
Dual Architecture for Name Entity Extraction and Relation Extraction
with Applications in Medical Corpora

Anonymous ACL submission

Abstract
There is a growing interest in automatic knowl-001
edge discovery in plain text documents. Au-002
tomation enables the analysis of massive col-003
lections of information. Such efforts are espe-004
cially relevant in the health domain as advance-005
ments could use the large volume of available006
resources to transform areas important for so-007
ciety when addressing various health research008
challenges. However, knowledge discovery is009
usually aided by annotated corpora, which are010
scarce resources in the literature. This situa-011
tion is particularly critical in the Spanish lan-012
guage, for which the volume of training re-013
sources is less widespread. This work uses a014
health-oriented Spanish dataset, and it also cre-015
ates an English variant using the same tagging016
system. Furthermore, we design and analyze017
two separated architectures for Entity Extrac-018
tion and Relation Recognition that outperform019
previous works in the Spanish dataset. With020
such promising results, we also evaluate their021
performance in the English version. Finally, we022
perform a use case experiment to evaluate the023
utility of the output of these two architectures024
in Information Retrieval systems.025

1 Introduction026

In recent decades there has been a significant027

growth in the generation and collection of data028

in text form. This has caused a great interest of the029

scientific community in developing systems that030

assist the transformation of text into useful knowl-031

edge. However, the sheer volume of information032

and the poorly unified semantic structure of docu-033

ments written in natural language makes it difficult034

for researchers to find good results efficiently. In035

this domain is located the area of automatic infor-036

mation extraction in which, in turn, is present the037

problems of entity extraction and the relationships038

that are established between them.039

The search for related research becomes much040

more complex when considering multiple lan-041

guages. There are research areas where there are042

relevant results in more than one language, as is 043

the case of medicine. We can find influencing re- 044

sults in English and also Spanish to give an exam- 045

ple. However, because Spanish is a less general- 046

ized language than English in terms of available 047

computational resources, there are not many au- 048

tomatic information extraction systems available 049

(Piad-Morffis et al., 2020). 050

The entity extraction and classification problem 051

are formulated in the literature as Named Entity 052

Recognition (NER) (Li et al., 2020). It is defined 053

as the process of obtaining, from unstructured nat- 054

ural language text, a list of the sections of that text 055

that contain entities. Entities have been described 056

in the literature differently, depending on the con- 057

text, domain, and corpus used (Li et al., 2020). A 058

related problem of Relation Extraction (RE) (Pawar 059

et al., 2017), and classification is vent broader. It 060

aims at determining which relations are established 061

between the entities previously recognized in an 062

input document (Pawar et al., 2017). 063

This paper improves on the models introduced 064

by Rodríguez-Péreza et al. (2020), obtaining two 065

new separated architectures for the Entity Extrac- 066

tion and Relation Recognition problem, respec- 067

tively. Next, it studies its performance in the Span- 068

ish dataset of the event eHealth-KD 20201 and an 069

English dataset created by us based on the Spanish 070

dataset. Finally, a use case experiment is designed 071

using the Benchmark for Zero-shot Evaluation 072

of Information Retrieval Models (BEIR) (Thakur 073

et al., 2021) to show the impact of the graph on- 074

tologies built from the output of both architectures 075

in Information Retrieval Systems. In addition, we 076

defined a score function to assess the similarity 077

between two texts based on their ontological repre- 078

sentation. 079

The paper is organized as follows. First, we 080

present a section of related work. The next section 081

1https://knowledge-learning.github.io/
ehealthkd-2020/resources
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elaborates on the datasets used and how the new082

