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ABSTRACT

Convolutional neural networks (convnets) have achieved impressive results on re-
cent computer vision benchmarks. While they benefit from multiple layers that en-
code nonlinear decision boundaries and a degree of translation invariance, training
convnets is a lengthy procedure fraught with local optima. Alternatively, a kernel
method that incorporates the compositionality and symmetry of convnets could
learn similar nonlinear concepts yet with easier training and architecture selec-
tion. We propose compositional kernel machines (CKMs), which effectively cre-
ate an exponential number of virtual training instances by composing transformed
sub-regions of the original ones. Despite this, CKM discriminant functions can
be computed efficiently using ideas from sum-product networks. The ability to
compose virtual instances in this way gives CKMs invariance to translations and
other symmetries, and combats the curse of dimensionality. Just as support vec-
tor machines (SVMs) provided a compelling alternative to multilayer perceptrons
when they were introduced, CKMs could become an attractive approach for object
recognition and other vision problems. In this paper we define CKMs, explore
their properties, and present promising results on NORB datasets. Experiments
show that CKMs can outperform SVMs and be competitive with convnets in a
number of dimensions, by learning symmetries and compositional concepts from
fewer samples without data augmentation.

1 INTRODUCTION

The depth of state-of-the-art convnets is a double-edged sword: it yields both nonlinearity for so-
phisticated discrimination and nonconvexity for frustrating optimization. The established training
procedure for ILSVRC classification cycles through the million-image training set more than fifty
times, requiring substantial stochasticity, data augmentation, and hand-tuned learning rates. On to-
day’s consumer hardware, the process takes several days. However, performance depends heavily
on hyperparameters, which include the number and connections of neurons as well as optimization
details. Unfortunately, the space of hyperparameters is unbounded, and each configuration of hyper-
parameters requires the aforementioned training procedure. It is no surprise that large organizations
with enough computational power to conduct this search dominate this task.

Yet mastery of object recognition on a static dataset is not enough to propel robotics and internet-
scale applications with ever-growing instances and categories. Each time the training set is modified,
the convnet must be retrained (“fine-tuned”) for optimum performance. If the training set grows
linearly with time, the total training computation grows quadratically.

We propose the Compositional Kernel Machine (CKM), a kernel-based visual classifier that has the
symmetry and compositionality of convnets but with the training benefits of instance-based learning
(IBL). CKMs branch from the original instance-based methods with virtual instances, an exponen-
tial set of plausible compositions of training instances. The first steps in this direction are promising
compared to IBL and deep methods, and future work will benefit from over fifty years of research
into nearest neighbor algorithms, kernel methods, and neural networks.

In this paper we first define CKMs, explore their formal and computational properties, and compare
them to existing kernel methods. We then propose a key contribution of this work: a sum-product
function (SPF) that efficiently sums over an exponential number of virtual instances. We then de-
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scribe how to train the CKM with and without parameter optimization. Finally, we present results
on NORB and variants that show a CKM trained on a CPU can be competitive with convnets trained
for much longer on a GPU and can outperform them on tests of composition and symmetry, as well
as markedly improving over previous IBL methods.

2 COMPOSITIONAL KERNEL MACHINES

The key issue in using an instance-based learner on large images is the curse of dimensionality. Even
millions of training images are not enough to construct a meaningful neighborhood for a 256×256
pixel image. The compositional kernel machine (CKM) addresses this issue by constructing an ex-
ponential number of virtual instances. The core hypothesis is that a variation of the visual world can
be understood as a rearrangement of low-dimensional pieces that have been seen before. For exam-
ple, an image of a house could be recognized by matching many pieces from other images of houses
from different viewpoints. The virtual instances represent this set of all possible transformations
and recombinations of the training images. The arrangement of these pieces cannot be arbitrary, so
CKMs learn how to compose virtual instances with weights on compositions. A major contribution
of this work is the ability to efficiently sum over this set with a sum-product function.

