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Abstract

There is a growing interest in automatic knowl-
edge discovery in plain text documents. Au-
tomation enables the analysis of massive col-
lections of information. Such efforts are espe-
cially relevant in the health domain as advance-
ments could use the large volume of available
resources to transform areas important for so-
ciety when addressing various health research
challenges. However, knowledge discovery is
usually aided by annotated corpora, which are
scarce resources in the literature. This situa-
tion is particularly critical in the Spanish lan-
guage, for which the volume of training re-
sources is less widespread. This work uses a
health-oriented Spanish dataset, and it also cre-
ates an English variant using the same tagging
system. Furthermore, we design and analyze
two separated architectures for Entity Extrac-
tion and Relation Recognition that outperform
previous works in the Spanish dataset. With
such promising results, we also evaluate their
performance in the English version. Finally, we
perform a use case experiment to evaluate the
utility of the output of these two architectures
in Information Retrieval systems.

1 Introduction

In recent decades there has been a significant
growth in the generation and collection of data
in text form. This has caused a great interest of the
scientific community in developing systems that
assist the transformation of text into useful knowl-
edge. However, the sheer volume of information
and the poorly unified semantic structure of docu-
ments written in natural language makes it difficult
for researchers to find good results efficiently. In
this domain is located the area of automatic infor-
mation extraction in which, in turn, is present the
problems of entity extraction and the relationships
that are established between them.

The search for related research becomes much
more complex when considering multiple lan-
guages. There are research areas where there are

relevant results in more than one language, as is
the case of medicine. We can find influencing re-
sults in English and also Spanish to give an exam-
ple. However, because Spanish is a less general-
ized language than English in terms of available
computational resources, there are not many au-
tomatic information extraction systems available
(Piad-Morffis et al., 2020).

The entity extraction and classification problem
are formulated in the literature as Named Entity
Recognition (NER) (Li et al., 2020). It is defined
as the process of obtaining, from unstructured nat-
ural language text, a list of the sections of that text
that contain entities. Entities have been described
in the literature differently, depending on the con-
text, domain, and corpus used (Li et al., 2020). A
related problem of Relation Extraction (RE) (Pawar
et al., 2017), and classification is vent broader. It
aims at determining which relations are established
between the entities previously recognized in an
input document (Pawar et al., 2017).

This paper improves on the models introduced
by Rodriguez-Péreza et al. (2020), obtaining two
new separated architectures for the Entity Extrac-
tion and Relation Recognition problem, respec-
tively. Next, it studies its performance in the Span-
ish dataset of the event eHealth-KD 2020' and an
English dataset created by us based on the Spanish
dataset. Finally, a use case experiment is designed
using the Benchmark for Zero-shot Evaluation
of Information Retrieval Models (BEIR) (Thakur
et al., 2021) to show the impact of the graph on-
tologies built from the output of both architectures
in Information Retrieval Systems. In addition, we
defined a score function to assess the similarity
between two texts based on their ontological repre-
sentation.

The paper is organized as follows. First, we
present a section of related work. The next section
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elaborates on the datasets used and how the new
English dataset was built. Then, Section 3 presents
the design and details of both architectures for the
NER and RE problems, respectively. Section 4
presents performed experiments. The consequent
Section 5 shows the use case experiment, the new
similarity score function defined, and the results.
Finally, the last section concludes the paper and
suggests futures work.

2 Background

NER and RE are essential preprocessing steps for
various problems such as Information Retrieval,
Question Answering, Machine Translation, and
others (Li et al., 2020). Several approaches have
been found for NER in the literature like rules
based (Zhang and Elhadad, 2013), unsupervised
learning (Nadeau and Sekine, 2007), supervised
based in features (Settles, 2004; Li et al., 2020).
In the last years, the most successful approaches
have been found in deep learning techniches (Li
et al., 2020). Successful deep learning approaches
are based on contextual encoders as Bidirectional
Long Short Term Memory (BiLSTM), Convolu-
tional Neural Networks (CNN), and Transformer
architectures (Li et al., 2020). One final step in
deep learning techniques for NER is the tag decod-
ification stage, where the literature shows the use
of Multilayer Perceptron with softmax activation,
Recurrent Neural Networks (RNN) (Li et al., 2020)
and Conditional Random Field (CRF) (Li et al.,
2020; Lafferty et al., 2001).

