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ABSTRACT

Intrinsically motivated goal exploration algorithms enable machines to discover
repertoires of policies that produce a diversity of effects in complex environ-
ments. These exploration algorithms have been shown to allow real world robots
to acquire skills such as tool use in high-dimensional continuous state and action
spaces. However, they have so far assumed that self-generated goals are sampled
in a specifically engineered feature space, limiting their autonomy. In this work,
we propose to use deep representation learning algorithms to learn an adequate
goal space. This is a developmental 2-stage approach: first, in a perceptual learn-
ing stage, deep learning algorithms use passive raw sensor observations of world
changes to learn a corresponding latent space; then goal exploration happens in
a second stage by sampling goals in this latent space. We present experiments
where a simulated robot arm interacts with an object, and we show that explo-
ration algorithms using such learned representations can match the performance
obtained using engineered representations.
Keywords: exploration; autonomous goal setting; diversity; unsupervised
learning; deep neural network

1 INTRODUCTION

Spontaneous exploration plays a key role in the development of knowledge and skills in human
children. For example, young children spend a large amount of time exploring what they can do
with their body and external objects, independently of external objectives such as finding food or
following instructions from adults. Such intrinsically motivated exploration (Berlyne, 1966; Gopnik
et al., 1999; Oudeyer & Smith, 2016) leads them to make ratcheting discoveries, such as learning to
locomote or climb in various styles and on various surfaces, or learning to stack and use objects as
tools. Equipping machines with similar intrinsically motivated exploration capabilities should also
be an essential dimension for lifelong open-ended learning and artificial intelligence.

In the last two decades, several families of computational models have both contributed to a better
understanding of such exploration processes in infants, and how to apply them efficiently for au-
tonomous lifelong machine learning (Oudeyer et al., 2016). One general approach taken by several
research groups (Baldassarre et al., 2013; Oudeyer et al., 2007; Barto, 2013; Friston et al., 2017)
has been to model the child as intrinsically motivated to make sense of the world, exploring like a
scientist that imagines, selects and runs experiments to gain knowledge and control over the world.
These models have focused in particular on three kinds of mechanisms argued to be essential and
complementary to enable machines and animals to efficiently explore and discover skill repertoires
in the real world (Oudeyer et al., 2013; Cangelosi et al., 2015): embodiment 1, intrinsic motivation2

1Body synergies provide structure on action and perception
2Self-organizes a curriculum of exploration and learning at multiple levels of abstraction
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and social guidance3. This article focuses on challenges related to learning goal representations for
intrinsically motivated exploration, but also leverages models of embodiment, through the use of
parameterized Dynamic Movement Primitives controllers (Ijspeert et al., 2013) and social guidance,
through the use of observations of another agent.

Given an embodiment, intrinsically motivated exploration4 consists in automatically and sponta-
neously conducting experiments with the body to discover both the world dynamics and how it can
be controlled through actions. Computational models have framed intrinsic motivation as a family
of mechanisms that self-organize agents exploration curriculum, in particular through generating
and selecting experiments that maximize measures such as novelty (Andreae & Andreae, 1978;
Sutton, 1990), predictive information gain (Little & Sommer, 2013), learning progress (Schmid-
huber, 1991; Kaplan & Oudeyer, 2003), compression progress (Schmidhuber, 2013), competence
progress (Baranes & Oudeyer, 2013), predictive information (Martius et al., 2013) or empowerment
(Salge et al., 2014). When used in the Reinforcement Learning (RL) framework (e.g. (Sutton, 1990;
Schmidhuber, 1991; Kaplan & Oudeyer, 2003; Barto, 2013)), these measures have been called in-
trinsic rewards, and they are often applied to reward the "interestingness" of actions or states that are
explored. They have been consistently shown to enable artificial agents or robots to make discover-
ies and solve problems that would have been difficult to learn using a classical optimization or RL
approach based only on the target reward (which is often rare or deceptive) (Chentanez et al., 2005;
Baranes & Oudeyer, 2013; Stanley & Lehman, 2015). Recently, they have been similarly used to
guide exploration in difficult deep RL problems with sparse rewards, e.g. (Bellemare et al., 2016;
Houthooft et al., 2016; Tang et al., 2017; Pathak et al., 2017).

However, many of these computational approaches have considered intrinsically motivated explo-
ration at the level of micro-actions and states (e.g. considering low-level actions and pixel level
perception). Yet, children’s intrinsically motivated exploration leverages abstractions of the en-
vironments, such as objects and qualitative properties of the way they may move or sound, and
explore by setting self-generated goals (Von Hofsten, 2004), ranging from objects to be reached, toy
towers to be built, or paper planes to be flown. A computational framework proposed to address
this higher-level form of exploration has been Intrinsically Motivated Goal Exploration Processes
(IMGEPs) (Baranes & Oudeyer, 2009; Forestier et al., 2017), which is closely related to the idea
of goal babbling (Rolf et al., 2010). Within this approach, agents are equipped with a mechanism
enabling them to sample a goal in a space of parameterized goals5, before they try to reach it by ex-
ecuting an experiment. Each time they sample a goal, they dedicate a certain budget of experiments
time to improve the solution to reach this goal, using lower-level optimization or RL methods for
example. Most importantly, in the same time, they take advantage of information gathered during
this exploration to discover other outcomes and improve solutions to other goals6.

This property of cross-goal learning often enables efficient exploration even if goals are sampled
randomly (Baranes & Oudeyer, 2013) in goal spaces containing many unachievable goals. Indeed,
generating random goals (including unachievable ones) will very often produce goals that are out-
side the convex hull of already discovered outcomes, which in turn leads to exploration of variants
of known corresponding policies, pushing the convex hull further. Thus, this fosters exploration
of policies that have a high probability to produce novel outcomes without the need to explicitly
measure novelty. This explains why forms of random goal exploration are a form of intrinsically
motivated exploration. However, more powerful goal sampling strategies exist. A particular one
consists in using meta-learning algorithms to monitor the evolution of competences over the space
of goals and to select the next goal to try, according to the expected competence progress result-
ing from practicing it (Baranes & Oudeyer, 2013). This enables to automate curriculum sequences
of goals of progressively increasing complexity, which has been shown to allow high-dimensional
real world robots to acquire efficiently repertoires of locomotion skills or soft object manipulation
(Baranes & Oudeyer, 2013), or advanced forms of nested tool use (Forestier et al., 2017). Similar
ideas have been recently applied in the context of multi-goal deep RL, where architectures closely
related to intrinsically motivated goal exploration are used by procedurally generating goals and

3Leverages what others already know
4Also called curiosity-driven exploration
5Here a goal is not necessarily an end state to be reached, but can characterize certain parameterized prop-

erties of changes of the world, such as following a parameterized trajectory.
6E.g. while learning how to move an object to the right, they may discover how to move it to the left.
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sampling them randomly (Cabi et al., 2017; Najnin & Banerjee, 2017) or adaptively (Florensa et al.,
2017).

Yet, a current limit of existing algorithms within the family of Intrinsically Motivated Goal Explo-
ration Processes is that they have assumed that the designer7 provides a representation allowing the
autonomous agent to generate goals, together with formal tools used to measure the achievement of
these goals (e.g. cost functions). For example, the designer could provide a representation that en-
ables the agent to imagine goals as potential continuous target trajectories of objects (Forestier et al.,
2017), or reach an end-state starting from various initial states defined in Euclidean space (Florensa
et al., 2017), or realize one of several discrete relative configurations of objects (Cabi et al., 2017),
which are high-level abstractions from the pixels. While this has allowed to show the power of
intrinsically motivated goal exploration architectures, designing IMGEPs that sample goals from a
learned goal representation remains an open question. There are several difficulties. One concerns
the question of how an agent can learn in an unsupervised manner a representation for hypothetical
goals that are relevant to their world before knowing whether and how it is possible to achieve them
with the agent’s own action system. Another challenge is how to sample "interesting" goals using a
learned goal representation, in order to remain in regions of the learned goal parameters that are not
too exotic from the underlying physical possibilities of the world. Finally, a third challenge consists
in understanding which properties of unsupervised representation learning methods enable an effi-
cient use within an IMGEP architecture so as to lead to efficient discovery of controllable effects in
the environment.