The set of virtual instances is related to the nonlinear image manifolds described by Simard et al.
(1992) but with key differences. Whereas the tangent distance accounts for transformations applied
to the whole image, virtual instances can depict local transformations that are applied differently
across an image. Secondly, the tangent plane approximation of the image manifold is only accurate
near the training images. Virtual instances can easily represent distant transformations. Unlike the
explicit augmentation of virtual support vectors in Schölkopf et al. (1996), the set of virtual instances
in a CKM is implicit and exponentially larger. Platt & Allen (1996) demonstrated an early version
of virtual instances to expand the set of negative examples for a linear classifier.

2.1 DEFINITION

We define CKMs using notation common to other IBL techniques. The two prototypical instance-
based learners are k-nearest neighbors and support vector machines. The foundation for both algo-
rithms is a similarity or kernel function K(x, x′) between two instances. Given a training set of m
labeled instances of the form 〈xi, yi〉 and query xq , the k-NN algorithm outputs the most common
label of the k nearest instances:

ykNN(xq) = arg max
c

m∑
i=1

1
[
c = yi ∧K(xi, xq) ≥ K(xk, xq)

]
where 1 [·] equals one if its argument is true and zero otherwise, and xk is the kth nearest training
instance to query xq assuming unique distances. The multiclass support vector machine (Crammer
& Singer, 2001) in its dual form can be seen as a weighted nearest neighbor that outputs the class
with the highest weighted sum of kernel values with the query:

ySVM(xq) = arg max
c

m∑
i=1

αi,cK(xi, xq) (1)

where αi,c is the weight on training instance xi that contributes to the score of class c.

The CKM performs the same classification as these instance-based methods but it sums over an ex-
ponentially larger set of virtual instances to mitigate the curse of dimensionality. Virtual instances
are composed of rearranged elements from one or more training instances. Depending on the de-
sign of the CKM, elements can be subsets of instance variables (e.g., overlapping pixel patches) or
features thereof (e.g., ORB features or a 2D grid of convnet feature vectors). We assume there is a
deterministic procedure that processes each training or test instance xi into a fixed tuple of indexed
elements Exi

= (ei,1, . . . , ei,|Exi
|), where instances may have different numbers of elements. The

query instance xq (with tuple of elements Exq
) is the example that is being classified by the CKM;

it is a training instance during training and a test instance during testing. A virtual instance z is
represented by a tuple of elements from training instances, e.g. Ez = (e10,5, e71,2, . . . , e46,17).
Given a query instance xq , the CKM represents a set of virtual instances each with the same number
of elements asExq

. We define a leaf kernelKL(ei,j , ei′,j′) that measures the similarity between any
two elements. Using kernel composition (Aronszajn, 1950), we define the kernel between the query
instance xq and a virtual instance z as the product of leaf kernels over their corresponding elements:

K(z, xq) =
∏|Exq |

j KL(ez,j , eq,j).
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We combine leaf kernels with weighted sums and products to compactly represent a sum over kernels
with an exponential number of virtual instances. Just as a sum-product network can compactly rep-
resent a mixture model that is a weighted sum over an exponential number of mixture components,
the same algebraic decomposition can compactly encode a weighted sum over an exponential num-
ber of kernels. For example, if the query instance is represented by two elements Exq

= (eq,1, eq,2)
and the training set contains elements {e1, e2, e3, e4, e5, e6}, then

[w1KL(eq,1, e1) + w2KL(eq,1, e2) + w3KL(eq,1, e3)]×
[w4KL(eq,2, e4) + w5KL(eq,2, e5) + w6KL(eq,2, e6)]

expresses a weighted sum over nine virtual instances using eleven additions/multiplications in-
stead of twenty-six for an expanded flat sum w1KL(eq,1, e1)KL(eq,2, e4) + . . . + w9KL(eq,1, e3)
KL(eq,2, e6). If the query instance and training set contained 100 and 10000 elements, respectively,
then a similar factorization would useO(106) operations compared to a naı̈ve sum over 10500 virtual
instances. Leveraging the Sum-Product Theorem (Friesen & Domingos, 2016), we define CKMs to
allow for more expressive architectures with this exponential computational savings.
Definition 1. A compositional kernel machine (CKM) is defined recursively.

