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ABSTRACT

Weight pruning has proven to be an effective method of reducing the model size
and computation cost without sacrificing its model accuracy. Conventional sparse
matrix formats, however, involve irregular index structures with large storage re-
quirement and a sequential reconstruction process, resulting in inefficient use of
highly parallel computing resources. Hence, pruning is usually restricted to infer-
ence with a batch size of one, for which an efficient parallel matrix-vector multi-
plication method exists. In this paper, a new class of sparse matrix representation
is proposed utilizing the Viterbi algorithm that has a high, and more importantly,
fixed index compression ratio regardless of the pruning rate. In this approach,
numerous sparse matrix candidates are first generated by the Viterbi encoder, and
the candidate that aims to minimize the model accuracy degradation is then se-
lected by the Viterbi algorithm. The model pruning process based on the proposed
Viterbi encoder and Viterbi algorithm is highly parallelizable, and can be imple-
mented efficiently in hardware to achieve low-energy and a high-performance
index decoding process. Compared with the existing magnitude-based pruning
methods, the index data storage requirement can be further compressed by 85.2%
in MNIST and 83.9% in AlexNet while achieving a similar pruning rate. Even
compared with the relative index compression technique, our method can still re-
duce the index storage requirement by 52.7% in MNIST and 35.5% in AlexNet.

1 INTRODUCTION

Deep neural networks (DNNs) demand an increasing number of parameters as the required com-
plexity of tasks and supporting number of training data continue to grow (Bengio & Lecun, 2007).
Correspondingly, DNN incurs a considerable number of computations and amount of memory foot-
print, and thus requires high performance parallel computing systems to meet the target response
time. As an effort to realize energy-efficient DNN, researchers have suggested various low-cost
hardware implementation techniques. Among them, pruning has been actively studied to reduce the
redundant connections while not degrading the model accuracy. It has been shown that pruning can
achieve 9× to 13× reduction in connections (Han et al., 2015).

After pruning, the remaining parameters are often stored in sparse matrix formats. Different ways
of representing indices of non-zero values constitute the different sparse matrix format, and have
a significant impact on the level of achievable computational parallelism when a sparse matrix is
used as an input operand (Bell & Garland, 2009). If the format is not properly designed, then the
performance of DNN with a sparse matrix can be even lower than the case with dense matrix (Yu
et al., 2017). The two most important characteristics of a hardware-friendly sparse matrix format are
1) reducing index storage footprint and 2) parallelizable index decoding process. As a compromise
between index size reduction and index decoding complexity, numerous formats have been proposed
(Bell & Garland, 2009).
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Figure 1: Viterbi decompressor (VD) structure.
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Figure 2: CSR Format and the proposed sparse matrix format comparison.

DNN after pruning heavily involves sparse matrix-vector and matrix-matrix multiplications (SpMV
and SpMM, respectively). Despite the sparse content, the computation time for SpMM is longer
than that of dense matrix multiplication in the modern graphic processing unit (GPU), due to its
serialized index decoding process and irregular memory access patterns. For example, the inference
latency of AlexNet and VGG16 with SpMM can be increased by 2× to 5× on GPUs or CPUs
(Han et al., 2016a). The traditional pruning technique, therefore, is only attractive in the case where
SpMV can be utilized (i.e., batch size of 1) (Han et al., 2016b) (Yu et al., 2017). Therefore, a sparse
matrix representation associated with parallelizable dense-matrix reconstruction in a wide range of
computing operations is the key to extending the use of pruning.

We propose a new DNN-dedicated sparse matrix format and a new pruning method based on error-
correction coding (ECC) techniques. A unique characteristic of this sparse matrix format is the fixed,
yet high (as shown in Section 3) index compression ratio, regardless of the pruning rate. Moreover,
sparse-to-dense matrix conversion employing the proposed format becomes a parallel process and
is no longer the performance bottleneck. Notice that conventional sparse matrix formats entail at
least one column or row index value for each non-zero parameter such that the amount of index data
is larger than that of non-zero values. On the other hand, the proposed approach compresses the
locations of non-zero values with a convolutional code which is a type of ECC code. Consequently,
the size of the sparse matrix index becomes negligible.

Conventional pruning approaches first identify the parameter candidates to be pruned, then construct
a matrix (often sparse) using formats such as Compressed Sparse Row (CSR) to represent the sur-
vived parameters. On the contrary, in the proposed scheme, pruning is performed in a restricted
manner since a specific sparse matrix format is first constructed. A DNN-specific Viterbi encoder
takes an input pattern and generates a sequence of random-number, where a “1” indicates the pa-
rameter had survived, and had been pruned otherwise. Depending on the length of the input pattern,
a vast (but limited) number of output patterns (hence candidates of the final sparse matrix represen-
tations) are considered. In this case, the input pattern is used as the sparse matrix index. The content
of the input pattern, which generates a deterministic output random number sequence, is chosen
such that the accuracy degradation is minimized based on a user-defined cost function (more details
on Section 2). Both the Viterbi encoder and the algorithm have been shown to be computationally
efficient with an inherent parallelizable characteristic, as demonstrated in the digital communication
applications (Viterbi, 1998). In this work, we further extend its application and demonstrate how the
Viterbi algorithm can be modified to perform energy-efficient DNN pruning.
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2 PRUNING USING VITERBI-BASED APPROACH

