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ABSTRACT

We frame Question Answering (QA) as a Reinforcement Learning task, an approach
that we call Active Question Answering. We propose an agent that sits between
the user and a black box QA system and learns to reformulate questions to elicit
the best possible answers. The agent probes the system with, potentially many,
natural language reformulations of an initial question and aggregates the returned
evidence to yield the best answer. The reformulation system is trained end-to-end to
maximize answer quality using policy gradient. We evaluate on SearchQA, a dataset
of complex questions extracted from Jeopardy!. The agent outperforms a state-
of-the-art base model, playing the role of the environment, and other benchmarks.
We also analyze the language that the agent has learned while interacting with the
question answering system. We find that successful question reformulations look
quite different from natural language paraphrases. The agent is able to discover
non-trivial reformulation strategies that resemble classic information retrieval
techniques such as term re-weighting (tf-idf) and stemming.

1 INTRODUCTION

Web and social media have become primary sources of information. Users’ expectations and
information seeking activities co-evolve with the increasing sophistication of these resources. Beyond
navigation, document retrieval, and simple factual question answering, users seek direct answers to
complex and compositional questions. Such search sessions may require multiple iterations, critical
assessment, and synthesis (Marchionini, 2006).

The productivity of natural language yields a myriad of ways to formulate a question (Chomsky,
1965). In the face of complex information needs, humans overcome uncertainty by reformulating
questions, issuing multiple searches, and aggregating responses. Inspired by humans’ ability to ask
the right questions, we present an agent that learns to carry out this process for the user. The agent sits
between the user and a backend QA system that we refer to as ‘the environment’. We call the agent
AQA, as it implements an active question answering strategy. AQA aims to maximize the chance of
getting the correct answer by sending a reformulated question to the environment. The agent seeks to
find the best answer by asking many questions and aggregating the returned evidence. The internals
of the environment are not available to the agent, so it must learn to probe a black-box optimally using
only question strings. The key component of the AQA agent is a sequence-to-sequence model trained
with reinforcement learning (RL) using a reward based on the answer returned by the environment.
The second component to AQA combines the evidence from interacting with the environment using a
convolutional neural network to select an answer.

We evaluate on a dataset of Jeopardy! questions, SearchQA (Dunn et al., 2017). These questions
are hard to answer by design because they use convoluted language, e.g., Travel doesn’t seem to be
an issue for this sorcerer & onetime surgeon; astral projection & teleportation are no prob (answer:
Doctor Strange). Thus SearchQA tests the ability of AQA to reformulate questions such that the QA
system has the best chance of returning the correct answer. AQA improves over the performance
of a deep network built for QA, BiDAF (Seo et al., 2017a), which has produced state-of-the-art
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results on multiple tasks, by 11.4% absolute F1, a 32% relative F1 improvement. Additionally, AQA
outperforms other competitive heuristic query reformulation benchmarks.

AQA defines an instance of machine-machine communication. One side of the conversation, the
AQA agent, is trying to adapt its language to improve the response from the other side, the QA
environment. To shed some light on this process we perform a qualitative analysis of the language
generated by the AQA agent. By evaluating on MSCOCO (Lin et al., 2014), we find that the
agent’s question reformulations diverge significantly from natural language paraphrases. Remarkably,
though, the agent is able to learn non-trivial and transparent policies. In particular, the agent
is able to discover classic IR query operations such as term re-weighting, resembling tf-idf, and
morphological simplification/stemming. A possible reason being that current machine comprehension
tasks involve the ranking of short textual snippets, thus incentivizing relevance, more than deep
language understanding.

2 RELATED WORK

Lin & Pantel (2001) learned patterns of question variants by comparing dependency parsing trees.
Duboue & Chu-Carroll (2006) showed that MT-based paraphrases can be useful in principle by
providing significant headroom in oracle-based estimations of QA performance. Recently, Berant &
Liang (2014) used paraphrasing to augment the training of a semantic parser by expanding through
the paraphrases as a latent representation. Bilingual corpora and MT have been used to generate
paraphrases by pivoting through a second language. Recent work uses neural translation models and
multiple pivots (Mallinson et al., 2017). In contrast, our approach does not use pivoting and is, to our
knowledge, the first direct neural paraphrasing system. Riezler et al. (2007) propose phrase-based
paraphrasing for query expansion. In contrast with this line of work, our goal is to generate full
question reformulations while optimizing directly the end-to-end target performance metrics.

Reinforcement learning is gaining traction in natural language understanding across many problems.
For example, Narasimhan et al. (2015) use RL to learn control policies for multi-user dungeon games
where the state of the game is summarized by a textual description, and Li et al. (2016) use RL
for dialogue generation. Policy gradient methods have been investigated recently for MT and other
sequence-to-sequence problems. They alleviate limitations inherent to the word-level optimization
of the cross-entropy loss, allowing the use of sequence-level reward functions, like BLEU. Reward
functions based on language models and reconstruction errors are used to bootstrap MT with fewer
resources (Xia et al., 2016). RL training can also prevent exposure bias; an inconsistency between
training and inference time stemming from the fact that the model never sees its own mistakes during
training (Ranzato et al., 2015). We also use policy gradient to optimize our agent, however, we use
end-to-end question answering quality as the reward.

