
Under review as a conference paper at ICLR 2018

DISSECTING ADAM: THE SIGN, MAGNITUDE AND
VARIANCE OF STOCHASTIC GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ADAM optimizer is exceedingly popular in the deep learning community. Of-
ten it works very well, sometimes it doesn’t. Why? We interpret ADAM as a
combination of two aspects: for each weight, the update direction is determined
by the sign of the stochastic gradient, whereas the update magnitude is solely de-
termined by an estimate of its relative variance. We disentangle these two aspects
and analyze them in isolation, shedding light on ADAM’s inner workings. Trans-
ferring the “variance adaptation” to momentum-SGD gives rise to a novel method,
completing the practitioner’s toolbox for problems where ADAM fails.

1 INTRODUCTION

Many prominent machine learning models pose empirical risk minimization problems of the form

min
θ∈Rd

L(θ) =
1

M

M∑
k=1

`(θ;xk), with gradient ∇L(θ) =
1

M

M∑
k=1

∇`(θ;xk), (1)

where θ ∈ Rd is a vector of parameters, {x1, . . . , xM} a training set, and `(θ;x) is a loss quantifying
the performance of parameter vector θ on example x. Computing the exact gradient in each step of
an iterative optimization algorithm becomes inefficient for large M . Instead, we construct a mini-
batch B ⊂ {1, . . . ,M} of |B| � M data points sampled uniformly and independently from the
training set and compute an approximate stochastic gradient

g(θ) =
1

|B|
∑
k∈B

∇`(θ;xk), (2)

which is an unbiased estimate, E[g(θ)] = ∇L(θ). We will denote by σ(θ)2i := var[g(θ)i] its
element-wise variances.1

The basic stochastic optimizer is stochastic gradient descent (SGD, Robbins & Monro, 1951) and
its momentum variants (Polyak, 1964; Nesterov, 1983). A number of methods, widely-used in the
deep learning community, choose per-element update magnitudes based on the history of stochastic
gradient observations. Among these are ADAGRAD (Duchi et al., 2011), RMSPROP (Tieleman &
Hinton, 2012), ADADELTA (Zeiler, 2012) and ADAM (Kingma & Ba, 2015).

1.1 A CLOSER LOOK AT ADAM

We start out from a reinterpretation of the widely-used ADAM optimizer. Some of the considerations
naturally extend to ADAM’s close relatives RMSPROP and ADADELTA, but we restrict our attention to
ADAM to keep the presentation concise. ADAM maintains moving averages of the observed stochas-

1 With k ∼ U({1, . . . ,M}), the gradient ∇`k(θ) := ∇`(θ, xk) is a random variable with mean
E[∇`k(θ)] = ∇L(θ) and variances var[∇`k(θ)i] = M−1 ∑M

k′=1(∇`k′(θ)i − ∇L(θ)i)2. If the elements
of B are drawn iid with replacement, the variance of g(θ) scales inversely with |B|: σ(θ)2i := var[g(θ)i] =
|B|−1var[∇`k(θ)i]. This holds approximately for sampling without replacement if |B| �M .

1

Under review as a conference paper at ICLR 2018

−1 0 1 2 3
θ1

−1

0

1

2

3

θ 2

σ1σ1

σ2

σ2

True gradient
Stochastic gradient (SG)

−1 0 1 2 3
θ1

−1

0

1

2

3

θ 2

Adapted true gradient
Adapted SG

Figure 1: Conceptual sketch of variance adaptation, ignoring the sign aspect of ADAM. The left panel
shows the true gradient ∇L = (2, 1) and stochastic gradients scattered around it with (σ1, σ2) =
(1, 1.5). In the right panel, we employ a variance adaptation (to be derived in §3.2) that scales the
i-th coordinate by (1 + η2i)−1. In this example, the θ2-coordinate has much higher relative variance
(η22 = 2.25) than the θ1-coordinate (η21 = 0.25) and is thus shortened. This reduces the variance of
the update direction at the expense of biasing it away from the true gradient in expectation.

tic gradients and their element-wise square2,

m̃t = β1m̃t−1 + (1− β1)gt, mt = (1− βt1)−1m̃t, (3)

ṽt = β2ṽt−1 + (1− β2)g2t , vt = (1− βt2)−1ṽt. (4)

Here, mt and vt are “bias-corrected” versions of the exponential moving averages to obtain convex
combinations of past observed (squared) gradients. ADAM then updates

θt+1 = θt − α
mt√
vt + ε

(5)

with a small constant ε > 0 guaranteeing numerical stability of this division. Ignoring ε and assum-
ing |mt,i| > 0 for the moment, we can rewrite the update direction as3

mt√
vt

=
sign(mt)|mt|√

vt
=

sign(mt)√
vt
m2

t

=
sign(mt)√
1 +

vt−m2
t

m2
t

. (6)

Since mt and vt approximate the first and second moment of the stochastic gradient gt, respectively,
vt −m2

t can be seen as an estimate of element-wise stochastic gradient variances. The division by
the non-central second moment effectively removes the magnitude ofmt; it only appears in the ratio
(vt −m2

t)/m
2
t . Hence, ADAM can be interpreted as a combination of the two following aspects:

• The update direction (±) for the i-th weight is given by the sign of mt,i.

• The update magnitude for the i-th weight is uniquely determined by the global step size α
and an estimate of the relative variance,

η̂2t,i :=
vt,i −m2

t,i

m2
t,i

≈
σ2
t,i

∇L2
t,i

=: η2t,i. (7)

Specifically, the update in the i-th coordinate is scaled by
(
1 + η̂2t,i

)−1/2
, shortening steps

in high-relative-variance coordinates. Fig. 1 shows a sketch of this variance adaptation.