Figure 1 illustrates the proposed Viterbi decompressor (VD), which is based on the Viterbi encoder
widely used in digital communication. VD has a simple structure consisting only of FlipFlops (FFs)
and XOR gates. In this configuration, VD takes one input bit and produces four output bits every
clock cycle. Notice that FFs and XOR gates intermingle input bits and generate pseudo random
number outputs. Assume that a dense matrix is formed after pruning, as shown in Figure 2, and an
input sequence of {0, 1, 1, 0} is applied to VD through four clock cycles to generate the outputs,
where ‘1’ implies that the corresponding parameter has survived. In this case, the overhead in the
index for the proposed Viterbi-Compressible Matrix (VCM) format is significantly less than that
of CSR. In the VCM format, the input sequence to the VD becomes the index information. This
index size is independent of the number of non-zero values and can be determined in advance based
on the target index compression ratio1. Unlike the CSR format, the available VD-compressible
dense matrix representation is limited, meaning that not all possible dense matrix representations
after conventional magnitude-based pruning (such as (Han et al., 2015)) can be reconstructed by
VD. Therefore, the pruning method considering VCM may result in a matrix that contains different
survived parameters compared to a pruning method using the CSR format. Thus, the key to the
success of VCM is to design a VD that allows diversified parameters to survive, and to efficiently
search for the optimal VD input sequence that minimizes the accuracy degradation2.

2.1 VITERBI DECOMPRESSOR (VD) DESIGN CONSIDERATIONS

If the input sequence length and the total output sequence length of a VD are denoted as p and q,
respectively, then the index compression ratio can be calculated as q/p. Achieving a high index
compression ratio (i.e., q >> p) implies that the possible 2p VD-compressible dense matrix repre-
sentations need to be uniformly distributed inside the 2q space to maximize the likelihood of finding
a dense matrix representation that is closely matched to the optimal case.

In other words, the goal of VD is to act as a random number generator using the input sequence. It
is interesting to note that such an effort has already been studied in ECC design (Morelos-Zaragoza,
2006). Since “random coding” has been introduced by C. Shannon to prove his channel capacity
model (Shannon, 1948), practical ECC techniques with a fixed encoding rate was proposed to simu-
late random coding with an allowed decoding complexity. We choose the Viterbi encoder, which is
the base model of VD, as a controllable random number generator because of its simplicity and flex-
ible design when increasing the number of outputs. The randomness of VD outputs is determined
by the number of FFs and the XOR gates configuration. We present the details of the VD design
methodology in Appendix A.1.

The basic structure of VD is similar to the design introduced in (Lee & Roy, 2012). VD targeting
DNN applications, however, requires the number and/or distribution of 1 (i.e., pruning rate) to be a
user-defined parameter, whereas in the typical applications that require random number generation,
such as ECC and VLSI testing, the number of 1s and 0s should be approximately the same. In
order to control the pruning rate, the VD outputs are connected to binary number comparators. For
instance, in Figure 1, one input of the comparator takes a two-bit number {out2, out1}, while the
other input takes a user-defined threshold value (THc). If {out2, out1} (or {out4, out3}) is larger
than THc, the comparator produces a “1”, and a “0” otherwise. A trade-off occurs between the
granularity of the pruning rate and the index compression ratio. If the number of VD outputs, the
number of comparator input bits, and the number of comparators (i.e., index compression ratio)
are denoted as NUMv , NUMc, and R, respectively, then NUMv = NUMc × R (see Figure 10).
The proposed index decoding operation utilizing VD is inherently a parallel process with a small
hardware overhead. Unlike CSR or other similar formats that employ an irregular index structure,
decoding VCM using VD does not incur significant buffer/memory overhead for indices and/or non-
zero values, and most importantly, can be performed with a fixed and predictable rate. A fixed index
compression ratio is also desirable for efficient memory bandwidth utilization and for applying the
tiling technique to further improve the level of parallelism.

1As an example, the structure shown in Figure 1 provides four output bits per one input bit, achieving an
index compression ratio of four

2In the context of magnitude-based pruning, the objective of pruning using the VD is to identify a set of VD
input sequences that preserves maximum number of larger value weights
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Figure 3: Trellis diagram of VD shown in Figure 1.

2.2 VITERBI ALGORITHM FOR PRUNING

The basic idea of our proposed pruning method is to assign a cost function to each pruning case
enabled by VD and evaluate all possible (2p) pruning cases with a “Branch-and-Cut” algorithm.
The pruning case that has the optimal (i.e., lowest) cost function should lead to minimal accuracy
degradation. The Viterbi algorithm computes the maximum-likelihood sequence in a hidden Markov
model (Forney, 1973), and can be utilized as a fast and efficient pruning exploration technique for
our pruning method. Pruning using Viterbi algorithm follows the next 3 steps.