English dataset was built. Then, Section 3 presents083

the design and details of both architectures for the084

NER and RE problems, respectively. Section 4085

presents performed experiments. The consequent086

Section 5 shows the use case experiment, the new087

similarity score function defined, and the results.088

Finally, the last section concludes the paper and089

suggests futures work.090

2 Background091

NER and RE are essential preprocessing steps for092

various problems such as Information Retrieval,093

Question Answering, Machine Translation, and094

others (Li et al., 2020). Several approaches have095

been found for NER in the literature like rules096

based (Zhang and Elhadad, 2013), unsupervised097

learning (Nadeau and Sekine, 2007), supervised098

based in features (Settles, 2004; Li et al., 2020).099

In the last years, the most successful approaches100

have been found in deep learning techniches (Li101

et al., 2020). Successful deep learning approaches102

are based on contextual encoders as Bidirectional103

Long Short Term Memory (BiLSTM), Convolu-104

tional Neural Networks (CNN), and Transformer105

architectures (Li et al., 2020). One final step in106

deep learning techniques for NER is the tag decod-107

ification stage, where the literature shows the use108

of Multilayer Perceptron with softmax activation,109

Recurrent Neural Networks (RNN) (Li et al., 2020)110

and Conditional Random Field (CRF) (Li et al.,111

2020; Lafferty et al., 2001).112

RE also had its best results in the last year113

with deep learning approaches (Pawar et al., 2017).114

Deep learning-based solutions to the RE problem115

are focused on sentence encoders using BiLSTM,116

CNN, and Transformers architectures (Pawar et al.,117

2017). Also, deep learning solutions to the NER118

and RE problems need distributed representations119

of the input (Li et al., 2020; Pawar et al., 2017).120

The most used representations in the last years are121

contextual embeddings of the word that can be122

obtained using pretrained Transformer models in123

large collections of text as BERT (Devlin et al.,124

2018), word embeddings (Mikolov et al., 2013)125

pretrained in large corpora or trained together with126

the model. In addition are used character embed-127

dings that are trained with the model also, usually128

using BiLSTM or CNN based architectures (Li129

et al., 2020) and also Part of Speech tags (POS-130

tags) (Li et al., 2020). Particularly in RE, another131

Datasets (Train) (Development) (Testing)

Spanish 800 200 100
English 250 50 50

Table 1: Distribution of both datasets, by number of
sentences for traning, development and testing.

highly used representation is the dependency tree 132

associated with the sentence (Pawar et al., 2017; 133

Liu et al., 2015). 134

Research has also been done using the tagging 135

system proposed in (Piad-Morffis et al., 2020). This 136

tagging system is composed of four types of enti- 137

ties: Concept, Action, Reference, Predicate and 138

a set of relations as is-a, part-of, causes, has- 139

property, entails, same-as. Several models have 140

been developed for the extraction and classifica- 141

tion of entities and relations using this tagging sys- 142

tem and a Spanish medical dataset in the event of 143

eHealth-KD 2020 (Piad-Morffis et al., 2020). 144

3 Datasets 145

The dataset used is the one proposed in the event 146

eHealth-KD in its 2020 edition (Piad-Morffis et al., 147

2020). This dataset is composed of two collections 148

of tagged sentences with the entities and relations 149

present in them. The training collection is used 150

to optimize the proposed models’ parameters, and 151

the development collection is used for the model 152

selection. Finally, there is a testing collection to 153

determine the final performance of the systems 154

developed by the contestants. This event also is 155

divided into two tasks. One task is for entity ex- 156

traction and classification, and the second is for 157

relation extraction and classification. 158

The English version of this dataset was created 159

based on the Spanish dataset’s sentences translated 160

to English and with adjusted relations. However, 161

solely translating the dataset is not sufficient be- 162

cause the words used in English often express the 163

same as in Spanish but do not mean the same 164

in the full context, and the grammar is different. 165

Therefore, entities change positions in the sentence, 166

which implies that the relations have to be adjusted. 167

Table 1 shows the distributions of both datasets. 168

4 Architectures 169

The Dual Architecture system proposed in this pa- 170

per solves both tasks separately and sequentially. 171

Thus, independent models were defined to solve 172

NER and RE problems. The NER task is posed 173
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as a tag prediction problem that takes the raw174

