
Semi-Supervised Reinforced Active Learning for
Pulmonary Nodule Detection in Chest X-rays

Sejin Park∗
Vuno Inc.

Seoul, South Korea
gnoses@vuno.co

Woochan Hwang∗
Imperial College London

London, UK
woochan.hwang14@ic.ac.uk

Kyu-Hwan Jung
Vuno Inc.

Seoul, South Korea
khwan.jung@vuno.co

Abstract

Machine learning applications in medical imaging are frequently limited by the lack
of quality labeled data. While conventional active learning approaches have been
able to reduce the labeling burden to some extent, the main difficulty was defining
an effective sampling criteria. In this work, we propose a novel framework, semi-
supervised reinforced active learning, which utilizes inverse reinforcement learning
and an actor critic network to train a reward based active learning algorithm. This is
an extension of the reinforced active learning formulation [1] to complex problems
where direct rewards may be unavailable. The framework was tested on a U-Net
segmentation network [2] for pulmonary nodules in chest X-rays. The proposed
framework was able to achieve the same level of performance as the standard U-
Net while using only 50% of the labeled data, demonstrating ability to effectively
reduce the labeling burden.

1 Introduction

Machine learning applications in medical imaging face a common obstacle of obtaining quality
labeled data. The integrity of most labels in medical imaging is inherently limited as many of them
are created through natural language processing or classification based on the information from the
PACS system. Though this may seem straightforward, the content of the medical report may not
always be identical to the radiological findings. For example, a patient might have the final diagnosis
of lung cancer in the report, but the PACS system may contain X-rays taken before any observable
nodules or consolidations have formed. Furthermore, in images with multiple findings, the report
may only include the representative finding while excluding the others.

Even in the few selective cases where expert-level segmentation labels are available, it is immensely
time consuming and expensive to scale to the amount where supervised learning algorithms can be
implemented effectively. This also confines the application of most supervised learning algorithms in
the medical domain to problems with a clear financial return while neglecting many with a potentially
huge clinical impact.

In such a limited environment where it is difficult to obtain enough X-ray data with validated labels,
the logical approach is that of semi-supervised learning, where the aim is to utilize the vast amount of
X-rays with no or unverified labels. The active learning style [3], which selects and labels a subset
of the unlabeled dataset in an iterative way, is the currently established approach in this domain. In
this paper, we propose using an advantage actor critic (A2C) network [4] to replace the conventional
sampling methods of active learning algorithms. This is founded on the idea of a reward-driven
active learning algorithm, which was first proposed as reinforced active learning formulation (RALF)
[1] for object classification. The reward is defined by the performance of the network after being

∗Equal contribution

1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands.



fine tuned with the subset created by the actor. However, because the end performance of the base
network is intractable during training, we take the semi-supervised reinforcement learning (SSRL)
[5] approach and formalize the overall framework as semi-supervised reinforced active learning
(SSRAL). This approach not only clarifies the weak link between sampling methods and performance
of conventional active learning methods but also provides a stable learning method in the context of
pulmonary nodule detection.

The main contribution is that, to the best of our knowledge, our work is the first implementation of
the reinforced active learning approach in the medical imaging domain. Our work describes a novel
way to reduce the labeling burden, which is one of the main bottlenecks in this field, by exploiting
unlabeled data. Furthermore, our work improves on the reinforced active learning approach to
accommodate more complex problems where the reward function may not be available by introducing
semi-supervised reinforcement learning.

2 Background

Semi-supervised learning [6] is based on the desire to make use of unlabeled data in settings where
labeled data is scarce but unlabeled data is available at scale. The intuition behind why it works
however, may not be as clear. Zhu et al. [7] provides some insight by showing how semi-supervised
learning occurs in humans. The intuition is that unlabeled data can provide useful information of
the true distribution of the data and shift the decision boundary of the model, leading to improved
generalization of classifiers. The potential of semi-supervised learning in reducing the labeling burden
has been proven empirically [8,9,10] in several domains including segmentation tasks in medical
imaging.

Most of such semi-supervised learning methods have been implemented in the active learning style
[1], where a query is thrown at the user (or teacher model) to generate data, which will then be used
for fine tuning of the model. More specifically, in the medical imaging domain, we can imagine a
setting where we would want to utilize the large amount of unlabeled X-rays readily available for a
certain task. In active learning, a query will be thrown to generate labels for a subset of unlabeled
X-rays that will be incorporated into the training process. The popular methods [11,12,13] used for
subsampling from the unlabeled set are as follows:

1. Uncertainty sampling: Omission of data with high uncertainty
2. Query by committee: Sampling through voting of multiple pre-trained supervised learning

models
3. Expected model change: Selection of data points that drastically change the current model
4. Balance exploration and exploitation: Solving the contextual bandit problem of exploration

and selection of the data points

Although these conventional methods have proven effective in multiple occasions, there is still a
lot of room for improvement. In all of the above cases, the process of sampling and validation
of performance are independent. Hence, no direct feedback is given to the sampling algorithm
to improve over iterations. Because the choice of sampling method leads to drastic changes in
performance, the lack of a direct feedback complicates the experiment. Furthermore, such methods
require long training periods which limits its application on large image sets.