Uses of policy gradient for QA include Liang et al. (2017), who train a semantic parser to query
a knowledge base, and Seo et al. (2017b) who propose query reduction networks that transform a
query to answer questions that involve multi-hop common sense reasoning. The work of Nogueira &
Cho (2016) is most related to ours. They identify a document containing an answer to a question by
following links on a graph. Evaluating on a set of questions from the game Jeopardy!, they learn to
walk the Wikipedia graph until they reach the predicted answer. In a follow-up, Nogueira & Cho
(2017) improve document retrieval with an approach inspired by relevance feedback in combination
with RL. They reformulate a query by adding terms from documents retrieved from a search engine
for the original query. Our work differs in that we generate complete sequence reformulations rather
than adding single terms, and we target question-answering rather than document retrieval.

Active QA is also related to recent research on fact-checking: Wu et al. (2017) propose to perturb
database queries in order to estimate the support of quantitative claims. In Active QA questions are
perturbed semantically with a similar purpose, although directly at the surface natural language form.

3 ACTIVE QUESTION ANSWERING MODEL

Figure 1 shows the Active Question Answering (AQA) agent-environment setup. The AQA model
interacts with a black-box environment. AQA queries it with many versions of a question, and finally
returns the best of the answers found. An episode starts with an original question go. The agent then
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Figure 1: The AQA agent-environment setup. In the downward pass the agent reformulates the
question and sends variants to the QA system. In the upward pass the final answer is selected.

generates a set of reformulations {¢;} ;. These are sent to the environment which returns answers
{a;}},. The selection model then picks the best from these candidates.

3.1 QUESTION-ANSWERING ENVIRONMENT

For the QA environment, we use a competitive neural question answering model, BiDirectional
Attention Flow (BiDAF) (Seo et al., 2017a). BiDAF is an extractive QA system, it selects answers
from contiguous spans of a given document. Given a question, the environment returns an answer
and, during training, a reward. The reward may be any quality metric for the returned answer,
we use token-level F1 score. Note that the reward for each answer a; is computed against the
original question go. We assume that the environment is opaque; the agent has no access to its
parameters, activations or gradients. This setting enables one, in principle, to also interact with other
information sources, possibly providing feedback in different modes such as images and structured
data from knowledge bases. However, without propagating gradients through the environment we lose
information, feedback on the quality of the question reformulations is noisy, presenting a challenge
for training.

3.2 REFORMULATION MODEL

The reformulator is a sequence-to-sequence model, as is popular for neural machine translation.
We build upon the implementation of Britz et al. (2017). The major departure from the standard
MT setting is that our model reformulates utterances in the same language. Unlike in MT, there is
little high quality training data available for monolingual paraphrasing. Effective training of highly
parametrized neural networks relies on an abundance of data. We address this challenge by first
pre-training on a related task, multilingual translation, and then using signals produced during the
interaction with the environment for adaptation.

3.3 ANSWER SELECTION MODEL

During training, we have access to the reward for the answer returned for each reformulation g;.
However, at test time we must predict the best answer a*. The selection model selects the best answer
from the set {a; }Y; observed during the interaction by predicting the difference of the F1 score to
the average F1 of all variants. We use pre-trained embeddings for the tokens of query, rewrite, and
answer. For each, we add a 1-dimensional CNN followed by max-pooling. The three resulting vectors
are then concatenated and passed through a feed-forward network which produces the output.

4 TRAINING

4.1 QUESTION ANSWERING ENVIRONMENT

We train a model on the training set for the QA task at hand, see Section 5.4 for details. Afterwards,
BiDAF becomes the black-box environment and its parameters are not updated further. In principle,
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we could train both the agent and the environment jointly to further improve performance. However,
this is not our desired task: our aim is for the agent to learn to communicate using natural language
with an environment over which is has no control.

4.2 POLICY GRADIENT TRAINING OF THE REFORMULATION MODEL

For a given question gy, we want to return the best possible answer a*, maximizing a reward
a* = argmax, R(a|qo). Typically, R is the token level F1 score on the answer. The answer a = f(q)
is an unknown function of a question ¢, computed by the environment. The reward is computed with
respect to the original question gy while the answer is provided for q. The question is generated
according to a policy 7y where 6 are the policy’s parameters g ~ mg( - |qo). The policy, in this case,
a sequence-to-sequence model, assigns a probability

mo(qlq0) = Hp welws, .., w1, go) )

to any possible question ¢ = w1, . .., wr, where T is the length of ¢ with tokens w; € V from a fixed
vocabulary V. The goal is to maximize the expected reward of the answer returned under the policy,
Egrro(-lg0) [(f(q))]. We optimize the reward directly with respect to parameters of the policy using
Policy Gradient methods (Sutton & Barto, 1998). The expected reward cannot be computed in closed
form, so we compute an unbiased estimate with Monte Carlo sampling,

N
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To compute gradients for training we use REINFORCE (Williams & Peng, 1991),

VE o (-1g0) R (2)] = Eqrry (-1a0) Vo l0g(mo(qlq0)) R(f () 3)
N
~ v > Valog(rlalw) R (@): o~ ml-la)

This estimator is often found to have high variance, leading to unstable training (Greensmith
et al., 2004). We reduce the variance by subtracting the following baseline reward: B(qy) =
Eqro(-1q0) [R(f(q))]. This expectation is also computed by sampling from the policy given qo.