text of the input sentence and outputs two inde-175

pendent tag sequences: one in the BMEWO-V176

tag (Zavala et al., 2018) system for entity predic-177

tion (Rodríguez-Péreza et al., 2020), and another178

with tags corresponding to entity types (Concept,179

Action, Reference, Predicate) for classification pur-180

poses. The tag None is included in the latter; con-181

sider the cases where no entity is present. Mean-182

while, the RE task is interpreted as a series of pair-183

wise queries amongst the entities present in the184

target sentence. A particular relation’s existence185

is predicted upon features derived from both the186

sentence and the pair of entities.187

4.0.1 Preprocessing188

Given the target sentence and the highlighted enti-189

ties input as raw text, some preprocessing is done to190

derive functional structures from such text. Since191

both models make use of word-piece information,192

the input sentence must be tokenized first. Other193

preprocessing steps include character-level word194

decomposition, syntactic features extraction, and195

dependency parsing. To obtain a representation of196

the corresponding inputs, the models make use of197

the following features for each word:198

Contextual embedding: BERT-based contextual199

embeddings with no further hyper tuning.200

Character embeddings: CNN-based character201

embeddings. The input to such CNN is a202

sequence of alphabet indexes, those of the203

characters contained in the word.204

POS-tag and Dependency embeddings:205

Embeddings intended to encode word-level206

syntactic features such as the POS-tag of the207

given the word and the dependency with its208

ancestor in the dependency parse tree.209

BMEWO-V and Entity Type tags: BMEWO-V210

and entity type tags are used in the RE task211

and are obtained from NER model outputs.212

4.1 Named Entity Recognition Model213

The model receives the sentence as a sequence of214

word vectors S. A distributed representation of each215

word is obtained concatenating contextual, charac-216

ter, and POS-tag embeddings, as described in the217

previous subsection. At a second level, the se-218

quence of tokens is processed in both directions219

by a BiLSTM layer, resulting in two sequence vec-220

tors. The vectors on complementary positions of221

the two sequences are concatenated, resulting in 222

a new sequence P with contextual-dependent vec- 223

tors assigned to each token in the sentence. This 224

sequence is looking to encapsulate semantic depen- 225

dencies between the tokens of the sentence. The 226

output sequence of the first BiLSTM is processed 227

in both directions by a stacked BiLSTM on top of 228

the first one, getting more representational power 229

and resulting in the sequence of vectors P’: 230

P = BiLSTM(S), P ′ = StackedBiLSTM(P ). 231

The model has to assign tags in the BMEWO- 232

V tag system to each word, and also a classifica- 233

tion type in the classes Concept, Action, Reference, 234

Predicate and None. To do so, the next steps were 235

split into two cases. Both architectures are shown 236

in the figures 1a and 1b 237

To assign tags in the BMEWO-V tag system 238

to each word, the sequence P’ is fed into a linear 239

chain CRF layer that outputs the most likely tag se- 240

quence according to the Viterbi algorithm (Viterbi, 241

1967). Let xtag be the output corresponding to the 242

BMEWO-V tag system and CRFtag the CRF layer, 243

then: 244

xtag = CRFtag(P
′). 245

In the second case, where a type must be as- 246

signed to each word, the sequence P’ is fed into a 247

Multiheaded Attention layer with eight heads, ini- 248

tialized with the value, key, and query vectors with 249

the sequence P’. This layer will return a sequence 250

of attention vectors called Z, denoted as follows: 251

Z = MultiHeadedAttention(P ′, P ′, P ′). 252

Finally, the sequence Z is also fed to another 253

CRF layer that outputs the most likely type se- 254

quence. Let xtype be the output corresponding to 255

the entity type and CRFtype the linear chain CRF 256

layer, then: 257

xtype = CRFtype(Z). 258

The first CRF layer produces a sequence of tags 259

in the BMEWO-V tag system. Table 2 shows the 260

description of the tag system. A process is neces- 261

sary to transform a tag sequence obtained from the 262

CRF layer into a list of entities expected as output 263

in Task A (Rodríguez-Péreza et al., 2020). This 264

process from now on will be referred to as decod- 265

ing. An essential challenge in this process is that 266

tokens belonging to an entity are not necessarily 267
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(a) Entity Extraction Model Architecture for BMEWO-V tags. (b) Entity Extraction Architecture for Classification.