2 Notation: Divisions, squares, etc. on vectors are to be understood element-wise. � denotes element-wise
multiplication. We occasionally drop θ, writing g instead of g(θ), etc. We use the shorthands ∇Lt, gt, σ2

t ,
etc. for sequences θt and double-indices, e.g. gt,i = g(θt)i, to denote vector elements.

3 For convenience, we define sign(x) = 1 for x ≥ 0 and sign(x) = −1, x < 0, for our theoretical
considerations, but use sign(0) = 0 in practice. Application to vectors is to be understood element-wise.

2

Under review as a conference paper at ICLR 2018

Table 1: The methods under consideration in this paper.

Sign + Magnitude Sign

Not Variance-Adapted SGD SSD
“Stochastic Sign Descent”

Variance-Adapted SVAG ADAM
“Stochastic Variance-Adapted Gradient”

1.2 OVERVIEW

Both aspects of ADAM—taking the sign and variance adaptation—are briefly mentioned in Kingma
& Ba (2015), who note that “[t]he effective stepsize [...] is also invariant to the scale of the gradients”
and refer to mt/

√
vt as a “signal-to-noise ratio”. The purpose of this paper is to disentangle these

two intertwined aspects in order to discuss and analyze them in isolation.

This perspective naturally suggests two alternative methods by incorporating one of the aspects but
not the other (see Table 1). Taking the sign of the stochastic gradient (or momentum term) without
any further modification gives rise to “Stochastic Sign Descent” (SSD). On the other hand, “Stochas-
tic Variance-Adapted Gradient” (SVAG) applies element-wise variance adaptation factors directly on
the stochastic gradient (or momentum term) instead of on its sign. We proceed as follows: In Sec-
tion 2, we investigate the sign aspect. In the simplified setting of stochastic quadratic problems, we
derive conditions under which the element-wise sign of a stochastic gradient can be a better update
direction than the stochastic gradient itself. Section 3 discusses the variance adaptation. We present
a principled derivation of “optimal” element-wise variance adaptation factors for a stochastic gra-
dient as well as its sign. Subsequently, we incorporate momentum and briefly discuss the practical
estimation of stochastic gradient variance. Section 4 presents some experimental results.

1.3 RELATED WORK

The idea of using the sign of the gradient as the principal source of the optimizer update has already
received some attention in the literature. The RPROP algorithm (Riedmiller & Braun, 1993) ignores
the magnitude of the gradient and dynamically adapts the per-element magnitude of the update based
on observed sign changes. With the goal of reducing communication cost in distributed training of
neural networks, Seide et al. (2014) empirically investigate the use of the sign of stochastic gradients.
Regarding the variance adaptation, Schaul et al. (2013) derive element-wise step sizes for stochastic
gradient descent that have (among other factors) a dependency on the stochastic gradient variance.

1.4 THE SIGN OF A STOCHASTIC GRADIENT

We briefly establish a fact that will be used throughout the paper. The sign of a stochastic gradient
s(θ) = sign(g(θ)) estimates the sign of the true gradient. Its distribution (and thus the quality of this
estimate) is fully characterized by the success probabilities ρi := P [s(θ)i = sign(∇L(θ)i)]. These
depend on the distribution of the stochastic gradient. If we assume g(θ) to be Gaussian—which is
strongly supported by a Central Limit Theorem argument on Eq. (2)—we have

ρi := P [s(θ)i = sign(∇L(θ)i)] =
1

2
+

1

2
erf

(|∇L(θ)i|√
2σ(θ)i

)
, (8)

see §B.2 in the supplements. Furthermore, it is E[s(θ)i] = (2ρi − 1) sign(∇L(θ)i).

2 WHY THE SIGN?

Can it make sense to ignore the gradient magnitude? We provide some intuition under which circum-
stances the element-wise sign of a stochastic gradient is a better update direction than the stochastic
gradient itself. This question is difficult to tackle in general, which is why we restrict the problem

3

Under review as a conference paper at ICLR 2018

class to the simple, yet insightful, case of stochastic quadratic problems, where we can investigate
the effects of curvature properties and its interaction with stochastic noise.

Model Problem (Stochastic Quadratic Problem (QP)). Consider the loss function `(θ, x) =
0.5 (θ − x)TQ(θ − x) with a symmetric positive definite matrix Q ∈ Rd and “data” coming from
the distribution x ∼ N (x∗, ν2I). It is

L(θ) := Ex[`(θ, x)] =
1

2
(θ − x∗)TQ(θ − x∗) +

ν2

2
tr(Q), (9)

with∇L(θ) = Q(θ − x∗). Stochastic gradients are given by g(θ) = Q(θ − x) ∼ N (x∗, ν2I).

2.1 THEORETICAL COMPARISON

We want to compare update directions on stochastic QPs in terms of their expected decrease in
function value from a single update step. If we update from θ to θ + αz, we have

E[L(θ + αz)] = L(θ) + α∇L(θ)TE[z] +
α2

2
E[zTQz]. (10)

For this comparison of update directions, we allow for the optimal step size that minimizes Eq. (10),
which is easily found to be α∗ = −∇L(θ)TE[z]/E[zTQz] and yields an expected improvement of

I(z) := |E[L(θ + α∗z)]− L(θ)| = (∇L(θ)TE[z])2

2E[zTQz]
. (11)

We find the following expressions/bounds for the improvement of SGD and SSD:

I(g) =
1

2

(∇L(θ)T∇L(θ))2

∇L(θ)TQ∇L(θ) + ν2
∑d
i=1 λ

3
i

, I(s) ≥ 1

2

(∑d
i=1(2ρi − 1)|∇L(θ)i|

)2
∑d
i,j=1 |qij |

(12)

where the λi ∈ R+ are the eigenvalues of Q with orthonormal eigenvectors vi ∈ Rd. Derivations
can be found in §B.1 of the supplements. Comparing these expressions, we make two observations.

