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ABSTRACT

Many anomaly detection methods exist that perform well on low-dimensional
problems however there is a notable lack of effective methods for high-
dimensional spaces, such as images. Inspired by recent successes in deep learning
we propose a novel approach to anomaly detection using generative adversarial
networks. Given a sample under consideration, our method is based on searching
for a good representation of that sample in the latent space of the generator; if such
a representation is not found, the sample is deemed anomalous. We achieve state-
of-the-art performance on standard image benchmark datasets and visual inspec-
tion of the most anomalous samples reveals that our method does indeed return
anomalies.

1 INTRODUCTION

Given a collection of data it is often desirable to automatically determine which instances of it are
unusual. Commonly referred to as anomaly detection, this is a fundamental machine learning task
with numerous applications in fields such as astronomy (Protopapas et al.,[2006; |Dutta et al.,|2007),
medicine (Campbell and Bennett, 2001; [Wong et al., 2003} |Schlegl et al., |2017), fault detection
(Gornitz et al.l 2015)), and intrusion detection (Eskin, |2000; |Hu et al., 2003)). Traditional algorithms
often focus on the low-dimensional regime and face difficulties when applied to high-dimensional
data such as images or speech. Second to that, they require the manual engineering of features.

Deep learning omits manual feature engineering and has become the de-facto approach for tack-
ling many high-dimensional machine learning tasks. The latter is largely a testament of its experi-
mental performance: deep learning has helped to achieve impressive results in image classification
(Krizhevsky et al., [2012), and is setting new standards in domains such as natural language pro-
cessing (Le and Mikolov, 2014; Sutskever et al., [2014)) and speech recognition (Bahdanau et al.,
2015).

In this paper we present a novel deep learning based approach to anomaly detection which uses
generative adversarial networks (GANs) (Goodfellow et al., 2014). GANs have achieved state-of-
the-art performance in high-dimensional generative modeling. In a GAN, two neural networks —
the discriminator and the generator — are pitted against each other. In the process the generator
learns to map random samples from a low-dimensional to a high-dimensional space, mimicking the
target dataset. If the generator has successfully learned a good approximation of the training data’s
distribution it is reasonable to assume that, for a sample drawn from the data distribution, there
exists some point in the GAN’s latent space which, after passing it through the generator network,
should closely resembles this sample. We use this correspondence to perform anomaly detection
with GANs (ADGAN).

In Section 2] we give an overview of previous work on anomaly detection and discuss the modeling
assumptions of this paper. Section [3| contains a description of our proposed algorithm. In our
experiments, see Section[d] we both validate our method against traditional methods and showcase
ADGAN:’s ability to detect anomalies in high-dimensional data.
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2 BACKGROUND

Here we briefly review previous work on anomaly detection, touch on generative models, and high-
light the methodology of GANSs.

2.1 RELATED WORK

Anomaly detection. Research on anomaly detection has a long history with early work going
back as far as|[Edgeworth| (1887)), and is concerned with finding unusual or anomalous samples in a
corpus of data. An extensive overview over traditional anomaly detection methods as well as open
challenges can be found in |Chandola et al.| (2009). For a recent empirical comparison of various
existing approaches, see Emmott et al.[(2013).

Generative models yield a whole family of anomaly detectors through estimation of the data
distribution p. Given data, we estimate p ~ p and declare those samples which are unlikely un-
der p to be anomalous. This guideline is roughly followed by traditional non-parametric methods
such as kernel density estimation (KDE) (Parzen| |1962), which were applied to intrusion detec-
tion in |Yeung and Chow| (2002)). Other research targeted mixtures of Gaussians for active learn-
ing of anomalies (Pelleg and Moore, |2005), hidden Markov models for registering network attacks
(Ourston et al., [2003), and dynamic Bayesian networks for traffic incident detection (Singliar and
Hauskrecht, [2006).

Deep generative models. Recently, variational autoencoders (VAEs) (Kingma and Welling [2013))
have been proposed as a deep generative model. By optimizing over a variational lower bound on
the likelihood of the data, the parameters of a neural network are tuned in such a way that samples
resembling the data may be generated from a Gaussian prior. Another generative approach is to train
a pair of deep convolutional neural networks in an autoencoder setup (DCAE) (Masci et al.| 2011)
and producing samples by decoding random points on the compression manifold. Unfortunately,
none of these approaches yield a tractable way of estimating p. Our approach uses a deep generative
model in the context of anomaly detection.