In this paper, we present one possible approach named IMGEP-UGL where aspects of these difficul-
ties are addressed within a 2-stage developmental approach, combining deep representation learning
and goal exploration processes:

Unsupervised Goal space Learning stage (UGL): In the first phase, we assume the learner can
passively observe a distribution of world changes (e.g. different ways in which objects
can move), perceived through raw sensors (e.g. camera pixels or other forms of low-level
sensors in other modalities). Then, an unsupervised representation learning algorithm is
used to learn a lower-dimensional latent space representation (also called embedding) of
these world configurations. After training, a Kernel Density Estimator (KDE) is used to
estimate the distribution of these observations in the latent space.

Intrinsically Motivated Goal Exploration Process stage (IMGEP): In the second phase, the em-
bedding representation and the corresponding density estimation learned during the first
stage are reused in a standard IMGEP. Here, goals are iteratively sampled in the embedding
as target outcomes. Each time a goal is sampled, the current knowledge (forward model
and meta-policy, see below) enables to guess the parameters of a corresponding policy,
used to initialize a time-bounded optimization process to improve the cost of this policy for
this goal. Crucially, each time a policy is executed, the observed outcome is not only used
to improve knowledge for the currently selected goal, but for all goals in the embedding.
This process enables the learner to incrementally discover new policy parameters and their
associated outcomes, and aims at learning a repertoire of policies that produce a maximally
diverse set of outcomes.

A potential limit of this approach, as it is implemented and studied in this article, is that repre-
sentations learned in the first stage are frozen and do not evolve in the second stage. However, we
consider here this decomposition for two reasons. First, it corresponds to a well-known developmen-
tal progression in infant development: in their first few weeks, motor exploration in infants is very
limited (due to multiple factors), while they spend a considerable amount of time observing what
is happening in the outside world with their eyes (e.g. observing images of social peers producing
varieties of effects on objects). During this phase, a lot of perceptual learning happens, and this
is reused later on for motor learning (infant perceptual development often happens ahead of motor
development in several important ways). Here, passive perceptual learning from a database of visual
effects observed in the world in the first phase can be seen as a model of this stage where infants
learn by passively observing what is happening around them8. A second reason for this decomposi-

7Here we consider the human designer that crafts the autonomous agent system.
8Here, we do not assume that the learner actually knows that these observed world changes are caused by

another agent, and we do not assume it can perceive or infer the action program of the other agent. Other works
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tion is methodological: given the complexity of the underlying algorithmic components, analyzing
the dynamics of the architecture is facilitated when one decomposes learning in these two phases
(representation learning, then exploration).

Main contribution of this article. Prior to this work, and to our knowledge, all existing goal
exploration process architectures used a goal space representation that was hand designed by the
engineer, limiting the autonomy of the system. Here, the main contribution is to show that represen-
tation learning algorithms can discover goal spaces that lead to exploration dynamics close to the
one obtained using an engineered goal representation space. The proposed algorithmic architecture
is tested in two environments where a simulated robot learns to discover how to move and rotate an
object with its arm to various places (the object scene being perceived as a raw pixel map). The ob-
jective measure we consider, called KL-coverage, characterizes the diversity of discovered outcomes
during exploration by comparing their distribution with the uniform distribution over the space of
outcomes that are physically possible (which is unknown to the learner). We even show that the use
of particular representation learning algorithms such as VAEs in the IMGEP-UGL architecture can
produce exploration dynamics that match the one using engineered representations.

Secondary contributions of this article:

• We show that the IMGEP-UGL architecture can be successfully implemented (in terms
of exploration efficiency) using various unsupervised learning algorithms for the goal
space learning component: AutoEncoders (AEs) (Bourlard & Kamp, 1988), Variational AE
(VAE) (Rezende et al., 2014; Kingma & Ba, 2015), VAE with Normalizing Flow (Rezende
& Mohamed, 2015), Isomap (Tenenbaum et al., 2000), PCA (Pearson, 1901), and we quan-
titatively compare their performances in terms of exploration dynamics of the associated
IMGEP-UGL architecture.

• We show that specifying more embedding dimensions than needed to capture the phe-
nomenon manifold does not deteriorate the performance of these unsupervised learning
algorithms.

• We show examples of unsupervised learning algorithms (Radial Flow VAEs) which pro-
duce less efficient exploration dynamics than other algorithms in our experiments, and
suggest hypotheses to explain this difference.

2 GOALS REPRESENTATION LEARNING FOR EXPLORATION ALGORITHMS

In this section, we first present an outline of intrinsically motivated goal exploration algorithmic
architectures (IMGEPs) as originally developed and used in the field of developmental robotics,
and where goal spaces are typically hand crafted. Then, we present a new version of this archi-
tecture (IMGEP-UGL) that includes a first phase of passive perceptual learning where goal spaces
are learned using a combination of representation learning and density estimation. Finally, we out-
line a list of representation learning algorithms that can be used in this first phase, as done in the
experimental section.

2.1 INTRINSICALLY MOTIVATED GOAL EXPLORATION ALGORITHMS

Intrinsically Motivated Goal Exploration Processes (IMGEPs), are powerful algorithmic architec-
tures which were initially introduced in Baranes & Oudeyer (2009) and formalized in Forestier et al.
(2017). They can be used as heuristics to drive the exploration of high-dimensional continuous
action spaces so as to learn forward and inverse control models in difficult robotic problems. To
clearly understand the essence of IMGEPs, we must envision the robotic agent as an experimenter
seeking information about an unknown physical phenomenon through sequential experiments. In
this perspective, the main elements of an exploration process are:

• A context c, element of a Context Space C. This context represents the initial experimental
factors that are not under the robotic agent control. In most cases, the context is considered
fully observable (e.g. state of the world as measured by sensors).

have considered how stronger forms of social guidance, such as imitation learning (Schaal et al., 2003), could
accelerate intrinsically motivated goal exploration (Nguyen & Oudeyer, 2014), but they did not consider the
challenge of learning goal representations.
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• A parameterization θ, element of a Parameterization Space Θ. This parameterization rep-
resents the experimental factors that can be controlled by the robotic agent (e.g. parameters
of a policy).
• An outcome o, element of an Outcome Space O. The outcome contains information quali-

fying properties of the phenomenon during the execution of the experiment (e.g. measures
characterizing the trajectory of raw sensor observations during the experiment).
• A phenomenon dynamics D : C,Θ 7→ O, which in most interesting cases is unknown.

If we take the example of the Arm-Ball problem9 in which a multi-joint robotic arm can interact
with a ball, the context could be the initial state of the robot and the ball, the parameterization could
be the parameters of a policy that generate a sequence of motor torque commands for N time steps,
and the outcome could be the position of the ball at the last time step. Developmental roboticists are
interested in developing autonomous agents that learn two models, the forward model D̃ : C ×Θ 7→
O which approximates the phenomenon dynamics, and the inverse model Ĩ : C × O 7→ Θ which
allows to produce desired outcomes under given context by properly setting the parameterization.
Using the aforementioned elements, one could imagine a simple strategy that would allow the agent
to gather tuples {c, θ, o} to train those models, by uniformly sampling a random parameterization
θ ∼ U(θ) and executing the experiment. We refer to this strategy as Random Parameterization
Exploration. The problem for most interesting applications in robotics, is that only a small subspace
of Θ is likely to produce interesting outcomes. Indeed, considering again the Arm-Ball problem
with time-bounded action sequences as parameterizations, very few of those will lead the arm to
touch the object and move it. In this case, a random sampling in Θ would be a terrible strategy to
yield interesting samples allowing to learn useful forward and inverse models for moving the ball.