1. A leaf kernel over a query element and a training set element is a CKM.
2. A product of CKMs with disjoint scopes is a CKM.
3. A weighted sum of CKMs with the same scope is a CKM.

The scope of an operator is the set of query elements it takes as inputs; it is analogous to the receptive
field of a unit in a neural network, but with CKMs the query elements are not restricted to being
pixels on the image grid (e.g., they may be defined as a set of extracted image features). A leaf
kernel has singleton scope, internal nodes have scope over some subset of the query elements, and
the root node of the CKM has full scope of all query elements Exq

. This definition allows for
rich CKM architectures with many layers to represent elaborate compositions. The value of each
sum node child is multiplied by a weight wk,c and optionally a constant cost function φ(ei,j , ei′,j′)
that rewards certain compositions of elements. Analogous to a multiclass SVM, the CKM has a
separate set of weights for each class c in the dataset. The CKM classifies a query instance as
yCKM(xq) = arg maxc Sc(xq), where Sc(xq) is the value of the root node of the CKM evaluating
query instance xq using weights for class c.
Definition 2 (Friesen & Domingos (2016)). A product node is decomposable iff the scopes of its
children are disjoint. An SPF is decomposable iff all of its product nodes are decomposable.
Theorem 1 (Sum-Product Theorem, Friesen & Domingos (2016)). Every decomposable SPF can
be summed over its domain in time linear in its size.
Corollary 1. Sc(xq) can sum over the set of virtual instances in time linear in the size of the SPF.
Proof. For each query instance element eq,j we define a discrete variable Zj with a state for each
training element ei′,j′ found in a leaf kernel KL(eq,j , ei′,j′) in the CKM. The Cartesian product of
the domains of the variables Z defines the set of virtual instances represented by the CKM. Sc(xq)
is a SPF over semiring (R,⊕,⊗, 0, 1), variables Z, constant functions w and φ, and univariate
functions KL(eq,j , Zj). With the appropriate definition of leaf kernels, any semiring can be used.
The definition above provides that the children of every product node have disjoint scopes. Constant
functions have empty scope so there is no intersection with scopes of other children. With all product
nodes decomposable, Sc(xq) is a decomposable SPF and can therefore sum over all states of Z, the
virtual instances, in time linear to the size of the CKM.

Special cases of CKMs include multiclass SVMs (flat sum-of-products) and naive Bayes nearest
neighbor (Boiman et al., 2008) (flat product-of-sums). A CKM can be seen as a generalization of
an image grammar (Fu, 1974) where terminal symbols corresponding to pieces of training images
are scored with kernels and non-terminal symbols are sum nodes with a production for each child
product node.

The weights and cost functions of the CKM control the weights on the virtual instances. Each
virtual instance represented by the CKM defines a tree that connects the root to the leaf kernels
over its unique composition of training set elements. If we were to expand the CKM into a flat
sum (cf. Equation 1), the weight on a virtual instance would be the product of the weights and cost
functions along the branches of its corresponding tree. These weights are important as they can
prevent implausible virtual instances. For example, if we use image patches as the elements and
allow all compositions, the set of virtual instances would largely contain nonsense noise patterns. If
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the elements were pixels, the virtual instances could even contain arbitrary images from classes not
present in the training set. There are many aspects of composition that can be encoded by the CKM.
For example, we can penalize virtual instances that compose training set elements using different
symmetry group transformations. We could also penalize compositions that juxtapose elements that
disagree on the contents of their borders. Weights can be learned to establish clusters of elements and
reward certain arrangements. In Section 3 we demonstrate one choice of weights and cost functions
in a CKM architecture built from extracted image features.

