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ABSTRACT

Although deep convolutional networks have achieved improved performance in
many natural language tasks, they have been treated as black boxes because they
are difficult to interpret. Especially, little is known about how they represent lan-
guage in their intermediate layers. In an attempt to understand the representations
of deep convolutional networks trained on language tasks, we show that individual
units are selectively responsive to specific morphemes, words, and phrases, rather
than responding to arbitrary and uninterpretable patterns. In order to quantita-
tively analyze such an intriguing phenomenon, we propose a concept alignment
method based on how units respond to the replicated text. We conduct analyses
with different architectures on multiple datasets for classification and translation
tasks and provide new insights into how deep models understand natural language.

1 INTRODUCTION

Understanding and interpreting how deep neural networks process natural language is a crucial and
challenging problem. While deep neural networks have achieved state-of-the-art performances in
neural machine translation (NMT) (Sutskever et al., 2014} |Cho et al., 2014} [Kalchbrenner et al.
2016; [Vaswani et al., [2017)), sentiment classification tasks (Zhang et al., 2015} |Conneau et al., 2017)
and many more, the sequence of non-linear transformations makes it difficult for users to make
sense of any part of the whole model. Because of their lack of interpretability, deep models are often
regarded as hard to debug and unreliable for deployment, not to mention that they also prevent the
user from learning about how to make better decisions based on the model’s outputs.

An important research direction toward interpretable deep networks is to understand what their hid-
den representations learn and how they encode informative factors when solving the target task.
Some studies including Bau et al.| (2017); Fong & Vedaldi (2018); |Olah et al.| (2017; 2018) have
researched on what information is captured by individual or multiple units in visual representa-
tions learned for image recognition tasks. These studies showed that some of the individual units
are selectively responsive to specific visual concepts, as opposed to getting activated in an uninter-
pretable manner. By analyzing individual units of deep networks, not only were they able to obtain
more fine-grained insights about the representations than analyzing representations as a whole, but
they were also able to find meaningful connections to various problems such as generalization of
network (Morcos et al., 2018)), generating explanations for the decision of the model (Zhou et al.,
2018a; |Olah et al., [2018; Zhou et al., 2018b) and controlling the output of generative model (Bau
et al.,[2019).

Since these studies of unit-level representations have mainly been conducted on models learned for
computer vision-oriented tasks, little is known about the representation of models learned from natu-
ral language processing (NLP) tasks. Several studies that have previously analyzed individual units
of natural language representations assumed that they align a predefined set of specific concepts,
such as sentiment present in the text (Radford et al.,[2017), text lengths, quotes and brackets (Karpa-
thy et al.| |2015). They discovered the emergence of certain units that selectively activate to those
specific concepts. Building upon these lines of research, we consider the following question: What
natural language concepts are captured by each unit in the representations learned from NLP tasks?
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Figure 1: We discover the most activated sentences and aligned concepts to the units in hidden rep-
resentations of deep convolutional networks. Aligned concepts appear frequently in most activated
sentences, implying that those units respond selectively to specific natural language concepts.

To answer this question, we newly propose a simple but highly effective concept alignment method
that can discover which natural language concepts are aligned to each unit in the representation.
Here we use the term unit to refer to each channel in convolutional representation, and natural
language concepts to refer to the grammatical units of natural language that preserve meanings; i.e.
morphemes, words, and phrases. Our approach first identifies the most activated sentences per unit
and breaks those sentences into these natural language concepts. It then aligns specific concepts
to each unit by measuring activation value of replicated text that indicates how much each concept
contributes to the unit activation. This method also allows us to systematically analyze the concepts
carried by units in diverse settings, including depth of layers, the form of supervision, and data-
specific or task-specific dependencies.

The contributions of this work can be summarized as follows:

e We show that the units of deep CNNs learned in NLP tasks could act as a natural language
concept detector. Without any additional labeled data or re-training process, we can dis-
cover, for each unit of the CNN, natural language concepts including morphemes, words
and phrases that are present in the training data.

e We systematically analyze what information is captured by units in representation across
multiple settings by varying network architectures, tasks, and datasets. We use VD-
CNN (Conneau et al., [2017) for sentiment and topic classification tasks on Yelp Reviews,
AG News (Zhang et al} [2015), and DBpedia ontology dataset (Lehmann et al.,[2015) and
ByteNet (Kalchbrenner et al., 2016) for translation tasks on Europarl (Koehn, 2005) and
News Commentary (Tiedemann, |2012)) datasets.

e We also analyze how aligned natural language concepts evolve as they get represented in
deeper layers. As part of our analysis, we show that our interpretation of learned represen-
tations could be utilized at designing network architectures with fewer parameters but with
comparable performance to baseline models.