Firstly, I(s) has a dependency on
∑
i,j |qij |. This quantity relates to the eigenvalues, as well as

the orientation of the eigenbasis of Q. By writing Q in its eigendecomposition one finds that∑
i,j |qij | ≤

∑
i λi‖vi‖21. If the eigenvectors are perfectly axis-aligned (diagonal Q), their 1-norms

are ‖vi‖1 = ‖vi‖2 = 1. It is intuitive that this is the best case for the intrinsically axis-aligned sign
update. In general, the 1-norm is only bounded by ‖vi‖1 ≤

√
d‖vi‖2 =

√
d, suggesting that the

sign update will have difficulties with arbitrarily oriented eigenbases. We can alternatively express
this matter in terms of “diagonal dominance”. Assuming Q has a percentage c ∈ [0, 1] of its “mass”
on the diagonal, i.e.,

∑
i |qii| ≥ c

∑
i,j |qij |, we can write

I(s) ≥ 1

2

(∑d
i=1(2ρi − 1)|∇L(θ)i|

)2
c−1

∑d
i=1 |qii|

=
1

2

(∑d
i=1(2ρi − 1)|∇L(θ)i|

)2
c−1

∑d
i=1 λi

. (13)

Becker & LeCun (1988) empirically investigated the diagonal dominance of Hessians in optimiza-
tion problems arising from neural networks and found relatively high percentages of mass on the
diagonals of c = 0.1 up to c = 0.6 for the problems they investigated.

Secondly, I(g) contains the constant offset ν2
∑d
i=1 λ

3
i in the denominator, which can become

hugely obstructive for ill-conditioned and noisy problems. In I(s), on the other hand, there is no
such interaction between the magnitude of the noise and the eigenspectrum; the noise only manifests
in the element-wise success probabilities ρi, its effect in the denominator is bounded. A recent paper
(Chaudhari et al., 2016) investigated the eigenspectrum in deep learning problems and found it to be
very ill-conditioned with the majority of eigenvalues close to zero and a few very large ones.

In summary, we can expect the sign update to be beneficial for noisy, ill-conditioned problems with
“diagonally dominant” Hessians. There is some (weak) empirical evidence that these conditions
might be fulfilled in deep learning problems.

4

Under review as a conference paper at ICLR 2018

0.5 1.0
0

10

Eigenvalues

10−3

100

103
Noise-free Low noise

R
otated

High noise

10−3

100

103 A
xis-aligned

0 25 50
0

50

101

102

103

R
otated

0 25 50 75 100
Steps

10−1

101

103

SGD

SSD

0 25 50 75 100
Steps

0 25 50 75 100
Steps

A
xis-aligned

Figure 2: Performance of SGD and SSD on 100-dimensional stochastic quadratic problems. Rows
correspond to different QPs: the eigenspectrum is shown and each is used with a randomly rotated
and an axis-aligned eigenbasis. Columns correspond to different noise levels. Horizontal axis is
number of steps; vertical axis is log function value and is shared per row for comparability.

2.2 EXPERIMENTAL EVALUATION

We verify the above findings on artificially generated stochastic QPs, where all relevant quantities
are known analytically and controllable. We control the eigenspectrum by specifying a diagonal
matrix Λ of eigenvalues: (1) a mildly-conditioned problem with eigenvalues drawn uniformly from
[0.1, 1.1] and (2) an ill-conditioned problem with a structured eigenspectrum similar to the one re-
ported for neural networks by Chaudhari et al. (2016) by uniformly drawing 90% of the eigenvalues
from [0, 1] and 10% from [30, 60]. Q is then generated by (1) Q = Λ to produce an axis-aligned
problem and (2) Q = RΛRT with a rotation matrix R drawn uniformly at random (see Diaco-
nis & Shahshahani, 1987). This makes four different matrices, which we consider at noise levels
ν ∈ {0, 0.1, 4.0}. We compare SGD and SSD, both with the optimal step size as derived from
Eq. (10), which can be computed exactly in this setting.

Figure 2 shows the results, which confirm the theoretical findings. On the well-conditioned, noise-
free problem, gradient descent vastly outperforms the sign-based method. Surprisingly, adding even
a little noise almost evens out the difference in performance. The orientation of the eigenbasis had
little effect on the performance of SSD in the well-conditioned case. On the ill-conditioned problem,
the methods work roughly equally well when the eigenbasis is randomly rotated. As predicted, SSD
benefits drastically from an axis-aligned eigenbasis (last row), where it clearly outperforms SGD.

3 VARIANCE-BASED ELEMENT-WISE STEP SIZE ADAPTATION

Besides the sign direction, the other defining property of ADAM are variance-based element-wise
step sizes. Considering the variance adaptation in isolation from the sign aspect naturally suggests
to employ it directly on the stochastic gradient, without taking the sign. In both cases, a motivation
arises from the following consideration:

Assume we want to update in a direction p ∈ Rd (or sign(p)), but only have access to an unbiased
estimate p̂ ∈ Rd with E[p̂] = p. We allow for element-wise factors γ ∈ Rd, i.e., we update γ � p̂
or γ � sign(p̂). One way to make “optimal” use of these factors is to choose them such as to
minimize the expected distance to the desired update direction. Using the squared Euclidean norm
as a distance measure, we find the following result.

