∫
π(a|s,θi) exp(

Q(a, s)

η
)da

)
.

D.3 M-STEP

To obtain the KL constraint in the M step we set p(θ) to a Gaussian prior around the current policy,
i.e,

p(θ) ≈ N
(
µ = θi,Σ =

Fθi

λ

)
,

where θi are the parameters of the current policy distribution, Fθi is the empirical Fisher information
matrix and λ.

With this, and dropping constant terms our optimization program becomes

max
π

∫
µq(s)

∫
q(a|s) log π(a|s,θ)dads− λ(θ − θi)TF−1

θi
(θ − θi). (25)

We can observe that (θ − θi)
TF−1

θi
(θ − θi) is the second order Taylor approximation of∫

µq(s)KL(π(a|s,θi), π(a|s,θ))ds which leads us to the generalized M-step objective:

max
π

∫
µq(s)

∫
q(a|s) log π(a|s,θ)dads− λ

∫
µq(s)KL(π(a|s,θi), π(a|s,θ))ds (26)

which corresponds to Equation (11) from the main text, where expectations are replaced by integrals.

After obtaining the non parametric variational distribution in the M step with a Gaussian policy we
empirically observed that better results could be achieved by decoupling the KL constraint into two
terms such that we can constrain the contribution of the mean and covariance separately i.e.

∫
µq(s)KL(πi(a|s,θ), π(a|s,θ)) = Cµ + CΣ, (27)

where
Cµ =

∫
µq(s)

1
2 (tr(Σ−1Σi)− n+ ln(

Σ

Σi
))ds,

CΣ =

∫
µq(s)

1
2 (µ− µi)TΣ−1(µ− µi)ds.

This decoupling allows us to set different ε values for each component, i.e., εµ, εΣ for the mean, the
covariance matrix respectively. Different ε lead to different learning rates. The effectivness of this
decoupling has also been shown in Abdolmaleki et al. (2017). We always set a much smaller epsilon
for covariance than the mean. The intuition is that while we would like the distribution moves fast
in the action space, we also want to keep the exploration to avoid premature convergence.

In order to solve the constrained optimisation in the M-step, we first write the generalised Lagrangian
equation, i.e,

L(θ, ηµ, ηΣ) =

∫
µq(s)

∫
q(a|s) log π(a|s,θ)dads+ ηµ(εµ − Cµ) + ηΣ(εΣ − CΣ)

Where ηµ and ηΣ are Lagrangian multipliers. Following prior work on constraint optimisation, we
formulate the following primal problem,

max
θ

min
ηµ>0,ηΣ>0

L(θ, ηµ, ηΣ).
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In order to solve for θ we iteratively solve the inner and outer optimisation programs independently:
We fix the Lagrangian multipliers to their current value and optimise for θ (outer maximisation) and
then fix the parameters θ to their current value and optimise for the Lagrangian multipliers (inner
minimisation). We continue this procedure until policy parameters θ and Lagrangian multipliers
converge. Please note that the same approach can be employed to bound the KL explicitly instead
of decoupling the contribution of mean and covariance matrix to the KL.

D.4 PARAMETRIC VARIATIONAL DISTRIBUTION

In this case we assume our variational distribution also uses a Gaussian distribution over the action
space and use the same structure as our policy π.

Similar to the non-parametric case for a Gaussian distribution in the M-step we also use a decoupled
KL but this time in the E-step for a Gaussian variational distribution. Using the same reasoning as
in the previous section we can obtain the following generalized Lagrangian equation:

L(θq, ηµ, ηΣ) =

∫
µq(s)

∫
q(a|s;θq)Ai(a, s)dads+ ηµ(εµ − Cµ) + ηΣ(εΣ − CΣ).