Deep learning for anomaly detection. Non-parametric anomaly detection methods suffer from
the curse of dimensionality and are thus inadequate tools for the interpretation and analysis of high-
dimensional data. Deep neural networks have been found to obviate many problems that arise in this
context. As a hybrid between the two approaches, deep belief networks were coupled with one-class
support vector machines to detect anomalies in |Erfani et al.[(2016). We found that this technique did
not work well for image datasets, and indeed the authors included no such experiments in their paper.
Similarly, one may employ a network that was pretrained on a different task (such as classification
on ImageNet) and then use this network’s intermediate features to extract relevant information from
images. We tested this an approach in our experimental section.

Recently GANs, which we discuss in greater depth in the next section, have garnered much attention
with performance surpassing previous deep generative methods. Concurrently to this work, [Schlegl
et al.| (2017) developed an anomaly detection framework that uses GANSs in a similar way as we do.
We discuss the differences between our work and theirs in Section[3.2]

2.2  GENERATIVE ADVERSARIAL NETWORKS

GANSs, which lie at the heart of ADGAN, have set a new state-of-the-art in generative image mod-
eling. They provide a framework to generate samples that are approximately distributed to p, the
distribution of the training data {z;}7_, £ X C R? To achieve this, GANs attempt to learn the
parametrization of a neural network, the so-called generator gy, that maps low-dimensional samples
drawn from some simple noise prior p, (e.g. a multivariate Gaussian) to samples in the image space,
thereby inducing a distribution gy (the push-forward of p, with respect to gg) that approximates p.
To achieve this a second neural network, the discriminator d,,, learns to classify the data from p
and qyp. Through an alternating training procedure the discriminator becomes better at separating
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Figure 1: An illustration of ADGAN. In this example, ones from MNIST are considered normal.
After an initial draw from p,, the loss between the first generation gy, (z) and the image « whose
anomaly we are assessing is computed. This information is used to generate a consecutive image
9o, (z1) more alike x. After k steps, samples are scored. If x is similar to the training data (blue
example), then a similar object should be contained in the image of gy, . For a dissimilar = (red
example), no similar image is found, resulting in a large loss.

samples from p and samples from gy, while the generator adjusts 6 to fool the discriminator, thereby
approximating p more closely. The objective function of the GAN framework is thus:

minmax {V(0,0) = Equp[10g du2)] + Eary. [l08(1 — du(g0(2)))] (1)

w

where z are vectors that reside in a latent space of dimensionality d’ < dﬂ A recent work showed
that this minmax optimization (1)) equates to an empirical lower bound of an f-divergence (Nowozin
et al}2016) ]

GAN training is difficult in practice, which has been shown to be a consequence of vanishing gradi-
ents in high-dimensional spaces (Arjovsky and Bottou, 2017). These instabilities can be countered
by training on integral probability metrics (IPMs) (Miiller, 1997} |Sriperumbudur et al., 2009), one
instance of which is the 1-Wasserstein distanceE] This distance, informally defined, is the amount of
work to pull one density onto another, and is the basis of the Wasserstein GAN (WGAN) (Arjovsky
et al.Ll 2017). The objective function for WGAN:S is

minmax {W(0,w) = Bunplde ()] — Eonp. [du(90())] }, @)

weN

where the parametrization of the discriminator is restricted to allow only 1-Lipschitz functions, i.e.
QO ={w: ||du|lL < 1}. When compared to classic GANs, we have observed that WGAN training is
extremely stable and is thus used in our experiments, see Section@}

3 ALGORITHM

Our proposed method (ADGAN, see Alg.|I)) sets in after GAN training has converged. If the gen-
erator has indeed captured the distribution of the training data then, given a new sample x ~ p,
there should exist a point z in the latent space, such that gy(2) =~ x. Additionally we expect points
away from the support of p to have no representation in the latent space, or at least occupy a small
portion of the probability mass in the latent distribution, since they are easily discerned by d,, as not
coming from p. Thus, given a test sample z, if there exists no z such that gy(z) = x, or if such a z
is difficult to find, then it can be inferred that x is not distributed according to p, i.e. it is anomalous.
Our algorithm hinges on this hypothesis, which we illustrate in Fig.[T]

!That p may be approximated via transformations from a low-dimensional space is an assumption that is
implicitly motivated from the manifold hypothesis (Narayanan and Mitter, [2010).

*This lower bound becomes tight for an optimal discriminator, making apparent that V' (6, w*) o JS[p|qs].