We often observed collapse onto a sub-optimal deterministic policy. To address this we use entropy
regularization

T
H{mg(qlq0)] Z Z po(welwe<t, qo) log po(we|w<+, qo) ®)
t=1 w,eV

This final objective is:

Eqmro(-la0) [R(f(9)) — B(qo)] + AH[7(qlq0)], (6)

where A is the regularization weight.

4.3 ANSWER SELECTION

Unlike the reformulation policy, we train the answer with either beam search or sampling. We can
produce many rewrites of a single question from our reformulation system. We issue each rewrite to
the QA environment, yielding a set of (query, rewrite, answer) tuples from which we need to pick the
best instance. We train another neural network to pick the best answer from the candidates. We frame
the task as binary classification, distinguishing between above and below average performance. In
training, we compute the F1 score of the answer for every instance. If the rewrite produces an answer
with an F1 score greater than the average score of the other rewrites the instance is assigned a positive
label. We ignore questions where all rewrites yield equally good/bad answers. We evaluated FFNNSs,
LSTMs, and CNNs and found that the performance of all systems was comparable. We choose a
CNN which offers good computational efficiency and accuracy (cf. 3.3).
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4.4 PRETRAINING OF THE REFORMULATION MODEL

We pre-train the policy by building a paraphrasing Neural MT model that can translate from English
to English. While parallel corpora are available for many language pairs, English-English corpora
are scarce. We first produce a multilingual translation system that translates between several lan-
guages (Johnson et al., 2016). This allows us to use available bilingual corpora. Multilingual training
requires nothing more than adding two special tokens to every line which indicate the source and
target languages. The encoder-decoder architecture of the translation model remains unchanged.

As Johnson et al. (2016) show, this model can be used for zero-shot translation, i.e. to translate
between language pairs for which it has seen no training examples. For example, after training
English-Spanish, English-French, French-English, and Spanish-English the model has learned a
single encoder that encodes English, Spanish, and French and a decoder for the same three languages.
Thus, we can use the same model for French-Spanish, Spanish-French and also English-English
translation by adding the respective tokens to the source. Johnson et al. (2016) note that zero-shot
translation usually performs worse than bridging, an approach that uses the model twice: first, to
translate into a pivot language, then into the target language. However, the performance gap can
be closed by running a few training steps for the desired language pair. Thus, we first train on
multilingual data, then on a small corpus of monolingual data.

5 EXPERIMENTS

5.1 QUESTION ANSWERING DATA AND BIDAF TRAINING

SearchQA (Dunn et al., 2017) is a dataset built starting from a set of Jeopardy! clues. Clues are
obfuscated queries such as This ‘Father of Our Country’ didn’t really chop down a cherry tree.
Each clue is associated with the correct answer, e.g. George Washington, and a list of snippets from
Google’s top search results. SearchQA contains over 140k question/answer pairs and 6.9M snippets.
We train our model on the pre-defined training split, perform model selection and tuning on the
validation split and report results on the validation and test splits. The training, validation and test
sets contain 99,820, 13,393 and 27,248 examples, respectively.

We train BiDAF directly on the SearchQA training data. We join snippets to form the context from
which BiDAF selects answer spans. For performance reasons, we limit the context to the top 10
snippets. This corresponds to finding the answer on the first page of Google results. The results are
only mildly affected by this limitation, for 10% of the questions, there is no answer in this shorter
context. These data points are all counted as losses. We trained with the Adam optimizer for 4500
steps, using learning rate 0.001, batch size 60.

5.2 QUESTION REFORMULATOR TRAINING

For the pre-training of the reformulator, we use the multilingual United Nations Parallel Corpus
v1.0 (Ziemski et al., 2016). This dataset contains 11.4M sentences which are fully aligned across six
UN languages: Arabic, English, Spanish, French, Russian, and Chinese. From all bilingual pairs, we
produce a multilingual training corpus of 30 language pairs. This yields 340M training examples
which we use to train the zero-shot neural MT system (Johnson et al., 2016). We tokenize our data
using 16k sentence pieces.! Following Britz et al. (2017) we use a bidirectional LSTM as the encoder
and a 4-layer stacked LSTM with attention as the decoder. The model converged after training on
400M instances using the Adam optimizer with a learning rate of 0.001 and batch size of 128.

The model trained as described above has poor quality. For example, for the question What month,
day and year did Super Bowl 50 take place?, the top rewrite is What month and year goes back to
the morning and year?. To improve quality, we resume training on a smaller monolingual dataset,
extracted from the Paralex database of question paraphrases (Fader et al., 2013).2 Unfortunately,
this data contains many noisy pairs. We filter many of these pairs out by keeping only those where
the Jaccard coefficient between the sets of source and target terms is above 0.5. Further, since the
number of paraphrases for each question can vary significantly, we keep at most 4 paraphrases for
each question. After processing, we are left with about 1.5M pairs out of the original 35M. The

"https://github.com/google/sentencepiece
http://knowitall.cs.washington.edu/paralex/


https://github.com/google/sentencepiece
http://knowitall.cs.washington.edu/paralex/

Published as a conference paper at ICLR 2018

refined model has visibly better quality than the zero-shot one; for the example question above it
generates What year did superbowl take place?. We also tried training on the monolingual pairs
alone. As in (Johnson et al., 2016), the quality was in between the multilingual and refined models.