2 RELATED WORK

2.1 INTERPRETATION OF INDIVIDUAL UNITS IN DEEP MODELS

Recent works on interpreting hidden representations at unit-level were mostly motivated by their
counterparts in computer vision. In the computer vision community, Zhou et al.| (2015) retrieved
image samples with the highest unit activation, for each of units in a CNN trained on image recog-
nition tasks. They used these retrieved samples to show that visual concepts like color, texture and
object parts are aligned to specific units, and the concepts were aligned to units by human anno-
tators. [Bau et al.| (2017)) introduced BRODEN dataset, which consists of pixel-level segmentation
labels for diverse visual concepts and then analyzed the correlation between activation of each unit
and such visual concepts. In their work, although aligning concepts which absent from BRODEN
dataset requires additional labeled images or human annotation, they quantitatively showed that
some individual units respond to specific visual concepts.

On the other hand, Erhan et al.| (2009); Olah et al.| (2017); [Simonyan et al.| (2013) discovered visual
concepts aligned to each unit by optimizing a random initial image to maximize the unit activation
by gradient descent. In these cases, the resulting interpretation of each unit is in the form of opti-
mized images, and not in the natural language form as the aforementioned ones. However, these
continuous interpretation results make it hard for further quantitative analyses of discrete properties
of representations, such as quantifying characteristics of representations with layer depth (Bau et al.}
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2017) and correlations between the interpretability of a unit and regularization (Zhou et al.| 2018a).
Nevertheless, these methods have the advantage that the results are not constrained to a predefined
set of concepts, giving flexibility as to which concepts are captured by each unit.

In the NLP domain, studies including Karpathy et al.|(2015)); Tang et al.| (2017); Qian et al.| (2016);
Shi et al.| (2016a)) analyzed the internal mechanisms of deep models used for NLP and found in-
triguing properties that appear in units of hidden representations. Among those studies, the closest
one to ours is Radford et al.| (2017), who defined a unit as each element in the representation of an
LSTM learned for language modeling and found that the concept of sentiment was aligned to a par-
ticular unit. Compared with these previous studies, we focus on discovering a much wider variety of
natural language concepts, including any morphemes, words, and phrases all found in the training
data. To the best our knowledge, this is the first attempt to discover concepts among all that exist in
the form of natural language from the training corpus. By extending the scope of detected concepts
to meaningful building blocks of natural language, we provide insights into how various linguistic
features are encoded by the hidden units of deep representations.

2.2  ANALYSIS OF DEEP REPRESENTATIONS LEARNED FOR NLP TASKS

Most previous work that analyzes the learned representation of NLP tasks focused on constructing
downstream tasks that predict concepts of interest. A common approach is to measure the perfor-
mance of a classification model that predicts the concept of interest to see whether those concepts
are encoded in representation of a input sentence. For example, [Conneau et al.| (2018)); |Adi et al.
(2017); Zhu et al.|(2018)) proposed several probing tasks to test whether the (non-)linear regression
model can predict well the syntactic or semantic information from the representation learned on
translation tasks or the skip-thought or word embedding vectors. [Shi et al.| (2016b)); Belinkov et al.
(2017) constructed regression tasks that predict labels such as voice, tense, part-of-speech tag, and
morpheme from the encoder representation of the learned model in translation task.

Compared with previous work, our contributions can be summarized as follows. (1) By identifying
the role of the individual units, rather than analyzing the representation as a whole, we provide more
fine-grained understanding of how the representations encode informative factors in training data.
(2) Rather than limiting the linguistic features within the representation to be discovered, we focus
on covering concepts of fundamental building blocks of natural language (morphemes, words, and
phrases) present in the training data, providing more flexible interpretation results without relying
on a predefined set of concepts. (3) Our concept alignment method does not need any additional
labeled data or re-training process, so it can always provide deterministic interpretation results using
only the training data.

3 APPROACH

We focus on convolutional neural networks (CNNs), particularly their character-level variants.
CNNs have shown great success on various natural language applications, including translation and
sentence classification (Kalchbrenner et al., 2016; Kim et al., [2016; |[Zhang et al., |2015}; |Conneau
et al., [2017). Compared to deep architectures based on fully connected layers, CNNs are natural
candidates for unit-level analysis because their channel-level representations are reported to work as
templates for detecting concepts (Bau et al., [2017).

Our approach for aligning natural language concepts to units is summarized as follows. We first train
a CNN model for each natural language task (e.g. translation and classification) and retrieve train-
ing sentences that highly activate specific units. Interestingly, we discover morphemes, words and
phrases that appear dominantly within these retrieved sentences, implying that those concepts have a
significant impact on the activation value of the unit. Then, we find a set of concepts which attribute
a lot to the unit activation by measuring activation value of each replicated candidate concept, and
align them to unit.