3This is achieved by restricting the class over which the IPM is optimized to functions that have Lipschitz
constant less than one. Note that in Wasserstein GANS, an expression corresponding to a lower bound is
optimized instead.
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Algorithm 1: Anomaly Detection using Generative Adversarial Networks (ADGAN).

Input: parameters (7, Vg, Nsced, k), sample x, GAN generator gy, prior p., reconstruction loss .

o A
initialize {z; 0} ~ p. and {0, 0}]=* £ 6.

for j =1,...,Ngeeq do
for{=1,...,kdo
2j0 4= Zj-1 =7 Va1 0(90,,-1 (250-1), @)
ejJ — ej,lfl -6 V9j,z—1€(99_7‘,1—1(Zj,lfl)’x)
end
end

return (1/nseed) 22527 £(96, . (25,1), @)-

3.1 ADGAN

To find z, we initialize from zy ~ p,, where p, is the same noise prior also used during GAN
training. For | = 1,...,k steps, we backpropagate the reconstruction loss ¢ between gy (z;) and
x, making the subsequent generation gg(z;4+1) more like 2. At each iteration, we also allow a
small amount of flexibility to the parametrization of the generator, resulting in a series of mappings
from the latent space go,(20), - - - , 9o, (21 ) that more and more closely resembles z. Adjusting
gives the generator additional representative capacity, which we found to improve the algorithm’s
performance. Note that these adjustments to § are not part of the GAN training procedure and 6 is
reset back to its original trained value for each new testing point.

To limit the risk of seeding in unsuitable regions and address the non-convex nature of the underlying
optimization problem, the search is initialized from ngeeq individual points. The key idea underlying
ADGAN is that if the generator was trained on the same distribution x was drawn from, then the

average over the final set of reconstruction losses {£(x, go, ,, (2j,x))} ;=] will assume low values, and
high values otherwise.

Jj=

Our method may also be understood from the standpoint of approximate inversion of the generator.
In this sense, the above backpropagation finds latent vectors z that lie close to g, (x). Inversion
of the generator was previously studied in [Creswell and Bharath| (2016), where it was verified ex-
perimentally that this task can be carried out with high fidelity. In addition [Lipton and Tripathi
(2017) showed that generated images can be successfully recovered by backpropagating through the
latent spaceE] Jointly optimizing latent vectors and the generator parametrization via backpropaga-
tion of reconstruction losses was investigated in detail by Bojanowski et al.| (2017). The authors
found that it is possible to train the generator entirely without a discriminator, still yielding a model
that incorporates many of the desirable properties of GANS, such as smooth interpolations between
samples.

3.2 ALTERNATIVE APPROACHES

Given that GAN training also gives us a discriminator for discerning between real and fake samples,
one might reasonably consider directly applying the discriminator for detecting anomalies. However,
once converged, the discriminator exploits checkerboard-like artifacts on the pixel level, induced by
the generator architecture (Odena et al., |2016; Lopez-Paz and Oquab, 2017). While it perfectly
separates real from forged data, it is not equipped to deal with samples which are completely unlike
the training data. This line of reasoning is verified in Section @] experimentally.

Another approach we considered was to evaluate the likelihood of the final latent vectors {z; j } 7=
under the noise prior p.. This approach was tested experimentally in Section[d] and while it showed
some promise, it was consistently outperformed by ADGAN.

In |Schlegl et al.| (2017), the authors propose a technique for anomaly detection (called AnoGAN)
which uses GANs in a way somewhat similar to our proposed algorithm. Their algorithm also begins

*While it was shown that any ge(z) may be reconstructed from some other zo € R?', this does not mean
that the same holds for an x not in the image of gg.
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by training a GAN. In a manner similar to our own, given a test point x, their algorithm searches for
a point z in the latent space such that gy (z) =~ = and computes the reconstruction loss. Additionally
they use an intermediate discriminator layer d/, and compute the loss between d/,(go(z)) and d, ().
They use a convex combination of these two quantities as their anomaly score.

In ADGAN we never use the discriminator, which is discarded after training. This makes it easy to
couple ADGAN with any GAN-based approach, e.g. LSGAN (Mao et al.,2016), but also any other
differentiable generator network such as VAEs or moment matching networks (Li et al., 2015). In
addition, we account for the non-convexity of the underlying optimization by seeding from multiple
areas in the latent space. Lastly, during inference we update not only the latent vectors z, but jointly
update the parametrization 6 of the generator.