To overcome this difficulty, one must come up with a better approach to sample parameterizations
that lead to informative samples. Intrinsically Motivated Goal Exploration Strategies propose a way
to address this issue by giving the agent a set of tools to handle this situation:

• A Goal Space T whose elements τ represent parameterized goals that can be targeted by the
autonomous agent. In the context of this article, and of the IMGEP-UGL architecture, we
consider the simple but important case where the Goal Space is equated with the Outcome
space. Thus, goals are simply vectors in the outcome space that describe target properties
of the phenomenon that the learner tries to achieve through actions.

• A Goal Policy γ(τ), which is a probability distribution over the Goal Space used for sam-
pling goals (see Algorithmic Architecture 2). It can be stationary, but in most cases, it will
be updated over time following an intrinsic motivation strategy. Note that in some cases,
this Goal Policy can be conditioned on the context γ(τ |c).

• A set of Goal-parameterized Cost Functions Cτ : O 7→ R defined over all O, which
maps every outcome with a real number representing the goodness-of-fit of the outcome o
regarding the goal τ . As these cost functions are defined overO, this enables to compute the
cost of a policy for a given goal even if the goal is imagined after the policy roll-out. Thus,
as IMGEPs typically memorize the population of all executed policies and their outcomes,
this enables reuse of experimentations across multiple goals.

• A Meta-Policy Π : T , C 7→ Θ which is a mechanism to approximately solve the mini-
mization problem Π(τ, c) = arg minθ Cτ (D̃(θ, c)), where D̃ is a running forward model
(approximating D), trained on-line during exploration.

In some applications, a de-facto ensemble of such tools can be used. For example, in the case where
O is an Euclidean space, we can allow the agent to set goals in the Outcome Space T = O, in which
case for every goal τ we can consider a Goal-parameterized cost function Cτ (o) = ‖τ − o‖ where
‖.‖ is a similarity metric. In the case of the Arm-Ball problem, the final position of the ball can be
used as Outcome Space, hence the Euclidean distance between the goal position and the final ball
position at the end of the episode can be used as Goal-parameterized cost function (but one could
equally choose the full trajectories of the ball as outcomes and goals, and an associated similarity
metric).

9See Section 3 for details.
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Algorithmic architecture 2 describes the main steps of Intrinsically Motivated Goal Exploration
Processes using these tools10:

Bootstrapping phase: Sampling a few policy parameters (called Random Parametrization Explo-
ration, RPE), observing the starting context and the resulting outcome, to initialize a mem-
ory of experiments (H = {(ci, θi, oi)}) and a regressor D̃running approximating the phe-
nomenon dynamics.

Goal exploration phase: Stochastically mixing random policy exploration with goal exploration.
In goal exploration, one first observes the context c and then samples a goal τ using goal
policy γ (this goal policy can be a random stationary distribution, as in experiments below,
or a contextual multi-armed bandit maximizing information gain or competence progress,
see (Baranes & Oudeyer, 2013)). Then, a meta-policy algorithm Π is used to search the
parameterization θ minimizing the Goal-parameterized cost function Cτ , i.e. it computes
θ = arg minθ Cτ (D̃running(θ, c)). This process is typically initialized by searching the
parameter θinit in H such that the corresponding cinit is in the neighborhood of c and
Cτ (oinit) is minimized. Then, this initial guess is improved using an optimization algo-
rithm (e.g. L-BFGS) over the regressor D̃running. The resulting policy θ is executed, and
the outcome o is observed. The observation (c, θ, o) is then used to updateH and D̃running.

This procedure has been experimentally shown to enable sample efficient exploration in high-
dimensional continuous action robotic setups, enabling in turn to learn repertoires of skills in com-
plex physical setups with object manipulations using tools (Forestier & Oudeyer, 2016; Forestier
et al., 2017) or soft deformable objects (Nguyen & Oudeyer, 2014).

Nevertheless, two issues arise when it comes to using these algorithms in real-life setups, and within
a fully autonomous learning approach. First, there are many real world cases where providing an
Outcome Space (in which to make observations and sample goals, so this is also the Goal Space)
to the agent is difficult, since the designer may not himself understand well the space that the robot
is learning about. The approach taken until now (Forestier et al., 2017), was to create an external
program which extracted information out of images, such as tracking all objects positions. This
information was presented to the agent as a point in [0, 1]n, which was hence considered as an Out-
come Space. In such complex environments, the designer may not know what is actually feasible
or not for the robot, and the Outcome space may contain many unfeasible goals. This is the rea-
son why advanced mechanisms for sampling goals and discovering which ones are actually feasible
have been designed (Baranes & Oudeyer, 2013; Forestier et al., 2017). Second, a system where the
engineer designs the representation of an Outcome Space space is limited in its autonomy. A ques-
tion arising from this is: can we design a mechanism that allows the agent to construct an Outcome
Space that leads to efficient exploration by the mean of examples? Representation Learning meth-
ods, in particular Deep Learning algorithms, constitute a natural approach to this problem as it has
shown outstanding performances in learning representations for images. In the next two sections,
we present an update of the IMGEP architecture that includes a goal space representation learning
stage, as well as various Deep Representation Learning algorithms tested: Autoencoders along with
their more recent Variational counter-parts.

2.2 UNSUPERVISED GOAL REPRESENTATION LEARNING FOR IMGEP

In order to enable goal space representation learning within the IMGEP framework, we propose
to add a first stage of unsupervised perceptual learning (called UGL) before the goal exploration
stage, leading to the new IMGEP-UGL architecture described in Algorithmic Architecture 1. In
the passive perceptual learning stage (UGL, lines 2-8), the learner passively observes the unknown
phenomenon by collecting samples xi of raw sensor values as the world changes. The architecture
is neutral with regards to how these world changes are produced, but as argued in the introduction,
one can see them as coming from actions of other agents in the environment. Then, this database
of xi observations is used to train an unsupervised learning algorithm (e.g. VAE, Isomap) to learn
an embedding function R̃ which maps the high-dimensional raw sensor observations onto a lower-

10IMGEPs characterize an architecture and not an algorithm as several of the steps of this architecture can
be implemented in multiple ways, for e.g. depending on which regression or meta-policy algorithms are imple-
mented
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dimensional representation o. Also, a kernel density estimator KDE estimates the distribution
pkde(o) of observed world changes projected in the embedding. Then, in the goal exploration stage
(lines 9-26), this lower-dimensional representation o is used as the outcome and goal space, and
the distribution pkde(o) is used as a stochastic goal policy, within a standard IMGEP process (see
above).