Where ηµ and ηΣ are Lagrangian multipliers. And where we use the advantage function A(a, s)
instead of the Q function Q(a, s), as it empirically gave better performance. Please note that the
KL in the E-step is different than the one used in the M-step. Following prior works on constraint
optimisation, we can formulate the following primal problem,

max
θq

min
ηµ>0,ηΣ>0

L(θq, ηµ, ηΣ)

In order to solve for θq we iteratively solve the inner and outer optimisation programs independently.
In order to that we fix the Lagrangian multipliers to their current value and optimise for θq (outer
maximisation), in this case we use the likelihood ratio gradient to compute the gradient w.r.t θq .
Subsequently we fix the parameters θq to their current value and optimise for Lagrangian multipliers
(inner minimisation). We iteratively continue this procedure until the policy parameters θq and the
Lagrangian multipliers converges. Please note that the same approach can be used to bound the KL
explicitly instead of decoupling the contribution of mean and covariance matrix to the KL. As our
policy has the same structure as the parametric variational distribution, the M step in this case reduce
to set the policy parameters θ to the parameters θq we obtained in E-step, i.e,

θi+1 = θq

E IMPLEMENTATION DETAILS

While we ran most of our experiments using a single learner, we implemented a scalable variant
of the presented method in which multiple workers collect data independently in an instance of
the considered environment, compute gradients and send them to a chief (or parameter server) that
performs parameter update by averaging gradients. That is we use distributed synchronous gradient
descent. These procedures are described in Algorithms 1 and 2 for the non-parametric case and 3
for the parametric case.
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Algorithm 1 MPO (chief)
1: Input G number of gradients to average
2: while True do
3: initialize N = 0
4: initialize gradient store sφ = {}, sη = {}, sηµ = {}, sηΣ

= {} sθ = {}
5: while N < G do
6: receive next gradient from worker w
7: sφ = sφ + [δφw]
8: sφ = sθ + [δθw]
9: sη = sη + [δηw]

10: sηµ = sηµ + [δηwµ ]
11: sηθ = sηθ + [δηwθ ]

12: update parameters with average gradient from
13: sφ, sη , sηµ , sηΣ

sθ
14: send new parameters to workers

Algorithm 2 MPO (worker) - Non parametric variational distribution
1: Input = ε, εΣ, εµ, Lmax
2: i = 0, Lcurr = 0
3: Initialise Qωi(a, s), π(a|s,θi), η, ηµ, ηΣ

4: for each worker do
5: while Lcurr > Lmax do
6: update replay buffer B with L trajectories from the environment
7: k = 0
8: // Find better policy by gradient descent
9: while k < 1000 do

10: sample a mini-batch B of N (s, a, r) pairs from replay
11: sampleM additional actions for each state fromB, π(a|s,θi) for estimating integrals
12: compute gradients, estimating integrals using samples
13: // Q-function gradient:
14: δφ = ∂φL

′
φ(φ)

15: // E-Step gradient:
16: δη = ∂ηg(η)

17: Let: q(a|s) ∝ π(a|s,θi) exp(
Qθt (a,s,φ

′)

η )

18: // M-Step gradient:
19: [δηµ , δηΣ

] = α∂ηµ,ηΣ
L(θk, ηµ, ηΣ)

20: δθ = ∂θL(θ, ηµk+1, ηΣk+1)
21: send gradients to chief worker
22: wait for gradient update by chief
23: fetch new parameters φ, θ, η, ηµ, ηΣ

24: k = k + 1
25: i = i+ 1, Lcurr = Lcurr + L
26: θi = θ, φ′ = φ
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Algorithm 3 MPO (worker) - parametric variational distribution
1: Input = εΣ, εµ, Lmax
2: i = 0, Lcurr = 0
3: Initialise Qωi(a, s), π(a|s,θi), η, ηµ, ηΣ

4: for each worker do
5: while Lcurr < Lmax do
6: update replay buffer B with L trajectories from the environment
7: k = 0
8: // Find better policy by gradient descent
9: while k < 1000 do

10: sample a mini-batch B of N (s, a, r) pairs from replay
11: sample M additional actions for each state from B, π(a|s,θk) for estimating inte-

grals
12: compute gradients, estimating integrals using samples
13: // Q-function gradient:
14: δφ = ∂φL

′
φ(φ)

15: // E-Step gradient:
16: [δηµ , δηΣ

] = α∂ηµ,ηΣ
L(θk, ηµ, ηΣ)

17: δθ = ∂θL(θ, ηµk+1, ηΣk+1)
18: // M-Step gradient: In practice there is no M-step in this case as policy and variatinal

distribution q use a same structure.
19: send gradients to chief worker
20: wait for gradient update by chief
21: fetch new parameters φ, θ, η, ηµ, ηΣ

22: k = k + 1
23: i = i+ 1, Lcurr = Lcurr + L
24: θi = θ, φ′ = φ
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