4 EXPERIMENTS

Here we present experimental evidence of the efficacy of ADGAN. We compare our algorithm
to competing methods on a controlled, classification-type task and show anomalous samples from
popular image datasets. Our main findings are that ADGAN:

e outperforms non-parametric as well as available deep learning approaches on two con-
trolled experiments where ground truth information is available;

e may be used on large, unsupervised data (such as LSUN bedrooms) to detect anomalous
samples that coincide with what we as humans would deem unusual.

4.1 DATASETS

Our experiments are carried out on three benchmark datasets with varying complexity: (i.) MNIST
(LeCun, [1998)) which contains grayscale scans of handwritten digits. (ii.) CIFAR-10 (Krizhevsky
and Hinton, 2009) which contains color images of real world objects belonging to ten classes.
(iii.) LSUN (Xiao et al., 2010), a dataset of images that show different scenes (such as bedrooms,
bridges, or conference rooms). For all datasets the training and test splits remain as their default. In
addition, all images are rescaled to assume pixel values in [—1, 1].

4.2 METHODS AND HYPERPARAMETERS

We tested the performance of ADGAN against three traditional, non-parametric approaches com-
monly used for anomaly detection: (i.) KDE with a Gaussian kernel (Parzen, |1962). The band-
width is determined from maximum likelihood estimation over ten-fold cross validation, with
h e {29, o2 241, (ii.) One-class support vector machine (OC-SVM) (Scholkopf et al., 1999)
with a Gaussian kernel. The inverse length scale is selected from estimating performance on a small
holdout set of 1000 samples, and v € {277,276, ..., 271}, (iii.) Isolation forest (IF), which was
largely stable to changes in its parametrization. (iv.) Gaussian mixture model (GMM). We allowed
the number of components to vary over {2,3,...,20} and selected suitable hyperparameters by
evaluating the Bayesian information criterion.

For the methods above we reduced the feature dimensionality before performing anomaly detection.
This was done via PCA (Pearson, [1901), varying the dimensionality over {20,40,...,100}; we
simply report the results for which best performance on a small holdout set was attained. As an
alternative to a linear projection, we evaluated the performance of both methods after applying a non-
linear transformation to the image data instead via an Alexnet (Krizhevsky et al.,|2012), pretrained
on Imagenet (Deng et al., |2009). Just as on images, the anomaly detection is carried out on the
representation in the final convolutional layer of Alexnet. This representation is then projected
down via PCA, as otherwise the runtime of KDE and OC-SVM becomes problematic.

We also report the performance of two end-to-end deep learning approaches: VAEs and DCAE:s.
For the DCAE we scored according to reconstruction losses, interpreting a high loss as indicative
of a new sample differing from samples seen during training. In VAEs we scored by evaluating the
evidence lower bound (ELBO). We found this to perform much better than thresholding directly
via the prior likelihood in latent space or other more exotic approaches, such as scoring from the
variance of the inference network.
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In both DCAESs and VAEs we use a convolutional architecture similar to that of DCGAN (Radford
et al., 2015), with batch norm regularizations (loffe and Szegedyl [2015) and ReLU activations in
each layer. We also report the performance of AnoGAN. To put it on equal footing, we pair it with
DCGAN (Radford et al.| [2015)), the same architecture also used for training in our approach.

ADGAN requires a trained generator. For this purpose, we trained on the WGAN objective (2), as
this was much more stable than using GANs. The architecture was fixed to that of DCGAN (Radford
et al., 2015). Following Metz et al. (2016) we set the dimensionality of the latent space to d’ = 256.

For ADGAN, the searches in the latent space were initialized from the same noise prior that the
GAN was trained on (in our case a normal distribution). To take into account the non-convexity
of the problem, we seeded from ngeq = 8 points. For the optimization of latent vectors and the
parameters of the generator we used the Adam optimizer (Kingma and Ba, 2014)E] When searching
for a point in in the latent space to match a test point, we found that more optimization steps always
improved the performance in our experiments. We found k = 5 steps to be a good trade-off between
execution time and accuracy and used this value in the results we report. Unless otherwise noted,
we measured reconstruction quality with a squared Lo loss.

4.3 ONE-VERSUS-ALL CLASSIFICATION

The first task is designed to quantify the performance of competing methods. In it, we closely follow
the original publication on OC-SVMs (Scholkopf et al, [1999) and begin by training each model
on data from a single class from MNIST. We then evaluate performance on 5000 items randomly
selected from the test set, which contains samples from all classes. In each trial, we label the classes
unseen in training as anomalous.