RE also had its best results in the last year
with deep learning approaches (Pawar et al., 2017).
Deep learning-based solutions to the RE problem
are focused on sentence encoders using BiLSTM,
CNN, and Transformers architectures (Pawar et al.,
2017). Also, deep learning solutions to the NER
and RE problems need distributed representations
of the input (Li et al., 2020; Pawar et al., 2017).
The most used representations in the last years are
contextual embeddings of the word that can be
obtained using pretrained Transformer models in
large collections of text as BERT (Devlin et al.,
2018), word embeddings (Mikolov et al., 2013)
pretrained in large corpora or trained together with
the model. In addition are used character embed-
dings that are trained with the model also, usually
using BILSTM or CNN based architectures (Li
et al., 2020) and also Part of Speech tags (POS-
tags) (Li et al., 2020). Particularly in RE, another

Datasets (Train) (Development) (Testing)
Spanish 800 200 100
English 250 50 50

Table 1: Distribution of both datasets, by number of
sentences for traning, development and testing.

highly used representation is the dependency tree
associated with the sentence (Pawar et al., 2017;
Liu et al., 2015).

Research has also been done using the tagging
system proposed in (Piad-Morffis et al., 2020). This
tagging system is composed of four types of enti-
ties: Concept, Action, Reference, Predicate and
a set of relations as is-a, part-of, causes, has-
property, entails, same-as. Several models have
been developed for the extraction and classifica-
tion of entities and relations using this tagging sys-
tem and a Spanish medical dataset in the event of
eHealth-KD 2020 (Piad-Morffis et al., 2020).

3 Datasets

The dataset used is the one proposed in the event
eHealth-KD in its 2020 edition (Piad-Morffis et al.,
2020). This dataset is composed of two collections
of tagged sentences with the entities and relations
present in them. The training collection is used
to optimize the proposed models’ parameters, and
the development collection is used for the model
selection. Finally, there is a testing collection to
determine the final performance of the systems
developed by the contestants. This event also is
divided into two tasks. One task is for entity ex-
traction and classification, and the second is for
relation extraction and classification.

The English version of this dataset was created
based on the Spanish dataset’s sentences translated
to English and with adjusted relations. However,
solely translating the dataset is not sufficient be-
cause the words used in English often express the
same as in Spanish but do not mean the same
in the full context, and the grammar is different.
Therefore, entities change positions in the sentence,
which implies that the relations have to be adjusted.
Table 1 shows the distributions of both datasets.

4 Architectures

The Dual Architecture system proposed in this pa-
per solves both tasks separately and sequentially.
Thus, independent models were defined to solve
NER and RE problems. The NER task is posed



as a tag prediction problem that takes the raw
text of the input sentence and outputs two inde-
pendent tag sequences: one in the BMEWO-V
tag (Zavala et al., 2018) system for entity predic-
tion (Rodriguez-Péreza et al., 2020), and another
with tags corresponding to entity types (Concept,
Action, Reference, Predicate) for classification pur-
poses. The tag None is included in the latter; con-
sider the cases where no entity is present. Mean-
while, the RE task is interpreted as a series of pair-
wise queries amongst the entities present in the
target sentence. A particular relation’s existence
is predicted upon features derived from both the
sentence and the pair of entities.

4.0.1 Preprocessing

Given the target sentence and the highlighted enti-
ties input as raw text, some preprocessing is done to
derive functional structures from such text. Since
both models make use of word-piece information,
the input sentence must be tokenized first. Other
preprocessing steps include character-level word
decomposition, syntactic features extraction, and
dependency parsing. To obtain a representation of
the corresponding inputs, the models make use of
the following features for each word:

Contextual embedding: BERT-based contextual
embeddings with no further hyper tuning.

Character embeddings: CNN-based character
embeddings. The input to such CNN is a
sequence of alphabet indexes, those of the
characters contained in the word.