3.1 Topr K ACTIVATED SENTENCES PER UNIT

Once we train a CNN model for a given task, we feed again all sentences S in the training set
to the CNN model and record their activations. Given a layer and sentence s € S, let A (s)
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Dataset Task Model  # of Layers # of Units

AG News Ontology Classification ~VDCNN 4 [64, 128, 256, 512]

DBpedia Topic Classification VDCNN 4 [64, 128, 256, 512]

Yelp Review Polarity Classification =~ VDCNN 4 [64, 128, 256, 512]
WMT17" EN-DE Translation ByteNet 15 [1024] for all
WMT14’ EN-FR Translation ByteNet 15 [1024] for all
WMT14’ EN-CS Translation ByteNet 15 [1024] for all
EN-DE Europarl-v7 Translation ByteNet 15 [1024] for all

Table 1: Datasets and model descriptions used in our analysis.

denote the activation of unit u at spatial location /. Then, for unit u, we average activations over all
spatial locations as ay(s) = & >, Al (s), where Z is a normalizer. We then retrieve top K training
sentences per unit with the highest mean activation a,,. Interestingly, some natural language patterns
such as morphemes, words, phrases frequently appear in the retrieved sentences (see Figure [I)),
implying that those concepts might have a large attribution to the activation value of that unit.

3.2 CONCEPT ALIGNMENT WITH REPLICATED TEXT

We propose a simple approach for identifying the concepts as follows. For constructing candidate
concepts, we parse each of top K sentences with a constituency parser (Kitaev & Klein, [2018).
Within the constituency-based parse tree, we define candidate concepts as all terminal and non-
terminal nodes (e.g. from sentence John hit the balls, we obtain candidate concepts as {John, hit,
the, balls, the balls, hit the balls, John hit the balls}). We also break each word into morphemes
using a morphological analysis tool (Virpioja et al.l 2013)) and add them to candidate concepts (e.g.
from word balls, we obtain morphemes {ball, s}). We repeat this process for every top K sentence
and build a set of candidate concepts for unit u, which is denoted as C,, = {ci, ..., cy }, where N is
the number of candidate concepts of the unit.

Next, we measure how each candidate concept contributes to the unit’s activation value. For normal-
izing the degree of an input signal to the unit activation, we create a synthetic sentence by replicating
each candidate concept so that its length is identical to the average length of all training sentences
(e.g. candidate concept the ball is replicated as the ball the ball the ball...). Replicated sentences are
denoted as R = {ry,...,rn}, and each 7, € R is forwarded to CNN, and their activation value of
unit v is measured as a,(r,) € R, which is averaged over [ entries. Finally, the degree of alignment
(DoA) between a candidate concept ¢, and a unit u is defined as follows:

DoAy.c, = ay(ry) (D

In short, the DoAE] measures the extent to unit w’s activation is sensitive to the presence of candidate
concept ¢,. If a candidate concept c¢,, appears in the top K sentences and unit’s activation value a,,
is responsive to ¢,, a lot, then DoA,, ., gets large, suggesting that candidate concept c,, is strongly
aligned to unit u.

Finally, for each unit u, we define a set of its aligned concepts C}; = {c7, ..., ¢}, } as M candidate
concepts with the largest DoA values in C,,. Depending on how we set M, we can detect different
numbers of concepts per unit. In this experiment, we set M to 3.

4 EXPERIMENTS

4.1 THE MODEL AND THE TASK

We analyze representations learned on three classification and four translation datasets shown in
Table[I] Training details for each dataset are available in Appendix [B] We then focus on the repre-
sentations in each encoder layer of ByteNet and convolutional layer of VDCNN, because as Mou
et al.|(2016) pointed out, the representation of the decoder (the output layer in the case of classifica-
tion) is specialized for predicting the output of the target task rather than for learning the semantics
of the input text.

"We try other metrics for DoA, but all of them induce intrinsic bias. See Appendix |A|for details.
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Figure 2: Mean and variance of selectivity values over all units in the learned representation for each
dataset. Sentences including the concepts that our alignment method discovers always activate units
significantly more than random sentences. See section[zlz] for details.
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4.2 EVALUATION OF CONCEPT ALIGNMENT

To quantitatively evaluate how well our approach aligns concepts, we measure how selectively each
unit responds to the aligned concept. Motivated by [Morcos et al.| (2018), we define the concept
selectivity of a unit u, to a set of concepts C;; that our alignment method detects, as follows:

Sel, = i P )
mMaXses Gy, (S) — Milges ay(S)

where S denotes all sentences in training set, and p4 = ﬁ D oec Sy ay(s) is the average value of
unit activation when forwarding a set of sentences S, which is defined as one of the following:

replicate: S contains the sentences created by replicating each concept in C;;. As before,
the sentence length is set as the average length of all training sentences for fair comparison.

e one instance: Sy contains just one instance of each concept in C;;. Thus, the input sentence
length is shorter than those of others in general.

e inclusion: S, contains the training sentences that include at least one concept in C.

e random: S, contains randomly sampled sentences from the training data.

In contrast, y_ = ﬁ > scs. @u(s) is the average value of unit activation when forwarding S_,
which consists of training sentences that do not include any concept in C;;. Intuitively, if unit u’s
activation is highly sensitive to C;} (i.e. those found by our alignment method) and if it is not to other
factors, then Sel,, gets large; otherwise, Sel,, is near 0.