Figure 1: On the left the Entity Extraction Model Architecture for BMEWO-V tags. On the right the Entity
Extraction Model Architecture for Classification.

Tag Meaning

B Beginning of an entity
M Middle of an entity
E End of an entity
W Single-token entity
V Two or more entities overlap in that token
O Token does not represent anything

Table 2: BMEWO-V tag system meaning.

continuous in the sentence. Thus, the decoding pro-268

cess is divided into two stages. First, discontinuous269

entities are detected and then, at a second moment,270

continuous entities.271

The set of tag sequences that must be interpreted272

as a group of discontinuous entities were narrowed273

to those that match the regular expressions:274

(V+)((M ∗ EO∗)+)(M ∗ E) (1)275

and ((BO)+)(B)(V+). (2)276

The former 1 corresponds to entities that share277

the initial tokens, and the latter 2 to those that share278

the final tokens. These two capture most of the279

desired discontinuous entities. When a match is280

detected and the entities are extracted, then all the281

tags in that fragment are set to the tag O.282

After detecting possible discontinuous entities,283

the second stage begins assuming that all the re-284

maining entities appear as continuous sequences of285

tokens. Extracting the continuous entities is carried286

out as an iterative process over the tags sequence287

produced by the model. Due to limitations in the288

BMEWO-V system, the procedure also assumes 289

that the maximum overlapping depth is 2. Given 290

this, at most, two partially-constructed entities are 291

maintained across the procedure. In each iteration, 292

these two entities are created, extended with new 293

tokens, or reported as completed, following rules 294

defined considering only the previous and the cur- 295

rent tag. 296

According to evaluations performed in the train- 297

ing and development collections, the process of de- 298

coding correctly labeled sequences extracts more 299

than 98% of the entities present in the Spanish 300

dataset. 301

After identifying the entities, we classify each 302

of them according to its type, using a voting sys- 303

tem based on the second CRF layer’s output. The 304

system had previously assigned to each word in the 305

input sentence, one of the entity types, in this case 306

one between: Concept, Action, Predicate 307

or Reference. Each word produces a vote for 308

each entity it belongs to, according to the assigned 309

type. Then, each entity is classified according to 310

the type that obtained the highest number of votes. 311

If the voting is even, Concept is assumed since 312

it is the most frequent by a wide margin in the 313

collections studied. 314

4.2 Relation Extraction Model 315

The complete information to solve the RE task 316

is found in the whole input sentence. However, 317

some authors claim that the dependency tree associ- 318

ated with the input sentence condenses the essential 319

pieces of information and discards the misleading 320
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ones (Liu et al., 2015; Xu et al., 2015). Aiming321