2.2 LEARNING

The training procedure for a CKM builds an SPF that encodes the virtual instances. There are then
two options for how to set weights in the model. As with k-NN, the weights in the CKM could be set
to uniform. Alternatively, as with SVMs, the weights could be optimized to improve generalization
and reduce model size.

For weight learning, we use block-coordinate gradient descent to optimize leave-one-out loss over
the training set. The leave-one-out loss on a training instance xi is the loss on that instance made by
the learner trained on all data except xi. Though it is an almost unbiased estimate of generalization
error (Luntz & Brailovsky, 1969), it is typically too expensive to compute or optimize with non-IBL
methods (Chapelle et al., 2002). With CKMs, caching the SPFs and efficient data structures make
it feasible to compute exact partial derivatives of the leave-one-out loss over the whole training set.
We use a multiclass squared-hinge loss

L(xi, yi) = max

1 + Sy′(xi)︸ ︷︷ ︸
Best incorrect class

−Syi
(xi)︸ ︷︷ ︸

True class

, 0


2

for the loss on training instance xi with true label yi and highest-scoring incorrect class y′. We
use the squared version of the hinge loss as it performs better empirically and prioritizes updates
to element weights that led to larger margin violations. In general, this objective is not convex as
it involves the difference of the two discriminant functions which are strictly convex (due to the
choice of semiring and the product of weights on each virtual instance). In the special case of the
sum-product semiring and unique weights on virtual instances the objective is convex as is true for
L2-SVMs. Convnets also have a non-convex objective, but they require lengthy optimization to
perform well. As we show in Section 3, CKMs can achieve high accuracy with uniform weights,
which further serves as good initialization for gradient descent.

For each epoch, we iterate through the training set, for each training instance xi optimizing the block
of weights on those branches with Exi

as descendants. We take gradient steps to lower the leave-
one-out loss over the rest of the training set

∑
i′∈([1,m]\i) L(xi′ , yi′). We iterate until convergence or

an early stopping condition. A component of the gradient of the squared-hinge loss on an instance
takes the form

∂

∂wk,c
L(xi, yi) =


2∆(xi, yi)

∂Sy′ (xi)

∂wk,c
if ∆(xi, yi) > 0 ∧ c = y′

−2∆(xi, yi)
∂Syi

(xi)

∂wk,c
if ∆(xi, yi) > 0 ∧ c = yi

0 otherwise

where ∆(xi, yi) = 1 + Sy′(xi) − Syi(xi). We compute partial derivatives ∂Sc(xi)
∂wk,c

with backprop-
agation through the SPF. For efficiency, terms of the gradient can be set to zero and excluded from
backpropagation if the values of corresponding leaf kernels are small enough. This is either exact
(e.g., if ⊕ is maximization) or an approximation (e.g., if ⊕ is normal addition).

2.3 SCALABILITY

CKMs have several scalability advantages over convnets. As mentioned previously, they do not
require a lengthy training procedure. This makes it much easier to add new instances and categories.
Whereas most of the computation to evaluate a single setting of convnet hyperparameters is sunk in
training, CKMs can efficiently race hyperparameters on hold-out data (Lee & Moore, 1994).

The evaluation of the CKM depends on the structure of the SPF, the size of the training set, and
the computer architecture. A basic building block of these SPFs is a sum node with a number
of children on the order of magnitude of the training set elements |E|. On a sufficiently parallel
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Table 1: Dataset properties

Name #Training Exs. - #Testing Exs. Dimensions Classes

Small NORB 24300-24300 96× 96 5
NORB Compositions 100-1000 256× 256 2
NORB Symmetries {50, 100, . . . , 12800}-2916 108× 108 6

computer, assuming the size of the training set elements greatly exceeds the dimensionality of the
leaf kernel, this sum node will require O(log(|E|)) time (the depth of a parallel ⊕ reduction circuit)
and O(|E|) space. Duda et al. (2000) describe a constant time nearest neighbor circuit that relies on
precomputed Voronoi partitions, but this has impractical space requirements in high dimensions. As
with SVMs, optimization of sparse element weights can greatly reduce model size.