POS-tag and Dependency embeddings:
Embeddings intended to encode word-level
syntactic features such as the POS-tag of the
given the word and the dependency with its
ancestor in the dependency parse tree.

BMEWO-V and Entity Type tags: BMEWO-V
and entity type tags are used in the RE task
and are obtained from NER model outputs.

4.1 Named Entity Recognition Model

The model receives the sentence as a sequence of
word vectors S. A distributed representation of each
word is obtained concatenating contextual, charac-
ter, and POS-tag embeddings, as described in the
previous subsection. At a second level, the se-
quence of tokens is processed in both directions
by a BiLSTM layer, resulting in two sequence vec-
tors. The vectors on complementary positions of

the two sequences are concatenated, resulting in
a new sequence P with contextual-dependent vec-
tors assigned to each token in the sentence. This
sequence is looking to encapsulate semantic depen-
dencies between the tokens of the sentence. The
output sequence of the first BILSTM is processed
in both directions by a stacked BiLSTM on top of
the first one, getting more representational power
and resulting in the sequence of vectors P’:

P = BiLSTM(S), P’ = StackedBiLSTM(P).

The model has to assign tags in the BMEWO-
V tag system to each word, and also a classifica-
tion type in the classes Concept, Action, Reference,
Predicate and None. To do so, the next steps were
split into two cases. Both architectures are shown
in the figures 1a and 1b

To assign tags in the BMEWO-V tag system
to each word, the sequence P’ is fed into a linear
chain CREF layer that outputs the most likely tag se-
quence according to the Viterbi algorithm (Viterbi,
1967). Let x444 be the output corresponding to the
BMEWO-V tag system and CRF;,, the CRF layer,
then:

LTtag = CRFtag(P,).

In the second case, where a type must be as-
signed to each word, the sequence P’ is fed into a
Multiheaded Attention layer with eight heads, ini-
tialized with the value, key, and query vectors with
the sequence P’. This layer will return a sequence
of attention vectors called Z, denoted as follows:

Z = MultiHeadedAttention(P’', P', P’).

Finally, the sequence Z is also fed to another
CREF layer that outputs the most likely type se-
quence. Let x4y, be the output corresponding to
the entity type and CRF;,,. the linear chain CRF
layer, then:

Tiype = CRFyype(Z).

The first CRF layer produces a sequence of tags
in the BMEWO-V tag system. Table 2 shows the
description of the tag system. A process is neces-
sary to transform a tag sequence obtained from the
CREF layer into a list of entities expected as output
in Task A (Rodriguez-Péreza et al., 2020). This
process from now on will be referred to as decod-
ing. An essential challenge in this process is that
tokens belonging to an entity are not necessarily
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(a) Entity Extraction Model Architecture for BMEWO-V tags.
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(b) Entity Extraction Architecture for Classification.

Figure 1: On the left the Entity Extraction Model Architecture for BMEWO-V tags. On the right the Entity

Extraction Model Architecture for Classification.

Tag Meaning

Beginning of an entity

Middle of an entity

End of an entity

Single-token entity

Two or more entities overlap in that token
Token does not represent anything

O<=mZEww

Table 2: BMEWO-V tag system meaning.

continuous in the sentence. Thus, the decoding pro-
cess is divided into two stages. First, discontinuous
entities are detected and then, at a second moment,
continuous entities.

The set of tag sequences that must be interpreted
as a group of discontinuous entities were narrowed
to those that match the regular expressions:

(VH)((M « EOx)+)(M « E) (1)
and ((BO)+)(B)(V+). )

The former 1 corresponds to entities that share
the initial tokens, and the latter 2 to those that share
the final tokens. These two capture most of the
desired discontinuous entities. When a match is
detected and the entities are extracted, then all the
tags in that fragment are set to the tag O.

After detecting possible discontinuous entities,
the second stage begins assuming that all the re-
maining entities appear as continuous sequences of
tokens. Extracting the continuous entities is carried
out as an iterative process over the tags sequence
produced by the model. Due to limitations in the

BMEWO-V system, the procedure also assumes
that the maximum overlapping depth is 2. Given
this, at most, two partially-constructed entities are
maintained across the procedure. In each iteration,
these two entities are created, extended with new
tokens, or reported as completed, following rules
defined considering only the previous and the cur-
rent tag.