The first step involves constructing a trellis diagram which is a time-indexed version of a state
diagram. A state of VD can be represented using FF values, where the leftmost FF value becomes
the least significant bit. If VD has k FFs, the total number of states is 2k. Hence, VD in Figure 1 has
a total of 32 states as shown in Figure 3, where T is the time index. Each possible transition with
an input bit (0 or 1) produces multiple corresponding output bits. A trellis diagram holds the entire
operations inside VD in a compact fashion.

The next step involves computing a cost function for possible transitions using the branch metric and
the path metric. The branch metric is expressed as λi,jt where t is a time index and i is a predecessor
state of j. λi,jt denotes the cost of traversing along a transition from i to j at the time index t. By
accumulating the branch metrics and selecting one of two possible transitions reaching the same
state at the same time index, the path metric is defined as

Γj
t+1 = max

(
Γi1
t + λi1,jt ,Γi2

t + λi2,jt

)
, (1)

where i1 and i2 are two predecessor states of j. In practice, path metrics can be normalized to
avoid overflow. Note that we use max function for the path metric instead of min function in Eq.
(1) because the metric values in our method describe a degree of ‘reward’ rather than ‘cost’. For
the entire “survived path” selections during the path metric update, the decisions are stored in the
memory and the old path metrics can be discarded. The objective of this Viterbi algorithm is to find
a path maximizing the accumulation of the branch metrics (λi,jt ), which is expressed as:

Di,j,m
t =

(
W i,j,m

t − THp

)
/S1, 0 ≤W i,j,m

t ,THp ≤ 1

βi,j,m
t =

tanh
(
Di,j

t

)
× S2, when survived

− tanh
(
Di,j

t

)
× S2, when pruned

, λi,jt =

R∑
m=1

βi,j,m
t ,

(2)

where W i,j,m
t is the magnitude of a parameter at the mth comparator output and time index t, nor-

malized by the maximum magnitude of all parameters inside the dense matrix to be pruned, and
THp is the pruning threshold value. Intuitively, βi,j,m

t favors(discourages) the survival(pruning) of
parameters with larger magnitude through the skewed tanh function. Pruning with the Viterbi algo-
rithm is flexible such that different cost function can be assigned to the branch metric, depending on
the type of pruning approach, providing the pruning algorithm follows a hidden Markov model (Lou,
1995)3. The two constants, S1 and S2, are the scaling factors, and are empirically determined to be

3Eq. (2) in this work is related to magnitude-based pruning
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5.0 and 104, respectively, for our experiments. Note that exploring diversified states (and hence, var-
ious pruning cases) is achieved by maintaining approximately 50% of the ‘1’ and ‘0’ distributions
for both inputs and outputs of VD (Forney, 1973). Consequently, the target pruning rate is mainly
controlled by the comparator threshold value, THc (e.g., if THc is a 4-bit number and THc=3, then
25%(= (3 + 1)/24) is the target pruning rate). THp is determined by considering the distribution of
parameters and the given target pruning rate (e.g., if the parameters follow a Gaussian distribution
and the target pruning rate is 68.3%, THp corresponding to one sigma is recommended).

Once the final time index is reached, as the last step of Viterbi pruning, the state with the maximum
path metric is chosen, and the previous state is traced by reading the surviving path selection data.
We continue this trace-back procedure to the first time index of a trellis diagram. Note that if the
initial states of FFs are all 0s, then the number of available states (hence the number of sparse
matrix representations in the first few time indices) may be limited. As an alternative, a dummy
input sequence having the length equal to the number of FFs4 in VD can be inserted such that
every state of VD is reachable (refer to Figure 11). In this case, the compressed input index of the
VCM is a combination of the survived dummy sequence and the input sequence. It should be noted
that the Viterbi algorithm can be implemented using a dynamic programming technique. The time
complexity required to find the best pruning method becomes O(l · 2f ) where l is the length of the
input sequence and f is the number of FFs. As can be seen in Appendix A.1, f is small even with a
large number of VD outputs.

3 EXPERIMENTAL RESULTS

In this section, the impact of different VD configurations and branch metric selections on model
accuracy and the index compression ratio is analyzed. We empirically study the weight distribution
after pruning and the sensitivity of accuracy using MNIST. Then, the observations from MNIST are
applied to AlexNet to validate the scalability of our proposed method.

3.1 VD DESIGN AND BRANCH METRIC EXPLORATION USING MNIST

We perform experiments using the LeNet-5-like convolutional MNIST model5. For simplicity, both
the minimum Hamming distance and the XOR taps (introduced in Appendix A.1) are fixed to be 4,
and NUMc is 4 (i.e., NUMv = 4×R). These parameters are selected for fast design exploration, and
increasing them will enhance randomness of VD output and target pruning rate resolution which are
critical to improving pruning rate with minimal accuracy degradation.