Algorithmic Architecture 1: Intrinsically Motivated Goal Exploration Process with Unsupervised
Goal Representation Learning (IMGEP-UGL)
Input:
Regressor D̃running, Goal Policy γ, Parameterized cost function Cτ , Meta-Policy algorithm Π,
Unsupervised representation learning algorithm A (e.g. AE, VAE, Isomap), Kernel Density
Estimator algorithm KDE,
HistoryH, Random exploration ratio Γe

1 begin
2 Passive perceptual learning stage (UGL):
3 for A fixed number of Observation iterations nr do
4 Observe the phenomenon with raw sensors to gather a sample xi
5 Add this sample to a sample database D = {xi}i∈[0,nr]

6 Learn an embedding function R̃ : x→ o using algorithm A on data D
7 Set O = T = R̃(x)

8 Estimate the outcome distribution pkde(o) from {R̃(xi)}i∈[0,10000] using algorithm KDE
9 Set the Goal Policy γ = pkde to be the estimated outcome distribution

10 Goal exploration stage (IMGEP):
11 for A fixed number of Bootstrapping iterations do
12 Observe context c
13 Sample θ ∼ U(θ)

14 Perform experiment and retrieve outcome from raw sensor signal o = R̃(x)

15 Update Regressor D̃running with tuple {c, θ, o}
16 H =H ∪ {c, θ, o}
17 for A fixed number of Exploration iterations do
18 if u ∼ U(0, 1) < Γe then
19 Sample a random parameterization θi ∼ p(θ)
20 else
21 Observe context c
22 Sample a goal τ ∼ γ
23 Compute θ = arg minθ Cτ (D̃running(θ, c)) using Π, D̃running andH
24 Perform experiment and retrieve outcome from raw sensor signal o = R̃(x)

25 Update Regressor D̃running with a tuple {c, θ, o}
26 Update Goal Policy γ, according to Intrinsic Motivation strategy
27 H =H ∪ {c, θ, o}

28 return The forward model D̃running, the historyH and the embedding R̃

2.3 REPRESENTATION LEARNING ALGORITHMS AND DENSITY ESTIMATION FOR THE UGL
STAGE

As IMGEP-UGL is an algorithmic architecture, it can be implemented with several algorithmic
variants depending on which unsupervised learning algorithm is used in the UGL phase. We experi-
mented over different deep and classical Representation Learning algorithms for the UGL phase. We
rapidly outline these algorithms here. For a more in-depth introduction to those models, the reader
can refer to Appendix B which contains details on the derivations of the different Cost Functions
and Architectures of the Deep Neural Networks based models.
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Auto-Encoders (AEs) are a particular type of Feed-Forward Neural Networks that were intro-
duced in the early hours of neural networks (Bourlard & Kamp, 1988). They are trained to output
a reconstruction x̃ of the input vector x of dimension D, through a representation layer of size
d < D. They can be trained in an unsupervised manner using a large dataset of unlabeled samples
D = {x(i)}i∈{0...N}. Their main interest lies in their ability to model the statistical regularities
existing in the data. Indeed, during training, the network learns the regularities allowing to encode
most of the information existing in the input in a more compact representation. Put differently, AEs
can be seen as learning a non-linear compression for data coming from an unknown distribution.
Those models can be trained using different algorithms, the most simple being Stochastic Gradient
Descent (SGD), to minimize a loss function J (D) that penalizes differences between x̃ and x for
all samples in D.

Variational Auto-Encoders (VAEs) are a recent alternative to classic AEs (Rezende et al., 2014;
Kingma & Ba, 2015), that can be seen as an extension to a stochastic encoding. The argument
underlying this model is slightly more involved than the simple approach taken for AEs, and relies on
a statistical standpoint presented in Appendix B. In practice, this model simplifies to an architecture
very similar to an AE, differing only in the fact that the encoder fθ outputs the parameters µ and
σ of a multivariate Gaussian distribution N (µ, diag(σ2)) with diagonal covariance matrix, from
which the representation z is sampled. Moreover, an extra term is added to the Cost Function, to
condition the distribution of z in the representation space. Under the restriction that a factorial
Gaussian is used, the neural network can be made fully differentiable thanks to a reparameterization
trick, making it possible to use SGD for training.

In practice VAEs tend to yield smooth representations of the data, and are faster to converge than
AEs from our experiments. Despite these interesting properties, the derivation of the actual cost
function relies mostly on the assumption that the factors can be described by a factorial Gaussian
distribution. This hypothesis can be largely erroneous, for example if one of the factors is periodic,
multi-modal, or discrete. In practice our experiments showed that even if training could converge
for non-Gaussian factors, it tends to be slower and to yield poorly conditioned representations.

Normalizing Flow proposes a way to overcome this restriction on distribution, by allowing more
expressive ones (Rezende & Mohamed, 2015). It uses the classic rule of change of variables for
random variables, which states that considering a random variable z0 ∼ q(z0), and an invertible
transformation t : Rd 7→ Rd, if z = t(z0) then q(z) = q(z0)|det ∂t/∂z0|−1. Using this, we can
chain multiple transformations t1, t2, . . . , tK to produce a new random variable zK = tK ◦ · · · ◦
t2 ◦ t1(z0). One particularly interesting transformation is the Radial Flow, which allows to radially
contract and expand a distribution as can be seen in Figure 5 in Appendix. This transformation
seems to give the required flexibility to encode periodic factors.

Isomap is a classical approach of Multi-Dimensional Scaling (Kruskal, 1964) a procedure allow-
ing to embed a set of N -dimensional points in a n dimensional space, with N > n, minimizing the
Kruskal Stress, which measures the distortion induced by the embedding in the pairwise Euclidean
distances. This algorithm results in an embedding whose pairwise distances are roughly the same as
in the initial space. Isomap (Tenenbaum et al., 2000) goes further by assuming that the data lies in
the vicinity of a lower dimensional manifold. Hence, it replaces the pairwise Euclidean distances in
the input space by an approximate pairwise geodesic distance, computed by the Dijkstra’s Shortest
Path algorithm on a κ nearest-neighbors graph.

Principal Component Analysis is an ubiquitous procedure (Pearson, 1901) which, for a set of
data points, allows to find the orthogonal transformation that yields linearly uncorrelated data. This
transformation is found by taking the principal axis of the covariance matrix of the data, leading to a
representation whose variance is in decreasing order along dimensions. This procedure can be used
to reduce dimensionality, by taking only the first n dimensions of the transformed data.

Estimation of sampling distribution: Since the Outcome Space O was learned by the agent, it
had no prior knowledge of p(o) for o ∈ O. We used a Gaussian Kernel Density Estimation (KDE)
(Parzen, 1962; Rosenblatt, 1956) to estimate this distribution from the projection of the images
observed by the agent, into the learned goal space representation. Kernel Density Estimation allows
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to estimate the continuous density function (cdf) f(o) out of a discrete set of samples {oi}i∈{1,...,n}
drown from distribution p(o). The estimated cdf is computed using the following equation:

f̂H(o) =
1

n

n∑
i=1

KH(o− oi), (1)

with K(·) a kernel function and H a bandwidth d × d matrix (d the dimension of O). In our case,
we used a Gaussian Kernel:

KH(o) = (2π)−
d
2 |H|− 1

2 e−
1
2 o

TH−1o, (2)

with the bandwidth matrix H equaling the covariance matrix of the set of points, rescaled by factor
n−

1
d+4 , with n the number of samples, as proposed in Scott (1992).

3 EXPERIMENTS

We conducted experiments to address the following questions in the context of two simulated envi-
ronments:

• Is it possible for an IMGEP-UGL implementation to produce a Goal Space representa-
tion yielding an exploration dynamics as efficient as the dynamics produced by an IMGEP
implementation using engineered goal space representations? Here, the dynamics of ex-
ploration is measured through the KL Coverage defined thereafter.

• What is the impact of the target embedding dimensionality provided to these algorithms?
• Are there differences in exploration dynamics when one uses different unsupervised learn-

ing algorithms (Isomap-KDE, PCA-KDE, AE-KDE, VAE-KDE, VAE-GP, RFVAE-GP,
RFVAE-KDE) as various UGL component of IMGEP-UGL?

We now present in depth the experimental campaign we performed11.

