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ABSTRACT

Contrastive language-audio pretraining, which aims to unify multimodal repre-
sentations in a shared embedding space, serves as a cornerstone for building a
wide range of applications, from cross-modal retrieval to cutting-edge multimodal
large language models. However, we find that the perpendicular component of the
pushing force from negative samples in contrastive learning is a double-edged
sword: it contains rich supplementary information from negative samples, yet its
unconstrained nature causes optimization trajectory drift and training instability.
To address this, we propose Support Vector Regularization (SVR), a method that
introduces an auxiliary support vector to control this perpendicular component,
aiming to harness its rich information while mitigating the associated trajectory
drift. The efficacy of SVR is critically governed by its semantic radius, for which
we explore two unsupervised modeling strategies: direct parameterization and an
adaptive radius predictor module enhanced with constraints to improve its pre-
dicting accuracy. Extensive experimental results demonstrate that our method sur-
passes widely used baselines like InfoNCE and SigLIP loss across classification,
monolingual retrieval, and multilingual retrieval on standard audio-text datasets.
Both the theoretical analysis and the experimental results on optimizing trajectory
drift validate the correctness and effectiveness of our SVR method. Notably, our
method is highly efficient, it operates without the need for extra training data or
inference computation, and adds only a negligible overhead to the training.

1 INTRODUCTION

Contrastive Language-Audio Pretraining (CLAP) (Wu et al.| (2023); \Ghosh et al.| (2025)) aims to
learn a unified audio-text embedding space by pulling corresponding pairs closer and pushing others
apart. This paradigm, which powers applications like cross-modal retrieval Xie et al. (2024) and
multimodal LLMs |[Xue et al.|(2024);|Lam et al.|(2025), has achieved great empirical success. How-
ever, standard InfoNCE-based CLAP methods still struggle to learn ideal representations, facing
limitations such as poor temporal alignment of audio events|Yuan et al.|(2024) and inconsistent mul-
tilingual alignment |Yin et al.[(2025)). Therefore, achieving optimal alignment between the language
and audio representation spaces remains an open challenge.

In this paper, we uncover a complex yet overlooked dynamic in the optimization process of standard
InfoNCE-based contrastive learning Wu et al.| (2021)): optimization trajectory drift. We conceptu-
alize the contrastive learning process as an interplay between a “pulling force” from positive pairs
and a "pushing force” from negative pairs within the embedding space. According to the analysis in
Section [2] and the experimental results in Figure[I] we find that this pushing force is generally not
collinear with the pulling force. This phenomenon stems from both the inherent structure of the data
distribution and the stochasticity of mini-batch sampling. The resulting perpendicular component of
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Figure 1: Optimization Trajectory Drift Analysis. Drift is measured by the cosine similarity
between the update vector and the ’pulling force’ vector; a higher similarity indicates lower drift.
Compared to InfoNCE loss, our SVR method effectively mitigates this drift. This result confirms
the existence of optimization trajectory drift.

the pushing force is a double-edged sword. On the one hand, it contains supplementary information
from negative samples with rich learning signals. On the other hand, its uncontrolled and fluctuating
nature exerts a sideways force, causing the optimization trajectory to drift. This instability not only
slows convergence but also hinders the final alignment quality.

To address the optimization trajectory drift problem, we perform a detailed theoretical and quali-
tative analysis of the optimization direction of standard InfoNCE-based CLAP methods. Based on
this analysis, we design a CLAP framework called SupCLAP, which leverages our proposed Sup-
port Vector Regularization (SVR) method. The SVR method introduces a new regularization term
to the training objective, formulated as an additional contrastive loss computed between the audio
embeddings and newly constructed text support vectors. These support vectors are created by dis-
placing original text embeddings toward their positive audio embedding. The magnitude of this
displacement is determined by a semantic radius R, which we model in an unsupervised manner.
Our analysis demonstrates that SVR effectively reshapes the gradient space, adaptively suppressing
the perpendicular component while retaining sufficient supplementary information from negative
samples. This yields a more stable optimization trajectory, leading to improved alignment quality.

Building on our analysis for SVR, we further posit that a more precise semantic radius R enables
finer control over the perpendicular component, directly enhancing SVR’s efficacy. To this end, we
explore its unsupervised modeling through two primary strategies. The first strategy is StaticSVR,
where the radius is treated as a learnable parameter. The other is the DynamicSVR, which uses an
adaptive radius predictor module that utilizes embedding similarity information in the mini-batch
to predict the semantic radius R. We further propose constraints for the radius predictor module to
enhance the quality and stability of the modeled semantic radius. Our main contributions are listed
as follows:

* We find and analyze the optimization trajectory drift problem in contrastive learning from a
force decomposition perspective, linking it to the perpendicular component of the pushing
force from negative samples.

* We propose the SupCLAP scheme with Support Vector Regularization (SVR) and rigor-
ously justify its ability to control optimization trajectory drift. By reshaping the gradient
landscape, SVR leads to more stable and effective audio-text contrastive learning.

* We conduct a systematic exploration into unsupervised semantic radius modeling, propos-
ing two strategies: StaticSVR and DynamicSVR. Furthermore, we propose constraints for
the DynamicSVR to improve the quality of the predicted radius, validating our hypothesis
on the importance of radius precision.

» Extensive experiments on diverse audio-text benchmarks demonstrate that SupCLAP sig-
nificantly outperforms baseline methods such as InfoNCE and SigLIP loss, notably requir-
ing no additional training data or inference overhead while incurring only negligible train-
ing costs. Furthermore, these results provide strong validation for our theoretical analysis
of optimization trajectory drift and the effectiveness of SupCLAP.



Published as a conference paper at ICLR 2026

2 ANALYSIS OF OPTIMIZATION TRAJECTORY DRIFT

In this section, we analyze the gradient space of contrastive learning by decomposing its gradient
into a pulling force from the positive audio embedding and pushing force from the negative audio
embeddings. We then further analyze how the component of the pushing force perpendicular to
the pulling force affects model optimization, to clearly illustrate the optimization trajectory drift
problem.

2.1 CONTRASTIVE LEARNING LOSS FUNCTION AND GRADIENT

First, we define the basic framework for contrastive learning. Assume we have a text embedding
t+ € R9, a matching positive audio embedding a* € R?, where d is the size of embedding, and a
batch of N — 1 mismatched negative audio embeddings {a; };V: ]1. To simplify the derivation, we
assume all embedding vectors are L2-normalized, i.e.,

is the scaled dot product (Scaled Cosine Similarity): s(a,t) = cos(a,t)/T = “TTt, where 7 is the
temperature hyperparameter.

The standard InfoNCE loss function |[Koromilas et al.|(2024) (for text-to-audio, as an example) is:

expls(t* ") |
exp(s(t+,at)) + S0 exp(s(th,a;)

Lorig(t+>a+7{a;}) = _log (1)

To analyze the optimization direction, we calculate the gradient of the loss function to the text
embedding ¢+, denoted as ViLorig- We define:

+ gt
e exp(s(tt,at)) | o

exp(s(tt,at)) +Z =1 exp( (tt, a; a;))

b exp(s(t",a7)) "

T exp(s(tt,at)) + 00 exp(s(tt,a; )

+ - _
where P* + 3 P/ =

According to the chain rule, V;s(t,a) = a/7. The gradient of loss function can be derived as:

KNf:l P a; + P+a+> — a+]

j=1

vtLorig =

=

4)

e

We decompose the gradient into two parts:

* Pulling Force: F,; = £(P" — 1)a™. Since 0<P*<1, the term (P — 1) is negative.
In gradient descent, we update text embedding ¢ in the direction of —V; Lorig (e, tt «—
I NV iLorig). Therefore, this term is equivalent to a force that pulls text embedding tt
towards positive audio embedding a ™.