Number of VD outputs (NUMv): Immediately after training, we prune the weights with different
NUMv for VD. Figure 4 shows the weight distributions after pruning in the FC1 layer with fixed
THc and THp. Lower NUMv (i.e, lower index compression ratio) leads to sharper pruning around

4The storage overhead of this dummy input sequence is negligible compared to the index data storage
5https://github.com/tensorflow/tensorflow/blob/r1.3/tensorflow/examples/tutorials/mnist/mnist deep.py

5



Published as a conference paper at ICLR 2018

0

1

2

3

4

5

6

7

8

9

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

×10
3

C
o
u
n
t

Weight value

Distribution of survived weights after pruning

THp = 0.5
THp = 0.6
THp = 0.7
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Figure 8: Distributions of pruned (Left) and survived (Right) FC1 weights with different skip state.

the weight determined by THp. Hence, NUMv provides a trade-off between accuracy and the index
compression ratio. Extensive experiments indicate that for the Conv layer, a low NUMv is desired,
while for the FC layer, a wide range of NUMv can lead to minimal accuracy degradation as shown
in Figure 5 (magnitude-based pruning is from (Han et al., 2015)). For MNIST, NUMv=8 for Conv
layers and NUMv=40 for FC layers have been chosen to achieve optimal trade-off between the index
compression ratio and accuracy.

Pruning threshold value (THp): Even when the parameters before pruning follow a known distri-
bution (e.g., Gaussian), it may still be an iterative task to search for an optimal THp that results in
the target pruning rate, especially with high NUMv , as evident from Figure 4. Thus, it is necessary
to investigate the sensitivity of accuracy to THp. In Figure 6, THp affects distributions of survived
weights and pruning rates given the same THc. Note that if the actual pruning rate differs from the
target pruning rate, then VD outputs exhibit skewed supply of ‘1’s or ‘0’s to the comparators and
the trellis diagram path exploration is also biased. In contrast, Figure 7 clearly shows that all the
retraining processes converge, despite the minor discrepancy between the target and actual pruning
rate (target pruning rate is 93.75%).

Skip state (Appendix A.2): Up to now, we have only considered the case where one input bit is
supplied to VD at every clock cycle. However, if n input bits are provided to VD at every clock
cycle, then n − 1 time indices in a trellis diagram are skipped. While this results in a lower index
compression ratio, which is defined as R / (skip state + 1), the skip state allows for a more diverse
state exploration and improves the pruning quality. As can be seen in Figure 8, a greater number of
larger magnitude weights are preserved with increasing number of skip states while fixing both THp

and NUMv . In this work, the default skip state is one.
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Table 1: MNIST test error and comparator threshold values with gradual pruning. Pruning is per-
formed at the 50th epoch (∼ 50% target pruning rate), 100th epoch (∼ 70% target pruning rate),
and 150th epoch (final). 40 VD outputs are used for FC1, while 8 VD outputs for the others.
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Layer
comparator threshold value
50th 100th 150th

Epoch Epoch Epoch
Conv1 4 4 4
Conv2 7 10 12
FC1 7 10 14
FC2 7 10 12

Table 2: Sparse matrix comparison with MNIST using magnitude-based pruning (Han et al., 2015)
and our proposed Viterbi-based pruning. We assume that 16 bits are used for the non-zero values
and index for magnitude-based pruning.

Layer
Magnitude-Based Viterbi-Based Matrix

Weight Pruning Sparse Matrix Pruning Sparse Matrix Size
Size Rate (CSR) Size Rate (VCM) Size Reduction

Conv1 0.8K 34.4% 2.12KB 32.3% 1.16KB 45.3%
Conv2 51.2K 87.4% 25.41KB 81.3% 24.98KB 1.7%
FC1 3211.3K 91.0% 1125.54KB 93.1% 512.82KB 54.4%
FC2 10.2K 81.1% 7.62KB 80.4% 5.17KB 32.2%
Total 3273.5K 90.9% 1160.69KB 92.8% 544.13KB 53.1%

Test Error 0.77% 0.78%

Branch Metric: For the branch metric, a variety of functions, such as ex and the sigmoid function
σ(x), has been investigated, as shown in Figure 9. Among them, the “tanh” function is selected due
to its pruning sharpness and low sensitivity to THp and NUMv .

Based on the observations discussed above, we conducted a pruning and retraining process, and
compared the test errors of the magnitude-based pruning method (Han et al., 2015) and the proposed
Viterbi-based pruning method. For every round of pruning, all the weights, including the ones
pruned in the previous run, are considered. Table 1 illustrates the comparator threshold values THc
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Table 3: Pruning and sparse matrix size comparison for AlexNet on ImageNet using magnitude-
based pruning (Han et al., 2015) and our proposed Viterbi-based pruning. We assume that 16 bits
are used for the non-zero values and index for magnitude-based pruning.