One way of overcoming such limitations of conventional sampling methods may be to integrate
reinforcement learning (RL) in the sampling process. Reinforcement learning is a branch of machine
learning inspired from behavioral neuroscience where the agent recognizes the current state and
selects the action or sequence of actions that will maximize the reward. Ebert et al. [1] first introduced
the RALF algorithm based on this approach by formulation of the sampling criteria as a Markov
decision process. Unlike RALF which took a model-free Q-learning approach for training, we
implement a modified version of the advantage actor critic (A2C) [4] method in our model. By
combining the policy gradient approach (actor) with the value based approach (critic), the actor
critic method provides a better convergence rate compared to most of the older algorithms in high
dimensional space [14].

As the training of supervised learning algorithms rely on the quality of the label, the reinforcement
learning algorithms rely on the quality of the reward. However, in the case of deep neural architectures
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used in the medical imaging domain, the final validation performance is intractable during the training
process. The iterative training performance, which is available, may be highly unstable and lead
to non-convergence if used as a direct reward even with sophisticated policy gradient methods. To
tackle this issue, we consider the semi-supervised reinforcement learning (SSRL) [5] problem, which
is when an agent must perform RL under a setting where the reward function is known for only some
of the cases. SSRL was formalized previously in the benchmark settings popular in robotics. To
clarify overlapping terminology, SSRL is being used to implement a reinforced active learning style
semi-supervised algorithm. Therefore, to avoid confusion, the proposed framework will be referred
to as semi-supervised reinforced active learning (SSRAL).

In SSRAL, we use inverse reinforcement learning (IRL) [15,16] to implement a function approxima-
tion of the reward based on expert demonstration provided by the environment. This is different from
the IRL implemented in the S3G [5] algorithm, which infers the reward function from a policy trained
on a small set of labeled cases. By using this reward function in joint with the in-training validation
performance, we were able to stabilize the learning curve, which is a key step in implementing
reinforced active learning algorithms in complex real world problems like medical imaging. We will
show the potential of the SSRAL framework in reducing the labeling burden in the medical imaging
domain by experimentation on the pulmonary nodule detection task in chest X-rays.

3 Methods

3.1 Data Collection and Preprocessing

The chest X-rays (PA view) used were collected between 2013 and 2015 from Asan Medical Center
(Seoul, South Korea). The dataset is comprised of 931 images with pixel labels (1007 nodules)
and 2986 images without labels. The labels were created by consensus from three board certified
radiologists with 10 to 25 years of experience. The total of 3917 radiographs used were anonymized
and reviewed by the internal review board.

During the pre-processing stage, per image histogram equalization was used to mitigate the variance
of intensity amongst the radiographs. In our model, data augmentation (rotation, random crop, resize,
intensity and contrast noise) had no significant effect on training and validation accuracy. Therefore,
no augmentations were applied to our data as they increased the training time with no significant
benefit.

3.2 Semi-Supervised Reinforced Active Learning

Let a Markov Decision Process (MDP) be defined as M = {S, A, T, R, γ}, where S denotes the state
space, A denotes the action space, T is the transition dynamics, R is the reward and γ is the discount
factor. In the given active learning setting, the state space of the MDP is the output of the trained
model and the action is subsampling informative cases with generated labels. A sample is considered
informative if the state space is below the negative threshold, in which case will be labeled normal,
or above the positive threshold, where the region of interest will be considered a true nodule. The
optimal policy π∗ is the sampling method that provides the highest expected reward.

Although there should be no restriction to the architecture of the trained model that we can take an
SSRAL approach, a U-Net [2] segmentation network, which provides state-of-the-art performance in
the medical imaging domain, was used. Because the final performance of the U-Net is intractable
during the training iterations, maximum margin IRL [16] was used to create an approximation of the
reward function based on expert demonstration. This was used in joint with the validation accuracy
to update the A2C network.

Using the given MDP definition, we will formalize how the agent interacts with the environment to
exploit unlabeled data based on feedback from the environment. The training of the proposed model
is divided in two phases like most semi-supervised algorithms.

Phase 1 (Supervised Learning): A U-Net like model is trained in four different settings, each using
25%, 50%, 75% and 100% of the available labeled data. These will be compared after phase 2, which
is the SSRAL training phase, to observe how robust the method is with less labeled data. The trained
model becomes the environment that interacts with the agent in phase 2. The state space will be
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defined as the logit output of the model to prevent unnecessary loss of information caused by the final
sigmoid activation layer.