Figure [2] shows the mean and variance of selectivity values for all units learned in each dataset
for the four Sy categories. Consistent with our intuition, in all datasets, the mean selectivity of
the replicate set is the highest with a significant margin, that of one instance, inclusion set is the
runner-up, and that of the random set is the lowest. These results support our claims that units are
selectively responsive to specific concepts and our method is successful to align such concepts to
units. Moreover, the mean selectivity of the replicate set is higher than that of the one instance set,
which implies that a unit’s activation increases as its concepts appear more often in the input text.

4.3 CONCEPT ALIGNMENT OF UNITS

Figure [3|shows examples of the top K sentences and the aligned concepts that are discovered by our
method, for selected units. For each unit, we find the top K = 10 sentences that activate the most in
several encoding layers of ByteNet and VDCNN, and select some of them (only up to five sentences
are shown due to space constraints). We observe that some patterns appear frequently within the top
K sentences. For example, in the top K sentences that activate unit 124 of Oth layer of ByteNet, the
concepts of ‘(’, °)’, -” appear in common, while the concepts of soft, software, wi appear frequently
in the sentences for unit 19 of 1st layer of VDCNN. These results qualitatively show that individual
units are selectively responsive to specific natural language concepts.

More interestingly, we discover that many units could capture specific meanings or syntactic roles
beyond superficial, low-level patterns. For example, unit 690 of the 14th layer in ByteNet captures
(what, who, where) concepts, all of which play a similar grammatical role. On the other hand, unit
224 of the 14th layer in ByteNet and unit 53 of the Oth layer in VDCNN each captures semantically
similar concepts, with the ByteNet unit detecting the meaning of certainty in knowledge (sure, know,
aware) and the VDCNN unit detecting years (1999, 1969, 1992). This suggests that, although we
train character-level CNNs with feeding sentences as the form of discrete symbols (i.e. character
indices), individual units could capture natural language concepts sharing a similar semantic or
grammatical role. More quantitative analyses for such concepts are available in Appendix
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(a) Translation (ByteNet) (b) Classification (VDCNN)
Figure 3: Examples of top activated sentences and aligned concepts to some units in several encoding
layers of ByteNet and VDCNN. For each unit, concepts and their presence in top K sentences are
shown in the same color. [#] symbol denotes morpheme concepts. See section for details.
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Figure 4: 30 concepts selected by the number of aligned units in three encoding layers of ByteNet
learned on the Europarl translation dataset (left column) and VDCNN learned on AG-News (right
column). [#] symbol denotes morpheme concepts. See sectionfor details.

We note that there are units that detect concepts more abstract than just morphemes, words, or
phrases, and for these units, our method tends to align relevant lower-level concepts. For example,
in unit 244 of the 3rd layer in VDCNN, while each aligned concept emerges only once in the top
K sentences, all top K sentences have similar nuances like positive sentiments. In this case, our
method does capture relevant phrase-level concepts (e.g., very disappointing, absolute worst place),
indicating that the higher-level nuance (e.g., negativity) is indirectly captured.

We note that, because the number of morphemes, words, and phrases present in training corpus is
usually much greater than the number of units per layer, we do not expect to always align any natural
language concepts in the corpus to one of the units. Our approach thus tends to find concepts that
are frequent in training data or considered as more important than others for solving the target task.

Overall, these results suggest how input sentences are represented in the hidden layers of the CNN:

e Several units in the CNN learned on NLP tasks respond selectively to specific natural lan-
guage concepts, rather than getting activated in an uninterpretable way. This means that
these units can serve as detectors for specific natural language concepts.

e There are units capturing syntactically or semantically related concepts, suggesting that
they model the meaning or grammatical role shared between those concepts, as opposed to
superficially modeling each natural language symbol.
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Figure 5: Aligned concepts are divided into six different levels of granularity: morphemes, words
and N-gram phrases (N = 2, 3,4, 5) and shown layerwise across multiple datasets and tasks. The
number of units increases with layers in the classification models (i.e. [64,128,256,512]), but in
translation the number is constant (i.e. 1024) across all layers.

4.4 CONCEPT DISTRIBUTION IN LAYERS

Using the concept alignments found earlier, we can visualize how concepts are distributed across
layers. Figure[d]shows the concepts of the units in the Oth, 1st, 3rd layer of VDCNN learned on AG-
News dataset, and Oth, 4th, and 14th layer of the ByteNet encoder learned on English-to-German
Europarl dataset with their number of aligned units. For each layer, we sort concepts in decreasing
order by the number of aligned units and show 30 concepts most aligned. Recall that, since we
align concepts for each unit, there are concepts aligned to multiple units simultaneously. Concept
distribution for other datasets are available in Appendix [G]

Overall, we find that data and task-specific concepts are likely to be aligned to many units. In AG
News, since the task is to classify given sentences into following categories; World, Sports, Business
and Science/Tech, concepts related to these topics commonly emerge. Similarly, we can see that
units learned for Europarl dataset focus to encode some key words (e.g. vote, propose, environment)
in the training corpus.