Environments: We experimented on two different Simulated Environments derived from the
Arm-Ball benchmark represented in Figure 1, namely the Arm-Ball and the Arm-Arrow environ-
ments, in which a 7-joint arm, controlled by a 21 continuous dimension Dynamic Movement Primi-
tives (DMP) (Ijspeert et al., 2013) controller, evolves in an environment containing an object it can
handle and move around in the scene. In the case of IMGEP-UGL learners, the scene is perceived
as a 70x70 pixel image. For the UGL phase, we used the following mechanism to generate the dis-
tribution of samples xi: the object was moved randomly uniformly over [−1, 1]2 for ArmBall, and
over [−1, 1]2 × [0, 2π] for ArmArrow, and the corresponding images were generated and provided
as an observable sample to IMGEP-UGL learners. Note that the physically reachable space (i.e. the
largest space the arm can move the object to) is the disk centered on 0 and of radius 1: this means
that the distribution of object movements observed by the learner is slightly larger than the actual
space of moves that learners can produce themselves (and learners have no knowledge of which
subspace corresponds to physically feasible outcomes). The environments are presented in depth in
Appendix C.

Algorithmic Instantiation of the IMGEP-UGL Architecture: We experimented over the fol-
lowing Representation Learning Algorithms for the UGL component: Auto-Encoders with KDE
(RGE-AE), Variational Auto-Encoders with KDE (RGE-VAE), Variational Auto-Encoders using
the associated Gaussian prior for sampling goal instead ofKDE (RGE-VAE-GP), Radial Flow Vari-
ational Auto-Encoders with KDE (RGE-RFVAE), Radial Flow Variational Auto-Encoders using
the associated Gaussian prior for sampling goal (RGE-RFVAE-GP), Isomap (RGE-Isomap) (Tenen-
baum et al., 2000) and Principal Component Analysis (RGE-Isomap).

Regarding the classical IMGEP components, we considered the following elements:

• Context Space C = ∅: In the implemented environments, the initial positions of the arm
and the object were reset at each episode12. Consequently, the context was not observed
nor accounted for by the agent.

11The code to reproduce the experiments is available at
https://github.com/flowersteam/Unsupervised_Goal_Space_Learning

12This makes the experiment faster but does not affect the conclusion of the results.
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Figure 1: Left: The Arm-Ball environment with a 7 DOF arm, controlled by a 21D continuous
actions DMP controller, that can stick and move the ball if the arm tip touches it (on the left). Right:
rendered 70x70 images used as raw signals representing the end position of the objects for Arm-Ball
(on the center) and Arm-Arrow (on the right) environments. The arm is not visible to learners.

• Parameterization Space Θ = [0, 1]21: During the experiments, we used DMP controllers
as parameterized policies to generate time-bounded motor actions sequences. Since the
DMP controller was parameterized by 3 basis functions for each joint of the arm (7), the
parameterization of the controller was represented by a point in [0, 1]3×7.

• Outcome Space O ⊂ Rl: The Outcome Space is the subspace of Rl spanned by the em-
bedding representations of the ensemble of images observed in the first phase of learning.
For the RGE-EFR algorithm, l = 2 in ArmBall and l = 3 in ArmArrow. For IMGEP-
UGL algorithms, as the representation learning algorithms used in the UGL stage require
a parameter specifying the maximum dimensionality of the target embedding, we consid-
ered two cases in experiments: 1) l = 10, which is 5 times larger than the true manifold
dimension for ArmBall, and 3.3 times larger for ArmArrow (the algorithm is not supposed
to know this, so testing the performance with larger embedding dimension is key); 2) l = 2
for ArmBall, and l = 3 for ArmArrow, which is the same dimensionality as the true di-
mensions of these manifolds.

• Goal Space T = O : The Goal Space was taken to equate the Outcome Space.
• Goal-Parameterized Cost function Cτ (·) = ‖τ − · ‖2 : Sampling goals in the Outcome

Space allows us to use the Euclidean distance as Goal-parameterized cost function.

Considering those elements, we used the instantiation of the IMGEP architecture represented in
Appendix D in Algorithm 3. We implemented a goal sampling strategy known as Random Goal
Exploration (RGE), which consists, given a stationary distribution over the Outcome Space p(o),
in sampling a random goal o ∼ p(o) each time (note that this stationary distribution p(o) is learnt
in the UGL stage for IMGEP-UGL implementations). We used a simple k-neighbors regressor to
implement the running forward model D̃, and the Meta-Policy mechanism consisted in returning
the nearest achieved outcome in the outcome space, and taking the same parameterization perturbed
by an exploration noise (which has proved to be a very strong baseline in IMGEP architectures in
previous works (Baranes & Oudeyer, 2013; Forestier & Oudeyer, 2016)).

Exploration Performance Measure: In this article, the central property we are interested in is
the dynamics and quality of exploration of the outcome space, characterizing the evolution of the
distribution of discovered outcomes, i.e. the diversity of effects that the learner discovers how to
produce. In order to characterize this exploration dynamics quantitatively, we monitored a measure
which we refer to as Kullback-Leibler Coverage (KLC). At a given point in time during exploration,
this measure computes the KL-divergence between the distribution of the outcomes produced so
far, with a uniform distribution of outcomes in the space of physically possible outcomes (which
is known by the experimenter, but unknown by the learner). To compute it, we use a normalized
histogram of the explored outcomes, with 30 bins per dimension, which we refer to as E, and we
compute its Kullback Leibler Divergence with the normalized histogram of attainable points which

10



Published as a conference paper at ICLR 2018

we refer to as A:

KLC = DKL[E‖A] =

30∑
i=1

E(i) log
E(i)

A(i)
.

We emphasize that, when computed against a uniform distribution, the KLC measure is a proxy for
the (opposite) Entropy of the E distribution. Nevertheless, we prefer to keep it under the divergence
form, as theA distribution allows to define what the experimenter considers to be a good exploration
distribution. In the case of this study, we consider a uniform distribution of explored locations over
the attainable domain, to be the best exploration distribution achievable.

Baseline algorithms: We are using two natural baseline algorithms for evaluating the exploration
dynamics of our IMGEP-UGL algorithmic implementations :

• Random Goal Exploration with Engineered Features Representations (RGE-EFR):
This is an IMGEP implementation using a goal/outcome space with handcrafted features
that directly encode the underlying structure of environments: for Arm-Ball, this is the
2D position of the ball in [0, 1]2, and for Arm-Arrow this is the 2D position and the 1D
orientation of the arrow in [0, 1]3. This algorithm is also given the prior knowledge of
p(o) = U(O). All other aspects of the IMGEP (regressor, meta-policy, other parameters)
are identical to IMGEP-UGL implementations. This algorithm is known to provide highly
efficient exploration dynamics in these environments (Forestier & Oudeyer, 2016).

• Random Parameterization Exploration (RPE): The Random Parameterization Explo-
ration approach does not use an Outcome Space, nor a Goal Policy, and only samples a
random parameterization θ ∼ U(Θ) at each episode. We expected this algorithm to lower
bound the performances of our novel architecture.

4 RESULTS

We first study the exploration dynamics of all IMGEP-UGL algorithms, comparing them to the
baselines and among themselves. Then, we study specifically the impact of the target embedding
dimension (latent space) for the UGL implementations, by observing what exploration dynamics is
produced in two cases:

• Using a target dimension larger than the true dimension (l = 10)
• Providing the true embedding dimension to the UGL implementations (l = 2, 3)

Finally, we specifically study RGE-VAE, using the intrinsic Gaussian prior of these algorithms to
replace the KDE estimator of p(O) in the UGL part.

Exploration Performances: In Figure 2, we can see the evolution of the KLC through exploration
epochs (one exploration epoch is defined as one experimentation/roll-out of a parameter θ). We can
see that for both environments, and all values of latent spaces, all IMGEP-UGL algorithms, except
RGE-RFVAE, achieve similar or better performance (both in terms of asymptotic KLC and speed
to reach it) than the RGE-EFR algorithm using engineered Goal Space features, and much better
performance than the RPE algorithm.