Layer
Magnitude-Based Viterbi-Based Matrix

Weight Pruning Sparse Matrix Pruning Sparse Matrix Size
Size Rate (CSR) Size Rate (VCM) Size Reduction

Conv1 34.8K 16% 69.70KB∗ - 69.70KB∗ 0.0%
Conv2 307.2K 62% 467.46KB 62.5% 268.99KB 42.5%
Conv3 884.7K 65% 1239.40KB 62.3% 777.21KB 37.3%
Conv4 663.6K 63% 982.82KB 62.0% 586.73KB 40.3%
Conv5 442.4K 63% 655.22KB 56.0% 444.83KB 32.1%
FC1 37.7M 91% 13597.74KB 90.3% 8284.93KB 39.1%
FC2 16.8M 91% 6047.99KB 90.8% 3505.43KB 42.0%
FC3 4.1M 75% 4098.00KB 73.7% 2670.18KB 34.8%
Total 61.0M 89% 27158.31KB 88.2% 16607.99KB 38.1%

Test Error (Top-1) 42.73% 42.68%
Test Error (Top-5) 19.77% 19.78%

∗Dense matrix size is considered in this layer because both CSR and VCM representation result in a larger
memory footprint due to the low pruning rate.

(MIN=0, MAX=15 with NUMc=4) used for each pruning round and test error results. Since Conv1
is close to the input nodes, we choose a smaller THc to reduce the target pruning rate of Conv1.
From Table 1, it is clear that the proposed pruning method successfully maintains accuracy during
the entire training process.

The final pruning rate and memory requirement for CSR and VCM for each layer are summarized
in Table 2. Notice that the sparse matrix represented using the VCM format leads to a significant
memory footprint reduction (by 53.1%) compared to the sparse matrix represented with CSR with a
similar pruning rate. This is because VCM’s index storage is reduced by 85.2% compared to CSR’s
index size. Even if the CSR is represented with relative index using 5 bits (Han et al., 2016b), at the
expense of increased index decoding complexity, the VCM index size is still smaller by 52.7%6.

In summary, VCM is superior to CSR due to its encoded index format that requires a smaller stor-
age requirement and parallel dense matrix reconstruction process through VD while maintaining a
comparable model accuracy.

3.2 ALEXNET ON IMAGENET RESULTS

We verified the scalability of the VCM and Viterbi-based pruning methods using the AlexNet model
on ImageNet. The number of VD outputs is 50 for both the FC1 and FC2 layers (NUMv=50,
NUMc=5, R=10) and 8 for the other layers (NUMv=8, NUMc=4, R=2). Similar to the MNIST
results, a higher index compression ratio is set for layers with larger number of weights. Since the
skip state is one, the index compression ratio becomes R/2. The minimum Hamming distance and
the XOR taps are 4. Table 3 presents the pruning rates and matrix sizes assuming that non-zero
weights and CSR index are stored with 16-bit format.

The 38.1% reduction in matrix size achieved using VCM is mainly due to the significant reduction in
the index storage requirement (83.9%). Compared with the 4-bit relative index scheme introduced
in (Han et al., 2016b), the index size of VCM is reduced by 35.5%. The advantage of the index
compression ratio of the proposed technique is largely attributed to the VD’s limited search space
out of all possible encodable index formats, while pruning methods employing traditional sparse
matrix formats do not consider such restriction. Despite such limitation, both methods achieve
similar top-1 and top-5 classification accuracy with the same retraining time.

6Additional size reductions techniques, such as quantizing non-zero weights and Huffman coding (Han
et al., 2016b), can also be applied to our methods
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4 RELATED WORK

Denil et al. (2013) demonstrated that most neural networks parameters have significant redundancy.
The redundancy increases the system complexity, and causes overfitting with small training dataset.
Several approaches have been suggested to prune deep neural networks and increase the sparsity of
parameters in order to minimize both the memory overhead and the computation time, and avoid
overfitting.

Chauvin (1989) and Hanson & Pratt (1989) introduced additional cost biases to the objective func-
tion to decay the unimportant parameters. LeCun et al. (1990) and Hassibi et al. (1993) suggested
pruning parameters while minimizing the increase of error approximated by Hessian matrix. Opti-
mal Brain Damage (OBD) (LeCun et al., 1990) restricts the Hessian matrix, forcing it to be diagonal
to reduce the computational burden, at the cost of additional performance degradation. Optimal
Brain Surgeon (OBS) (Hassibi et al., 1993) used a full Hessian matrix with additional computation
cost to improve the pruning performance.

Han et al. (2015) proposed pruning of deep neural networks by removing parameters based on the
magnitude of their absolute values and then iteratively retraining the pruned network. A 9× and
13× pruning rate was achieved for AlexNet and VGG-16, respectively, without loss of accuracy on
ImageNet dataset. A follow-up paper compressed the pruned network further with weight sharing
and Huffman coding (Han et al., 2016b). Although an impressive compression rate is achieved by
these suggested methods, the irregular sparsity of the survived parameters and the associated com-
plicated index decoding process prevent common hardware such as GPUs from achieving noticeable
speed-up improvement. Alternatively, Han et al. (2016a) designed a dedicated hardware accelerator
to circumvent this problem.