After pre-training the reformulator, we switch the optimizer from Adam to SGD and train for 100k
RL steps of batch size 64 with a low learning rate of 0.001. We use an entropy regularization weight
of A = 0.001. For a stopping criterion, we monitor the reward from the best single rewrite, generated
via greedy decoding, on the validation set. In contrast to our initial training which we ran on GPUs,
this training phase is dominated by the latency of the QA system and we run inference and updates
on CPU and the BiDAF environment on GPU.

5.3 TRAINING THE ANSWER SELECTOR

For the selection model we use supervised learning: first, we train the reformulator, then we generate
N = 20 rewrites for each question in the SearchQA training and validation sets. After sending these
to the environment we have about 2M (question, rewrite, answer) triples. We remove queries where
all rewrites yield identical rewards, which removes about half of the training data. We use pre-trained
100-dimensional embeddings (Pennington et al., 2014) for the tokens. Our CNN-based selection
model encodes the three strings into 100-dimensional vectors using a 1D CNN with kernel width
3 and output dimension 100 over the embedded tokens, followed by max-pooling. The vectors are
then concatenated and passed through a feed-forward network which produces the binary output,
indicating whether the triple performs below or above average, relative to the other reformulations
and respective answers.

We use the training portion of the SearchQA data thrice, first for the initial training of the BiDAF
model, then for the reinforcement-learning based tuning of the reformulator, and finally for the
training of the selector. We carefully monitored that this didn’t cause severe overfitting. BiDAF alone
has a generalization gap between the training and validation set errors of 3.4 F1. This gap remains
virtually identical after training the rewriter. After training the CNN, AQA-Full has a slightly larger
gap of 3.9 F1. We conclude that training AQA on BiDAF’s training set causes very little additional
overfitting. We use the test set only for evaluation of the final model.

5.4 BASELINES AND BENCHMARKS

As a baseline, we report the results of the modified pointer network, called Attention Sum Reader
(ASR), developed for SearchQA (Dunn et al., 2017).We also report the performance of the BIDAF
environment used without the reformulator to answer the original question.

We evaluate against several benchmarks. First, following Kumaran & Carvalho (2009), we implement
a system (MI-SubQuery) that generates reformulation candidates by enumerating all subqueries of
the original SearchQA query and then keeps the top N ranked by mutual information.> From this
set, we pick the highest scoring one as the top hypothesis to be used as a single rewrite. We also use
the whole set to train a CNN answer selector for this specific source of rewrites. In this way, we can
compare systems fairly both in single prediction or ensemble prediction modes. Additionally, we
evaluate against another source of reformulations: the zero-shot monolingual NMT system trained on
the U.N. corpus and Paralex (Base-NMT), without reinforcement learning. As with the MI-SubQuery
benchmark, we evaluate the Base-NMT system both as a single reformulation predictor and as a
source of IV best rewrites, for which we train a dedicated CNN answer selector. We also report human
performance on SearchQA, based on a sample of the test set, from (Dunn et al., 2017).

5.5 RESULTS

We evaluate several variants of AQA. For each query ¢ in the evaluation we generate a list of
reformulations ¢;, for¢ = 1... N, from the AQA reformulator trained as described in Section 4. We
set N = 20 in these experiments, the same value is used for the benchmarks. In AQA TopHyp we
use the top hypothesis generated by the sequence model, g;. In AQA Voting we use BiDAF scores

3As in (Kumaran & Carvalho, 2009), we choose the reformulations from the term-level subsequences of
length 3 to 6. We associate each reformulation with a graph, where the vertices are the terms and the edges are
the mutual information between terms with respect to the collection of contexts. We rank the reformulations by
the average edge weights of Maximum Spanning Trees of the corresponding graphs.
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Dev F1 242 379 299 445 322 448 382 405 420 474 -
EM - 28.6 232 358 248 357 306 333 338 38.7 439

Test F1 228 34.6 29.0 428 31.0 429 368 393 402 456 -

Table 1: Results table for the experiments on SearchQA. Two-sample 7-tests between the AQA results
and either the Base-NMT or the MI-SubQuery results show that differences in F1 and Exact Match
scores are statistically significant, p < 10~%, for both Top Hypothesis and CNN predictions. The
difference between Base-NMT and MI-SubQuery is also significant for Top Hypothesis predictions.

for a heuristic weighted voting scheme to implement deterministic selection. Let a be the answer
returned by BiDAF for query ¢, with an associated score s(a). We pick the answer according to
argmax, »_.,_. s(a’). In AQA MaxConf we select the answer with the single highest BIDAF score
across question reformulations. Finally, AQA CNN identifies the complete system with the learned
CNN model described in Section 3.

Table 1 shows the results. We report exact match (EM) and F1 metrics, computed on token level
between the predicted answer and the gold answer. We present results on the full validation and test
sets (referred to as n-gram in (Dunn et al., 2017)). Overall, SearchQA appears to be harder than other
recent QA tasks such as SQuAD (Rajpurkar et al., 2016), for both machines and humans. BiDAF’s
performance drops by 40 F1 points on SearchQA compared to SQuAD. However, BiDAF is still
competitive on SeachQA, improving over the Attention Sum Reader network by 13.7 F1 points.