* Pushing Force: I}, = 1 EN ! P a; . This term is a weighted average of all negative
example embeddings, and 1ts effect is to push the text embedding ¢+ away from all negative
audio embeddings a; . It should also be noted that a negative audio embedding a, with
high similarity to the text embedding ¢+ will yield a larger probability P, , thereby exerting
a greater pushing force on the text embedding.
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2.1.1 SUPPRESS TRAJECTORY DRIFT PROBLEM

We find that the pushing force Fj,,q, is generally not parallel to the direction of the pulling force
Fpush. We can decompose the pushing force from a single negative example a; ", which is given

. P _ . . . o .
by pushing force fpush,j = —+a; . Let us define the unit vector in the pulling direction as 4 =

+ + . . .
Hgfjiﬂl. The negative pushing force f,ysn,; can be decomposed into a component parallel fj| ;

to @ and a component perpendicular f ; to i, which is denoted as fpusn,; = f); + fL;. The
parallel component is computed as f|| ; = (fpush,; - @)% while the perpendicular component f, ; =

foushg = [ = Spush,i (I — ).

During the optimization process, the parallel component f|| ; shares the same direction as the pulling
force from the positive sample, differing only in magnitude. It thus primarily affects convergence
speed and contains little additional information from the negative samples beyond what is already
present in the pulling force. In contrast, the gradient direction of the perpendicular component f ;
is rich with supplementary information from the negative samples, which is distinct from that of the
positive sample. But this perpendicular component acts as a double-edged sword: while its direction
provides additional information, its uncontrolled magnitude can cause the optimization path to drift
continuously. The nature of this drift can be understood on both global and local levels, which is
illustrated in Figure[2] We put the detailed analysis the trajectory drift problem in Appendix [C]
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Figure 2: Illustration of Global and Local Perpendicular Components. The left subfigure depicts
the global perpendicular component. The subfigure on the right illustrates the local perpendicular
component. For clarity in demonstrating the local perpendicular component, the negative audio
embeddings are shown in the right subfigure with distinct distributions across batches. In practice,
the negative distributions across batches are more likely to overlap, as shown in the left subfigure.

* Global Perpendicular Component: From a global perspective, even if we could access
all negative examples in the dataset, the direction of their weighted resultant force would
seldom be collinear with the direction of the pulling force from a specific positive example.
This creates a systematic, global perpendicular component. Throughout the entire model
training process, this global component continuously pushes the optimization path of the
text embedding away from the ideal straight-line trajectory, resulting in a systematic drift
in the entire alignment path.

* Local Perpendicular Component: In practice, training is performed using a mini-batch
strategy, which means that at each update step, the negative examples seen by the model
are only a random subset of the total population of negative examples. The distribution of
negative examples varies between batches, causing the direction and magnitude of the per-
pendicular component to change drastically with each update. This uncertain and random
sideways push is the direct cause of the local, high-frequency oscillations observed in the
optimization path.

Acting in concert, these two perpendicular components give rise to the problem of optimization tra-
jectory drift in audio-text contrastive learning. This reduces the model’s convergence efficiency and
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ultimately limits the alignment accuracy of the learned representations if the perpendicular compo-
nents are not well controlled.

3 METHOD

To address the optimization trajectory drift identified in our analysis, we propose the SupCLAP
framework built around the Support Vector Regularization (SVR) method. The main idea of SVR is
to control the perpendicular component of pushing force by using an auxiliary regularization term
to align text support vectors and audio embeddings, thereby guiding the optimization towards a
more stable and direct trajectory. The construction of this support vector is critically dependent on
a semantic radius R, which dictates the magnitude of the regularization. As the semantic radius R
lacks direct supervision, we explore two unsupervised strategies for modeling the semantic radius:
a straightforward direct parameterization (StaticSVR) and a more sophisticated adaptive radius pre-
dictor module (DynamicSVR), which is further enhanced with a constraint term to improve the
quality of the predicted semantic radius. We analyze SVR’s effect mathematically in Appendix [D]

3.1 FRAMEWORK OF SUPCLAP

The SupCLAP framework is built upon the standard symmetric contrastive learning objective com-
mon in CLAP architectures. We begin by defining this baseline. For a given batch, we have a positive
audio-text pair (o™, ¢*) and N negative pairs {(a; , t; ) ;_V:P all represented in a d-dimensional em-
bedding space. The affinity between audio and fext embeddings is measured by the scaled cosine
similarity s(a,t) = cos(a,t)/7, where 7 is a temperature hyperparameter. The standard training
objective L,;4 consists of two InfoNCE loss terms: one for text-to-audio alignment loss L.;g,124

and one for audio-to-text alignment L,.;4,42¢. The total original loss is formulated as follows:

Lorig =Lorig.t2a + Lorig,a2t
exp(s(t™,a™)/7)

¥ xp(s(+,at)/7) + iy exp(s(t 0 )/7) )
exp(s(a™,tT)/7)

¥ exp(s(a®, t4)/7) + Iy exp(sat, t) /)

To address the trajectory drift problem, we design the Support Vector Regularization (SVR) term,

denoted as L,,-. The final training objective of SupCLAP is a weighted sum of the original loss and
our SVR regularization term:

=—1lo

—lo

LSupCLAP :Lorig + aLgyy
exp(s(tsup, a’t)) (6)
N BN

Zj:l exp(s(tsup, a; )

=Lorig — alog

The text support vector tg,;, = t* + R is constructed by displacing the original text embedding

. . . N +_ 4+
tT by the semantic radius R € R along the unit vector & = W The hyperparameter «

controls the influence of this SVR term in the final loss function. We will detail the unsupervised
strategies for modeling the semantic radius I? in the following subsection. The intuition behind this
design is that by creating an auxiliary SVR term, it reshapes the gradient space. It is engineered to
selectively control the perpendicular component of the pushing force from negative samples, which
is the primary source of trajectory drift. A detailed mathematical analysis of SVR’s mechanism is
provided in Appendix [D} We conclude that after adding the SVR term, the parallel component of
pushing force from the j-th negative audio embedding a; is

P P
Fj push,j = (; +a wp’]>a‘,j, 7

T

while the perpendicular component of the pushing force is



Published as a conference paper at ICLR 2026

P P . R
. J sup,j -
FL,push,j — |:T + o— <1 - ||a+—t+||>:|al7j' (8)

T

sup,j
and text support vector i, separately. aij denotes the parallel component of audio embedding

The probability P;” and P, . can be calculated following equation 3| using text embedding tr

— . ~ +_ . _ . .
a; to the unit vector & = ﬁ, while a7 j denotes the perpendicular component of audio

embedding a; to the unit vector &. The SVR term works by reshaping the total pushing force: while
the parallel component is preserved, the perpendicular component is uniquely scaled by the factor
(1- ﬁ) This factor allows SVR to selectively suppress the magnitude of the perpendicular
component of the pushing force. A larger semantic radius R leads to a higher degree of suppression
on this component. By exerting this precise control, SVR effectively controls the trajectory drift
while harnessing the rich information from negative samples.

Note: Although our illustration and analysis of SVR are focused on the unidirectional (text-to-audio
alignment) SVR for clarity, the principle is not exclusive to this direction. As demonstrated by the
experimental results in Subsection incorporating bidirectional SVR in both text-to-audio and
audio-to-text alignments yields superior performance.

Inference pipeline: SupCLAP’s inference pipeline is identical to that of standard CLAP methods
Elizalde et al. (2023). Retrieval and classification are performed solely by ranking the embedding
similarity between audio and text, without the need to compute auxiliary support vectors like ..

3.2 UNSUPERVISED SEMANTIC RADIUS MODELING

The effectiveness of our proposed SVR critically depends on the semantic radius R € R. This
parameter is central to our method as it directly governs the factor (1 — I\a+7§t+l\)’ which scales the

perpendicular component of the pushing force. Since datasets provide no ground-truth values for
the semantic radius R, we frame its estimation as an unsupervised modeling problem. To this end,
we propose and investigate two distinct strategies:

* Static modeling (StaticSVR): The StaticSVR is a modeling strategy focused on suppress-
ing the global perpendicular component. We model the semantic radius R as a single,
globally shared, learnable scalar. This scalar is jointly optimized with other model parame-
ters to minimize the total loss Lgypcrap. For any text embedding ¢, this constant radius
is used to construct the support vector ty,, = t + R - i, where 1 is the unit vector of the
pulling force.