at determining a possible relation between two en-322

tities, the system presented uses input structures323

derived from the dependency parse tree associated324

with the target sentence to obtain information from325

the sentence and the entity pair.326

One of the criteria taken into consideration to327

establish a dependency relationship with a header328

H in a syntactic construction C, is the fact that329

H could replace C (Zwicky, 1985). Moreover,330

H could semantically determine C. On the other331

hand, multiple-word entities often occur entirely in332

a dependency subtree rooted at one of its tokens.333

Given a sentence and its dependency tree T , we334

define such subtree of T corresponding to an entity335

e, as relevant tree for e, and it is denoted further336

on as Se. The root is called the core of the entity337

e, and it is denoted ne.338

Another important definition, vastly used in liter-339

ature to address this task, the is dependency path340

between two tokens t1 and t2. From now on, it will341

be referred to as C(t1, t2). The before-mentioned342

structures are fed into a Deep Neural Network that343

outputs a vector whose length is the same as the344

relations set. Each component of such vector is in-345

dependent of each other and measures how certain346

is the model that the respective relation between347

the input entities appears.348

To do so, the model first encodes each of the349

structures Se1 , Se2 and C(ne1 , ne2) in a vector.350

Either Se1 and Se2 or C(ne1 , ne2) are formed by351

words from the input sentence. A distributed rep-352

resentation of each word is obtained concatenat-353

ing contextual, character, POS-tag, dependency,354

BMEWO-V and entity type embeddings, as de-355

scribed in the previous subsection.356

To compute the output vector, a BiLSTM layer357

encodes the sequence of vectors associated to the358

words in C(ne1 , ne2) to include bidirectional infor-359

mation in the representation:360

P = BiLSTM(C(ne1 , ne2)).361

Then the sequence P is fed into a Multiheaded362

Attention layer with five heads, initialized with the363

value, key, and query vectors with the sequence P.364

This layer returns a sequence of attention vectors365

called Z, defined as follows:366

Z = MultiHeadedAttention(P, P, P ).367

This output is fed into a unidirectional LSTM368

layer to emphasize the direction of the potential369

Figure 2: Relation Extraction Model Architecture.

relation, processing the sequence Z from the ori- 370

gin to the destination. This results in a vector p 371

encoding the information present in C(ne1 , ne2): 372

p = LSTM(Z). 373

At the same time, a ChildSum Tree-LSTM (Tai 374

et al., 2015) is applied independently over Se1 and 375

Se2 (i.e the representations are obtained separately 376

but using the same set of weights): 377

te1 = TreeLSTM(Se1), te2 = TreeLSTM(Se2) 378

Vectors encoding the input structures are con- 379

catenated. The final output x is obtained by apply- 380

ing a sigmoid function to a linear transformation 381

of it as follows: 382

r = [te1 ; te2 ; p], x = σ(W (x)r + b(x)) 383

According to the scores present in the output 384

vector x, if any of its components exceeds a given 385

threshold, then the relation with the maximum 386

score is said to exist. If none of the scores is greater 387

than such threshold, then no relation is reported. 388

The threshold value is added as a hyperparameter 389

and optimized using the development collection. 390

Notice that this approach allows us to disregard the 391

use of a fake relation none. Figure 2 shows the 392

described architecture. 393

4.3 Parameters Setup and Training 394

For both models, the training procedure was carried 395

out using only the training collection. 396

Since the CRF layer is intended to maximize the 397

probability of obtaining a desired tag sequence y 398

given an input feature vector X , the Task A model 399

is trained to minimize the negative log of the proba- 400

bility P (y|X). Let U and T be the CRF emissions 401

and transition matrixes, respectively. Then, that 402
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Parameter Value Parameter Value

Input Embeddings size

Contextual† 3072 Contextual⋆ 768
Character 50 Character 50
POS-tag 50 POS-tag 50

Dependency 50
BMEWO-V
tags

50

Entity type 50

Neural network

CNN hid. sz. 100 CNN hid. sz. 100
2D Dropout 0.5 BiLSTM h. sz. 100
BiLSTM1 h.sz. 300 Dropout rate 0.2
Dropout1 rate 0.5 LSTM hid. sz. 50
BiLSTM2 h. sz. 300 Dropout rate 0.5
Multihead-att-
hds

8 Multihead-att-
hds

5

Dropout2 rate 0.5 Tree-LSTM sz. 50
Dropout rate 0.5

Training

Optimizer Adam Optimizer Adam
Learning rate 0.001 Learning rate 0.001
Epochs 50 Epochs 30

Total params 9,935,538 Total params 5,947,763

Table 3: Hyperparameter setup for NER (left) and
RE (right) models. Annotations: †last four, ⋆last layer.

probability is defined as the normalized exponen-403

tial:404

P (y|X) =
e
∑l

k=1 U(xk,yk)+
∑l−1

k=1 T (yk,yk+1)