4.5 How DOES CONCEPT GRANULARITY EVOLVE WITH LAYER?

In computer vision tasks, visual concepts captured by units in CNN representations learned for
image recognition tasks evolve with layer depths; color, texture concepts are emergent in earlier
layers and more abstract concepts like parts and objects are emergent in deeper layers. To confirm
that it also holds for representations learned in NLP tasks, we divide granularity of natural language
concepts to the morpheme, word and N-gram phrase (N = 2,3,4,5), and observe the number of
units that they are aligned in different layers.

Figure[5|shows this trend, where in lower layers such as the Oth layer, fewer phrase concepts but more
morphemes and words are detected. This is because we use a character-level CNN, whose receptive
fields of convolution may not be large enough to detect lengthy phrases. Further, interestingly in
translation cases, we observe that concepts significantly change in shallower layers (e.g. from the
Oth to the 4th), but do not change much from middle to deeper layers (e.g. from the Sth to the 14th).

Thus, it remains for us to answer the following question: for the representations learned on trans-
lation datasets, why does concept granularity not evolve much in deeper layers? One possibility
is that the capacity of the network is large enough so that the representations in the middle layers
could be sufficiently informative to solve the task. To validate this hypothesis, we re-train ByteNet
from scratch while varying only layer depth of the encoder and fixing other conditions. We record
their BLEU scores on the validation data as shown in Figure [] The performance of the translation
model does not change much with more than six encoder layers, but it significantly drops at the
models with fewer than 4 encoder layers. This trend coincides with the result from Figure [3] that
the evolution of concept granularity stops around middle-to-higher layers. This shared pattern sug-
gests that about six encoder layers are enough to encode informative factors in the given datasets
to perform optimally on the translation task. In deeper models, this may suggest that the middle
layer’s representation may be already informative enough to encode the input text, and our result
may partly coincide with that of Mou et al.|(2016), which shows that representation of intermediate
layers is more transferable than that of deeper layers in language tasks, unlike in computer vision
where deeper layers are usually more useful and discriminative.
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4.6 WHAT MAKES CERTAIN CONCEPTS EMERGE MORE THAN OTHERS?

We show how many units each concept is aligned per layer in Section .4 and Appendix [G] We
observe that the concepts do not appear uniformly; some concepts are aligned to many units, while
others are aligned to few or even no units. Then, the following question arises: What makes certain
concepts emerge more than others?

Two possible hypotheses may explain the emergence of dominant concepts. First, the concepts with
a higher frequency in training data may be aligned to more units. Figure[7}-(a) shows the correlation
between the frequency of each concept in the training corpus and the number of units where each
concept is aligned in the last layer of the topic classification model learned on AG News dataset.

Second, the concepts that have more influence on the objective function (expected loss) may be
aligned to more units. We can measure the effect of concept c on the task performance as Delta of
Expected Loss (DEL) as follows:

DEL(c) = Eses,yey[ﬁ(s’ y)| — Eses,yey[ﬁ(occc(s)’y)] 3)

where S is a set of training sentences, and ) is the set of ground-truths, and L(s,y) is the loss
function for the input sentence s and label y. Occ.(s) is an occlusion of concept ¢ in sentence s,
where we replace concept ¢ by dummy character tokens that have no meaning. If sentence s does not
include concept ¢, Occ.(s) equals to original sentence s. As a result, DEL(c) measures the impact of
concept c on the loss function, where a large positive value implies that concept ¢ has an important
role for solving the target task. Figure[7}(b) shows the correlation between the DEL and the number
of units per concept. The Pearson correlation coefficients for the hypothesis (a) and (b) are 0.732 /
0.492, respectively. Such high values implicate that the representations are learned for identifying
the frequent concepts in the training data and important concepts for solving the target task.

5 CONCLUSION

We proposed a simple but highly effective concept alignment method for character-level CNNs to
confirm that each unit of the hidden layers serves as detectors of natural language concepts. Using
this method, we analyzed the characteristics of units with multiple datasets on classification and
translation tasks. Consequently, we shed light on how deep representations capture the natural
language, and how they vary with various conditions.

An interesting future direction is to extend the concept coverage from natural language to more
abstract forms such as sentence structure, nuance, and tone. Another direction is to quantify the
properties of individual units in other models widely used in NLP tasks. In particular, combining
our definition of concepts with the attention mechanism (e.g. [Bahdanau et al.| (2015)) could be
a promising direction, because it can reveal how the representations are attended by the model to
capture concepts, helping us better understand the decision-making process of popular deep models.
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A OTHER METRICS FOR DOA WITH BIASED ALIGNMENT RESULT

In section [3.2] we define Degree of Alignment (DoA) between concept ¢,, and unit u as activation
value of unit u for replication of ¢,,. We tried lots of stuff while we were working on DoA metrics,
but a lot of it gives biased concept alignment result for several reasons. We here provide the things
we tried and their reasons for failure.