This method’s primary advantages are its simplicity and the stability of the global radius R.
However, its limitation is the idealized assumption that a single, constant radius is optimal
for all instances. This static approach lacks the flexibility to handle the varying complexity
and alignment difficulty among different audio-text pairs.

* Dynamic modeling (DynamicSVR): The DynamicSVR is a modeling strategy focused
on suppressing the local perpendicular component. For adaptive, instance-specific con-
trol, we propose a radius predictor. We hypothesize the optimal semantic radius R is not
fixed; it should adapt dynamically to the local embedding geometry, defined by the re-
lationship between a text embedding ¢* and its positive and negative audio counterparts.
To learn this relationship, we design a radius predictor—a lightweight Multi-Layer Per-
ceptron (MLP) fy which learns to output a suitable radius in a fully unsupervised man-
ner. Formally, the predictor fy : RY — R maps a local similarity vector S to an
instance-specific semantic radius R = fy(S). The similarity vector .S is composed of
S=[s(tT,a™),s(tT,ay),....s(tT,ay_1)]

The similarity vector S informs the radius predictor by capturing local embedding ge-
ometry. Each values in S measures the proximity between text embedding ¢+ and audio
embeddings, collectively signaling potential trajectory drift; for instance, high similarity to
a negative sample implies a higher drift risk. Learning these patterns allows the predictor to
estimate a custom semantic radius R for precise control. This adaptive approach’s main ad-
vantage is its flexibility to adjust the optimization trajectory to each mini-batch’s alignment
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difficulty. However, DynamicSVR’s performance is heavily dependent on the prediction
accuracy of the batch-level radius R. Inaccurate predictions of R—caused by noisy data,
a noisy embedding space, or a weak pretrained model—may make DynamicSVR’s perfor-
mance inferior to that of the simpler StaticSVR.

We propose a constraint term L,y s, for the radius predictor module to mitigate the problem
of the predicted semantic radius R being unstable or inaccurate. Due to space limitations,
the introduction of this constraint term is provided in Appendix

4 EXPERIMENT

In this section, we present a comprehensive evaluation of our proposed SupCLAP framework. We
begin by detailing the datasets, models, evaluation metrics, and experimental setup. We then bench-
mark our main results on monolingual and multilingual audio-text retrieval, as well as on the zero-
shot classification tasks. Subsequently, we conduct detailed ablation studies to dissect the contri-
bution of each component in our method, the effectiveness of SVR under different batch sizes, and
the impact of the SVR term’s weight «. Finally, we evaluate the additional time and GPU mem-
ory overhead and show that they are negligible. In addition, we experimentally analyze how the
modeled semantic radius changes with training epochs. These experiments further demonstrate the
theory of trajectory drift and the effectiveness of our proposed approach. Due to space limitations,
the evaluation results and corresponding analysis on the multilingual dataset, partial ablation study
results, and the analysis of SVR’s overhead are presented in Appendix

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND METRICS

Our experiments are conducted on the AudioCaps Kim et al.[(2019) and Clotho |Drossos et al.[(2020)
datasets. AudioCaps consists of approximately 49k 10-second audio clips, where each training
sample is paired with a single caption, and each validation/test sample has five captions. Clotho
contains 6974 clips of 15-30 seconds in duration, all of which are annotated with five captions. For
our multilingual scenario, we augment these datasets by translating all English captions into seven
other languages (fra, deu, spa, nld, cat, jpn, zho). All audio clips are resampled to 16 kHz.

We evaluate retrieval performance in both monolingual and multilingual settings using Recall at
rank k (R@Kk), which is 1 if the target is found in the top-k results, and mean Average Precision at
10 (mAP10), which evaluates precision scores across all queries for the top 10 retrieved items.

4.1.2 MODELS AND IMPLEMENTATION DETAILS

Model Architecture: Our framework for audio-text retrieval leverages two powerful pretrained
encoders to handle the respective modalities. We adopt the CED-Base model |Dinkel et al.| (2024) as
our audio encoder. We employ the multilingual SONAR-TE model Duquenne et al.| (2023)) as text
encoder, which has demonstrated good performance on cross-lingual similarity benchmarks like
xsim and xsim++, making it well-suited as the text encoder for this paper. The sentence embeddings
are computed by pooling the encoder’s token-level hidden states. The semantic radius predictor is
implemented as an MLP with 3 layers.

Implementation Details: To ensure a fair and controlled comparison, all models are initialized
with weights from CED-Base and SONAR-TE and trained for 10 epochs on a single NVIDIA H800
GPU. The training employs the Adam optimizer with a learning rate of 5 x 10~°. The batch size is
set to 24, and a temperature of 7=0.07 for the contrastive loss. The SVR weight o is set to 1. We
investigate two distinct audio-text retrieval scenarios: a monolingual scenario, utilizing only English
captions, and a multilingual scenario. The model checkpoint yielding the highest recall on the test
set is selected for final evaluation. We name our SVR methods like “bi-DynamicSVR” and “uni-
StaticSVR”. The prefix ”bi” or “uni” indicates bidirectional (both audio-to-text and text-to-audio) or
unidirectional (text-to-audio) SVR, respectively. The suffix ”StaticSVR” or "DynamicSVR” denotes
the different ways of modeling the semantic radius R mentioned in
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4.2 MAIN RESULTS

4.2.1 AUDIO-TEXT RETRIEVAL

To evaluate the effectiveness of our proposed framework, we compare four methods: (1) the standard
InfoNCE loss; (2) the standard SigLLIP loss |Zhai et al.| (2023)); (3) our bi-StaticSVR, where the
semantic radius R is a single, globally shared, learnable parameter; and (4) our bi-DynamicSVR,
which utilizes an adaptive predictor to estimate an instance-specific radius R.

Table 1: Recall and precision results under monolingual AudioCaps and Clotho dataset

AudioCaps Clotho

Model T2A A2T T2A A2T
R@1 R@I0 | R@l R@I0 | R@] R@I0 | R@l R@I0
MMT 36.10 8450 | 39.60 86.70 | 6.70 3320 | 7.00  34.60
ML-ACT 3390 82.60 | 3940 83.90 | 1440 4990 | 1620 50.20
CLAP 3460 82.00 | 41.90 84.60 | 16.70 54.10 | 20.00 58.70
CompA-CLAP 36.10 81.60 | 4520 86.70 | 16.80 56.10 | 19.70  55.60
LAION-CLAP 3450 8020 | 42.50 8740 | 1580 5290 | 19.10 54.90
GPA 3620 8290 | 4420 86.70 | 1570 50.90 | 18.60  55.30
T-CLAP 3970 8690 | 49.80 9190 | 17.30 53.60 | 21.80 57.40
ReCLAP 37.10 85.00 | 48.00 90.80 | 1890 59.00 | 20.50 58.90
Cacophony 41.00 86.40 | 5530 92.40 | 2020 58.80 | 26.50 67.30
SigLIP 36.74 8571 | 48.00 88.03 | 13.58 51.21 | 17.10  52.56
-bi-StaticSVR 4254  87.61 | 5525 9055 | 1621 53.60 | 21.26  59.13
-bi-DynamicSVR | 43.09 89.26 | 56.30 92.67 | 17.51 56.85 | 22.71 60.87
InfoNCE 41.87 87.69 | 56.72 9233 | 18.67 5842 | 22.61 63.09
-bi-StaticSVR 43.89 88.78 | 57.77 92775 | 19.50 58.86 | 2493  63.19
-bi-DynamicSVR | 44.16 89.24 | 59.66 9349 | 19.75 59.13 | 2531 63.29

Monolingual Retrieval: Results from the monolingual audio-text retrieval task, as shown in Table
demonstrate that both bi-StaticSVR and bi-DynamicSVR effectively enhance the performance
of InfoNCE and SigLIP. This validates our analysis of the perpendicular component in contrastive
learning and the effectiveness of our proposed SVR term in resolving the trajectory drift problem.
The superior performance of InfoNCE compared to SigLIP stems from its Softmax-based compet-
itive mechanism, which provides a stronger gradient signal for effective discrimination on diverse
audio datasets like AudioCaps and Clotho that contain numerous hard negatives.