According to evaluations performed in the train-
ing and development collections, the process of de-
coding correctly labeled sequences extracts more
than 98% of the entities present in the Spanish
dataset.

After identifying the entities, we classify each
of them according to its type, using a voting sys-
tem based on the second CRF layer’s output. The
system had previously assigned to each word in the
input sentence, one of the entity types, in this case
one between: Concept, Action, Predicate
or Reference. Each word produces a vote for
each entity it belongs to, according to the assigned
type. Then, each entity is classified according to
the type that obtained the highest number of votes.
If the voting is even, Concept is assumed since
it is the most frequent by a wide margin in the
collections studied.

4.2 Relation Extraction Model

The complete information to solve the RE task
is found in the whole input sentence. However,
some authors claim that the dependency tree associ-
ated with the input sentence condenses the essential
pieces of information and discards the misleading



ones (Liu et al., 2015; Xu et al., 2015). Aiming
at determining a possible relation between two en-
tities, the system presented uses input structures
derived from the dependency parse tree associated
with the target sentence to obtain information from
the sentence and the entity pair.

One of the criteria taken into consideration to
establish a dependency relationship with a header
H in a syntactic construction C, is the fact that
H could replace C (Zwicky, 1985). Moreover,
H could semantically determine C'. On the other
hand, multiple-word entities often occur entirely in
a dependency subtree rooted at one of its tokens.
Given a sentence and its dependency tree T', we
define such subtree of 1" corresponding to an entity
e, as relevant tree for e, and it is denoted further
on as S.. The root is called the core of the entity
e, and it is denoted n,.

Another important definition, vastly used in liter-
ature to address this task, the is dependency path
between two tokens ¢ and ¢5. From now on, it will
be referred to as C'(¢1,t2). The before-mentioned
structures are fed into a Deep Neural Network that
outputs a vector whose length is the same as the
relations set. Each component of such vector is in-
dependent of each other and measures how certain
is the model that the respective relation between
the input entities appears.

To do so, the model first encodes each of the
structures Se,, Se, and C(ne,,ne,) in a vector.
Either S,, and S,, or C(ne,,n,) are formed by
words from the input sentence. A distributed rep-
resentation of each word is obtained concatenat-
ing contextual, character, POS-tag, dependency,
BMEWO-V and entity type embeddings, as de-
scribed in the previous subsection.

To compute the output vector, a BILSTM layer
encodes the sequence of vectors associated to the
words in C(ne, , ne, ) to include bidirectional infor-
mation in the representation:

P = BiLSTM(C (ne, , ne, ))-

Then the sequence P is fed into a Multiheaded
Attention layer with five heads, initialized with the
value, key, and query vectors with the sequence P.
This layer returns a sequence of attention vectors
called Z, defined as follows:

Z = MultiHeadedAttention(P, P, P).

This output is fed into a unidirectional LSTM
layer to emphasize the direction of the potential
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Figure 2: Relation Extraction Model Architecture.
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relation, processing the sequence Z from the ori-
gin to the destination. This results in a vector p
encoding the information present in C(ne, , 1, ):

p=LSTM(Z).

At the same time, a ChildSum Tree-LSTM (Tai
et al., 2015) is applied independently over S, and
Se, (i.e the representations are obtained separately
but using the same set of weights):

, = TreeLSTM(S,, ), , = TreeLSTM(S, )

Vectors encoding the input structures are con-
catenated. The final output z is obtained by apply-
ing a sigmoid function to a linear transformation
of it as follows:

r= [te1;t€2;p]a T = U(W(I)T+b(x))

According to the scores present in the output
vector z, if any of its components exceeds a given
threshold, then the relation with the maximum
score is said to exist. If none of the scores is greater
than such threshold, then no relation is reported.
The threshold value is added as a hyperparameter
and optimized using the development collection.
Notice that this approach allows us to disregard the
use of a fake relation none. Figure 2 shows the
described architecture.

4.3 Parameters Setup and Training

For both models, the training procedure was carried
out using only the training collection.