Figure 3 (see also Figure 8 and 9 in Appendix) show details of the evolution of discovered outcomes
in ArmBall (final ball positions after the end of a policy roll-out) and corresponding KLC measures
for individual runs with various algorithms. It also shows the evolution of the number of times
learners managed to move the ball, which is considered in the KLC measure but not easily visible in
the displayed set of outcomes in Figure 3. For instance, we observe that both RPE (Figure 3(a)) and
RGE-RFVAE (Figure 3(c)) algorithms perform poorly: they discover very few policies moving the
ball at all (pink curves), and these discovered ball moves cover only a small part of the physically
possible outcome space. On the contrary, both RGE-EFR (handcrafted features) and RGE-VAE
(learned goal space representation with VAE) perform very well, and the KLC of RGE-VAE is even
better than the KLC of RGE-EFR, due to the fact that RGE-VAE has discovered more policies
(around 2400) that move the ball than RGE-EFR (around 1600, pink curve).
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(c) ArmArrow - 10 Latents
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Figure 2: KL Coverage through epochs for different algorithms on ArmBall and ArmArrow envi-
ronments. The exploration performance was assessed for both an over-complete representation (10
latent dimensions), and a complete representation (2 and 3 latent dimensions). The shaded area
represent a 90% confidence interval estimated from 5 run of the different algorithms.

Impact of target latent space size in IMGEP-UGL algorithms On the ArmBall problem, we
observe that if one provides the true target embedding dimension (l = 2) to IMGEP-UGL imple-
mentations, RGE-Isomap is slightly improving (getting quasi-identical to RGE-EFR), RGE-AE does
not change (remains quasi-identical to RGE-EFR), but the performance of RGE-PCA and RGE-VAE
is degraded. For ArmArrow, the effect is similar: IMGEP-UGL algorithms with a larger target em-
bedding dimension (l = 10) than the true dimensionality all perform better than RGE-EFR (except
RGE-RFVAE which is worse in all cases), while when l = 2 only RGE-VAE is significantly better
than RGE-EFR. In Appendix F, more examples of exploration curves with attached exploration scat-
ters are shown. For most example runs, increasing the target embedding dimension enables learners
to discover more policies moving the ball and, in these cases, the discovered outcomes are more
concentrated towards the external boundary of the discus of physically possible outcomes. This
behavior, where increasing the target embedding dimension improves the KLC while biasing the
discovered outcome towards the boundary the feasible goals, can be understood as a consequence
of the following well-known general property of IMGEPs: if goals are sampled outside the convex
hull of outcomes already discovered, this has the side-effect of biasing exploration towards poli-
cies that will produce outcomes beyond this convex hull (until the boundary of feasible outcomes is
reached). Here, as observations in the UGL phase were generated by uniformly moving the objects
on the square [−1, 1]2, while the feasible outcome space was the smaller discus of radius 1, goal
sampling happened in a distribution of outcomes larger than the feasible outcome space. As one
increases the embedding space dimensionality, the ratio between the volume of the corresponding
hyper-cube and hyper-discus increases, in turn increasing the probability to sample goals outside the
feasible space, which has the side effect of fostering the discovery of novel outcomes and biasing
exploration towards the boundaries.
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(a) Rpe

(b) Rge-Efr

(c) Rge-Rfvae - 10 Latents

(d) Rge-Vae - 10 Latents

Figure 3: Examples of achieved outcomes related with the evolution of KL-Coverage in the ArmBall
environments. The number of times the ball was effectively handled is also represented.
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Figure 4: Evolution of the Exploration Ratio for RGE-VAE using KDE or Isotropic Gaussian prior.
The curves show the mean and standard deviation over 5 independent runs of each condition.

Impact of Sampling Kernel Density Estimation Another factor impacting the exploration as-
sessed during our experiments was the importance of the distribution used as stationary Goal Policy.
If, in most cases, the representation algorithm gives no particular prior knowledge of p(o), in the
case of Variational Auto-Encoders, it is assumed in the derivation that p(o) = N (0, I). Hence,
the isotropic Gaussian distribution is a better candidate stationary Goal Policy than Kernel Density
Estimation. Figure 4 shows a comparison between exploration performances achieved with RGE-
VAE using a KDE distribution or an isotropic Gaussian as Goal Policy. The performance is not
significantly different from the isotropic Gaussian case. Our experiments showed that convergence
on the KL term of the loss can be more or less quick depending on the initialization. Since we used
a number of iterations as stopping criterion for training (based on early experiments), we found that
sometimes, at stop, the divergence was still pretty high despite achieving a low reconstruction error.
In those cases the representation was not be perfectly matching an isotropic Gaussian, which could
lead to a goal sampling bias when using the isotropic Gaussian Goal Policy.

5 CONCLUSION

In this paper, we proposed a new Intrinsically Motivated Goal Exploration architecture with Unsu-
pervised Learning of Goal spaces (IMGEP-UGL). Here, the Outcome Space (also used as Goal
Space) representation is learned using passive observations of world changes through low-level
raw sensors (e.g. movements of objects caused by another agent and perceived at the pixel level).
Within the perspective of research on Intrinsically Motivated Goal Exploration started a decade ago
(Oudeyer & Kaplan, 2007; Baranes & Oudeyer, 2013), and considering the fundamental problem of
how AI agents can autonomously explore environments and skills by setting their own goals, this
new architecture constitutes a milestone as it is to our knowledge the first goal exploration architec-
ture where the goal space representation is learned, as opposed to hand-crafted.
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Furthermore, we have shown in two simulated environments (involving a high-dimensional contin-
uous action arm) that this new architecture can be successfully implemented using multiple kinds of
unsupervised learning algorithms, including recent advanced deep neural network algorithms like
Variational Auto-Encoders. This flexibility opens the possibility to benefit from future advances
in unsupervised representation learning research. Yet, our experiments have shown that all algo-
rithms we tried (except RGE-RFVAE) can compete with an IMGEP implementation using engi-
neered feature representations. We also showed, in the context of our test environments, that provid-
ing to IMGEP-UGL algorithms a target embedding dimension larger than the true dimensionality of
the phenomenon can be beneficial through leveraging exploration dynamics properties of IMGEPs.
Though we must investigate more systematically the extent of this effect, this is encouraging from
an autonomous learning perspective, as one should not assume that the learner initially knows the
target dimensionality.

Limits and future work. The experiments presented here were limited to a fairly restricted set of
environments. Experimenting over a larger set of environments would improve our understanding of
IMGEP-UGL algorithms in general. In particular, a potential challenge is to consider environments
where multiple objects/entities can be independently controlled, or where some objects/entities are
not controllable (e.g. animate entities). In these cases, previous work on IMGEPs has shown that
random Goal Policies should be either replaced by modular Goal Policies (considering a modular
goal space representation, see Forestier et al. (2017)), or by active Goal Policies which adaptively
focus the sampling of goals in subregions of the Goal Space where the competence progress is max-
imal (Baranes & Oudeyer, 2013). For learning modular representations of Goal Spaces, an inter-
esting avenue of investigations could be the use of the Independently Controllable Factors approach
proposed in (Thomas et al., 2017).

Finally, in this paper, we only studied a learning scenario where representation learning happens
first in a passive perceptual learning stage, and is then fixed during a second stage of autonomous
goal exploration. While this was here motivated both by analogies to infant development and to
facilitate evaluation, the ability to incrementally and jointly learn an outcome space representation
and explore the world is a stimulating topic for future work.
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Appendix
A INTRINSICALLY MOTIVATED GOAL EXPLORATION PROCESS

Intrinsically Motivated Goal Exploration Processes are algorithmic architectures that can be instan-
tiated into different exploration algorithms depending on the problem to explore. The general archi-
tecture is represented in Algorithm 2.