Z(X)
,405

where Z is a normalization factor depending on406

the input vector X . The loss function is defined in407

terms of X and y as follows:408

ℓ(X, y) = − log(P (y|X)).409

In the case of Task B model, since each output410

component is independent to each other, the model411

is trained to minimize a binary cross-entropy func-412

tion over the output vector. Let k be the number413

of relations, x the output vector and y the target414

vector, the loss ℓ(x, y) is computed as follows:415

1

k

∑
1≤i≤k

yi · log xi + (1− yi) · log(1− xi). (3)416

As explained before, the model output does not417

make use of the fake none relation. A negative418

sampling strategy is used to optimize the model419

with examples where no relation is present. A neg- 420

ative sample is nothing more than a training exam- 421

ple where the target output is the null vector. Such 422

sampling is performed using a fixed proportion of 423

unrelated entity pairs. 424

Dropout strategies were used during the training 425

procedure in both models to reduce overfitting. For 426

Task A, two dropouts layers were stacked after the 427

first and the second BiLSTM, and a spatial dropout 428

2D was added after the CNN layer was used to 429

compute the character embedding of words. In the 430

Task B model, three dropout layers were stacked 431

after BiLSTM, LSTM, and TreeLSTM layers, re- 432

spectively. 433

The number of epochs was selected empirically, 434

based on the convergence of the models, as learning 435

curves showed. For hyperparameter tuning and 436

model selection, a cross-validation process was 437

carried out using the development collection. Table 438

3 shows the hyperparameter setup for both models. 439

4.4 Data Augmentation 440

Also, the implementation of a word replacement 441

data augmentation algorithm (Dai and Adel, 2020) 442

will automatically increase the dataset’s size. This 443

algorithm first goes for each sentence in the dataset 444

and searches for an entity composed of only one 445

word. Then it changes that word with the token 446

[MASK], and a pre-trained model of BERT is used 447

to predict which word should replace the [MASK] 448

token. If the predicted word is different from the 449

previous word, then a new sentence is created us- 450

ing this new predicted word. Two strategies were 451

implemented. The first strategy is to add a new sen- 452

tence for each word replaced. This means that for 453

only one sentence, more than one new sentence can 454

be generated. The second strategy is to add a new 455

sentence for each existing sentence by changing all 456

the possible words in the already existing sentence. 457

This means that the new sentences will be more 458

different than the existent ones. 459

5 Experiment and results 460

We evaluated the performance of the deep learn- 461

ing models in the Spanish language using the same 462

testing dataset that in the competition eHealth-KD 463

of 2020 (Piad-Morffis et al., 2020). Next, we eval- 464

uated the model training with the English dataset 465

using a testing set of 50 sentences but with the 466

same metrics. Also, Table 4 shows the results of 467

the other approaches in the same competition in 468
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Teams (A+B) (A) (B) (A+B T)

Vicomtech 0.666 0.821 0.583 0.563
Ours (DA) 0.633 0.829 0.637 0.587
Ours 0.631 0.828 0.637 0.561
Talp-UPC 0.627 0.816 0.575 0.584
UH-MAJA-KD 0.625 0.814 0.599 0.548
IXA-NER-RE 0.558 0.692 0.633 0.479
UH-MatCom 0.557 0.795 0.545 0.373
SINAI 0.421 0.825 0.462 0.281
HAPLAP 0.395 0.542 0.316 0.138
baseline 0.395 0.542 0.131 0.138
ExSim 0.246 0.314 0.131 0.122

Table 4: Results (measure F1) in each scenario of the
competition, sorted by scenario 1 in the event eHealth-
KD 2020. The (A + B T) scenario is both tasks together
but in an evaluation dataset of general purpose. The
system using the models of this work and the previous
version of these models are highlighted in black. The
label (DA) means our approach using the data augmen-
tation strategy.