On a modest multicore computer, we must resort to using specialized data structures. Hash codes
can be used to index raw features or to measure Hamming distance as a proxy to more expensive
distance functions. While they are perhaps the fastest method to accelerate a nearest neighbor search,
the most accurate hashing methods involve a training period yet do not necessarily result in high
recall (Torralba et al., 2008; Heo et al., 2012). There are many space-partitioning data structure
trees in the literature, however in practice none are able to offer exact search of nearest neighbors in
high dimensions in logarithmic time. In our experiments we use hierarchical k-means trees (Muja
& Lowe, 2009), which are a good compromise between speed and accuracy.

3 EXPERIMENTS

We test CKMs on three image classification scenarios that feature images from either the small
NORB dataset or the NORB jittered-cluttered dataset (LeCun et al., 2004). Both NORB datasets
contain greyscale images of five categories of plastic toys photographed with varied altitudes, az-
imuths, and lighting conditions. Table 1 summarizes the datasets. We first describe the SPN archi-
tecture and then detail each of the three scenarios.

3.1 EXPERIMENTAL ARCHITECTURE

In our experiments the architecture of the SPF Sc(xq) for each query image is based on its unique
set of extracted ORB features. Like SIFT features, ORB features are rotation-invariant and produce
a descriptor from intensity differences, but ORB is much faster to compute and thus suitable for real
time applications (Rublee et al., 2011). The elements Exi

= (ei,1, . . . , ei,|Ei|) of each image xi are
its extracted keypoints, where an element’s feature vector and image position are denoted by ~f(ei,j)
and ~p(ei,j) respectively. We use the max-sum semiring (⊕ = max, ⊗ = +) because it is more
robust to noisy virtual instances, yields sparser gradients, is more efficient to compute, and performs
better empirically compared with the sum-product semiring.

The SPF Sc(xq) maximizes over variables Z = (Z1, . . . , Z|Exq |) corresponding to query elements
Exq

with states for all possible virtual instances. The SPF contains a unary scope max node for
every variable {Zj} that maximizes over the weighted kernels of all possible training elements E :
⊕(Zj) =

⊕
zj∈E wzj ,c ⊗KL(zj , eq,j). The SPF contains a binary scope max node for all pairs

of variables {Zj , Zj′} for which at least one corresponding query element is within the k-nearest
spatial neighbors of the other. These nodes maximize over the weighted kernels of all possible
combinations of training set elements.

⊕(Zj , Zj′) =
⊕
zj∈E

⊕
zj′∈E

wzj ,c ⊗ wzj′ ,c ⊗ φ(zj , zj′)⊗KL(zj , eq,j)⊗KL(zj′ , eq,j′) (2)

This maximizes over all possible pairs of training set elements, weighting the two leaf kernels
by two corresponding element weights and a cost function. We use a leaf kernel for image ele-
ments that incorporates both the Hamming distance between their features and the Euclidean dis-
tance between their image positions: KL(ei,j , ei′,j′) = max(β0 − β1dHam(~f(ei,j), ~f(ei′,j′)), 0) +
max(β2||(~p(ei,j), ~p(ei′,j′)||, β3). This rewards training set elements that look like a query instance
element and appear in a similar location, with thresholds for efficiency. This can represent, for ex-
ample, the photographic bias to center foreground objects or a discriminative cue from seeing sky
at the top of the image. We use the pairwise cost function φ(ei,j , ei′,j′) = 1[i = i′]β4 that rewards
combinations of elements from the same source training image. This captures the intuition that
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compositions sourced from more images are less coherent and more likely to contain nonsense than
those using fewer. The image is represented as a sum of these unary and binary max nodes. The
scopes of children of the sum are restricted to be disjoint, so the children {⊕(Z1, Z2),⊕(Z2, Z3)}
would be disallowed, for example. This restriction is what allows the SPF to be tractable, and with
multiple sums the SPF has high-treewidth. By comparison, a Markov random field expressing these
dependencies would be intractable. The root max node of the SPF has P sums as children, each of
which has its random set of unary and binary scope max node children that cover full scope Z. We
illustrate a simplified version of the SPF architecture in Figure 1. Though this SPF models limited
image structure, the definition of CKMs allows for more expressive architectures as with SPNs.