Algorithmic Architecture 2: Intrinsically Motivated Goal Exploration Strategy
Input:
Regressor D̃running, Goal Policy γ, Meta-Policy algorithm Π, HistoryH, Random exploration
ratio Γe

1 begin
2 for A fixed number of Bootstrapping iterations do
3 Observe context c
4 Sample θ ∼ U(θ)
5 Perform experiment and retrieve outcome o
6 Update Regressor D̃running with tuple {c, θ, o}
7 H =H ∪ {c, θ, o}
8 for A fixed number of Exploration iterations do
9 if u ∼ U(0, 1) < Γe then

10 Sample a random parameterization θi ∼ p(θ)
11 else
12 Observe context c
13 Sample a goal τ ∼ γ
14 Compute θ = arg minθ Cτ (D̃running(θ, c)) using Π, D̃running andH
15 Perform experiment and retrieve outcome o
16 Update Regressor D̃running with the tuple {c, θ, o}
17 Update Goal Policy γ according to Intrinsic Motivation strategy
18 H =H ∪ {c, θ, o}

19 return The forward model D̃running and the historyH

B DEEP REPRESENTATION LEARNING ALGORITHMS

The cost functions used to train the different Deep Representation Learning algorithms used in this
paper can be motivated by a few theoretical arguments summarized below.

Auto-Encoders (AEs) The choice of the cost function can be motivated by considering the net-
work as composed of:

• An encoder network parameterized by weights θ that maps an input x to its deterministic
representation z = fθ(x).

• A decoder network parameterized by weights φ that maps a representation z to a vector ξ
parameterizing a distribution pξ(x|z) with ξ = gφ(z).

Under this stochastic decoding assumption, the Maximum Likelihood principle is used to train the
model, i.e. AEs can maximize the likelihood of data under the model. In the case of Auto-Encoders,
this principle is compatible with gradient descent, and we can use the negative log-likelihood as a
cost function to be minimized. If input x is binary valued, p(x|z) is assumed to follow a multivariate
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Bernouilli distribution of ξ parameters 13, and the log likelihood of the dataset D is expressed as:

logL(D) =

N∑
i=1

log p(x(i)|ξ(i)) =

N∑
i=1

D∑
k=1

[
x
(i)
k log ξ

(i)
k + (1− x(i)k ) log(1− ξ(i)k )

]
, (3)

with ξ(i) = gφ(fθ(x
(i))). For a binary valued input vector x(i), the unitary Cost Function to mini-

mize is:

J (θ, φ,x(i)) = −
D∑
d=1

[
x
(i)
d log(gφ(fθ(x

(i)))d) + (1− x(i)d ) log(1− gφ(fθ(x
(i)))d)

]
, (4)

provided that fθ is the encoder part of the architecture and gφ is the decoding part of the architecture.
This Cost Function can be minimized using Stochastic Gradient Descent (Bottou, 1998), or more
advanced optimizers such as Adagrad (Duchi et al., 2011) or Adam (Kingma & Ba, 2015).

Depending on the depth of the network14, those architectures can prove difficult to train using vanilla
Stochastic Gradient Descent. A particularly successful procedure to overcome this difficulty is to
greedily train each pairs of encoding-decoding layers and stacking those to sequentially form the
complete network. This procedure, known as stacked AEs, accelerates convergence. But it has
shown bad results with our problem, and thus was discarded for the sake of clarity.

Variational Auto-Encoders (VAEs) If we assume that the observed data are realizations of a
random variable x ∼ p(x|ψ), we can hypothesize that they are conditioned by a random vector
of independent factors z ∼ p(z|ψ). In this setting, learning the model would amount to searching
the parameters ψ of both distributions. We might use the same principle of maximum likelihood as
before to find the best parameters by computing the likelihood logL(D) =

∑N
i=1 log p(x(i)|ψ) by

using the fact that p(x|ψ) =
∫
p(x, z|ψ)dz =

∫
p(x|z, ψ)p(z|ψ)dz. Unfortunately, in most cases,

this integral is intractable and cannot be approximated by Monte-Carlo sampling in reasonable time.
To overcome this problem, we can introduce an arbitrary distribution q(z|x, χ) and remark that the
following holds:

log p(x|ψ) = L(q, ψ) + DKL[q(z|x, χ)‖p(z|x, ψ), (5)

with the Evidence Lower Bound being:

L(q, ψ) = Ez∼q(z|x,ψ)[log p(x|z, ψ)]︸ ︷︷ ︸
a

−DKL[q(z|x, χ)‖p(z, ψ)]︸ ︷︷ ︸
b

. (6)

Looking at Equation (5), we can see that since the KL divergence is non-negative, L(q, ψ) ≤
log p(x|ψ) − DKL([q(z|x, χ)‖p(z|x, ψ)] whatever the q distribution, hence the name of Evidence
Lower Bound (ELBO). Consequently, maximizing the ELBO have the effect to maximize the log
likelihood, while minimizing the KL-Divergence between the approximate q(z|x) distribution, and
the true unknown posterior p(z|x, ψ). The approach taken by VAEs is to learn the parameters of
both conditional distributions p(x|z, ψ) and q(z|x, χ) as non-linear functions. Under some restricted
conditions, Equation (6) can be turned into a valid cost function to train a neural network. First,
we hypothesize that q(z|x, χ) and p(z|ψ) follow Multivariate Gaussian distributions with diagonal
covariances, which allows us to compute the b term in closed form. Second, using the Gaussian
assumption on q, we can reparameterize the inner sampling operation by z = µ + σ2 � ε with
ε ∼ N (0, I). Using this trick, the Path-wise Derivative estimator can be used for the a member
of the ELBO. Under those conditions, and assuming that p(x|ψ) follows a Multivariate Bernouilli
distribution, we can write the cost function used to train the neural network as:

J (ψ, χ,x(i)) =− 1

2

J∑
j=1

(1 + log(σ(x(i))2j )− µ(x(i))2j − σ(x(i))2j )

−
D∑
k=1

[
x
(i)
k log(gψ(fχ(x(i)))k) + (1− x(i)k ) log(1− gψ(fχ(x(i)))k)

]
,

(7)

13This requires that the output layer uses a sigmoid function which restricts the values of output to [0, 1].
14By depth here, we indicate the number of layers of the neural network.
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where fχ represents the encoding and sampling part of the architecture and gψ represents the decod-
ing part of the architecture. In essence, this derivation simplifies to the initial cost function used in
AEs augmented by a term penalizing the divergence between q(z|x, χ) and the assumed prior that
p(x|ψ) = N (0, I).

Normalizing Flow overcomes the problem stated earlier, by permitting more expressive prior
distributions (Rezende & Mohamed, 2015). It is based on the classic rule of change of variables
for random variables. Considering a random variable z0 ∼ q(z0), and an invertible transformation
t : Rd 7→ Rd, if z = t(z0), then:

q(z) = q(z0)

∣∣∣∣ det
∂t−1

∂z0

∣∣∣∣ = q(z0)

∣∣∣∣det
∂t

∂z0

∣∣∣∣−1. (8)

We can then directly chain different invertible transformations t1, t2, . . . , tK to produce a new ran-
dom variable zK = tK ◦ · · · ◦ t2 ◦ t1(z0). In this case, we have:

log q(zk) = log

(
q(z0)

K∏
k=1

∣∣∣∣det
∂tk
∂zk−1

∣∣∣∣−1) = log q(z0)−
K∑
k=1

log

∣∣∣∣ det
∂tk
∂zk−1

∣∣∣∣. (9)

This formulation is interesting because the Law Of The Unconscious Statistician allows us to com-
pute expectations over q(zk) without having a precise knowledge of it:

Ezk∼q(zk)[h(zk)] = Ez0∼q(z0)[h(tk ◦ . . . t2 ◦ t1(z0))], (10)

provided that h does not depends on q(zk). Using this principle on the ELBO allows us to derive
the following:

L(q, θ, φ) =Ez0∼q(z0|x)[log p(x|tK ◦ . . . t2 ◦ t1(z0))]