System-Data-Augment (A+B) (A) (B) Size

Models with Spanish 0.633 0.829 0.637 1587
Models with English 0.572 0.781 0.550 1168

Table 5: Results (measure F1) obtained from the eval-
uation of the systems in the Spanish dataset provided
in the event eHealth-KD 2020 and the newly created
English dataset. In both datasets a data augmentation
strategy was used. The size column shows the size in
sentences of the augmented dataset.

the Spanish language in comparison with our ap-469

proach. The results are presented in F1 measure470

with the respective definitions of precision and re-471

call of the eHealth-KD of 2020 (Piad-Morffis et al.,472

2020; Piad-Morffis et al., 2020). Also, an overview473

of the different models presented in Table 4 can be474

found in (Piad-Morffis et al., 2020).475

As can be seen in the Spanish dataset results476

in Table 4, our approach obtains the best results477

in the task of only extracting and classifying en-478

tities (A) and also in the task of only extracting479

and classifying the relations (B). Furthermore, our480

system simultaneously gets the best results in both481

tasks but in a general-purpose testing dataset (A482

+ B T). However, a system is better in both tasks483

at the same time but in a medical-specific testing484

dataset (A + B). We believe the reason is the use of485

a joint model solving both tasks at the same time,486

instead of a model-specific for entities and others487

for relations (García-Pablos et al., 2020). Obtain-488

ing functions that jointly optimize both tasks have a 489

great complexity (García-Pablos et al., 2020). How- 490

ever, the fact that our proposal shows competitive 491

results allows us to suppose that training separate 492

models to solve the two tasks is still a promising 493

line of research. 494

Table 5 shows the best results after using the data 495

augmentation algorithm proposed in Section 4. The 496

strategy of a new sentence for each word changed 497

worked better for the English dataset since its orig- 498

inal size is still too small. However, this strategy 499

brings more noise and bias to a bigger dataset like 500

the Spanish one. For that reason, we use the strat- 501

egy of a new sentence in the Spanish dataset to 502

change all the possible words in an already existing 503

sentence. We also believe that the use of this data 504

augmentation strategy is one of the main reasons 505

for the improvement of the results in the task (A + 506

B T). Since that, the new words added by the pre- 507

trained model of BERT bert-base-multilingual- 508

cased during the prediction are general-purpose 509

and not medical-specific. 510

6 Use Case Experiment 511

The output of this dual architecture system can be 512

used to build a graph ontology representation of the 513

text, taking the entities as nodes and the relations as 514

directed edges. We built an experiment to measure 515

the impact that this representation could have on 516

Information Retrieval. 517

For this, we used the Benchmark for Zero- 518

shot Evaluation of Information Retrieval Models 519

(BEIR) (Thakur et al., 2021), and we targeted 520

the Reranking task in the health-oriented NFCor- 521

pus (Boteva et al., 2016). To address this task in 522

the framework, a score function with an output 523

between 0 and 1 has to be used to measure how 524

related are a query and a document. 525

We defined a score function based on the hypoth- 526

esis that if we interpret the graph ontology as the 527

knowledge representation of a text, then if a doc- 528

ument is highly related to a query, the knowledge 529

graph corresponding to the query should be a sub- 530

graph of the document’s knowledge representation. 531

The following equations and definitions detail the 532

score function that we called Ontology Score: 533

OScore(Q,D) = 534

NScore(Q,D) + EScore(Q,D)

2
, (4) 535
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536

NScore(Q,D) =

∑
vi∈VQ

NodeSim(vi)

2 ∗ |VQ|
, (5)537

EScore(Q,D) =

∑
ei∈EQ

EdgeSim(ei)