Recently, several papers suggested iterative hardware-efficient pruning methods to realize a faster
inference speed and smaller model size. Molchanov et al. (2017c) suggested iterative pruning on
a feature-map level based on a heuristic approach to evaluate the importance of parameters. This
paper, which shares a similar idea as that of OBS, uses first-degree Taylor polynomial to estimate the
importance of each parameter with reduced computational burden. Since the method prunes feature
maps rather than each parameter, a sparse matrix format is not required at the cost of a lower pruning
rate. Li et al. (2017) suggested pruning all the convolution kernels together with corresponding
feature maps in CNN. Similar to Molchanov et al. (2017c), this coarse-level pruning avoids the use
of a sparse matrix format, at the expense of a lower pruning rate. Park et al. (2017) introduced a
high-performance sparse convolution algorithm, where the sparse convolution was formulated as
sparse-matrix-dense-matrix multiplication with the dense matrix generated on the fly. The paper
shows that this method can improve the inference speed of pruned networks with moderate sparsity,
and can prune each parameter independently, leading to a better pruning rate. However, in the paper,
the results were only demonstrated on CPUs; it was not shown whether the proposed method can
also be applied to throughput-oriented hardware such as GPUs.

Ardakani et al. (2017) proposed a scheme to generate a masking matrix using linear-feedback shift
registers (LFSRs) to randomly prune some of the synaptic weights connections. Even though the
hardware structure for pruning can be simplified, it is not possible to selectively prune connections
to improve the pruning quality. In addition, the scheme can only be applied to the fully-connected
layer, not to the convolution layer.

Kingma et al. (2015) explained Gaussian Dropout as a special case of Bayesian regularization. Un-
like Gaussian Dropout which considers dropout rates as a hyperparameter, Variational Dropout the-
oretically allows training dropout rates layer-wise, or even weight-wise. However, the paper did
not include any experimental result on weight-wise variational dropout. Molchanov et al. (2017a)
extended Kingma et al. (2015) and showed the working case of weight-wise Variational Dropout.
Molchanov et al. (2017a) suggested the use of this characteristic of Variational Dropout to prune
deep neural networks. By pruning out weights with a high dropout rate, high sparsity on a deep
neural network was achieved for the CIFAR-10 classification task. Molchanov et al. (2017b) and
Louizos et al. (2017) suggested pruning deep neural networks in a structured format with new
Bayesian models. The papers could prune deep neural networks either neuron-wise or channel-
wise, keeping the weight matrices in dense format. Both papers showed state-of-the-art sparsity on
deep neural networks for the CIFAR-10 classification task.

9
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In multiple works, attempts have been made to reduce the redundancy with popular lossy com-
pression methods. Denton et al. (2014) applies low rank approximations to pre-trained weights.
Gong et al. (2014) uses vector quantization to compress deep convolution neural networks. Chen
et al. (2015) suggests HashedNets, which applies hashing tricks to reduce the model sizes. Iandola
et al. (2016) achieves AlexNet-level accuracy using 50x fewer parameters with SqueezeNet, which
is comprised of custom convolution filters called Fire modules. These methods are orthogonal to
the network pruning, and can be combined to achieve further model compression. For example,
SqueezeNet combined with Deep Compression (Han et al., 2016b) achieves 510× compression ra-
tio compared to the original AlexNet.

5 FUTURE WORK

Many other ECC techniques have been reported that can also be potentially used to search for sparse
matrix forms with high index compression (Morelos-Zaragoza, 2006). Efficient parallel ECC decod-
ing and encoding implementation have also been proposed and realized (Zhang, 2015). We believe
that efforts to combine existing and new ECC techniques/algorithms with DNN pruning methods
create a new dimension in realizing energy-efficient and high-performance DNN. Even though the
proposed approach is best for dedicated ASIC or FPGA, the inherent parallel characteristics of VD
and the Viterbi algorithm can also be utilized in GPUs through the construction of new kernels and
libraries. We have not considered quantization of non-zero weight values or entropy-related coding
design in this paper. In the future, such considerations can be embedded into the branch metric or
path metric equations.