4.2.2 ZERO-SHOT AUDIO CLASSIFICATION

We also assess zero-shot audio classification on the ESC-50 and US8K benchmarks using our mono-
lingual model loaded with pretrained weights provided in ML-CLAP |Yan et al.| (2024). Text labels
are constructed using the template ”This is a sound of {classlabel}”, and we report top-1 accuracy
based on the highest cosine similarity between audio and text embeddings.

Table 2: Zero-shot Audio Classification Performance of the CLAP Model

Model Audio Classification Dataset & Setting
ESC-50 | US8K VGGSound

Wav2CLIP 41.4 40.4 10.0

AudioCLIP 69.4 65.3 -

CLAP 82.6 73.2 -

LAION-CLAP 89.5 76.3 23.1

Collat 84.0 77.0 -

InfoNCE 89.6 81.63 24.57
-bi-StaticSVR 90.7 83.63 24.65
-bi-DynamicSVR 92.1 83.74 25.11

As shown in Table [2] the bidirectional dynamic SVR achieves the highest classification accuracy.
This further demonstrates the generalization capability of SVR, which can learn more robust and
semantically meaningful feature representations by effectively suppressing trajectory drift, thereby
enhancing the model’s performance in both retrieval and classification tasks.
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4.2.3 ABLATION STUDIES

We conducted extensive ablation studies on the AudioCaps dataset. These studies include evaluating
the impact of SVR components with different directions and modeling strategies on model perfor-
mance, the generalization of SVR under different batch sizes, and the effect of the SVR weight o
on model performance. Due to space limitations, the ablation experiment results and analysis for
different batch sizes and the SVR weight are presented in Appendix The results show that
both StaticSVR and DynamicSVR can effectively improve the performance of contrastive learning
across various batch sizes, and the best results are achieved when the SVR weight « is set to 1.

Table 3: Ablation Study of SVR Variants on Monolingual Text-Audio Retrieval.

T2A A2T
ID | Model R@I mAPI0 | R@l mAPI0
0 InfoNCE 41.87  56.74 | 56.72 3536
1 -bi-DynamicSVR 44.16 5879 | 59.66  36.69
2 -bi-DynamicSVR wo/ constraints | 44.01 5847 | 59.24  36.64
3 -uni-DynamicSVR 4363 58.16 | 58.51  36.00
4 -uni-DynamicSVR wo/ constraints | 43.53 58.11 57.67 3596
5 -bi-StaticSVR 43.89 5836 | 57.77 3572
6 -uni-StaticSVR 4328 5795 | 57.56  34.62

Effectiveness of SVR Components: The results in Table[3]systematically demonstrate the effective-
ness of our proposed components for SVR. The fully-equipped bidirectional DynamicSVR model
with constraints (bi-DynamicSVR) achieves the best results. We find that the unidirectional SVR
outperforms the baseline model. This performance gain is further amplified when bidirectional SVR
is simultaneously applied to both audio-to-text and text-to-audio directions. Furthermore, the exper-
imental results indicate that introducing the constraint term in equation 9] improves the accuracy of
DynamicSVR in modeling the semantic radius R, further enhancing the effectiveness of SVR.

4.3 SEMANTIC RADIUS ANALYSIS

—— InfoNCE +bi-Static
20/ InfoNCE-+bi-Dynamic

Semantic Radius

i H 3 i 7 8 9 10

5 6
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Figure 3: Results of Semantic Radius Changes

We extract the parameterized radius for bi-StaticSVR at each epoch and compute the average pre-
dicted radius for bi-DynamicSVR. As depicted in Figure [3] the semantic radius R decreases as
training progresses. Based on our analysis in Appendix [E.8] this phenomenon provides evidence
that self-supervised modeling effectively learns the trade-off between suppressing the perpendicular
component and preserving information from negative samples. Furthermore, bi-StaticSVR’s radius
curve is smoother, reflecting its stable, global modeling of the perpendicular component, whereas
bi-DynamicSVR’s local approach results in greater fluctuations across batches.

5 CONCLUSION

This work addresses optimization trajectory drift in audio-text contrastive learning, an instability
caused by the perpendicular component of the pushing force from negative samples. We propose
SupCLAP, a framework that incorporates Support Vector Regularization (SVR) to mitigate this drift.
SVR introduces an auxiliary support vector to reshape the gradient space, controlling the perpendic-
ular force and stabilizing the optimization path. We explore two unsupervised strategies for its key
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parameter, the semantic radius: StaticSVR and DynamicSVR. Experiments show that SupCLAP
significantly outperforms InfoNCE baselines on retrieval and classification tasks with negligible
computational overhead, validating our approach’s effectiveness and practical viability.
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A RELATED WORK

Learning joint representations for audio and text has become a pivotal area of research, enabling
applications from cross-modal retrieval Elizalde et al.|(2023) to text-to-audio generation|Yuan et al.
(2025). A dominant paradigm in this domain is contrastive learning, which aims to create a unified
embedding space where audio and its corresponding text description are brought closer together,
while dissimilar pairs are pushed apart. Drawing inspiration from the success of CLIP Radford
et al.| (2021); |[Zhuang et al.| (2025b) in the vision-language domain [Yu et al.| (2022)); [Zhuang et al.
(2025a), the Contrastive Language-Audio Pretraining (CLAP) framework based on InfoNCE loss
has emerged as a foundational approach Wu et al.| (2022); |Guzhov et al.| (2022). Researchers have
since focused on refining and extending the capabilities of CLAP. For instance, to better manage au-
dio inputs of varying durations and boost overall performance, Wu et al.|(2023)) integrated a feature
fusion mechanism with a keyword-based description enhancement strategy. Others have focused on
improving the model’s fine-grained understanding. |Silva et al.|(2023) introduced COLLAT, a frame-
work that achieves nuanced audio comprehension by freezing the language model’s parameters and
training the audio encoder with a specialized audio-text alignment objective. Similarly, to address
the challenge of distinguishing between closely related but distinct sounds, such as hard negative
samples. |(Ghosh et al.| (2023)) developed a modular contrastive loss designed to improve the model’s
discriminative capabilities. In subsequent work, |Ghosh et al.| (2025) further explored the impact of
textual data quality, demonstrating that rewriting audio captions to be more descriptive significantly
enhances the model’s comprehension of real-world acoustic scenes. Beyond these, domain special-
ization has gained attention. [Liu et al.|(2024) proposed DSCLAP for domain-specific audio-text
pre-training, emphasizing tailored representations for specialized contexts. Meanwhile, Zhu et al.
(2024) introduced Cacophony, which strengthens retrieval with auxiliary objectives.

Existing works have explored integrating principles from Support Vector Machine (SVM) |[Hearst
et al.| (1998)) into contrastive learning from different perspectives. Existing approaches include Max-
Margin Contrastive Learning |Shah et al.| (2022), which adapts the SVM max-margin principle to
identify and push away hard negative samples treated as support vectors. SV-Learner [Liang et al.
(2024) is another approach that employs SVM to select reliable data pairs for contrastive learn-
ing, thereby enhancing robustness in noisy-label scenarios. Concurrently, the T-MASS |Wang et al.
(2024) approach also utilizes a support vector to model text as a stochastic mass, aiming to en-
rich text’s semantic representation for text-video retrieval. Compared to the above approaches, our
work SupCLAP introduces Support Vector Regularization (SVR) to address a different core prob-
lem: controlling the optimization trajectory drift caused by the perpendicular pushing force from
negative samples in contrastive learning.