5

Under review as a conference paper at ICLR 2018

Lemma 1. Let p̂ ∈ Rd be a random variable with E[p̂] = p and var[pi] = σ2
i . Then

min
γ∈Rd

E[‖γ � p̂− p‖22] is solved by γi =
p2i

p2i + σ2
i

=
1

1 + σ2
i /p

2
i

(14)

and
min
γ∈Rd

E[‖γ � sign(p̂)− sign(p)‖22] is solved by γi = (2ρi − 1), (15)

where ρi = P[sign(p̂i) = sign(pi)].

In the sign case, γi is proportional to the success probability with γi = 1 if we are certain about the
sign (ρi = 1) and γi = 0 if we have no information about the sign at all (ρi = .5).

3.1 VARIANCE ADAPTATION FOR THE SIGN OF A STOCHASTIC GRADIENT

Applying Eq. (15) to p̂ = g, the optimal variance adaptation factors for the sign of a stochastic
gradient are found to be γi = 2ρi − 1, where ρi = P[sign(gi) = sign(∇Li)]. Recall from Eq. (8)
that, under the Gaussian assumption, the success probabilities of the sign of a stochastic gradient
are 2ρi− 1 = erf[(

√
2ηi)

−1]. ADAM uses the variance adaptation factors (1 + η2i)−1/2, which turns
out to be a close approximation of erf[(

√
2ηi)

−1], as shown in Figure 5 in the supplements. Hence,
ADAM can be regarded as an approximate realization of this optimal variance adaptation scheme.
We experimented with both variants and found them to have identical effects. The small difference
between them can be regarded as insignificant when η itself is subject to approximation error. We
thus stick to (1 + η2i)−1/2 for accordance with ADAM and to avoid the (more costly) error function.

3.2 STOCHASTIC VARIANCE-ADAPTED GRADIENT (SVAG)

Applying Eq. (14) to p̂ = g, the optimal variance adaptation factors for SGD are found to be

γi =
1

1 + σ2
i /∇L2

i

=
1

1 + η2i
. (16)

This term is known from Schaul et al. (2013), where it appears together with diagonal curvature
estimates in element-wise step sizes for SGD. We refer to this method (without curvature estimates)
as “Stochastic Variance-Adapted Gradient” (SVAG). A momentum variant will be derived below.

Intriguingly, variance adaptation of this form guarantees convergence without manually decreasing
the global step size. We recover the O(1/t) rate of SGD for smooth, strongly convex functions. We
emphasize that this result considers an “idealized” version of SVAG with exact η2i . It is a motivation
for this form of variance adaptation, not a statement about the performance with estimated variances.

Theorem 1. Let f be µ-strongly convex and L-smooth. Assume we update θt+1 = θt −α(γt � gt),
where gt is a stochastic gradient with E[gt|θt] = ∇f(θt), var[gt,i|θt] = σ2

t,i, variance adaptation
factors γt,i = (1 + σ2

t,i/∇f2t,i)−1, and α = 1/L. Assume E[‖gt‖2] ≤ G2. Then

E[f(θt)− f∗] ∈ O
(

1

t

)
, (17)

where f∗ is the minimum value of f . (Proof in §B.4)

3.3 ESTIMATING GRADIENT VARIANCE

In practice, the relative variance is of course not known and must be estimated. As noted in the
introduction, ADAM obtains an estimate of the stochastic gradient variance from moving averages,
σ2
t,i ≈ ŝt,i = vt,i−m2

t,i. The underlying assumption is that the function does not change drastically
over the “effective time horizon” of the moving average, such that the recent gradients can approx-
imately be considered to be iid draws from the stochastic gradient distribution. An estimate of the
relative variance can then be obtained by (vt −m2

t)/(m
2
t), as in ADAM.

Unlike ADAM we do not use different moving average constants for mt and vt. The constant for
the moving average should define a time horizon over which the gradients can approximately be

6

Under review as a conference paper at ICLR 2018

considered to come from the same distribution. From this perspective, it is hardly justifiable to use
different horizons for the gradient and its square. Furthermore, we found individual moving average
constants for mt and vt to have only minor effect on the performance of our methods.

An alternative variance estimate can be computed locally “within” a single mini-batch. A more
detailed discussion of both estimators can be found in §C of the supplements. We have experimented
with both estimators and found them to work equally well for our purpose of variance adaptation.
We thus stick to moving average-based estimates for the main paper. Appendix D provides details
and experimental results for the mini-batch variant.

3.4 INCORPORATING MOMENTUM

When we add momentum—i.e., we want to update in the direction rt or sign(rt) with a momentum
term rt = µrt−1 + gt =

∑t
s=0 µ

sgt−s—the variance adaptation factors should be determined by
the relative variance of rt, according to Lemma 1. It is

E[rt] =

t∑
s=0

µs∇Lt−s, var[rt,i] =

t∑
s=0

(µs)2var[gt−s,i] =

t∑
s=0

µ2sσ2
t−s,i. (18)

Replacing E[gt−s] ≈ mt−s and var[gt−s] ≈ vt−s − m2
t−s we could compute these quantities.

However, this would require two additional moving averages and can thus be discarded as imprac-
tical. Fortunately, we can motivate an approximation that does not require any additional memory
requirements (see §C):

var[rt]

E[rt]2
≈ κ(µ, t)

vt −m2
t

m2
t

with κ(µ, t) :=
(1− µ2t)(1− µ)2

(1− µ2)(1− µt)2 . (19)

Note that the correction factor κ(µ, t) does not appear in ADAM, which updates in the direction
sign(mt) = sign(rt) but performs variance adaptation based on (vt −m2

t)/m
2
t . The supplements

contain experiments with a variant of ADAM that includes this correction factor.