A.1 POINT-WISE MUTUAL INFORMATION

Point-wise Mutual Information (PMI) is a measure of association used in information theory and
statistics. The PMI of a pair of samples x and y sampled from random variables X and Y quantifies
the discrepancy between the probability of their coincidence as follows:

: p(z,y)
mi(z,y) = log ———~ (4)
pmi(z,9) =108 4 3o y)
We then define DoA between candidate concept c,, and unit u by using PMI as follow:
DoA,.c, = pmi(u,c,) = log M7 where (52)
p(u)p(cn)
#[s € S, s € topK(u)]
= 5b
#[s € S,cp € 9
n) = T~ o1 5
s € topK(u),c, € s
plu,cy) = 12 toPKW) } (5)

#[s € topK(u)]

However, this metric has a bias of always preferring lengthy concepts even in earlier layers, which is
not possible considering the receptive field of the convolution. Our intuition for this bias is consistent
with Role & Nadif|(2011)), where it is a well-known problem with PMI, which is its tendency to give
very high association scores to pairs involving low-frequency ones, as the denominator is small in
such cases. If certain concept ¢,, in top K sentences is very lengthy, then its frequency in the corpus
p(cn) would get very small, and pmi(u, ¢,,) would be large with regardless of correlation between u
and c,.

A.2 CONCEPT OCCLUSION

We tested concept alignments with the following concept occlusion method. For each of the top
K sentences, we replace a ¢, by dummy character tokens which have no meaning, forward it to
the model, and measure the reduction of the unit activation value. We repeat this for every candi-
date concept in the sentences — as a result, we can identify which candidate concept greatly reduce
unit activation values. We thus define concepts aligned to each unit as the candidate concept that
consistently lower the unit activation across the top K sentences.

More formally, for each unit u, let S = {s1, ..., sk} be top K activated sentences. Since we oc-
clude each candidate concept in sentences, we define the set of candidate concept C = {cy, ...,cn },
obtained from parsing each sentence in S.

We define the degree of alignment (DoA) between a concept ¢ € C and a unit u as:

DoA, .. — % 26;8 1(cn € 8)(au(s) — au(Occo, (5))) ©)

where Z is a normalizing factor, and a,, indicates the mean activation of unit u, Occ,,(s) is a
sentence s where candidate concept ¢, is occluded, and 1(c,, € s) is an indicator of whether ¢, is
included in the sentence s. In short, the DoA measures how much a candidate concept contributes
to the activation of the unit’s top K sentences. If a candidate concept c¢,, appears in the top K
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sentences S and greatly reduces the activation of unit u, then DoA,, ., gets large, implying that the
¢y, 1s strongly aligned to unit u.

Unfortunately, this metric could not fairly compare the attribution of several candidate concepts.
For example, consider the following two concepts ¢; = hit, co = hit the ball are included in one
sentence. Occluding co might gives relatively large decrement in unit activation value than that of
c1, since ¢; includes cy. For this reason, the occlusion based metric is unnecessarily dependant of
the length of concept, rather than it’s attribution.

A.3 INCLUSION SELECTIVITY

Note that inclusion selectivity in section f.2]is also used as DoA. Recall that inclusion selectivity is
calculated as equation 2| In this case, i1 = g7 Y .c 5, @u(s) is the average value of unit activa-

tion when forwarding a set of sentences S, where S denotes that sentences including candidate
concept ¢y,

However, it induces a bias which is similar to section It always prefers lengthy phrases since
those lengthy concepts occur few times in entire corpus. For example, assume that the activation
value of unit u for the sentence including specific lengthy phase is very high. If such a phrase occurs
only one time over the entire corpus, x4 is equal to the activation value of the sentence, which is
relatively very high than p for other candidate concepts. This error could be alleviated on a very
large corpus where every candidate concept occurs enough in the corpus so that estimation of
get relatively accurate, which is practically not possible.

A.4 COMPUTING DOA VALUES WITHOUT REPLICATION

In Section we replicate each candidate concept into the input sentence for computing DoA in
Eq.(T). Since each unit works as a concept detector whose activation value increases with the length
of the input sentence (Section[d.2)), it is essential to normalize the length of input for fair comparison
of DoA values between the concepts that have different lengths one another. Without the length-
normalization (i.e. each input sentence consists of just one instance of the candidate concept), the
DoA metric has a bias to prefer lengthy concepts (e.g. phrases) because they typically have more
signals that affect the unit activation than short candidate concepts (e.g. single words).

B TRAINING DETAILS

In this work, we trained a ByteNet for the translation tasks and a VDCNN for the classification tasks,
both to analyze properties of representations for language. Training details are as follows.