Since the CRF layer is intended to maximize the
probability of obtaining a desired tag sequence y
given an input feature vector X, the Task A model
is trained to minimize the negative log of the proba-
bility P(y|X). Let U and T be the CRF emissions
and transition matrixes, respectively. Then, that



Parameter Value | Parameter Value
Input Embeddings size

Contextualf 3072 | Contextual* 768
Character 50 | Character 50
POS-tag 50 | POS-tag 50
Dependency 50
BMEWO-V 50

tags
Entity type 50

Neural network

CNN hid. sz. 100 | CNN hid. sz. 100
2D Dropout 0.5 | BiLSTM h. sz. 100
BiLSTM; h.sz. 300 | Dropout rate 0.2
Dropout; rate 0.5 | LSTM hid. sz. 50
BiLSTM3 h. sz. 300 | Dropout rate 0.5
Multihead-att- 8 | Multihead-att- 5

hds hds
Dropout; rate 0.5 | Tree-LSTM sz. 50
Dropout rate 0.5

Training
Optimizer Adam | Optimizer Adam
Learning rate 0.001 | Learning rate 0.001
Epochs 50 | Epochs 30

Total params 9,935,538 Total params 5,947,763

Table 3: Hyperparameter setup for NER (left) and
RE (right) models. Annotations: flast four, *last layer.

probability is defined as the normalized exponen-
tial:
ekt U@ryr) 52y Tk Ynt1)

Z(X) ’

PylX) =

where Z is a normalization factor depending on
the input vector X . The loss function is defined in
terms of X and y as follows:

U(X,y) = —log(P(y|X)).

In the case of Task B model, since each output
component is independent to each other, the model
is trained to minimize a binary cross-entropy func-
tion over the output vector. Let k be the number
of relations, x the output vector and y the target
vector, the loss ¢(x, y) is computed as follows:

1
1<i<k

As explained before, the model output does not
make use of the fake none relation. A negative
sampling strategy is used to optimize the model

with examples where no relation is present. A neg-
ative sample is nothing more than a training exam-
ple where the target output is the null vector. Such
sampling is performed using a fixed proportion of
unrelated entity pairs.

Dropout strategies were used during the training
procedure in both models to reduce overfitting. For
Task A, two dropouts layers were stacked after the
first and the second BiLSTM, and a spatial dropout
2D was added after the CNN layer was used to
compute the character embedding of words. In the
Task B model, three dropout layers were stacked
after BILSTM, LSTM, and TreeLSTM layers, re-
spectively.

The number of epochs was selected empirically,
based on the convergence of the models, as learning
curves showed. For hyperparameter tuning and
model selection, a cross-validation process was
carried out using the development collection. Table
3 shows the hyperparameter setup for both models.

4.4 Data Augmentation

Also, the implementation of a word replacement
data augmentation algorithm (Dai and Adel, 2020)
will automatically increase the dataset’s size. This
algorithm first goes for each sentence in the dataset
and searches for an entity composed of only one
word. Then it changes that word with the token
[MASK], and a pre-trained model of BERT is used
to predict which word should replace the [MASK]
token. If the predicted word is different from the
previous word, then a new sentence is created us-
ing this new predicted word. Two strategies were
implemented. The first strategy is to add a new sen-
tence for each word replaced. This means that for
only one sentence, more than one new sentence can
be generated. The second strategy is to add a new
sentence for each existing sentence by changing all
the possible words in the already existing sentence.
This means that the new sentences will be more
different than the existent ones.