4 EXPERIMENTS

We compare momentum-SGD (M-SGD) and ADAM to two new methods: First, we consider M-SSD:
stochastic sign descent using a momentum term. The second method is M-SVAG, i.e., SGD with
momentum and variance adaptation of the form (1 + η2)−1, where the relative variance of the
momentum term is estimated from moving averages according to Eq. (19). These four methods are
the four possible recombinations of the sign aspect and the variance adaptation aspect of ADAM,
as laid out in Table 1. Algorithms 1 and 2 provide pseudo-code for M-SSD and M-SVAG. For
all experiments, we use µ = 0.9 for M-SGD, M-SSD and M-SVAG and default parameters (β1 =
0.9, β2 = 0.999, ε = 10−8) for ADAM. Note that M-SVAG does not use an ε-parameter, see Alg. 2.

Algorithm 1 M-SSD (Stochastic Sign Descent with Momentum)
Require: initial value θ0, step size α, momentum parameter µ ∈ [0, 1], number of steps T

1: Initialize m = 0, v = 0
2: for t = 1, . . . , T do
3: Compute stochastic gradient g = g(θ)
4: Update moving average m← µm+ g
5: Update θ ← θ − α sign(m)
6: end for

7

Under review as a conference paper at ICLR 2018

Algorithm 2 M-SVAG (Stochastic Variance-Adapted Gradient with Momentum)
Require: initial value θ0, step size α, momentum parameter µ ∈ [0, 1], number of steps T

1: Initialize m̃ = 0, ṽ = 0
2: for t = 1, . . . , T do
3: Compute stochastic gradient g = g(θ)
4: Update moving averages m̃← µm̃+ (1− µ)g, ṽ ← µṽ + (1− µ)g2

5: Bias-correct m = (1− µt)−1m̃, v = (1− µt)−1ṽ
6: Compute relative variance estimate η2 = κ(µ, t) v−m

2

m2 . Eq. (19)
7: Compute variance adaptation factors γ = (1 + η2)−1

8: Update θ ← θ − α(γ �m)
9: end for

We do not use an ε-parameter as in ADAM. In the (rare) case that mi = 0 for coordinate i, the
division by zero in line 6 is caught and the update magnitude will be set to zero in line 8.

4.1 EXPERIMENTAL SET-UP

We tested all methods on three problems: a simple fully-connected neural network on the MNIST
data set (LeCun et al., 1998), as well as convolutional neural networks (CNNs) on the CIFAR-10
and CIFAR-100 data sets (Krizhevsky, 2009). On CIFAR-10, we used a simple CNN with three
convolutional layers, interspersed with max-pooling, and three fully-connected layers. On CIFAR-
100 we used the AllCNN architecture of Springenberg et al. (2014) with a total of nine convolutional
layers. A complete description of all network architectures has been moved to §A. While MNIST and
CIFAR-10 are trained with a constant global step size (α), we used a fixed decreasing schedule for
CIFAR-100, dividing by 10 after 40k and 50k steps (adopted from Springenberg et al., 2014). We
used a batch size of 128 on MNIST and 256 on the two CIFAR data sets.

Step sizes (initial step sizes in the case of CIFAR-100) were tuned for each method individually by
first finding the maximal stable step size by trial and error, then searching downwards over two orders
of magnitude (details in §A). We selected the one that yielded maximal overall test accuracy within
the fixed number of training steps. Experiments with the best step size have been replicated ten
times with different random seeds and all performance indicators are reported as mean plus/minus
one standard deviation.

4.2 RESULTS

Results are shown in Figure 3. On MNIST, ADAM clearly outperforms M-SGD. Interestingly, there
is only a very small difference in performance between the two sign-based methods, M-SSD and
ADAM. Apparently, the advantage of ADAM over M-SGD on this problem is primarily due to the
sign aspect. Going from M-SGD to M-SVAG, gives a considerable boost in performance, but M-
SVAG is still outperformed by the two sign-based methods.

On CIFAR-10, the sign-based methods again have superior performance. Neither M-SSD nor M-SGD
can benefit significantly from adding variance adaptation.

Finally, the situation is reversed on CIFAR-100, where M-SGD outperforms ADAM. It attains lower
minimal loss values (both training and test) and converges faster. This is also reflected in the test
accuracies, where M-SGD beats ADAM by almost 10 percentage points. Furthermore, ADAM is much
less stable with significantly larger variance in performance. On this problem, variance adaptation
has a small but significant positive effect for the sign-based methods as well as for M-SGD. When
going from M-SGD to M-SVAG we gain some speed in the initial phase. The difference is later
evened out by the manual learning rate decrease (which was necessary, for all methods, to train this
architecture to satisfying performance).

5 DISCUSSION AND CONCLUSION

We have argued that ADAM combines two aspects: taking signs and variance adaptation. Our sepa-
rate analysis of both aspects provides some insight into the inner workings of this method.

8

Under review as a conference paper at ICLR 2018

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

lo
ss

MNIST

M-SGD

ADAM

M-SSD

M-SVAG

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps (·10−3)

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

lo
ss

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

lo
ss

CIFAR-10

0 5 10 15 20 25
Steps (·10−3)

0.6

0.8

1.0

1.2

1.4

Te
st

lo
ss

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

lo
ss

CIFAR-100

0 10 20 30 40 50 60
Steps (·10−3)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

lo
ss

Test accuracies
M-SGD 92.0± 0.2% M-SGD 84.5± 0.6% M-SGD 67.8± 0.3%
ADAM 91.8± 0.3% ADAM 84.8± 0.6% ADAM 58.3± 1.3%
M-SSD 92.0± 0.2% M-SSD 85.0± 0.4% M-SSD 51.4± 4.9%
M-SVAG 91.6± 0.4% M-SVAG 84.5± 0.8% M-SVAG 67.7± 0.2%

Figure 3: Experimental results on the three test problems. Plots display training and test loss over
the number of steps. Curves for the different optimization methods are color-coded. The shaded area
spans plus/minus one standard deviation, obtained from ten replications. The table below contains
test accuracies evaluated after the last iteration.