Using the top hypothesis already yields an improvement of 2.2 F1 on the test set. This demonstrates
that even the reformulator alone is capable to produce questions more easily answered by the
environment. When generating a single prediction, both MI-SubQuery and Base-NMT benchmarks
perform worse than BiDAF. Heuristic selection via both Voting and Max Conf yields a further
performance boost. Both heuristics draw upon the intuition that when BiDAF is confident in its
answer it is more likely to be correct, and that multiple instances of the same answer provide positive
evidence (for MaxConf, the max operation implicitly rewards having an answer scored with respect
to multiple questions). Finally, a trained selection function improves performance further, yielding an
absolute increase of 11.4 F1 points (32% relative) over BiDAF with the original questions. In terms
of exact match score, this more than closes half the gap between BiDAF and human performance.
The benchmarks improve considerably when they generate /N candidates, and paired with a dedicated
CNN selector. This is not surprising as it provides an ensemble prediction setup. However, the AQA
CNN system outperforms both MI-SubQuery and Base-NMT in all conditions by about 3%.

Finally, we consider the maximum performance possible that could be achieved by picking the answer
with the highest F1 score from the set of those returned for all available reformulations. Here we find
that the different sources of rewrites provide comparable headroom: the oracle Exact Match is near
50, while the oracle F1 is close to 58.

6 ANALYSIS OF THE AGENT’S LANGUAGE

The AQA agent can learn several types of sub-optimal policies. For example, it can converge to
deterministic policies by learning to emit the same, meaningless, reformulation for any input question.
This strategy can lead to local optima because the environment has built in strong priors on what
looks like a likely answer, even ignoring the input question. Hence, convergence to non-negligible
performance is easy. Entropy regularization typically fixes this behavior. Too much weight on the
entropy regularizer, on the other hand, might yield random policies. A more competitive sub-optimal
policy is one that generates minimal changes to the input, in order to stay close to the original question.
This is a successful strategy because the environment has been trained on the original questions alone,
which leads to baseline performance.
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Figure 2: Boxplot summaries of the statistics collected for all types of questions. Two-sample -tests
performed on all pairs in each box confirm that the differences in means are significant p < 1073,

It seems quite remarkable then that AQA is able to learn non-trivial reformulation policies, that
differ significantly from all of the above. One can think of the policy as a language for formulating
questions that the agent has developed while engaging in a machine-machine communication with
the environment. In this section we look deeper into the agent’s language.

6.1 GENERAL PROPERTIES

We analyze input questions and reformulations on the development partition of SearchQA to gain
insights on how the agent’s language evolves during training via policy gradient. It is important to
note that in the SearchQA dataset the original Jeopardy! clues have been preprocessed by lower-
casing and stop word removal. The resulting preprocessed clues that form the sources (inputs) for
the sequence-to-sequence reformulation model resemble more keyword-based search queries than
grammatical questions. For example, the clue Gandhi was deeply influenced by this count who wrote
"War and Peace" is simplified to gandhi deeply influenced count wrote war peace.

The (preprocessed) SearchQA questions contain 9.6 words on average. They contain few repeated
terms, computed as the mean term frequency (TF) per question. The average is 1.03, but for
most of the queries (75%) TF is 1.0. We also compute the median document frequency (DF) per
query, where the document is the context from which the answer is selected, as a measure of how
informative a term is.* As another measure of query performance, we also compute Query Clarity
(QC) (Cronen-Townsend et al., 2002).> Figure 2 summarizes statistics of the questions and rewrites.

We first consider the top hypothesis generated by the pre-trained NMT reformulation system, before
reinforcement learning (Base-NMT). The Base-NMT rewrites differ greatly from their sources. They
are shorter, 6.3 words on average, and have even fewer repeated terms (1.01). Interestingly, these
reformulations are mostly syntactically well-formed questions. For example, the clue above becomes
Who influenced count wrote war?.° Base-NMT improves structural language quality by properly
reinserting dropped function words and wh-phrases. We also verified the increased fluency by using a
large language model and found that the Base-NMT rewrites are 50% more likely than the original

“For every token we compute the number of contexts containing that token. Out of these counts, in each
question, we take the median instead of the mean to reduce the influence of frequent outliers, such as commas.

3The relative entropy between a query language model and the corresponding collection language model. In
our case, the document is the context for each query.

®More examples can be found in Appendix A.
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questions. While more fluent, the Base-NMT rewrites involve lower DF terms. This is probably due
to a domain mismatch between SearchQA and the NMT training corpus. The query clarity of the
Base-NMT rewrites is also degraded as a result of the transduction process.

We next consider the top hypothesis generated by the AQA question reformulator (AQA-QR) after the
policy gradient training. The AQA-QR rewrites are those whose corresponding answers are evaluated
as AQA TopHyp in Table 1. These single rewrites alone outperform the original SearchQA queries by
2% on the test set. We analyze the top hypothesis instead of the final output of the full AQA agent to
avoid confounding effects from the answer selection step. These rewrites look different from both the
Base-NMT and the SearchQA ones. For the example above AQA-QR’s top hypothesis is What is
name gandhi gandhi influence wrote peace peace?. Surprisingly, 99.8% start with the prefix What
is name. The second most frequent is What country is (81 times), followed by What is is (70) and
What state (14). This is puzzling as it occurs in only 9 Base-NMT rewrites, and never in the original
SearchQA questions. We speculate it might be related to the fact that virtually all answers involve
names, of named entities (Micronesia) or generic concepts (pizza).