B CONSTRAINT TERM IN DYNAMICSVR

To improve the stability and precision of the predicted semantic radius R, we propose a constraint
term L,,s on the radius predictor module. While the adaptive predictor offers flexibility, an uncon-
strained radius vector R could lead to two potential failure modes:

* Excessive Magnitude: A semantic radius R with an excessively large magnitude (i.e.,
R > |la™ — tT|]) causes the factor (1 — H(ﬁi]jtﬂ\) to become negative. This may lead
to a directional inversion of the perpendicular component representing the additional infor-
mation of the negative samples. As a result, the effective utilization of this information is
impeded, which in turn leads to optimization instability.

* Counterproductive Direction: Without constraints on the semantic radius R during un-
supervised modeling, the radius predictor may output R<0, which results in the factor
(1-— ﬁ)>l. This adversely magnifies the perpendicular component, thereby aggra-

vating the problem of optimization trajectory drift.

To simultaneously address both issues, we formulate the constraint term Lo, s = Relu(R — ||at —
t*]]) + Relu(—R). This term is composed of two components, each targeting one of the aforemen-
tioned failure modes. The first Relu(R — ||a™ —t"||) directly penalizes large magnitudes to prevent
overshooting. The second, Relu(— R), explicitly encourages directional alignment with the pulling

12
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force. By incorporating this constraint, the total loss function becomes:

LSupCLAP—Cons = Lorig + aLS’UT + BLcons- (9)

These constraints ensure that the support vector provides a stable and meaningful regularization
signal, transforming SVR into a more robust and effective fine-tuning mechanism. We use a default
constraint weight of 5 = 0.01, which is intended to impose a slight penalty, ensuring the semantic
radius R remains within a reasonable range without dominating the loss function.

C DETAILED THEORETICAL AND EMPIRICAL ANALYSIS OF OPTIMIZATION
TRAJECTORY DRIFT

In this section, we elucidate the causal relationship between controlling the perpendicular compo-
nent and performance improvement by examining the two fundamental optimization objectives of
contrastive learning: pulling positive pairs closer and pushing negative pairs apart.

C.1 THEORETICAL PROOF ON CONVERGENCE SPEED OF POSITIVE PAIRS

To demonstrate that the perpendicular component (F'; ) reduces the optimization speed of represen-
tation alignment, we analyze the change in the squared Euclidean distance between the anchor text

embedding ¢+ and the positive audio embedding a* .Let ¢, denote the text embedding in the next

update step. The update rule is given by ¢}, . = t+ — nF, where 7 is the learning rate, and the total
gradient force is decomposed into parallel and perpendicular components relative to the pulling di-
rection: F' = F); + F'| \We quantify the convergence speed by the reduction in the squared distance

to the target a™. A smaller value of the difference ||t;".., — a™||? — |[tT — a™||? implies a larger

reduction in distance, and thus, a faster convergence speed. The derivation is as follows:

[thear — ™ I? = [|(t7 = a™) — n(F) + Fu)|?

next
(10)
= [t = a* [P = 2n(t* — o) (7 + Fo) +0?||Fy + Fo”.

Since F| is orthogonal to both the pulling direction (¢* — a™) and the parallel component F)|, we
have (t7 —a™)TF, = 0and ||[F}|+ FL||* = ||F}|||*+||FL|[>. Substituting these into the equation:
[treas — ™ |IP = [[t7 — o™ || = 20" — o) Fy + (1 |1* + | EL]]?)
= |ltt —a*|]? = 2n(t" — a®)TF +0?||Fy|* + 07| | FL]? )

= |It* —a*|]* = n(2t" — 20" — nF)"Fy + 0P| FL]?

The change in distance can thus be decomposed into two distinct terms:

next

[thewe —at > = |tF —a®|? = —n(2tt —2aT —nF)TF  +9?|FL?  (12)
N—_——

Optimization dynamics Optimization dynamics along the ideal direction ~ Noise penalty
(convergence speed of positive pairs)

* Optimization along the ideal direction: In the first term, because the learning rate 7 is typi-
cally small, the hindrance caused by the second-order parallel component (1|| F}|||?) is far
smaller than the promotion of convergence speed provided by the first-order parallel com-
ponent (2n(tT — a*)TFH). This term represents the effective progress along the geodesic
path.

* Noise penalty: The second term 72 || F', ||? depends solely on the perpendicular component.
Since this term is strictly greater than O if the perpendicular component is not zero, it acts
as a penalty that increases the final distance. Therefore, a larger perpendicular component
imposes a greater hindrance to the convergence speed of positive pairs. This mathematical
conclusion validates our hypothesis that suppressing the perpendicular component acceler-
ates alignment.

13
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C.2 ANALYSIS OF THE PUSHING OBJECTIVE AND STOCHASTIC DEVIATION

Regarding the objective of pushing negative pairs apart, we analyze the impact of F'; from an
empirical and global perspective. While InfoNCE aims to push text embeddings away from negative
samples, two key factors suggest that the perpendicular component is suboptimal for this goal:

* Mini-Batch Stochasticity: Current InfoNCE implementations rely on Mini-Batch training.
Consequently, the direction of the pushing force within a specific mini-batch inevitably
deviates from the true gradient direction of the entire dataset. This stochastic deviation
acts as noise in cross-modal representation alignment. This is supported by the consen-
sus in contrastive learning research that larger batch sizes—which reduce gradient vari-
ance—consistently yield better alignment performance.

* Global Trajectory Drift: Even from a global perspective, the aggregate pushing force gen-
erated by the distribution of all negative samples is seldom perfectly collinear with the
pulling force from the positive sample. This generates a Global Perpendicular Compo-
nent 1. Although this component geometrically pushes the embedding away from negative
samples, it simultaneously pushes the optimization path sideways, deviating from the ideal
straight-line trajectory required to align with the positive sample.

D ANALYSIS OF SVR’S MECHANISM

In this section, we analyze the gradient space of the SVR term to show that SVR can effectively
suppress the perpendicular component and improve the accuracy of the learned representations in
theory.

The support vector is located in the direction pointing from text embedding ¢ to positive audio

embedding a™ and lies on the surface of the text embedding distribution centered at text embedding
. _ gt . N gt .

t*. Its mathematical expression is tg,, = t1 + RM = {T + Rii, where 4 = Hgff’;” is the

unit vector in the pulling direction and R is an adaptive and learnable radius.

The gradient of SVR term in equation[6]is computed by the chain rule:

T
tsu
Vth’ur = (aat+p> Vtsu,pstr- (13)

. . Otsup -
The Jacobian matrix “5¢* is computed as

4t
3tsupa<t++R a t >

ot ott [lat —tt| "
9 ([ at—tt (9
I +R— | " ).
s (o)
After derivation, we get % = W(ﬁﬁ — I). The matrix (4% — I) is a projection operation

that projects any vector onto the hyperplane orthogonal to 4. We denote P, = I — aw. Therefore,
the Jacobian matrix is denoted as

Ot sup R
= I —_ 7P .
o+ lat — ¢+ + (15)

We further analyze the pushing force component from a single negative example a;, denoted as
fsup,push,;» within the gradient generated by L., term:
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T
f L ataup sup,]
sup,push,j ot

suzm Pla7
( Ha+ —t*| >
(16)
R
Poup,j
< (a; +a1;) - o+ — t+||alj>
R
sup 7 —
2o+ (= o ey )
where o denotes the weight of the SVR term in the total loss, probability P can be calculated in

sup,j
equatlonlby replacing text embedding ¢ to text support vector tg,,. We decompose the negative

audio embedding a; into a parallel component a ; and perpendicular component a;  to the unit

vector 4, denoted as a; = a; ; + a7 ;. It should be noted that P a} = (I —ad)a; =aj ;.