Taking the sign can be beneficial, but does not need to be. Our theoretical analysis suggests that it
depends on the interplay of stochasticity, the conditioning of the problem, and its “axis-alignment”.
Our experiments confirm that sign-based methods work well on some, but not all problems.

Variance adaptation can be applied to any stochastic update direction. In our experiments it was
beneficial in all cases, but its effect can sometimes be minuscule. M-SVAG, a variance-adapted
variant of momentum-SGD, is a useful addition to the practitioner’s toolbox for problems where
sign-based methods like ADAM fail. Its memory and computation cost are identical to ADAM and it
has two hyper-parameters, the momentum constant µ and the global step size α. Our TensorFlow
(Abadi et al., 2015) implementation of this method will be made available upon publication.

ACKNOWLEDGMENTS

We want to thank [names removed] for many helpful discussions.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning

9

Under review as a conference paper at ICLR 2018

on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Lukas Balles, Maren Mahsereci, and Philipp Hennig. Automizing stochastic optimization with
gradient variance estimates. In Automatic Machine Learning Workshop at ICML 2017, 2017a.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates.
In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence (UAI), pp.
410–419, 2017b.

Sue Becker and Yann LeCun. Improving the convergence of back-propagation learning with second
order methods. In Proceedings of the 1988 Connectionist Models Summer School, pp. 29–37,
1988.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and Yann LeCun. Entropy-SGD: Biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

Persi Diaconis and Mehrdad Shahshahani. The subgroup algorithm for generating uniform random
variables. Probability in the Engineering and Informational Sciences, 1(01):15–32, 1987.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Diederik Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. The International
Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic optimization. In
Advances in Neural Information Processing Systems 28, pp. 181–189, 2015.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping without a
validation set. arXiv preprint arXiv:1703.09580, 2017.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, volume 27, pp. 372–376, 1983.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learn-
ing: The RPROP algorithm. In Neural Networks, 1993., IEEE International Conference on, pp.
586–591. IEEE, 1993.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathemat-
ical Statistics, pp. 400–407, 1951.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In Proceedings of the
30th International Conference on Machine Learning (ICML), pp. 343–351, 2013.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Tijmen Tieleman and Geoffrey Hinton. RMSPROP: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, Lecture 6.5, 2012.

Matthew D Zeiler. ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

10

http://tensorflow.org/

Under review as a conference paper at ICLR 2018

SUPPLEMENTARY MATERIAL

A DESCRIPTION OF EXPERIMENTS

A.1 NETWORK ARCHITECTURES

MNIST We train a simple fully-connected neural network with three hidden layers of 1000, 500
and 100 units with ReLU activation. The output layer has 10 units with softmax activation. We use
the cross-entropy loss function and apply L2-regularization on all weights, but not the biases. We
use a batch size of 128. The global learning rate α stays constant.

CIFAR-10 The CIFAR-10 data set consists of 32×32px RGB images with one of ten categorical
labels. We train a convolutional neural network (CNN) with three convolutional layers (64 filters
of size 5×5, 96 filters of size 3×3, and 128 filters of size 3×3) interspersed with max-pooling over
3×3 areas with stride 2. Two fully-connected layers with 512 and 256 units follow. We use ReLU
activation function for all layers. The output layer has 10 units for the 10 classes of CIFAR-10
with softmax activation. We use the cross-entropy loss function and apply L2-regularization on all
weights, but not the biases. During training we perform some standard data augmentation operations
(random cropping of sub-images, left-right mirroring, color distortion) on the input images. We use
a batch size of 256. The global learning rate α stays constant.

CIFAR-100 We use the AllCNN architecture of Springenberg et al. (2014). It consists of seven
convolutional layers, some of them with stride, and no pooling layers. The fully-connected layers
are replaced with two layers of 1×1 convolutions with global spatial averaging in the end. ReLU
activation function is used in all layers. Details can be found in the original paper. We use the
cross-entropy loss function and apply L2-regularization on all weights, but not the biases. We used
the same data augmentation operations as for CIFAR-10 and a batch size of 256. The global learning
rate α is decreased by a factor of 10 after 40k and 50k steps.

A.2 LEARNING RATE TUNING

Learning rates for each optimizer have been tuned by first finding the maximal stable learning rate
by trial and error and then searching downwards over two orders of magnitude with learning rates
6 · 10m, 3 · 10m, and 1 · 10m for order of magnitude m. We evaluated loss and accuracy on the full
test set at a constant interval and selected the best-performing learning rate for each method in terms
of maximally reached test accuracy. Using the best learning rate, we replicated the experiment ten
times with different random seeds.