AQA-QR’s rewrites seem less fluent than both the SearchQA and the Base-MT counterparts. In terms
of language model probability, they are less likely than both SearchQA and Base-NMT. However,
they have more repeated terms (1.2 average TF), are significantly longer (11.9) than in Base-NMT and
contain more informative context terms than SearchQA questions (lower DF). Also, the translation
process does not affect query clarity much. Finally, we find that AQA-QR’s reformulations contain
morphological variants in 12.5% of cases. The number of questions that contain multiple tokens
with the same stem doubles from SearchQA to AQA-QR. Singular forms are preferred over plurals.
Morphological simplification is useful because it increases the chance that a word variant in the
question matches the context.

6.2 PARAPHRASING QUALITY

We also investigate the general paraphrasing abilities of our model, focusing on the relation between
paraphrasing quality and QA quality. To tease apart the relationship between paraphrasing and
reformulation for QA we evaluated 3 variants of the reformulator:

Base-NMT This is the model used to initialize RL training of the agent. Trained first on the
multilingual U.N. corpus, then on the Paralex corpus, as detailed in Section 5.2.
Base-NMT-NoParalex This is the model above trained solely on the multilingual U.N. corpus,
without the Paralex monolingual corpus.

Base-NMT+Quora This is the same as Base-NMT, additionally trained on the Quora dataset’
which contains 150k duplicate questions.

Following Prakash et al. (2016), we evaluate all models on the MSCOCO?® (Lin et al., 2014) validation
set (VAL2014). This dataset consists of images with 5 captions each, of which we select a random
one as the source and the other four as references. We use beam search, to compute the top hypothesis
and report uncased, moses-tokenized BLEU using multeval® (Clark et al., 2011). Please note, that
the MSCOCO data is only used for evaluation purposes. Examples of all systems can be found in
Appendix C.

The Base-NMT model performs at 11.4 BLEU (see Table 1 for the QA eval numbers). In contrast,
Base-NMT-NoParalex performs poorly at 5.0 BLEU. Limiting training to the multilingual data alone
also degrades QA performance: the scores of the Top Hypothesis are at least 5 points lower in all
metrics and CNN scores are 2-3 points lower.

By training on additional monolingual data, the Base-NMT+Quora model improves BLEU score
slightly to 11.6. End-to-end QA performance also improves marginally, the maximum delta with
respect to Base-NMT under all conditions is +0.5 points, but the difference is not statistically
significant. Thus, adding the Quora training does not have a significant effect. This might be due to
the fact that most of the improvement is captured by training on the larger Paralex data set. Improving
raw paraphrasing quality as well as reformulation fluency helps AQA up to a point. However, they
are only partially aligned with the main task, which is QA performance. The AQA-QR reformulator

7https ://data.quora.com/First-Quora-Dataset—-Release-Question-Pairs
$http://cocodataset.org/
‘https://github.com/jhclark/multeval
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has a BLEU score of 8.6, well below both Base-NMT models trained on monolingual data. Yet,
AQA-QR significantly outperforms all others in the QA task. Training the agent starting from the
Base-NMT+Quora model yielded comparable results as starting from Base-NMT.

6.3 DISCUSSION

Recently, Lewis et al. (2017) trained chatbots that negotiate via language utterances in order to
complete a task. They report that the agent’s language diverges from human language if there is no
incentive for fluency in the reward function. Our findings seem related. The fact that the questions
reformulated by AQA do not resemble natural language is not due to the keyword-like SearchQA
input questions, because Base-NMT is capable of producing more fluent questions from the same
input. AQA learns to re-weight terms by focusing on informative (lower document frequency),
query-specific (high query clarity), terms while increasing term frequency (TF) via duplication. At
the same time it learns to modify surface forms in ways akin to stemming and morphological analysis.

Some of the techniques seem to adapt to the specific properties of current deep QA architectures
such as character-based modeling and attention. Sometimes AQA learns to generate semantically
nonsensical, novel, surface term variants; e.g., it might transform the adjective dense to densey. The
only justification for this is that such forms can be still exploited by the character-based BiDAF
question encoder. Finally, repetitions can directly increase the chances of alignment in the attention
components.

We hypothesize that, while there is no incentive for the model to use human language due to the
nature of the task, AQA learns to ask BiDAF questions by optimizing a language that increases the
likelihood of BiDAF ranking better the candidate answers. Jia & Liang (2017) argue that reading
comprehension systems are not capable of significant language understanding and fail easily in
adversarial settings. We speculate that current machine comprehension tasks involve mostly pattern
matching and relevance modeling. As a consequence deep QA systems might implement sophisticated
ranking systems trained to sort snippets of text from the context. As such, they resemble document
retrieval systems which incentivizes the (re-)discovery of IR techniques, such as tf-idf re-weighting
and stemming, that have been successful for decades (Baeza-Yates & Ribeiro-Neto, 1999).