6 CONCLUSION

We proposed a new DNN-dedicated sparse matrix format and pruning method using the Viterbi
encoder structure and Viterbi algorithm. Unlike previous methods, we first consider only limited
choices of pruning results, all of which have the advantage of a significant index compression ratio
by our proposed index decompressing structures. One particular pruning result is selected from
the limited pruning solution space based on the Viterbi algorithm with user-defined branch metric
equations that aim to minimize the accuracy degradation. As a result, our proposed sparse matrix,
VCM, shows noticeable index storage reduction even compared with the relative index scheme.
Fixed index compression ratio and inherently parallel reconstruction scheme allows a wide range of
applications, such as SpMM, since sparse matrices can be converted into dense matrices efficiently.
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A APPENDIX

A.1 VD DESIGN METHODOLOGY

In Figure 1, each VD output is generated by a series of 2-input XOR gates which accept input bits
from either input of VD or FF outputs. Hence, there are 6 possible input candidates in total for XOR
gates and each candidate is called an XOR tap. Using input as x0 and nth FF output (from the left)
as xn, out2 can be represented as a polynomial of x5 +x3 +x or equivalently, a vector [101010]. By
combining such vectors of all 4 outputs, we can construct a VD Matrix to represent VD (of Figure
1) in a compact manner as the following:1 1 0 1 0 0

1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

 . (3)

The number of 1s (i.e., the XOR taps) is 3 in every row of VD Matrix and the Hamming distance7 of
any pair of two rows is 4. Increasing the number of XOR taps and minimum Hamming distance in
VD Matrix improves the randomness of VD outputs (Lee & Roy, 2012). Given the number of XOR
taps, the minimum Hamming distance, and the number of VD outputs, VD Matrix can be generated
as Algorithm 1.

Algorithm 1: VD Matrix generation
input : number of outputs N , number of XOR taps t,

minimum Hamming distance h
output: VD Matrix S
i = 0, S = φ ;
while (number of vectors of S) < N do

i++ ;
a = binary representation of i ;
if (number of 1s’ of a) == t then

isValid = true ;
for (j=0; j <number of vectors of S; j++) do

d = Hamming distance between S(j) and a;
if d < h then

isValid = false ;
end

end
if (isValid == true) then

put a in S;
end

end
end

Table 4 shows the minimum number of FFs generated by Algorithm 1, given the number of XOR
taps, the minimum Hamming distance, and the number of VD outputs. Note that the number of
VD outputs increases exponentially, while the number of FFs increases linearly. Thus, the hardware
resource for implementing VD is not expensive even with a high index compression ratio. Note
that the number of XOR taps for pruning should always be an even number (otherwise, the Viterbi
algorithm chooses a trivial input sequence of all ‘1’s to ensure make all the weights survive to
maximize the path metric.

In Figure 10, as further bits are consumed for the two inputs of the comparators (NUMc bits) in
order to enhance controllable target pruning rates (i.e., sparsity in R outputs) resolution, the number
of VD outputs (NUMv) needs to be increased.

7Hamming distance between two vectors is the number of positions where two values are different
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Table 4: Various configurations of the number of XOR taps, the minimum Hamming distance, the
number of FFs, and the number of VD outputs.

# of VD outputs # of taps Hamming # of FFs

8

5 2 6
5 4 8
5 6 10
4 6 12

32

4 2 6
5 4 10
5 6 15
6 8 18

128

6 2 9
7 4 13
8 6 17
6 6 19

Viterbi

Decompressor

Comparator

(> THc
?)

Comparator

(> THc
?)

Comparator
(> THc

?)

1 bit 1 bit

R

NUMc

NUMv

Figure 10: Index decompressing using VD and comparators to control the sparsity. A comparator
threshold value THc can have a range of 0 to 2NUMc − 1.

A.2 DUMMY INPUTS AND SKIP STATES

Accuracy degradation can be reduced by increasing the number of states to be explored in trellis
diagram, primarily because of the increased search space dimension. In Figure 11, inserting dummy
inputs as an initial input sequence increases the number of available states from which we start index
encoding with weight parameters (i.e., the number of available states increases from 1 to 4 with 2
dummy input bits). The maximum size of the dummy inputs is the number of FFs and all the dummy
paths exhibit the same preference with the same branch metrics. The size of the dummy inputs is
negligible if the number of FFs in VD is much smaller than the number of weight matrix elements
divided by R.

In addition to the dummy input sequence, the skip state, which is defined as the number of times the
time index in the trellis diagram is skipped, can also lead to reduced accuracy degradation. Similar
to the concept of the dummy input, the skip state increases the number of available states in the
trellis diagram search. Figure 12 describes a case of (Skip State=1) where at every even-number
time index, the output of VD is discarded. If the branch metrics are set to 0, following Eq. (1), the
Viterbi algorithm will select the paths that lead to an increased number of states with a higher path
metric value. In the case of magnitude-based pruning, this implies that a larger magnitude weight
has a higher chance of being preserved. In the case of the k skip states, VD outputs are discarded
for k consecutive time indices. The entire length of the time index is increased by (k+ 1) times and
the index compression ratio is reduced by (k + 1) times.