5 Experiment and results

We evaluated the performance of the deep learn-
ing models in the Spanish language using the same
testing dataset that in the competition eHealth-KD
of 2020 (Piad-Morffis et al., 2020). Next, we eval-
uated the model training with the English dataset
using a testing set of 50 sentences but with the
same metrics. Also, Table 4 shows the results of
the other approaches in the same competition in



Teams (A+B) (A) (B) (A+BT)
Vicomtech 0.666 0.821 0.583 0.563
Ours (DA) 0.633 0.829 0.637 0.587
Ours 0.631 0.828 0.637 0.561
Talp-UPC 0.627 0.816 0.575 0.584
UH-MAJA-KD 0.625 0.814 0.599 0.548
IXA-NER-RE 0.558 0.692 0.633 0.479
UH-MatCom 0.557 0.795 0.545 0.373
SINAI 0.421 0.825 0.462 0.281
HAPLAP 0.395 0.542 0.316 0.138
baseline 0.395 0.542 0.131 0.138
ExSim 0.246 0314 0.131 0.122

Table 4: Results (measure F}) in each scenario of the
competition, sorted by scenario 1 in the event eHealth-
KD 2020. The (A + B T) scenario is both tasks together
but in an evaluation dataset of general purpose. The
system using the models of this work and the previous
version of these models are highlighted in black. The
label (DA) means our approach using the data augmen-
tation strategy.

System-Data-Augment (A+B) (A) (B) Size

0.633 0.829 0.637 1587
0.572 0.781 0.550 1168

Models with Spanish
Models with English

Table 5: Results (measure F}) obtained from the eval-
uation of the systems in the Spanish dataset provided
in the event eHealth-KD 2020 and the newly created
English dataset. In both datasets a data augmentation
strategy was used. The size column shows the size in
sentences of the augmented dataset.

the Spanish language in comparison with our ap-
proach. The results are presented in £ measure
with the respective definitions of precision and re-
call of the eHealth-KD of 2020 (Piad-Morffis et al.,
2020; Piad-Morffis et al., 2020). Also, an overview
of the different models presented in Table 4 can be
found in (Piad-Morffis et al., 2020).

As can be seen in the Spanish dataset results
in Table 4, our approach obtains the best results
in the task of only extracting and classifying en-
tities (A) and also in the task of only extracting
and classifying the relations (B). Furthermore, our
system simultaneously gets the best results in both
tasks but in a general-purpose testing dataset (A
+ B T). However, a system is better in both tasks
at the same time but in a medical-specific testing
dataset (A + B). We believe the reason is the use of
a joint model solving both tasks at the same time,
instead of a model-specific for entities and others
for relations (Garcia-Pablos et al., 2020). Obtain-

ing functions that jointly optimize both tasks have a
great complexity (Garcia-Pablos et al., 2020). How-
ever, the fact that our proposal shows competitive
results allows us to suppose that training separate
models to solve the two tasks is still a promising
line of research.

Table 5 shows the best results after using the data
augmentation algorithm proposed in Section 4. The
strategy of a new sentence for each word changed
worked better for the English dataset since its orig-
inal size is still too small. However, this strategy
brings more noise and bias to a bigger dataset like
the Spanish one. For that reason, we use the strat-
egy of a new sentence in the Spanish dataset to
change all the possible words in an already existing
sentence. We also believe that the use of this data
augmentation strategy is one of the main reasons
for the improvement of the results in the task (A +
B T). Since that, the new words added by the pre-
trained model of BERT bert-base-multilingual-
cased during the prediction are general-purpose
and not medical-specific.

6 Use Case Experiment

The output of this dual architecture system can be
used to build a graph ontology representation of the
text, taking the entities as nodes and the relations as
directed edges. We built an experiment to measure
the impact that this representation could have on
Information Retrieval.

For this, we used the Benchmark for Zero-
shot Evaluation of Information Retrieval Models
(BEIR) (Thakur et al., 2021), and we targeted
the Reranking task in the health-oriented NFCor-
pus (Boteva et al., 2016). To address this task in
the framework, a score function with an output
between 0 and 1 has to be used to measure how
related are a query and a document.

We defined a score function based on the hypoth-
esis that if we interpret the graph ontology as the
knowledge representation of a text, then if a doc-
ument is highly related to a query, the knowledge
graph corresponding to the query should be a sub-
graph of the document’s knowledge representation.
The following equations and definitions detail the
score function that we called Ontology Score:

OScore(Q,D) =
NScore(Q, D) + EScore(Q, D)
2

.G



EuieVQ NodeSim(v;)

NScore(Q, D) = 2% Vol , (5
o EdgeSim(e;)
EScore(Q, D) pa |Eq| , (6)

where Q) = (Vg, Eg) and D = (Vp, Ep) repre-
sent the graph ontology obtained from the query
and document, respectively.