This result is the core of the proof. It shows that for the pushing force generated by the support
vector loss, its parallel component aﬁj remains unchanged, while its perpendicular component a | j

is scaled by a factor of (1 — ﬁ)

We examine the parallel component of the total pushing force from negative example j, denoted as
F‘H push,j-

F push,j = fu,j + fsup,l.j

P
sup,j —
gt (17)

And the perpendicular component F'| ;5. ; Of the total pushing force from negative example j can
be computed as:

F push,j = f1,j+ Fsup,1,j
P P . R
i - supj (1 _ -
S ( la¥ — t+|“w) (18)

P. P R
I sup.j [ _ -
[7 e ( ||a+—t+||)]“lvf

The factor (1— ﬁ) plays a key modulating role to control the optimization trajectory drift. For

most of the training process, the text embedding ¢ is at a certain distance from its positive example
a™, such that ||a™ — ¢T||>R. In this scenario, the factor is a positive number less than 1, which
means the support vector regularization term actively weakens this drift caused by the perpendicular
component. Consequently, the overall gradient direction points more closely toward the pulling
force while adaptively maintaining enough additional information in negative samples, making the
optimization path from text embedding ¢* to positive audio embedding a™ more direct and stable.
This reduces unnecessary drift, thereby accelerating the convergence process and potentially leading
to better alignment.
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E ADDITIONAL EXPERIMENT

E.1 STATISTICAL SIGNIFICANCE EVALUATION

To ensure the robustness of our results and verify that the performance gains are statistically signif-
icant rather than artifacts of random initialization, we performed 5 independent training runs using
different random seeds for the InfoNCE, SigLIP, and our proposed variants. We report the mean and
standard deviation of the retrieval metrics on the AudioCaps dataset.

As presented in Table ] our SVR-based methods consistently outperform the baselines with
low variance. For instance, compared to the strong InfoNCE baseline (41.79 £ 0.14), our bi-
DynamicSVR achieves a T2A R@1 of 44.29 £ 0.61. Notably, the lower bound of our method’s
confidence interval is strictly higher than the upper bound of the baseline, indicating that the im-
provement is statistically significant. A similar trend is observed when comparing our method
against SigL.IP, where bi-DynamicSVR yields a substantial improvement of over 6% in T2A R@1.
These results confirm that controlling the perpendicular component of the pushing force leads to
stable and reproducible performance gains.

Table 4: Performance comparison on AudioCaps with mean and std.

Method Text-to-Audio Audio-to-Text
R@1 R@10 R@1 R@10
SigLIP 36.68+0.12 85.83+0.15 47924011 88141019
- bi-StaticSVR 42-67i0.28 87,55i034 55~41i025 90~42i0.31
- bi-DynamicSVR | 43.211067 89.1540558 | 56.441072 92.8110.63
InfoNCE 41'79i0'14 87'75i0-16 56-61j:0.13 92'41j:0.18
- bi-StaticSVR 43.7640.33 88.9240.29 57.6440.37 92.8810 .24
- bi-DynamicSVR | 44.291061 89.081053 | 59.831079 93.3510.68

E.2 EXPERIMENT RESULT UNDER LARGE-SCALE SCENARIO AND DISTRIBUTION SHIFTS
SCENARIO

To further validate the efficacy of SVR in real-world scenarios, we evaluated it under two settings:
data scaling and distribution shift. For the data scaling setting, we utilized the WavCaps dataset,
which encompasses a broader range of audio events and comprehensively reflects complex real-
world data distributions. Specifically, we held out 5,000 samples as the test set and used the remain-
der for training. regarding the distribution shift scenario, we evaluated the performance of models
trained on the Clotho dataset using the AudioCaps dataset, and vice versa.

Table 5: Performance of InfoNCE and InfoNCE+SVR under WavCaps dataset

A2T | T2A
Model R@1 | R@1
InfoNCE 2060 | 7.76

-bi-StaticSVR 21.00 | 8.26
-bi-DynamicSVR | 21.30 | 8.30

As shown in Table [5] both StaticSVR and DynamicSVR consistently outperform the standard In-
foNCE baseline. specifically, DynamicSVR achieves the highest accuracy with 21.30% (A2T) and
8.30% (T2A) in R@1. This confirms that our SVR method remains effective and beneficial when
applied to large-scale, diverse real-world data.

Table 6: Performance of InfoNCE and InfoNCE+SVR under distribution shifts scenario

AudioCaps — Clotho | Clotho — AudioCaps
Model A2T T2A A2T T2A
R@I1 R@1 R@1 R@I
InfoNCE 18.1643 14.4541 26.6807 20.6513
-bi-StaticSVR 19.4203 14.8213 28.3613 21.0924
-bi-DynamicSVR | 20.1932 14.9279 29.6218 21.3655
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Furthermore, we assessed the model’s robustness to domain differences through cross-dataset eval-
uation, as shown in Table[6] In this zero-shot setting—training on AudioCaps and testing on Clotho,
and vice versa—our SVR-based methods demonstrate significant performance gains over the base-
line. Notably, DynamicSVR improves A2T R@1 by approximately 2.0% and 2.9% in the two
transfer scenarios, respectively. These results suggest that by controlling optimization trajectory
drift, our SVR methods learn more universal representations that generalize well to unseen domains
with distinct data characteristics.

E.3 DISTRIBUTION OF POSITIVE PAIR SIMILARITY

—— InfoNCE
InfoNCE-bi-StaticSVR
InfoNCE-bi-DynamicSVR

Numbe

/4

/W
‘/‘/

—C—

o5
Similarity

Figure 4: Distribution of Positive Pair Similarity in AudioCaps

To further demonstrate the robustness of our approach, we analyzed the similarity score distribution
of positive pairs on the AudioCaps test set, as shown in Figure[d] The blue curve represents the base-
line InfoNCE model, while the green and orange curves correspond to our InfoNCE-bi-StaticSVR
and InfoNCE-bi-DynamicSVR methods, respectively.As illustrated, the baseline InfoNCE distribu-
tion peaks earlier (around 0.65-0.70) and decays rapidly in the high-similarity region (> 0.75). In
contrast, both SVR-based methods exhibit a noticeable rightward shift in the distribution. Specif-
ically, our methods maintain a significantly higher density of positive pairs in the high-confidence
interval (similarity scores between 0.7 and 0.9) compared to the baseline. This distributional shift
indicates that the proposed SVR mechanisms effectively mitigate the semi-hard negative problem by
pulling positive pairs closer in the shared embedding space. The increased number of high-similarity
pairs provides empirical evidence that the performance improvements are driven by superior and
more tightly clustered cross-modal alignment, rather than random variance.

E.4 COMPARISON SVR WITH SIMPLE GRADIENT REWEIGHTING

To address the question of whether the proposed Support-Vector Regularization (SVR) functions
merely as a form of gradient re-scaling, we implemented a baseline method named Simple Reweight
under the same setting as SVR for comparison. This analysis serves to demonstrate that the improve-
ments yielded by SVR are not side effects of simple magnitude control, but rather the result of its
unique geometric properties.

The Simple Reweight baseline attempts to achieve directional correction by amplifying the weight
of the positive sample gradient. We introduced a learnable scalar parameter to scale the probability
P computed in equation This method emphasizes the parallel component of the gradient relative
to the negative samples, theoretically mimicking a basic form of directional adjustment.

We evaluated this baseline on the AudioCaps dataset. As shown in Table[7] the Simple Reweight
strategy resulted in performance degradation across both Audio-to-Text (A2T) and Text-to-Audio
(T2A) retrieval tasks compared to the standard InfoNCE loss.

The performance degradation in the Simple Reweight baseline highlights a critical distinction in
optimization dynamics: the coupling between gradient direction and magnitude.