B MATHEMATICAL DETAILS

B.1 DETAILS OF THE ANALYSIS ON STOCHASTIC QPS

We derive the expressions for I(s) and I(g) in Eq. (12). We drop the fixed θ from the notation for
readability. For SGD, we have E[g] = ∇L and E[gTQg] = ∇LTQ∇L + tr(Qcov[g]), which is a
general fact for quadratic forms of random variables. For the stochastic QP the gradient covariance is
cov[g] = ν2QQ, thus tr(Qcov[g]) = ν2 tr(QQQ) = ν2

∑
i λ

3
i . Plugging everything into Eq. (11)

yields

I(g) =
(∇LT∇L)2

∇LTQ∇L+ ν2
∑d
i=1 λ

3
i

. (20)

For stochastic sign descent, we have E[si] = (2ρi − 1) sign(∇Li) and thus ∇LTE[s] =∑d
i=1∇LiE[si] =

∑
i(2ρi − 1)|∇Li|. Regarding the denominator, it is

0 ≤ sTHs = |sTQs| =
∣∣∣∣∣
d∑
i=1

qijsisj

∣∣∣∣∣ ≤
d∑
i=1

|qij ||si||sj | =
d∑
i=1

|qij |. (21)

11

Under review as a conference paper at ICLR 2018

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pd
f(

x)

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: Probability density functions (pdf) of three Gaussian distributions, all with µ = 1, but
different variances σ2 = 0.5 (left), σ2 = 1.0 (middle), σ2 = 4.0 (right). The shaded area under the
curve corresponds to the probability that a sample from the distribution has the opposite sign than its
mean. For the Gaussian distribution, this probability is uniquely determined by the fraction σ/|µ|,
as shown in Lemma 2.

Plugging everything into Eq. (11) yields

I(s) ≥

(∑d
i=1(2ρi − 1)|∇Li|

)2
∑d
i=1 |qij |

. (22)

B.2 SUCCESS PROBABILITIES OF THE SIGN OF A STOCHASTIC GRADIENT

We have stated in the main text that the sign of a stochastic gradient, s(θ) = sign(g(θ)), has success
probabilities

ρi = P[s(θ)i = sign(∇L(θ)i)] =
1

2
+

1

2
erf

(|∇L(θ)i|√
2σ(θ)i

)
(23)

under the assumption that g ∼ N (∇L,Σ). The following Lemma formally proves this statement
and Figure 4 provides a pictorial illustration.

Lemma 2. If X ∼ N (µ, σ2) then

ρ = P[sign(X) = sign(µ)] =
1

2

(
1 + erf

(|µ|√
2σ

))
. (24)

Proof. The cumulative density function (cdf) of X ∼ N (µ, σ2) is P[X ≤ x] = Φ((x − µ)/σ),
where Φ(z) = 0.5(1 + erf(z/

√
2)) is the cdf of the standard normal distribution. If µ < 0, then

ρ = P[X < 0] = Φ

(
0− µ
σ

)
=

1

2

(
1 + erf

(−µ√
2σ

))
. (25)

If µ > 0, then

ρ = P[X > 0] = 1−P[X ≤ 0] = 1− Φ

(
0− µ
σ

)
= 1− 1

2

(
1 + erf

(−µ√
2σ

))
=

1

2

(
1 + erf

(
µ√
2σ

))
,

(26)

where the last step used the anti-symmetry of the error function.

12

Under review as a conference paper at ICLR 2018

0 1 2 3 4 5 6
η

0.00

0.25

0.50

0.75

1.00

V
ar

ia
nc

e
ad

ap
ta

tio
n

fa
ct

or
(1 + η2)−1

erf[(
√

2η)−1]

(1 + η2)−1/2

Figure 5: Variance adaptation factors as
functions of the relative standard deviation
η. (1 + η2)−1 is the optimal variance adap-
tation factor for SGD (Eq. 16). The optimal
factor for the sign of a stochastic gradient is
erf((
√

2η)−1) under the Gaussian assump-
tion (Eq. 15). It is closely approximated by
(1 + η2)−1/2, which is the factor implicitly
employed by ADAM (Eq. 6).

B.3 DETAILS ON VARIANCE ADAPTATION FACTORS

Proof of Lemma 1. Using E[p̂i] = pi and E[p̂2i] = p2i + σ2
i , we get

E[‖γ � p̂− p‖22] =

d∑
i=1

E[(γip̂i − pi)2] =

d∑
i=1

γ2iE[p̂2i]− 2γipiE[p̂i] + p2i

=

d∑
i=1

γ2i (p2i + σ2
i)− 2γip

2
i + p2i .

(27)

Setting the derivative w.r.t. γi to zero, we find the optimal choice

γi =
p2i

p2i + σ2
i

. (28)

Using E[sign(p̂i)] = (2ρi − 1) sign(pi) and sign(·)2 = 1, we get

E[‖γ � sign(p̂)− sign(p)‖22] =

d∑
i=1

γ2iE[sign(p̂i)
2]− 2γi sign(pi)E[sign(p̂i)] + sign(pi)

2

= γ2i − 2γi(2ρi − 1) + 1

(29)

and easily find the optimal choice
γi = 2ρi − 1. (30)

by setting the derivative to zero.

See Figure 5 for a plot of the variance adaptation factors considered in this paper.

B.4 CONVERGENCE OF IDEALIZED STOCHASTIC VARIANCE-ADAPTED GRADIENT

We proof the convergence results for idealized variance-adapted stochastic gradient descent. We
have to clarify an aspect that we have glossed over in the main text. A stochastic optimizer gen-
erates a discrete stochastic process {θt}t∈N0

. We denote as Et[·] = E[·|θ0, . . . , θt] the conditional
expectation given a realization of that process up to time step t. Recall that E[Et[·]] = E[·].

Proof of Theorem 1. Using the Lipschitz continuity of ∇f , we can bound f(θ + ∆θ) ≤ f(θ) +
∇f(θ)T∆θ + L

2 ‖∆θ‖2. Hence,

Et[ft+1] ≤ ft − αEt[∇fTt (γt � gt)] +
Lα2

2
Et[‖γt � gt‖2]

= ft −
1

L

d∑
i=1

γt,i∇ft,iE[gt,i] +
1

2L

d∑
i=1

γ2t,iEt[g
2
t,i]

= ft −
1

L

d∑
i=1

γt,i∇f2t,i +
1

2L

d∑
i=1

γ2t,i(∇f2t,i + σ2
t,i).