A.3 EXAMPLE OF SELECTING FUNCTIONS FOR THE BRANCH METRIC

Assume that the normalized magnitudes of parameters before pruning are given as
{0.1, 0.2, 0.6, 1.0} at a certain time index and THp is 0.3. We calculate the branch met-
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Figure 11: Backward survivor path finding procedure with 2 dummy input bits to increase the num-
ber of reachable states from 1 to 4.
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Figure 12: Trellis diagram exploration with (skip state=1). For every even-number time index after
dummy input sequence, branch metrics are 0 while the path metrics are still updated. The entire
time index length is increased by (skip state + 1) times.

rics with two different sets of comparator outputs V 1 = {0, 1, 1, 0} and V 2 = {1, 0, 0, 1}
using Eq. (2). In the case of tanh(x), the branch metric with V 1 is given as S2 ×
(− tanh((0.1− 0.3)/S1) + tanh((0.2− 0.3)/S1) + tanh((0.6− 0.3)/S1)− tanh((1.0− 0.3)/S1)) =
104 × (−(−0.04) + (−0.02) + (0.06) − (0.20)) = −1200, while the branch metric with V 2 is
104 × ((−0.04) − (−0.02) − (0.06) + (0.20)) = 1200. On the other hand, if we use x instead of
tanh(x), then the branch metrics with V 1 and V 2 are −600 and 600, respectively. Compared with
x, tanh assigns greater importance to parameters with higher magnitude. Note that in this example,
tanh has been chosen in the context of the magnitude-based pruning method, and the branch metric
equations can be made differently depending on the underlying pruning principle.
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Table 5: Weight size and VD parameters per layer for Viterbi-based pruning.

Network Weight size per layer VD parameters
Original Pruning neurons NUMv NUMc R Skip state

LeNet-300-100
784× 300 465× 96 40 5 8 1
300× 100 96× 100 20 5 4 1
100× 10 100× 10 10 5 2 1

LeNet-5-Caffe

5× 5× 1× 20 5× 5× 1× 20 10 5 2 1
5× 5× 20× 50 5× 5× 20× 25 30 5 6 1

800× 500 400× 69 40 5 8 1
500× 10 69× 10 10 5 2 1

Table 6: Sparse matrix comparison with LeNet-300-100 on MNIST using Variational Dropout-based
pruning (Molchanov et al., 2017a) and our proposed Viterbi-based pruning. We assume that non-
zero values and CSR index use 16 bits.

Layer
Variational Dropout Additional Viterbi-Pruning Matrix

Weight Pruning Sparse Matrix Pruning Sparse Matrix Size
Size Rate (CSR) Size Rate (VCM) Size Reduction

FC1 89.28K 95.7% 7.67KB 94.8% 5.89KB 23.2%
FC2 19.2K 94.6% 2.23KB 94.0% 1.71KB 23.6%
FC3 20.0K 78.0% 0.88KB 68.0% 0.75KB 15.2%
Total 128.48K 95.2% 10.78KB 94.2% 8.34KB 22.6%

Test Error 1.96% 1.96%

Table 7: Sparse matrix comparison with LeNet-5-Caffe on MNIST using Variational Dropout-based
pruning (Molchanov et al., 2017a) and our proposed Viterbi-based pruning. We assume that non-
zero values and CSR index use 16 bits.

Layer
Variational Dropout Additional Viterbi-Pruning Matrix

Weight Pruning Sparse Matrix Pruning Sparse Matrix Size
Size Rate (CSR) Size Rate (VCM) Size Reduction

Conv1 1.0K 69.6% 0.63KB 69.6% 0.36KB 43.6%
Conv2 25.0K 96.4% 1.80KB 95.8% 1.52KB 15.4%
FC1 55.2K 97.5% 2.83KB 97.0% 2.49KB 12.2%
FC2 1.38K 66.1% 0.94KB 66.7% 0.53KB 43.0%
Total 82.58K 96.7% 6.20KB 96.1% 4.90KB 21.0%

Test Error 0.96% 0.98%

A.4 VITERBI ALGORITHM ON HIGHLY SPARSE DNNS

We test our proposed VCM and Viterbi-based pruning method with highly sparse DNNs by combin-
ing our method with the Variational dropout-based pruning method (Molchanov et al., 2017a). The
LeNet-300-100 and LeNet-5-Caffe architectures8 on the MNIST dataset are used in the test. The
Viterbi-based pruning based in Eq. (2) is additionally performed to obtain VCM data, after prun-
ing weights and neurons using the Variational dropout method (Molchanov et al., 2017a) as shown
in Table 5. The main VD parameters for each layer are also presented in Table 5. The minimum
Hamming distance and XOR taps are 4. Table 6 and 7 describe the pruning rate and the memory
footprint comparisons for each layer. The storage requirement for VCM is reduced by 22.6 % and
21.0 %, respectively, compared with CSR, due to the reduction in index size (63.0 % and 53.6
%, respectively). Almost the same classification accuracy is achieved with a short retraining time
in both LeNet-300-100 and LeNet-5-Caffe. Note that this result demonstrates that the proposed
Viterbi-based techniques can be combined with existing pruning methods to extract VCM formats
even without modifying Eq. (2).

8https://github.com/ars-ashuha/variational-dropout-sparsifies-dnn
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