|EQ|
, (6)538

where Q = (VQ, EQ) and D = (VD, ED) repre-539

sent the graph ontology obtained from the query540

and document, respectively.541

Definition 1 (Entity Similarity) Given two ontol-542

ogy graphs Q = (VQ, EQ) and D = (VD, ED)543

and a pair of nodes qnode ∈ VQ and dnode ∈ VD544

the EntSim(qnode, dnode) (Entity Similarity) is545

the cosine similarity of the BERT embeddings2 of546

the entities corresponding to each node.547

Definition 2 (Max Entity Related Node) Given548

two ontology graphs Q = (VQ, EQ) and549

D = (VD, ED) and a node qnode ∈ VQ. The550

Max Entity Related Node dnode ∈ VD to551

qnode is the node with the highest value of552

EntSim(qnode, dnode).553

Definition 3 (Node Similarity) Given two ontol-554

ogy graphs Q = (VQ, EQ) and D = (VD, ED)555

the NodeSim (Node Similarity) function of a node556

qnode from Q is defined as finding its Max En-557

tity Related Node dnode in VD. Then the value of558

NodeSim is the value of EntSim(qnode, dnode)559

increased by 1 if the classification of qnode and560

dnode as an entity is the same.561

Definition 4 (Edge Similarity) Given two ontol-562

ogy graphs Q = (VQ, EQ) and D = (VD, ED),563

e = (q1, q2) ∈ EQ, q1 ∈ VQ and q2 ∈ VQ and564

the Max Entity Related Node of q1 and q2 called as565

d1 ∈ VD and d2 ∈ VD. The EdgeSim (Edge Sim-566

ilarity) of e is 1 if exists the edge e′ = (d1, d2) ∈567

ED and it has the same label that e. EdgeSim is568

0 in any other case.569

Table 6 shows the results in the Reranking task570

using our score function and also an average of571

our score and the score obtained from one of the572

best-pretrained models that the framework offers573

for the Reranking task, which is cross-encoder/ms-574

marco-electra-base (Thakur et al., 2021).575

Even when the results of our score are the low-576

est in Table 6 we consider the results are not bad577

because we are using our models trained in the578

new English dataset that is still small, therefore,579

2We use the pretrained model bert-large-cased to get the
embeddings.

Metric Ours Combined CEMMEB

NDCG@1 0.2529 0.3846 0.4235
NDCG@10 0.2031 0.2564 0.2918
NDCG@100 0.1479 0.1740 0.1877
MAP@1 0.0228 0.0394 0.0465
MAP@10 0.0523 0.0785 0.0951
MAP@100 0.0664 0.0898 0.1037
Recall@1 0.0228 0.0394 0.0465
Recall@10 0.0922 0.1103 0.1252
P@1 0.2529 0.3846 0.4235
P@10 0.1661 0.1903 0.2164

Table 6: Results of our score (Ours), the cross-
encoder/ms-marco-electra-base (CEMMEB) used in
the BEIR framework, and the combination of both by
taking the mean. The metrics reported are Normal-
ized Discounted Cumulative Gain at k (NDCG@k),
Mean Average Precision at k (MAP@k), Recall at k
(Recall@k) and Precision at k (P@k) (Radlinski and
Craswell, 2010; Thakur et al., 2021).

the performance of the models is low, especially 580

the Relation Extraction model, which implies that 581

the edge score will be weak. In our opinion, is 582

that score the more likely to give the improvement 583

since the node score idea is in the most a relation 584

score among words that are already contained in the 585

original approach cross-encoder/ms-marco-electra- 586

base (Thakur et al., 2021). 587

7 Conclusions 588

This work designs two separated architectures for 589

the NER and RE problems and assesses them in 590

both datasets, showing that our models obtain great 591

results compared to state-of-the-art work in the 592

Spanish dataset. Also, a score similarity function 593

was presented for two ontology graphs and a use 594

case experiment using the BEIR framework and 595

the NFCorpus to evaluate the output of both mod- 596

els after building a graph ontology from the text 597

using our architectures. Finally, we introduce a 598

new English dataset based on the health-oriented 599

Spanish dataset of the eHealth-KD 2020 using the 600

same tagging system, allowing future work from 601

a multilingual approach using both datasets. We 602

intend to continue increasing the size of the English 603

dataset, improve the performance of the models and 604

the score similarity function of two ontologies and 605

evaluate in more datasets that BEIR offers besides 606

NFCorpus. 607
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