Ideally, a method assigns images from anomalous classes (say, digits 1-9) a higher anomaly score
than images belonging to the normal class (zeros). Varying the decision threshold yields the receiver
operating characteristic (ROC), shown in Fig. 2] In Table[T]and [2] we report the AUCs that resulted
from leaving out each class. The second experiment follows this guideline with the colored images
from CIFAR-10.

In these controlled experiments we highlight the ability of ADGAN to perform on-par with tradi-
tional methods at the task of inferring anomaly of low-dimensional samples such as those contained
in MNIST. On CIFAR-10 we see that all tested methods see a drop in performance. For these ex-
periments ADGAN performed best, needing eight seeds to achieve this result. Using a non-linear
transformation with a pretrained Alexnet did not improve the performance of either MNIST or CI-
FARI0, see Table[I]

While neither table explicitly contains results from scoring the samples using the GAN discrimina-
tor, we did run these experiments for both datasets. Performance was weak, with an average AUC of
0.625 for MNIST and 0.513 for CIFAR-10. Scoring according to the prior likelihood p, of the final
latent vectors worked slightly better, resulting in an average AUC of 0.721 for MNIST and 0.554 for
CIFAR-10.

4.4 UNSUPERVISED ANOMALY DETECTION

In the second task we showcase the use of ADGAN in a practical setting where no ground truth
information is available. For this we first trained a generator on LSUN scenes. We then used
ADGAN to find the most anomalous images within the corresponding validation sets containing
300 imagesﬁ The images associated with the highest and lowest anomaly scores are shown in Fig. 3|
and Fig.[] It should be noted that the training set sizes studied in this experiment prohibit the use
of non-parametric methods such as KDE and OC-SVMs.

From a quick parameter sweep, we set the learning rate to v = 0.25 and (81, 82) = (0.5,0.999). We
update the generator with vp = 5 - 1075, the default learning rate recommended in |Arjovsky et al.|(2017).

%To quantify the performance on LSUN, we build a test set from combining the 300 validation samples of
each scene. After training the generator on bedrooms only we recorded whether ADGAN assigns them low
anomaly scores, while assigning high scores to samples showing any of the remaining scenes. This resulted in
an AUC of 0.641.
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KDE 0C-SVM
DATASET  we  pop Alexnet PCA  Alexnet ¥ GMM
0 0982 0634 0994 0895 0957 0970
10999 0922 0999 1.000 1.000 0.999
2 0888 0654 0993 0796 0822 0931
30898 0639 0933 0932 0924 0.951
vnisT 4 0943 0676 0960 0950 0922 0968
5 0930 0651 0898 0855 0859 0917
6 0972 0636 0998 0971 0903 0994
70933 0628 0946 0884 0938 0938
8 0924 0617 0898 0751 0814 0.889
9 0940 00644 0942 0959 0913 0.962
0941 0670 0945 0899 0905 0.952
0 0705 055 0666 0594 0630 0.709
1 0493 0487 0473 0540 0379 0443
2 0734 0582 0675 0588 0630 0.697
30522 0531 0530 0575 0408 0445
4 0691 0651 0827 0753 0764 0761
CIFAR-10 5 0430 0551 0438 0558 0514 0505
6 0771 0613 0787 0692 0666 0.766
70458 0593 0532 0547 0480 0496
8 0595 0600 0720 0630 0651 0.646
9 0490 0529 0453 0.530 0459 0384

0.590 0570 0.610 0.601 0.558 0.585

Table 1: ROC-AUC of classic anomaly detection methods. For both MNIST and CIFAR-10, each
model was trained on every class, as indicated by y., and then used to score against remaining
classes.

1.0 1.0
— -
o 0.8 0.8
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206 06 ez
o a “".
2 7 ..
G 0.4 0.4 7 A
o /
o / KDE DCAE
202 4 02 4 & . 0C-SVM VAE
= : IF AnoGAN
- GMM —— ADGAN
0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR) False positive rate (FPR)

Figure 2: ROC curves for one-versus-all prediction of competing methods, averaged over all classes.
The figure on the left contains results for MNIST, that on the right those for CIFAR-10. ADGAN is
shown with 7geeq = 8. KDE and OC-SVM are shown in conjunction with PCA.