7 CONCLUSION

We propose a new framework to improve question answering. We call it active question answering
(AQA), as it aims to improve answering by systematically perturbing input questions. We investigated
a first system of this kind that has three components: a question reformulator, a black box QA system,
and a candidate answer aggregator. The reformulator and aggregator form a trainable agent that seeks
to elicit the best answers from the QA system. Importantly, the agent may only query the environment
with natural language questions. Experimental results prove that the approach is highly effective and
that the agent is able to learn non-trivial and somewhat interpretable reformulation policies.

For future work, we will continue developing active question answering, investigating the sequential,
iterative aspects of information seeking tasks, framed as end-to-end RL problems, thus, closing the
loop between the reformulator and the selector.
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A REFORMULATION EXAMPLES

Table 2: Results of the qualitative analysis on SearchQA. For the original Jeopardy! questions we give

the reference answer, otherwise the answer given by BiDAF.

Model | Query | Reference / Answer from BiDAF (F1)
Jeopardy! People of this nation AKA Nippon wrote with a brush, so painting | japan
became the preferred form of artistic expression
SearchQA people nation aka nippon wrote brush , painting became preferred | japan (1.0)
form artistic expression
MI nippon brush preferred julian (0)
Base-NMT Aka nippon written form artistic expression? julian (0)
AQA-QR | What is name did people nation aka nippon wrote brush expres- | japan (1.0)
sion?
AQA-Full people nation aka nippon wrote brush , painting became preferred | japan (1.0)
form artistic expression
Jeopardy! Michael Caine & Steve Martin teamed up as Lawrence & Freddy, | dirty rotten scoundrels
a couple of these, the title of a 1988 film
SearchQA michael caine steve martin teamed lawrence freddy , couple , title dirty rotten scoundrels (1.0)
1988 film
MI caine teamed freddy dirty rotten scoundrels (1.0)
Base-NMT Who was lawrence of michael caine steve martin? rain man 1988 best picture fikkle [... 25 tokens]
(0.18)
AQA-QR ‘What is name is name is name michael caine steve martin teamed dirty rotten scoundrels (1.0)
lawrence freddy and title 1988 film?
AQA-Full What is name is name where name is name michael caine steve dirty rotten scoundrels (1.0)
martin teamed lawrence freddy and title 1988 film key 2000 ?
Jeopardy! Used underwater, ammonia gelatin is a waterproof type of this ex- | dynamite
plosive
SearchQA used underwater , ammonia gelatin waterproof type explosive nitroglycerin (0)
MI ammonia gelatin waterproof nitroglycerin (0)
Base-NMT Where is ammonia gelatin waterproof? nitroglycerin (0)
AQA-QR ‘What is name is used under water with ammonia gelatin water wa- | nitroglycerin (0)
terproof type explosive?
AQA-Full used underwater , ammonia gelatin waterproof type explosive nitroglycerin (0)
Jeopardy! The Cleveland Peninsula is about 40 miles northwest of Ketchikan alaska
in this state
SearchQA cleveland peninsula 40 miles northwest ketchikan state alaska ’s community information summary says [...
113 tokens] (0.02)
MI cleveland peninsula ketchikan alaska ’s dec 16, 1997 [... 132 tokens] (0.01)
Base-NMT The cleveland peninsula 40 miles? ketchikan , alaska located northwest tip
[... 46 tokens] (0.04)
AQA-QR What is name is cleveland peninsula state northwest state state alaska (1.0)
state?
AQA-Full ‘What is name are cleveland peninsula state northwest state state alaska (1.0)
state ?
Jeopardy! Tess Ocean, Tinker Bell, Charlotte the Spider julia roberts
SearchQA tess ocean , tinker bell , charlotte spider julia roberts tv com charlotte spider [... 87 tokens]
(0.04)
MI tess tinker spider julia roberts tv com charlotte spider [... 119 tokens]
(0.01)
Base-NMT What ocean tess tinker bell? julia roberts american actress producer made
[... 206 tokens] (0.02)
AQA-QR | What is name tess ocean tinker bell link charlotte spider? julia roberts (1.0)
AQA-Full ‘What is name is name tess ocean tinker bell spider contain char- | julia roberts (1.0)
lotte spider contain hump around the world winter au to finish au
de mon moist
Jeopardy! During the Tertiary Period, India plowed into Eurasia & this high- | himalayas
est mountain range was formed
SearchQA | tertiary period , india plowed eurasia highest mountain range | himalayas (1.0)
formed
MI tertiary plowed eurasia himalayas (1.0)
Base-NMT What is eurasia highest mountain range? himalayas (1.0)
AQA-QR | What is name were tertiary period in india plowed eurasia? himalayas (1.0)
AQA-Full | tertiary period , india plowed eurasia highest mountain range | himalayas (1.0)
formed
Jeopardy! The melody heard here is from the opera about Serse, better known Xerxes
to us as this "X"-rated Persian king
SearchQA melody heard opera serse , better known us x rated persian king gilbert sullivan (0)
MI | melody opera persian gilbert sullivan (0)
Base-NMT Melody heard opera serse thing? gilbert sullivan (0)
AQA-QR | What is name melody heard opera serse is better persian king? gilbert sullivan (0)
AQA-Full What is name is name melody heard opera serse is better persian gilbert sullivan (0)

king persian K ?
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B EXAMPLES OF RANKING LOSSES