* Instability of Simple Reweighting: Simply increasing the weight of the positive gradient
causes the learnable scalar to simultaneously alter the gradient direction and significantly
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Table 7: Performance Comparsion between InfoNCE and Simple Reweight Baseline.

A2T | T2A

Model R@I | R@I
InfoNCE 56.72 | 41.87
-Simple Reweight | 51.26 | 39.15

inflate the magnitude of the parallel component. This coupling destabilizes the training
process, as the scalar itself becomes difficult to model in an unsupervised manner when the
gradient magnitudes fluctuate drastically.

« Stability of SVR: In contrast, SVR employs the scaling factor (1 — ﬁ) to selectively
adjust the perpendicular component. Crucially, the unsupervised modeled radius R does
not directly inflate the magnitude of the parallel component. This decoupling ensures that
the gradients remain stable after regularization, avoiding the magnitude explosion observed

in simple re-weighting.

Therefore, while SVR can be theoretically viewed as a sophisticated form of re-weighting, its ability
to control trajectory drift without destabilizing optimization is unique and cannot be replicated by
simple scalar multiplication.

E.5 EXPERIMENT RESULT UNDER MULTILINGUAL SCENARIO

Table 8: Recall and precision results under multilingual AudioCaps and Clotho dataset.

AudioCaps Clotho
Model T2A A2T T2A A2T
R@l R@10 | R@el R@I10 | R@l R@10 | R@l R@I10
SigLIP 3440 8234 | 4426 86.24 | 13.62 50.53 | 17.50 53.36
-bi-StaticSVR 36.87 84.23 | 49.54 89.08 | 15.17 5232 | 1870 57.00

-bi-DynamicSVR 38.56 85.20 | 51.46 90.68 | 1582 54.36 | 21.22  58.20
InfoNCE (ML-CLAP) | 37.20 84.79 | 50.20 90.68 | 17.10 55.79 | 21.50  58.80

-bi-StaticSVR 39.60 8498 | 5236 91.05 | 17.28 56.06 | 2237 59.42

-bi-DynamicSVR 39.75 85.52 | 53.99 91.22 | 1749 56.35 | 2243  60.04
ATRI-CACL 39.44 8536 | 5342 91.05 - - - -

-bi-StaticSVR 40.01 8498 | 5428 9220 - - - -

-bi-DynamicSVR 43.61 89.13 | 60.08 94.22 - - - -

Multilingual Retrieval: Multilingual Retrieval: To further validate the effectiveness of our pro-
posed framework, we conducted evaluations in a multilingual scenario. Following the scheme of
ML-CLAP [Yan et al.| (2024), we dynamically pair each audio sample with a random text caption
from one of eight languages during training. The reported metrics are averaged across all lan-
guages. We compared our approach against standard losses like SigLIP, InfoNCE, and the recent
strong baseline ATRI |Yin et al.| (2025). For ATRI, we reproduced its Audio-English Co-Anchor
Contrastive Learning (CACL) objective.

As shown in Table [§] both bi-StaticSVR and bi-DynamicSVR consistently improve performance
across all baselines. Notably, incorporating SVR into ATRI yields significant gains, with bi-
DynamicSVR achieving the best overall performance. These results confirm that our SVR mecha-
nism is orthogonal to existing advanced schemes and can be effectively integrated to enhance state-
of-the-art models, validating its generalizability even in complex multilingual scenarios. We also
evaluate the quality of the translated multilingual test set in Appendix [E.9]

E.6 EXPERIMENT RESULT FOR CONVERGENCE SPEED

To empirically validate that SupCLAP establishes a more effective optimization trajectory, we an-
alyzed the model’s convergence speed. Figure [3illustrates the evolution of the R@1 metric across
training epochs for both Audio-to-Text (A2T) and Text-to-Audio (T2A) retrieval tasks on the Au-
dioCaps dataset.
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(a) A2T Convergence Speed under SigLIP. (b) A2T Convergence Speed under InfoNCE.
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(c) T2A Convergence Speed under SigLIP. (d) T2A Convergence Speed under InfoNCE.

Figure 5: Comparison of Convergence Speed between Baseline loss and SVR.

As observed, both bi-StaticSVR and bi-DynamicSVR exhibit significantly faster convergence com-
pared to the standard InfoNCE and SigLIP baselines. The SVR-enhanced models consistently
achieve higher retrieval performance at earlier epochs and maintain this advantage throughout the
training process. This empirical evidence corroborates our theoretical analysis: by suppressing the
perpendicular component of the pushing force, SVR effectively mitigates optimization trajectory
drift, resulting in a more direct and efficient path toward optimal alignment.

E.7 ROBUSTNESS ANALYSIS OF DYNAMICSVR UNDER NOISY SETTINGS

To further explore the stability of the unsupervised dynamic semantic radius predictor under condi-
tions with low-quality or noisy embeddings, we conducted a sensitivity analysis in a specific Noisy
Setting.

In this setting, both the audio and text encoders were initialized with random weights instead of pre-
trained checkpoints. Furthermore, to limit the modeling capacity, we reduced the depth of the text
encoder (SONAR-TE) from 24 layers to 12 layers. We compared the performance of the standard
InfoNCE baseline against our InfoNCE-bi-DynamicSVR method on the AudioCaps dataset.

The retrieval performance under this noisy setting is reported in Table 9] Despite the lack of initial
semantic alignment, the InfoNCE-bi-DynamicSVR method demonstrates significant improvements
over the standalone InfoNCE baseline across all metrics.

Table 9: Performance of InfoNCE and InfoNCE-bi-DynamicSVR under noisy setting

Model R@1 mAP@10
A2T T2A A2T T2A
InfoNCE 8.1933  7.4160 | 52340 15.0193
-bi-DynamicSVR | 10.7143  9.4328 | 7.0139 17.9908

19



Published as a conference paper at ICLR 2026

The results indicate that DynamicSVR is robust to noisy input embeddings and does not lead to
training collapse or instability. To understand the underlying mechanism, we analyzed the evolution
of the predicted semantic radius R during training in the noisy setting. According to the result in
Figure [6] we observed that the average radius R predicted by the module in the noisy setting is
notably larger than that observed when using pre-trained weights.

—— InfoNCE-bi-StaticSVR
2.0 InfoNCE-bi-DynamicSVR noisy setting
—— InfoNCE-bi-DynamicSVR

Semantic Radius
IS

5 6
Epoch

Figure 6: Variation of Semantic Radius under Noisy Settings and Pre-trained Weights.

This phenomenon aligns with our theoretical framework regarding optimization trajectory drift. In
the noisy setting, there are higher cosine similarities between negative pairs compared to a well-
clustered pre-trained space. According to our force decomposition analysis, higher negative similar-
ities result in a significantly larger perpendicular component of the pushing force. The DynamicSVR
module correctly identifies this instability and adaptively predicts a larger radius R. This increased
radius exerts a stronger suppression effect on the perpendicular component (via the scaling factor
1—R/|la™ —t*|), thereby preventing excessive optimization trajectory drift even when the encoder
signals are weak. This confirms that the unsupervised predictor functions as an effective adaptive
regularizer, scaling its intervention based on the quality of the embedding space.

E.8 IMPACT OF SEMANTIC DIFFICULTY ON SELF-SUPERVISED SEMANTIC RADIUS
MODELING

=39

Semantic Radius

H 6 7 8 9 10
Epoch

Figure 7: Variation of Semantic Radius under Different Semantic Difficulties.

To elucidate the mechanism of the unsupervised dynamic semantic radius predictor and demonstrate
its robustness, we conducted an experiment analyzing the variation of the predicted semantic radius
R in the presence of hard negative samples. Specifically, we randomly sampled 720 negative samples
and identified the Top-K (where K € {6, 12, 18}) most similar ones as "hard negatives.” These hard
negatives were then mixed with general negatives and positive pairs within a mini-batch to monitor
the changes in the semantic radius R predicted by the DynamicSVR module across different epochs.