+

+

query image

KL KL…KL

…
e1,1 e1,2 em,|Em|

KL KL…KL

…
e1,1 e1,2 em,|Em|
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+
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{Z1} {Z2, Z3} {Z4}

Z = {Z1, Z2, Z3, Z4}

Figure 1: Simplified illustration of the SPF Sc(xq) architecture with max-sum semiring used in
experiments (using ORB features as elements, |Exq

| ≈ 100). Red dots depict elementsExq
of query

instance xq . Blue dots show training set elements ei,j ∈ E , duplicated with each query element for
clarity. A boxed KL shows the leaf kernel with lines descending to its two element arguments. The
⊕ nodes are labeled with their scopes. Weights and cost functions (arguments omitted) appear next
to ⊗ nodes. Only a subset of the unary and binary scope ⊕ nodes are drawn. Only two of the P
top-level ⊗ nodes are fully detailed (the children of the second are drawn faded).
In the following sections, we refer to two variants CKM and CKMW . The CKM version uses
uniform weights wk,c, similar to the basic k-nearest neighbor algorithm. The CKMW method opti-
mizes weights wk,c as described in Section 2.2. Both versions restrict weights for class c to be −∞
(⊕ identity) for those training elements not in class c. This constraint ensures that method CKM is
discriminative (as is true with k-NN) and reduces the number of parameters optimized by CKMW .
The hyperparameters of ORB feature extraction, leaf kernels, cost function, and optimization were
chosen using grid search on a validation set.

With our CPU implementation, CKM trains in a single pass of feature extraction and storage
at ∼5ms/image, CKMW trains in under ten epochs at ∼90ms/image, and both versions test at
∼80ms/image. The GPU-optimized convnets train at ∼2ms/image for many epochs and test at
∼1ms/image. Remarkably, CKM on a CPU trains faster than the convnet on a GPU.

3.2 SMALL NORB
We use the original train-test separation which measures generalization to new instances of a cate-
gory (i.e. tested on toy truck that is different from the toys it was trained on). We show promising
results in Table 2 comparing CKMs to deep and IBL methods. With improvement over k-NN and
SVM, the CKM and CKMW results show the benefit of using virtual instances to combat the curse
of dimensionality. We note that the CKM variant that does not optimize weights performs nearly
as well as the CKMW version that does. Since the test set uses a different set of toys, the use of
untrained ORB features hurts the performance of the CKM. Convnets have an advantage here be-
cause they discriminatively train their lowest level of features and represent richer image structure in
their architecture. To become competitive, future work should improve upon this preliminary CKM
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Table 2: Accuracy on Small NORB

Method Accuracy

Convnet (14 epochs) (Bengio & LeCun, 2007) 94.0%
DBM with aug. training (Salakhutdinov & Hinton, 2009) 92.8%
CKMW 89.8%
Convnet (2 epochs) (Bengio & LeCun, 2007) 89.6%
DBM (Salakhutdinov & Hinton, 2009) 89.2%
SVM (Gaussian kernel) (Bengio & LeCun, 2007) 88.4%
CKM 88.3%
k-NN (LeCun et al., 2004) 81.6%
Logistic regression (LeCun et al., 2004) 77.5%

Table 3: Accuracy on NORB Compositions

Method Accuracy Train+Test (min)

CKM 82.4% 1.5 [CPU]
SVM with convnet features 75.0% 1 [GPU+CPU]
Convnet 50.6% 9 [GPU]
k-NN on image pixels 51.2% 0.2 [CPU]

architecture. We demonstrate the advantage of CKMs for representing composition and symmetry
in the following experiments.