−DKL[q(z0|x)‖p(z0)]

+2Ez0∼q(z0|x)

[ K∑
k=1

log

∣∣∣∣det
∂tk
∂zk−1

∣∣∣∣]
(11)

This is nothing more than the regular ELBO with an additional term concerning the log-determinant
of the transformations. In practice, as before, we use p(z0) = N (z0;0, I), and q(z0|x) =
N (z0;µ(x), diag(σ(x)2)). We only have to find out parameterized transformations t, whose pa-
rameters can be learned and have a defined log-determinant. Using radial flow, which is expressed
as:

t(z) = z + βh(α, r)(z− c), (12)

where r = |z − c|, h(α, r) = 1
α+r and α, β, c are learnable parameters of the transformation, our

cost function can be written as:

J (ψ, χ,x(i)) =− 1

2

J∑
j=1

(1 + log(σ(x(i))2j )− µ(x(i))2j − σ(x(i))2j )

−
D∑
d=1

[
x
(i)
d log(gψ(fχ(x(i)))d) + (1− x(i)d ) log(1− gψ(fχ(x(i)))d)

]
− 2

K∑
k=1

log[1 + βkh(αk, r))]D−1[1 + βkh(α, r)) + βkh
′(α, r)r],

(13)

provided that fχ represents the encoding, sampling ad transforming part of the architecture, gψ
represents the decoding part of the architecture, and βk, αk, ck are the parameters of the different
transformations. Other types of transformations have been proposed lately. The Householder flow
(Tomczak & Welling, 2016) is a volume preserving transformation, meaning that its log determinant
equals 1, with the consequence that it can be used with no modifications of the loss function. A
more convoluted type of transformations based on a masked autoregressive auto-encoder, the Inverse
Autoregressive Flow, was proposed in Kingma & Welling (2013). We did not explore those two last
approaches.
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Figure 5: Effect of a Radial Flow transformation on an Isotropic Gaussian Distribution.

Figure 6: A DMP executed on the Arm-Ball environment.

C EXPERIMENTAL ENVIRONMENTS

The following environments were considered:

• Arm-Ball: A 7 joints arm, controlled in angular position, can move around in an envi-
ronment containing a ball. The environment state is perceived visually as a 50x50 pixels
image. The arm has a sticky arm tip: if the tip of the arm touches the ball, the ball sticks to
the arm until the end of the movement. The underlying state of the environment is hence
parameterized by two bounded continuous factors which represent the coordinates of the
ball. A situation can be sampled by the experimenter by taking a random point in [0, 1]2.

• Arm-Arrow: The same arm can manipulate an arrow in a plane, an arrow being consid-
ered as an object with a single symmetry that can be oriented in space. Consequently, the
underlying state of the environment is parameterized by two bounded continuous factors
representing the coordinates of the arrow , and one periodic continuous factor representing
its orientation. A particular situation can hence be sampled by taking a random point in
[0, 1]3.

The physical situations were represented by small 70x70 images very similar to the dSprites dataset
proposed by Higgins et al. (2016)15. The arm was not depicted in the field of view of the (virtual)
camera used to gather images for representation learning. We used a robotic arm composed of 7
joints, whose motions were parameterized by DMPs using 3 basis functions (hence action policies
have 21 continuous parameters), during 50 time-steps. An example of such a DMP executed in
the environment is represented in Figure 6. The first phase, where the learner observes changes of
the environment (= ball moves) caused by another agent, is modeled by a process which samples
iteratively a random state in the underlying state space, e.g. in the case of Arm-Ball s ∼ U([0, 1]2),
and then generating the corresponding image x = f(s) that is observed by the learner.

D ALGORITHMIC IMPLEMENTATION

For the experiments, we instantiated the Algorithmic Architecture 1 into Algorithm 3.

In the text, Algorithm 3 is denoted (RGE-?), where ? denotes any representation learning algo-
rithm: (RGE-AE) for Auto-Encoders, (RGE-VAE) for Variational Auto-Encoders, (RGE-RFVAE)

15Available at https://github.com/deepmind/dsprites-dataset .
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for Radial Flow Variational Auto-Encoders, (RGE-ISOMAP) for Isomap, (RGE-PCA) for Principal
Component Analysis and (RGE-FI) for Full Information.

Algorithm 3: Random Goal Exploration with Unsupervised Goal Space Learning
Input:
k-neighbors regressor D̃, HistoryH, Meta-Policy Π is a tabular minimization overH,
Unsupervised representation learning algorithm A (e.g. AE, VAE, Isomap), Kernel Density
Estimator algorithm KDE , Random exploration noise γm, Random exploration ratio Γe

1 begin
2 for 10000 Observation Iterations do
3 Observe a random environment image xi
4 Add this image to a database D = {xi}i∈[0,10000]
5 Learn an embedding function R̃ : x→ o using algorithm A on data D
6 Estimate the outcome distribution pkde(o) from {R̃(xi)}i∈[0,10000] using algorithm KDE
7 Set the Goal Policy γ = pkde to be the estimated outcome distribution
8 for 100 Bootstrapping iterations do
9 Sample a random parameterization θi ∼ p(θ)

10 Execute the experiment θi (= run a controller with parameters θi)
11 Retrieve the outcome from raw image oi = R̃(xi)

12 Update the forward model with D̃(θi) , oi
13 H =H ∪ {θ, o}
14 for 5000 Exploration iterations do
15 if u ∼ U(0, 1) < Γe then
16 Sample a random parameterization θi ∼ p(θ)
17 else
18 Sample a goal gi ∼ γ
19 Sample an exploration noise ε ∼ N (0, I)

20 Execute Π to find θi = arg minθ∈H Cτ ( ˜Drunning(θ))
21 θi = θi + ε

22 Execute the experiment θi
23 Retrieve the outcome from raw image oi = R̃(xi)

24 Update the forward model with D̃(θi) , oi
25 H =H ∪ {θ, o}

26 return The forward model D̃, the historyH and the embedding R̃

E DETAILS OF NEURAL ARCHITECTURES

Fig. 7 shows the neural networks architectures used for Deep Representation Learning algorithms.
Those architectures are based on the one proposed in Higgins et al. (2016).

Auto-Encoder The architecture was trained directly without particular stacking. The AdaGrad
optimizer was used, with initial learning rate of 1e− 3, with batches of size 100, until convergence
at 2e5 epochs.

Variational Auto-Encoder The architecture was trained with a deterministic warm-up of 1e4
epochs, as proposed in Sonderby et al. (2016), which shows improved convergence rate. The Adam
optimizer was used, with initial learning rate of 1e− 3, with batches of size 100, until convergence
at 1e5 epochs.

Radial Flow Variational Auto-Encoder The architecture was trained with a deterministic warm-
up of 1e4 epochs. The complete flow was made out of 10 planar flows as proposed in Rezende &
Mohamed (2015), whose parameters were learned by the encoder. The Adam optimizer was used,
with initial learning rate of 1e− 3, with batches of size 100, until convergence at 5e4 epochs.
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Figure 7: Layers of the different neural networks architectures.

F EXPLORATION CURVES

24



Published as a conference paper at ICLR 2018

(a) Rge-Ae - 10 Latents

(b) Rge-Ae - 2 Latents

(c) Rge-Pca - 10 Latents

(d) Rge-Pca - 2 Latents

Figure 8: Examples of achieved outcomes related with the evolution of KL-Coverage in the ArmBall
environments. The number of times the ball was effectively handled is also represented.
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(a) Rge-Isomap - 10 Latents

(b) Rge-Isomap - 2 Latents

(c) Rge-Vae - 2 Latents

(d) Rge-Rfvae - 2 Latents

Figure 9: Examples of achieved outcomes related with the evolution of KL-Coverage in the ArmBall
environments. The number of times the ball was effectively handled is also represented.
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