As illustrated in Figure 7, we observed a clear positive correlation: the magnitude of the predicted
radius R consistently increases as the density of hard negative samples (K) rises. This empirical
finding provides a precise mechanistic explanation for the predictor’s behavior, countering concerns
regarding its fragility:
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» Response to Semantic Difficulty: The high similarity characteristic of hard negative sam-
ples generates a significantly stronger perpendicular component in the gradient space com-
pared to easy negatives. According to our theoretical analysis, this increases the risk of
drift in the optimization trajectory. The radius predictor robustly detects this condition and
adaptively increases R. A larger R strengthens the regularization effect (via the scaling
factor 1 — R/|ja™ —tT||) to impose tighter control, thereby mitigating the risk of excessive
optimization path deviation and ensuring stability.

* Temporal Evolution: As training progresses and the model’s discriminative capability im-
proves, the cosine similarity between negative pairs naturally decreases. This attenuates the
pushing force and the associated perpendicular component derived from negative samples.
Consequently, the predictor adaptively decreases R to avoid over-suppressing a component
that is already minimal.

These results confirm that the unsupervised radius predictor successfully learns a dynamic trade-off:
it prioritizes stability by assigning a larger R when the risk of drift is high (e.g., early training stages
or hard negative presence) and prioritizes information retention by reducing R when the optimization
path becomes clearer. This validates that our module is not fragile under noise but rather acts as an
adaptive regulator for the perpendicular component.

E.9 QUALITY ASSESSMENT OF MULTILINGUAL TEST SET

Table 10: Semantic Similarity between Re-translated Text and Original English Text on Test Set

Language | AudioCaps Clotho
French 94.5 93.5
Dutch 95.0 94.2
Spanish 94.8 94.0
German 95.6 94.2
Catalan 91.1 92.2
Japanese 91.7 90.9
Chinese 90.7 90.3

To verify the semantic fidelity of our LLM-translated multilingual Audiocap and Clotho test set
and thus substantiate our experimental results, we performed a back-translation analysis. We first
translated the test captions back to English using Deepseek V3. We then computed the average
cosine similarity between the embeddings of the back-translated and original English texts via the
Roberta-large model. The results, detailed in Table[I0} reveal an average similarity exceeding 90%
for all languages. This high fidelity demonstrates strong semantic preservation and suggests that
translation errors in our test set are sufficiently small.

E.10 ADDITIONAL ABLATION STUDY

Table 11: Ablation Study of SVR Variants on Multilingual Text-Audio Retrieval.

T2A A2T
ID | Model R@I _mAPI0 | R@I _mAPI0
0 InfoNCE 3720 52.19 | 5020  28.28
1 -bi-DynamicSVR 39.75 5422 | 5399 32.82
2 -bi-DynamicSVR wo/ constraints 39.59  54.16 | 53.39 3242
3 -uni-DynamicSVR 39.52 5408 | 5326  32.26
4 -uni-DynamicSVR wo/ constraints | 39.37  53.81 53.07  31.78
5 -bi-StaticSVR 39.60 5399 | 5236  31.59
6 -uni-StaticSVR 39.51 5377 | 52.06  30.70

Effectiveness of SVR Components: The multilingual ablation study results in Table|l I{are consis-
tent with the monolingual scenario in Table [3} in both cases, the bidirectional DynamicSVR model
with constraints (bi-DynamicSVR) achieves the best results. The performance ranking from highest
to lowest is bidirectional SVR, unidirectional SVR, and InfoNCE.
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Table 12: Ablation study on different batch sizes for T2A and A2T tasks

: T2A AT

Model Batch Size AP0 [ R@T  mAPIO
74 3720 52.09 | 5020 288
InfoNCE 48 3932 5395 | 5328  31.99
72 4022 5485 | 5434 3293
24 3960 5399 | 5236 3159
-bi-StaticSVR 48 4054 5501 | 5421 3292
72 4089 5540 | 5487 3347
74 3975 5422 | 5399 3282
“bi-DynamicSVR 48 4083 5520 | 5431 3325
72 4092 5557 | 5500 33.82

Impact of Batch Size: Table shows that the performances of both InfoNCE, bi-StaticSVR,
and bi-DynamicSVR improve as the batch size increases (24, 48, 72). This is consistent with the
principle that larger batches provide more diverse negative samples for contrastive learning, which
in turn leads to better performance. Both bi-StaticSVR and bi-DynamicSVR consistently maintain
a stable performance advantage over InfoNCE, indicating that our methods can further enhance the
performance of InfoNCE with larger batch sizes.

Table 13: Ablation of SVR weight o

T2A A2T
R@1 mAPIO | R@l mAPI10
0.1 | 38.69 5338 | 52.05 3048
05| 3942 5390 | 5228 3143
1.0 ] 39.75 5422 | 5399 32.82

(%

Impact of SVR Weight a: The results in Table [13]indicate that model performance consistently
improves as « increases from 0.1 to 1.0. This suggests that a greater weight for the SVR module
significantly enhances the model’s feature representation or matching capabilities. Therefore, the
experiment identifies o = 1.0 as the optimal hyperparameter setting for the current configuration.

E.11 OVERHEAD ANALYSIS

Table 14: Evaluation results in GPU memory overheads and time overheads

Scheme AudioCaps Clotho
GMOMB) TO(s) | GMOMB) TO(s)
InfoNCE 22724 2479 30318 1102
-bi-StaticSVR 22732 2438 30368 1127
-bi-DynamicSVR 22834 2519 30398 1116

In Table [I4] we evaluate the time overhead (TO) and GPU memory overhead (GMO) of SupCLAP
compared to InfoNCE. TO denotes the average training time over 10 epochs, and GMO denotes
the peak GPU memory usage during the training process. The results show that the two SupCLAP
variants achieve performance gains with almost no additional computational overhead, possessing
both high efficiency and practical viability.

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We utilized a large language model (LLM) as a general-purpose writing assistant to enhance the
clarity and logical structure of the manuscript. This included polishing sentences, improving transi-
tions, and refining the overall flow. All LLM-assisted edits in this paper were meticulously checked
and validated by us.

Furthermore, we employed an LLM to construct a multilingual AudioCaps and Clotho dataset. To
validate the quality of the translations, we evaluated the semantic similarity between the original En-
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glish texts and their translated counterparts in Appendix [E.9] This was accomplished by calculating
the cosine similarity of their embeddings, which were generated using a RoBERTa-large model.

23



	Introduction
	Analysis of Optimization Trajectory Drift
	Contrastive Learning Loss Function and Gradient
	Suppress Trajectory Drift Problem


	Method
	Framework of SupCLAP
	Unsupervised Semantic Radius Modeling

	Experiment
	Experimental Setup
	Datasets and Metrics
	Models and Implementation Details

	Main Results
	Audio-Text Retrieval
	Zero-Shot Audio Classification
	Ablation Studies

	Semantic Radius Analysis

	Conclusion
	Related Work
	Constraint Term in DynamicSVR
	Detailed Theoretical and Empirical Analysis of Optimization Trajectory Drift
	Theoretical Proof on Convergence Speed of Positive Pairs
	Analysis of the Pushing Objective and Stochastic Deviation

	Analysis of SVR's Mechanism
	Additional Experiment
	Statistical Significance Evaluation
	Experiment Result under Large-scale Scenario and Distribution Shifts Scenario
	Distribution of Positive Pair Similarity
	Comparison SVR with Simple Gradient Reweighting
	Experiment Result under Multilingual Scenario
	Experiment Result for Convergence Speed
	Robustness Analysis of DynamicSVR under Noisy Settings
	Impact of Semantic Difficulty on Self-supervised Semantic Radius Modeling
	Quality Assessment of Multilingual Test Set
	Additional Ablation Study
	Overhead Analysis

	Statement on The Use of Large Language Models