3.3 NORB COMPOSITIONS

A general goal of representation learning is to disentangle the factors of variation of a signal without
having to see those factors in all combinations. To evaluate progress towards this, we created images
containing three toys each, sourced from the small NORB training set. Small NORB contains ten
types of each toy category (e.g., ten different airplanes), which we divided into two collections. Each
image is generated by choosing one of the collections uniformly and for each of three categories
(person, airplane, animal) randomly sampling a toy from that collection with higher probability
(P = 5

6 ) than from the other collection (i.e., there are two children with disjoint toy collections
but they sometimes borrow). The task is to determine which of the two collections generated the
image. This dataset measures whether a method can distinguish different compositions without
having seen all possible permutations of those objects through symmetries and noisy intra-class
variation. Analogous tasks include identifying people by their clothing, recognizing social groups
by their members, and classifying cuisines by their ingredients.

We compare CKMs to other methods in Table 3. Convnets and their features are computed using the
TensorFlow library (Abadi et al., 2015). Training convnets from few images is very difficult without
resorting to other datasets; we augment the training set with random crops, which still yields test
accuracy near chance. In such situations it is common to train an SVM with features extracted by
a convnet trained on a different, larger dataset. We use 2048-dimensional features extracted from
the penultimate layer of the pre-trained Inception network (Szegedy et al., 2015) and a linear kernel
SVM with squared-hinge loss (Pedregosa et al., 2011). Notably, the CKM is much more accurate
than the deep methods, and it is about as fast as the SVM despite not taking advantage of the GPU.

Figure 2: Images from NORB Compositions
3.4 NORB SYMMETRIES

Composition is a useful tool for modeling the symmetries of objects. When we see an image of an
object in a new pose, parts of the image may look similar to parts of images of the object in poses we
have seen before. In this experiment, we partition the training set of NORB jittered-cluttered into a
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new dataset with 10% withheld for each of validation and testing. Training and testing on the same
group of toy instances, this measures the ability to generalize to new angles, lighting conditions,
backgrounds, and distortions.

We vary the amount of training data to plot learning curves in Figure 3. We observe that CKMs are
better able to generalize to these distortions than other methods, especially with less data. Impor-
tantly, the performance of CKM improves with more data, without requiring costly optimization as
data is added. We note that the benefit of CKMW using weight learning becomes apparent with 200
training instances. This learning curve suggests that CKMs would be well suited for applications in
cluttered environments with many 3D transformations (e.g., loop closure).

50 200 800 3200 12800
Training Instances

  0%

 25%

 50%

 75%

100%

Ac
cu

ra
cy

CKMw
CKM
SVM with convnet features
Convnet
k-NN

Figure 3: Number of training instances versus accuracy on unseen symmetries in NORB

4 CONCLUSION

This paper proposed compositional kernel machines, an instance-based method for object recog-
nition that addresses some of the weaknesses of deep architectures and other kernel methods. We
showed how using a sum-product function to represent a discriminant function leads to tractable
summation over the weighted kernels to an exponential set of virtual instances, which can mitigate
the curse of dimensionality and improve sample complexity. We proposed a method to discrimina-
tively learn weights on individual instance elements and showed that this improves upon uniform
weighting. Finally, we presented results in several scenarios showing that CKMs are a significant
improvement for IBL and show promise compared with deep methods.

Future research directions include developing other architectures and learning procedures for CKMs,
integrating symmetry transformations into the architecture through kernels and cost functions, and
applying CKMs to structured prediction, regression, and reinforcement learning problems. CKMs
exhibit a reversed trade-off of fast learning speed and large model size compared to neural networks.
Given that animals can benefit from both trade-offs, these results may inspire computational theories
of different brain structures, especially the neocortex versus the cerebellum (Ito, 2012).
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