Definition 1 (Entity Similarity) Given two ontol-
ogy graphs Q@ = (Vo,Eq) and D = (Vp, Ep)
and a pair of nodes qnode € Vg and dnode € Vp
the EntSim(gnode, dnode) (Entity Similarity) is
the cosine similarity of the BERT embeddings® of
the entities corresponding to each node.

Definition 2 (Max Entity Related Node) Given
two ontology graphs Q@ = (Vg,Eq) and
D = (Vp,Ep) and a node qnode € V. The
Max Entity Related Node dnode € Vp to
qnode is the node with the highest value of
EntSim(gnode, dnode).

Definition 3 (Node Similarity) Given two ontol-
ogy graphs Q = (Vo,Eq) and D = (Vp,Ep)
the NodeSim (Node Similarity) function of a node
gnode from Q is defined as finding its Max En-
tity Related Node dnode in Vp. Then the value of
NodeSim is the value of EntSim(gnode, dnode)
increased by 1 if the classification of gnode and
dnode as an entity is the same.

Definition 4 (Edge Similarity) Given two ontol-
ogy graphs Q = (Vg,Eqg) and D = (Vp, Ep),
e=(q1,02) € Eg, 1 € Vg and g2 € Vg and
the Max Entity Related Node of q1 and qo called as
d1 € Vpand ds € Vp. The EdgeSim (Edge Sim-
ilarity) of e is 1 if exists the edge ¢ = (dy,ds) €
Ep and it has the same label that e. EdgeSim is
0 in any other case.

Table 6 shows the results in the Reranking task
using our score function and also an average of
our score and the score obtained from one of the
best-pretrained models that the framework offers
for the Reranking task, which is cross-encoder/ms-
marco-electra-base (Thakur et al., 2021).

Even when the results of our score are the low-
est in Table 6 we consider the results are not bad
because we are using our models trained in the
new English dataset that is still small, therefore,

>We use the pretrained model bert-large-cased to get the
embeddings.

Metric Ours Combined CEMMEB
NDCG@1 0.2529 0.3846 0.4235
NDCG@10 0.2031 0.2564 0.2918
NDCG@100 0.1479 0.1740 0.1877
MAP@1 0.0228 0.0394 0.0465
MAP@10 0.0523 0.0785 0.0951
MAP@100 0.0664 0.0898 0.1037
Recall@1 0.0228 0.0394 0.0465
Recall@10 0.0922 0.1103 0.1252
P@1 0.2529 0.3846 0.4235
P@10 0.1661 0.1903 0.2164

Table 6: Results of our score (Ours), the cross-
encoder/ms-marco-electra-base (CEMMEB) used in
the BEIR framework, and the combination of both by
taking the mean. The metrics reported are Normal-
ized Discounted Cumulative Gain at k (NDCG@k),
Mean Average Precision at k (MAP@k), Recall at k
(Recall @k) and Precision at k (P@k) (Radlinski and
Craswell, 2010; Thakur et al., 2021).

the performance of the models is low, especially
the Relation Extraction model, which implies that
the edge score will be weak. In our opinion, is
that score the more likely to give the improvement
since the node score idea is in the most a relation
score among words that are already contained in the
original approach cross-encoder/ms-marco-electra-
base (Thakur et al., 2021).

7 Conclusions

This work designs two separated architectures for
the NER and RE problems and assesses them in
both datasets, showing that our models obtain great
results compared to state-of-the-art work in the
Spanish dataset. Also, a score similarity function
was presented for two ontology graphs and a use
case experiment using the BEIR framework and
the NFCorpus to evaluate the output of both mod-
els after building a graph ontology from the text
using our architectures. Finally, we introduce a
new English dataset based on the health-oriented
Spanish dataset of the eHealth-KD 2020 using the
same tagging system, allowing future work from
a multilingual approach using both datasets. We
intend to continue increasing the size of the English
dataset, improve the performance of the models and
the score similarity function of two ontologies and
evaluate in more datasets that BEIR offers besides
NFCorpus.
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