B.1 BYTENET

We trained a ByteNet on the translation tasks, in particular on the WMT’17 English-to-German
Europarl dataset, the English-to-German news dataset, WMT 16 English-to-French, English-to-
Czech news dataset. We used the same model architecture and hyperparameters for both datasets.
We set the batch size to 8 and the learning rate to 0.001. The parameters were optimized with
Adam (Kingma & Bal [2015)) for 5 epochs, and early stopping was actively used for finding parame-
ters that generalize well. Our code is based on a TensorFlow (Abadi et al.,|2015) implementation of
ByteNet found in https://github.com/paarthneekhara/byteNet-tensorflowl

B.2 VERY DEEP CNN (VDCNN)

We trained a VDCNN for classification tasks, in particular on the AG News dataset, the binarized
version of the Yelp Reviews dataset, and DBpedia ontology dataset. For each task, we used 1 tempo-
ral convolutional layer, 4 convolutional blocks with each convolutional layer having a filter width of
3. In our experiments, we analyze representations of each convolutional block layer. The number of
units in each layer representation is 64, 128, 256, 512 respectively. We set the batch size to 64 and the
learning rate to 0.01. The parameters are optimized using SGD optimizer for 50 epochs, and early
stopping is actively used. For each of the AG News, Yelp Reviews and DBpedia datasets, a VD-
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Figure 8: Mean and variance of selectivity values for different M = [1, 3,5, 10], where M is the
number of selected concepts per unit. In all settings, the selectivity of replicate ones is the highest,
that of one instance ones is runner-up, and that of random is the lowest near 0.

CNN was learned with the same structure and hyperparameters. Our code is based on a TensorFlow
implementation of VDCNN found in https://github.com/zonetrooper32/VDCNN.

C VARIANTS OF ALIGNMENT WITH DIFFERENT M VALUES

In Section[3.2] we set M = 3. Although M is used as a threshold to set how many concepts per unit
are considered, different M values have little influence on quantitative results such as selectivity
in Section 4.2] Figure [8] shows the mean and variance of selectivity values with different M =
[1, 3,5, 10], where there is little variants in the overall trend; the sensitivity of the replicate set is the
highest, and that of one instance is runner-up, and that of random is the lowest.

D NON-INTERPRETABLE UNITS

Whereas some units are sensitive to specific natural language concepts as shown in Section .3}
other unites are not sensitive to any concepts at all. We call such units as non-interpretable units,
which deserve to be explored. We first define the unit interpretability for unit u as follows:

1 if maxses{ayu(s)} < max;=1,.. n{r:}
0 otherwise

Interpretability (u) = { (7)

where S is the set of training sentences, a,,(s) is the activation value of unit u, and r; is the activation
value of the sentence that is made up of replicating concept c;. We define unit u as interpretable
when its Interpretability(u) equals to 1, and otherwise as non-interpretable. The intuition is that
if a replicated sentence that is composed of only one concept has a less activation value than the
top-activated sentences, the unit is not sensitive to the concept compared to a sequence of different
words.

Figure[9) shows the ratio of the interpretable units in each layer on several datasets. We observe that
more than 90% of units are interpretable across all layers and all datasets.

Figure[I0]illustrates some examples of non-interpretable units with their top five activated sentences
and their concepts. Unlike Figure[3] the aligned concepts do not appear frequently over top-activated
sentences. This result is obvious given that the concepts have little influence on unit activation.
There are several reasons why non-interpretable units appear. One possibility is that several units
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Figure 9: Ratio of interpretable units in layer-wise. Across all datasets, there are more than 90% of
units are interpretable. See Section @] for more details.

Unit 001: (@ parliament) first) [#] candid) Unit 260: (Whaf) (cost)(those)

* At some point, the party is going to end. *  (Whai would itthe organic producers?

* Atthe other extreme are Chile, Costa Rica, and +  So[Whatexactly were Parliament' s requirements?
Uruguay. * I must also thank the authors of the amendments.

*  You gather data, do experiments, read, and write. [[* We have to recognise the difficult cases.

e Cashews, shrimp, and cocaine. e |Ishall therefore vote against the proposals.

+  Scotland has(@parliament, Wales an assembly.

Figure 10: Examples of non-interpretable units, their concepts and top 5 activated sentences. Units
are from representations learned on english-to-french translation dataset. See section@] for details.

align concepts that are out of natural language form. For example, in unit 001 in the left of Figure
[I0] we discover that sentence structure involves many commas in top activated sentences. Since
we limit the candidate concepts to only the form of morpheme, word and phrase, such punctuation
concepts are hard to be detected. Another possibility is that some units may be so-called dead units
that are not sensitive to any concept at all. For example, unit 260 in the right of Figure [I0] has no
pattern that appears consistently in top activated sentences.

E CONCEPT CLUSTERS

We introduce some units whose concepts have the shared meaning in Section [4.3] We here refer
concept cluster to the concepts that are aligned to the same unit and have similar semantics or
grammatical roles. We analyze how clusters are formed in the units and how they vary with the
target task and layer depth.

E.1 CONCEPT CLUSTERS BY TARGET TASKS

Figure [11] illustrates some concept clusters of units in the final layer learned on each task. Top
and left dendrograms of each figure show hierarchical clustering results of 30 concepts aligned
with the largest number of units. We use clustering algorithm of |Miillner| (2011); we define the
distance between two concepts as the Euclidean distance of their vector space embedding. We use
fastText (Bojanowski et al.l |2017) pretrained on Wikipedia dataset to project each concept into the
vector space. Since fastText is a character-level N-gram based word embedding, we can universally
obtain the embedding for morphemes as well as words or phrases. For phrase embedding, we split
it to words, project each of them and average their embeddings. The distance between two clusters
is defined as the distance between their centroids.