Table 3: Examples of queries where none of the methods produce the right answer, but the Oracle

model can.
Model | Query Answer (F1)
SearchQA | ancient times , pentelic quarries major source building material parthenon (0.0)
athens
AQA-QR | What is name an Ancient History Warry quarry material athens? parthenon (0.0)
AQA-CNN | ancient times , pentelic quarries major source building material parthenon (0.0)
athens
AQA-Oracle | What is name is name an Ancient Romes For pentelic quarry marble (1.0)
material athens measure athens?
SearchQA | 1949 1999 germany ’s bundestag legislature met city berlin (0.0)
AQA-QR | What is name is name 1999 germanys bundestag legislature met berlin (0.0)
city city?
AQA-CNN | What is name is name 1999 germany germany bundestag legisla- berlin (0.0)
ture city city?
AQA-Oracle | What is name is name a 1999 germany germany legislature met bonn (1.0)
city city?
SearchQA | utah jazz retired 12 jersey karl malone (0.0)
AQA-QR | What is name did utah jazz retired jersey jersey? karl malone (0.0)
AQA-CNN | What is name did utah jazz retired jersey jersey? karl malone (0.0)
AQA-Oracle | What is name is name where utah jazz is retired jersey jersey? john stockton (1.0)
SearchQA | swing intersection count basie capital virginia chicago (0.0)
AQA-QR | What is name for swing intersection count basie capital virginia? chicago (0.0)
AQA-CNN | swing intersection count basie capital virginia chicago (0.0)
AQA-Oracle | What is name swing swing intersection capital virginia? richmond (1.0)
SearchQA | huge upset virginia , jim webb beat senator prospective presiden- | hillary clinton (0.0)
tial candidate
AQA-QR | What is name is name huge upset virginia jug webb beat senator? jim webb (0.0)
AQA-CNN | What is name is name huge upset virginia jug webb beat senator jim webb (0.0)
world candidate?
AQA-Oracle | Whatis name is name huge upset virginia jim webb beat senator? george allen (1.0)
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C PARAPHRASING EXAMPLES

Table 4: Paraphrasing examples on captions from MSCOCO (Lin et al., 2014).

Source

Reference

Base-NMT
Base-NMT-NoParalex
Base-NMT+Quora

a man riding a wave on top of a surfboard.
a man on a surfboard in the crest of a wave.
a man on top of a surfboard?

a mankind arises away from a floor.

it possible to riding a wave on a surfboard?

AQA-QR | what is name an average man riding a wave at onfboard?
Source | a person riding some skis through a snowy mountain trail.
Reference | a man on skis is standing by some trees.
Base-NMT | what is some skis through a snowy mountain trail?

Base-NMT-NoParalex
Base-NMT+Quora

the person rising somekises through a snow blood.
what is a skis mountain trail?

AQA-QR | what is name an average person riding some one snowy mountain trail?
Source | a group of people all taking a bite out of the same sandwich.
Reference | a group of people eating rom a large sandwich.
Base-NMT | what do people call a bite out of the same sandwich?

Base-NMT-NoParalex
Base-NMT+Quora

a group of people who takes a bargained from the same index.
what is the group of people who take bite out of the same sandwich?

AQA-QR | what is name a group of people with bite out of sandwich?
Source | a partially lit asian person holding a phone
Reference | a man standing next to a sign talking on a phone.
Base-NMT | what is a partical that holds a phone?

Base-NMT-NoParalex
Base-NMT+Quora

plus little as an associate person
what is a partially little asian person?

AQA-QR | what is name is associated with a partially active asian person holding a phone?
Source | a car driving through a very flooded street
Reference | a car is driving through a flooded street.
Base-NMT | what car driving through a flooded street?

Base-NMT-NoParalex
Base-NMT+Quora

analysing through a heat street
i driving through a flooded street?

AQA-QR | what is name is given to a car with a car driving through a flooded street?
Source | a man is holding a tennis racket on a court
Reference | a man holding a racquet on top of a tennis court.
Base-NMT | how do you hold a tennis racket?

Base-NMT-NoParalex
Base-NMT+Quora

a man to hold a threshold on a court
what is a tennis racket?

AQA-QR | what is name an average man make a tennis racket on a court?
Source | apizza on a pan that is half gone
Reference | atable with a half eaten pizza and glasses if beer.
Base-NMT | what is half gone in a pizza?

Base-NMT-NoParalex
Base-NMT+Quora

average on a size
is a pizza on a pan that is half gone?

AQA-QR | what is name a pizza on a pizza pan that is half gone?
Source | aboy holding a glove while on a baseball field.
Reference | a young boy bending over holding a catchers mitt.
Base-NMT | how do you hold a glove on a baseball field?

Base-NMT-NoParalex
Base-NMT+Quora

a cell holding a globe at a later field.
is it possible to hold a glove while on a baseball field?

AQA-QR | what is name an boy make up a glove while on baseball field?
Source | a street light with a red arrow pointing left.
Reference | atagged traffic light displays a red arrow.
Base-NMT | a street light with red arrow pointing?

Base-NMT-NoParalex
Base-NMT+Quora
AQA-QR

a strength with a skilling point.
what is the street light of a red arrow pointing?
what is name a street light with red arrow pointing left?
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