As can be seen from visually inspecting the LSUN scenes flagged as anomalous, our method has the
ability to discern usual from unusual samples. We infer that ADGAN is able to incorporate many
properties of an image. It does not merely look at colors, but also takes into account whether shown
geometries are canonical, or whether an image contains a foreign object (like a caption). Opposed
to this, samples that are assigned a low anomaly score are in line with a classes’ Ideal Form. They
show plain colors, are devoid of foreign objects, and were shot from conventional angles. In the case
of bedrooms, some of the least anomalous samples are literally just a bed in a room.
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DATASET y. DCAE VAE AnoGAN ADGAN

(nseed = 1) (nseed = 8)

0 0988 0921 0990 0.972 0.995

1 0993 0999 0998 0.997 0.999

2 0917 0815 0888 0.874 0.936

3 088 0814 0913 0.848 0.921

40862 0879  0.944 0.910 0.936

MNIST 5 58 0811 0912 0916 0.944

6 0954 0943 0925 0.957 0.967

70040 0836  0.964 0.937 0.968

8 0823 0780  0.883 0.816 0.854

9 0965 0920 00958 0.924 0.957

0919 0877 0937 0915 0.947

0 0656 0620 0610 0.627 0.632

1 0435 0.664 0565 0.546 0.529

2 0381 0382  0.648 0.561 0.580

3 0545 058 0528 0.595 0.606

4 0288 0386  0.670 0.586 0.607

CIFAR-10 5 (643 058 0592 0.628 0.659

6 0509 0565  0.625 0.604 0.611

7069 0622 0576 0.623 0.630

8 0698 0663 0723 0.702 0.744

9 0705 0737 0582 0.591 0.644

0583 0581 0612 0.606 0.624

Table 2: ROC-AUC of deep anomaly detection methods.

Additional images that were retrieved from applying our method to CIFAR-10 and additional LSUN
scenes have been collected into the Appendix.

5 CONCLUSION

We showed that searching the latent space of the generator can be leveraged for use in anomaly
detection tasks. To that end, our proposed method: (i.) delivers state-of-the-art performance on
standard image benchmark datasets; (ii.) can be used to scan large collections of unlabeled images
for anomalous samples.

To the best of our knowledge we also reported the first results of using VAEs for anomaly detection.
We remain optimistic that boosting its performance is possible by additional tuning of the underlying
neural network architecture or an informed substitution of the latent prior.

Accounting for unsuitable initializations by jointly optimizing latent vectors and generator parame-
terization are key ingredients to help ADGAN achieve strong experimental performance. Nonethe-
less, we are confident that approaches such as initializing from an approximate inversion of the
generator as in ALI (Donahue et al.,2016; [Dumoulin et al., 2016]), or substituting the reconstruction
loss for a more elaborate variant, such as the Laplacian pyramid loss (Ling and Okada, 2006), can
be used to improve our method further.
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Figure 3: Starting from the top left, the first three rows show samples contained in the LSUN
bedrooms validation set which, according to ADGAN, are the most anomalous (have the highest
anomaly score). Again starting from the top left corner, the bottom rows contain images deemed
normal (have the lowest score).

Figure 4: Scenes from LSUN showing conference rooms ranked by ADGAN. The top rows contain
anomalous samples, the bottom rows scenes categorized as normal.
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A ADDITIONAL LSUN SCENES

We ran ADGAN on additional scenes from the LSUN dataset showing bridges (Fig. [3), churches
(Fig.[6), and restaurants (Fig. [7). Training was performed using DCGAN (Radford et al. 2015) on
the WGAN objective (Arjovsky et all,[2017). Reconstruction losses were then measured on the 300
samples contained in the respective validation sets.

Figure 5: Additional scenes from LSUN that show images of bridges. The first rows show anoma-
lous samples, the lower rows those deemed normal.
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Figure 6: Images of churches, taken from LSUN. The first three rows show samples with high
anomaly scores, the last three rows samples with a low score.

Figure 7: Scenes from LSUN that show restaurants. The first rows contain samples with high
anomaly scores, the last rows those with low scores.

B UNSUPERVISED ANOMALY DETECTION ON CIFAR-10

Shown are additional experiments in which we determine anomalous samples of different classes
(e.g. birds, cats, dogs) contained in CIFAR-10. ADGAN was applied exactly as described in Sec-
tion [3] with the search carried out for & = 100 steps. In Fig. [§] we report the highest and lowest
reconstruction losses of images that were randomly selected from the test set, conditioned on the
respective classes.
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Figure 8: Each three rows, samples from a different class in the CIFAR-10 test set are shown. On the
left, images deemed anomalous by ADGAN. The right column holds images considered canonical.
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