At the end of phase 1, a set of expert demonstrations is created from the environment using the state
space of the labeled training data and its original labels. The reward function R∗ is approximated
from the experts behavior via maximum margin IRL.

E[
∞∑
t=0

γtR(st)
∗|π∗] ≥ E[

∞∑
t=0

γtR(st)
∗|π] ∀π

The approximated reward function is used by the critic in phase 2 to evaluate the policy. No iterative
updates are performed on the reward function itself.

Phase 2 (SSRAL): A subset of the unlabeled data is created based on the current policy, which starts
with random initialization, and used to fine tune the segmentation network. The resulting validation
accuracy r at this stage is considered the long term reward. The policy and value function of the A2C
network is trained to maximize the short term reward R∗(s) provided by the IRL trained in phase 1
and the long term reward r. The use of R∗(s) stabilizes the learning that was unstable when only
based on r. The value function is calculated based on temporal difference (TD) methods [17] using
both R∗(s) and r.

δπθ = r ·R∗(s) + γV πθ(s′)− V πθ(s)

The iterative update of the actor is based on the policy gradient,

θ = θ + α∇θ log πθ(s, a)Qw(s, a)

where the true TD error is an unbiased estimate of the advantage function. Note that unlike many
of the previous active learning algorithms, this method describes a clear link between the final
performance and the iterative updates.

Figure 1: Semi-Supervised Reinforced Active Learning (SSRAL) framework

4 Results

In our evaluation, we compare (1) the performance of the model network between phase 1 and phase
2 to test the improvement following active learning and (2) the performance of the SSRAL framework
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Table 1: Five fold validation results of the proposed framework using different proportions of the
available labeled data. The result of t-Tests comparing phase 1 (Standard U-Net) and phase 2 (SSRAL)
F1 scores are given as p-values.

Labeled Phase 1 Phase 2 t-Test
data used F1 Sensitivity FPs/Img F1 Sensitivity FPs/Img (F1)
25% 0.738 ± 0.015 0.732 0.675 0.764 ± 0.027 0.780 0.742 <0.001
50% 0.745 ± 0.018 0.772 0.508 0.802 ± 0.014 0.829 0.312 <0.001
75% 0.794 ± 0.023 0.822 0.534 0.821 ± 0.019 0.865 0.262 <0.001
100% 0.812 ± 0.014 0.856 0.342 0.848 ± 0.022 0.887 0.252 <0.001

with varying degree of labeled data use to test how effective the framework is in reducing the labeling
burden.

The five fold validation performance of phase 1 and phase 2 using different proportions of the
available labeled data is shown in Table 1. The p-value indicates the results of the t-Test performed
on the f1 score of respective phase 1 and phase 2 performance. The result demonstrates that the phase
2 of the training improves the network performance throughout.

The phase 1 performance achieved using 100% of the labeled data can be considered the maximum
performance of the original U-Net segmentation network. Figure 2 shows that with the SSRAL
framework, we can achieve the same level of performance (F1 score) with only 50% of the labeled
data (p-value < 0.05). Figure 3 shows a sample where the SSRAL framework was able to detect
nodules that were missed by the standard U-Net trained with 50% of the available labeled data.

Figure 2: Performance (F1 score) of the proposed framework using different proportions of the
available labeled data. Error bar is given by standard deviation.

Figure 3: Inference result of the model trained using 50% of available labeled data on sample data.
(Left) Ground truth, (Middle) Phase 1: Standard U-Net, (Right) Phase 2: SSRAL
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5 Conclusion and Future Work

We presented a form of active learning algorithm that receives performance feedback and is robust
enough to be implemented on complex real world problems, where the available reward may be highly
abstract and sparse. To learn in such settings, our algorithm derives an approximated reward function
through IRL and updates the A2C network based on a combination of long and short term rewards.
Because this framework takes intuition from semi-supervised reinforcement learning and reinforced
active learning formulation, we formalized this as semi-supervised reinforced active learning.

Our evaluation on the pulmonary nodule detection task in chest X-rays using the U-Net segmentation
network showed that our approach can effectively leverage unlabeled data to improve performance of
deep neural networks. In the specific dataset and task, we were able to reduce the labeling burden to
50% while maintaining performance. Though further experimentation on different datasets and tasks
is necessary to gauge the true value of this framework, our results show great potential. A particularly
interesting area where this framework may be useful is the multi-center adaptation problem. With
some consideration in adjusting the reward function, our approach could be used to generalized a
pretrained algorithm to settings with different patient characteristics without any further labeled data.
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