Each central heat map represents the number of times each concept pair is aligned to the same
unit. Since the concepts in the X, y-axes are ordered by the clustering result, if the diagonal blocks
(concept clusters) emerge more strongly, the concepts in the same unit are more likely to have the
similar meanings.

In Figure[IT] the units learned in the classification tasks tend to have stronger concept clusters than
those learned in the translation tasks. Particularly, the concept clusters are highly evident in the units
learned in DBpedia and AG News dataset. Our intuition is that units might have more benefits to
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Figure 11: Concept clusters of the last layer representations learned in each task. The more distinct
the diagonal blocks are, the stronger the tendency that concepts aligned to the same unit share similar
meanings or semantics. See Appendixfor details.

solve the task by clustering similar concepts in the classification than the translation. That is, in the
classification, input sentences that have the similar concepts tend to belong to the same class label,
while in the translation, different concepts should be translated to different words or phrases even if
they have similar meanings in general.

E.2 CONCEPT CLUSTERS BY LAYERS

We analyze how concept clusters change by layer in each task. We compute the averaged pairwise
distance between the concepts in each layer. We project each concept to the vector space using
the three pretrained embeddings: (1) Glove (Pennington et al., [2014)), (2) ConceptNet (Speer et al.,
2017), (3) fastText. Glove and fastText embeddings are pretrained on Wikipedia dataset, and Con-
cpetNet is pretrained based on the ConceptNet graph structure.

Figure[T2]shows the averaged pairwise distances in each layer. In all tasks, there is a tendency that
the concepts in the same unit become closer in the vector space as the layer goes deeper. It indicates
that individual units in earlier layers tend to capture more basic text patterns or symbols, while units
in deeper layers capture more abstract semantics.

F WHAT MAKES CERTAIN CONCEPTS EMERGE MORE THAN OTHERS?:
OTHER DATASETS

We investigate why certain concepts emerge more than others at Section 4.6 when the ByteNet is
trained on English-to-French news dataset. Here, Figure [T4] shows more results in other datasets.
Consistent with our intuition, in all datasets, both the document frequency and the delta of expected
loss are closely related to the number of units per concept. It concludes that the representations are
learned for identifying not only the frequent concepts in the training set and but also the important
concepts for solving the target task.
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Figure 12: Averaged pairwise distances of concepts in each layer per task. Top and bottom row
show the concept distances of translation models and classification models, respectively. For pro-
jecting concepts into the embedding space, we use three pretrained embedding: Glove, ConceptNet,
FastText. See Appendix [E.2|for more details.
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Figure 13: The number of unique concepts in each layer. It increases with the layer depth, which
implies that the units in a deeper layer represent more diverse concepts.

G CONCEPT DISTRIBUTION IN LAYERS FOR OTHER DATASETS

In section[#.4] we visualized how concepts are distributed across layers, where the model is trained
on AG News dataset and English-to-German Europarl dataset. Here, Figure [I3] shows concept dis-
tribution in other datasets noted in Table[Il

In the classification tasks, we expect to find more concepts that are directly related to predicting
the output label, as opposed to the translation tasks where the representations may have to include
information on most of the words for an accurate translation. While our goal is not to relate each
concept to one of the labels, we find several concepts that are more predictive to a particular label
than others.

Consistent with section [#.4] there are data-specific and task-specific concepts aligned in each layer;
i.e. {worst, 2 stars, awful} at Yelp Review, {film, ship, school} at DBpedia, and some key words
at translation datasets. Note that Yelp Review and DBpedia is a classification dataset, where the
model is required to predict the polarity (i.e. +1 or -1) or ontology (i.e. Company, Educational
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Figure 14: The Pearson correlations between the number of units per concept and (i) document
frequency (top row), (ii) delta of expected loss (bottom row). They are measured at the final layer

representation.

Institution, Artist, Athlete, Officeholder, Mean of Transportation, Building, Natural Place, Village,
Animal, Plant, Album, Film, Written Work) for given sentence in supervised setting.

H MULTIPLE OCCURRENCES OF EACH CONCEPT AT DIFFERENT LAYERS

Figure [T6] shows the number of occurrences of each concept at different layers. We count how
many times each concept appears across all layers and sort them in decreasing order. We select two
concepts in the translation model and seven concepts in the classification model, as to their number
of occurrences. For example, since there are 15 encoder layers in the ByteNet translation model, we
select 30 concepts in total. Although task and data specific concepts emerge at different layers, there
is no strong pattern between the concepts and their occurrences at multiple layers.
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Figure 15

CNN learned on Yelp Review dataset and DBpedia ontology dataset, and ByteNet learned on the

English-to-German, English-to-French, and English-to-Czech parallel corpus. [#] symbol denotes

morpheme concept.
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