(31)

13

Under review as a conference paper at ICLR 2018

Plugging in the definition

γt,i =
∇f2t,i

∇f2t,i + σ2
t,i

(32)

and simplifying, we get

Et[ft+1] ≤ ft −
1

2L

d∑
i=1

∇f2t,i
∇f2t,i + σ2

t,i

∇f2t,i. (33)

Using Jensen’s inequality4

d∑
i=1

∇f2t,i
∇f2t,i + σ2

t,i

∇f2t,i = ‖∇ft‖2
d∑
i=1

∇f2t,i
‖∇ft‖2

(
∇f2t,i + σ2

t,i

∇f2t,i

)−1

≥ ‖∇ft‖2
(

d∑
i=1

∇f2t,i
‖∇ft‖2

∇f2t,i + σ2
t,i

∇f2t,i

)−1

=
‖∇ft‖4∑d

i=1(∇f2t,i + σ2
t,i)
≥ ‖∇ft‖

4

G2
.

(34)

Due to strong convexity, we have ‖∇ft‖2 ≥ 2µ(ft − f∗) and can further bound

d∑
i=1

∇f2t,i
∇f2t,i + σ2

t,i

∇f2t,i ≥
4µ2(ft − f∗)2

G2
. (35)

Inserting this in (33) and subtracting f∗, we get

Et[ft+1]− f∗ ≤ ft − f∗ −
2µ2

LG2
(ft − f∗)2, (36)

and, consequently, by total expectation

E[ft+1 − f∗] = E [Et[ft+1]− f∗] ≤ E[ft − f∗]−
2µ2

LG2
E[(ft − f∗)2]

≤ E[ft − f∗]−
2µ2

LG2
E[ft − f∗]2,

(37)

which we rewrite, using the shorthand et := E[ft − f∗], as

0 ≤ et+1 ≤ et(1− cet), c =
2µ2

LG2
. (38)

To conclude the proof, we will show that this implies et ∈ O(1
t). Without loss of generality, we

assume et+1 > 0 and get

e−1t+1 ≥ e−1t (1− cet)−1 ≥ e−1t (1 + cet) = e−1t + c, (39)

where the second step is due to the simple fact that (1−x)−1 ≥ (1+x) for any x ∈ [0, 1). Summing
this inequality over t = 0, . . . , T − 1 yields e−1T ≥ e−10 + Tc and, thus,

TeT ≤
(

1

Te0
+ c

)−1
T→∞−→ 1

c
<∞, (40)

which shows that et ∈ O(1
t).

4 Jensen’s inequality says that
∑

i ciφ(xi) ≥ φ(
∑

i cixi) for a convex function φ and convex coeffi-
cients ci ≥ 0,

∑
i ci = 1. Here, we apply it to the convex function φ(x) = 1/x, x > 0, and coefficients

∇f2
t,i/‖∇ft‖2.

14

Under review as a conference paper at ICLR 2018

C MORE ON GRADIENT VARIANCE ESTIMATION

C.1 ESTIMATES FROM MOVING AVERAGES

Iterating the recursive formula for m̃t backwards, we get

mt =
m̃t

1− βt1
=

1

1− βt1
(β1mt−1 + (1− β1)gt) = . . . =

1− β1
1− βt1

t−1∑
s=0

βs1gt−s. (41)

Hence, mt is a weighted average of past observed gradients with coefficients c(β1, t, s) := βs1(1 −
β1)/(1−βt1), which sum to one, since

∑t−1
s=0 β

s
1 = (1−βt1)/(1−β1) by the geometric sum formula.

The analogous statement holds for vt. The basic rationale that facilitates a variance estimate from
past gradient observation is to assume that the true gradient does not change drastically over the
effective time horizon of the exponential moving average. For mathematical simplicity, we can
translate this assumption to mean that, at the t-th step, we treat all {gt−s,i | s = 0, . . . , t− 1} as iid
with mean ∇Lt,i and variance σ2

t,i. This will of course be utterly wrong for gradient observations
that are far in the past, but since c(µ, t, s) is very small for large t − s, these won’t contribute
significantly to the moving average. The moving average constant defines the effective time horizon,
for which we implicitly make this assumption.

Under this peculiar assumption, mt and vt are unbiased estimates of the first and second moment of
gt, respectively:

E[mt,i] =

t−1∑
s=0

c(µ, t, s)E[gt−s,i] = ∇Lt,i
t−1∑
s=0

c(µ, t, s) = ∇Lt,i, (42)

E[vt,i] =

t−1∑
s=0

c(µ, t, s)E[g2t−s,i] = (∇L2
t,i + σ2

t,i)

t−1∑
s=0

c(µ, t, s) = ∇L2
t,i + σ2

t,i, (43)

motivating vt −m2
t as a gradient variance estimate. However, vt −m2

t is not an unbiased variance
estimate due to the fact m2

t is not an unbiased estimate of ∇L2
t . The error arising from this bias

should generally be dominated by other error sources and will thus be ignored.

C.2 MINI-BATCH ESTIMATES

An alternative gradient variance estimate can be obtained locally, within a single mini-batch. The
individual gradients ∇`(θ, xk) in a mini-batch are iid random variables and, as noted in the intro-
duction, var[g(θ)] = |B|−1var[∇`(θ, xk)]. We can thus estimate g(θ)’s variances by computing
the sample variance of the {∇`(θ, xk)}k∈B, then scaling by |B|−1,

ŝ(θ) =
1

|B|

(
1

|B| − 1

∑
k∈B

∇`(θ, xk)2 − g(θ)2

)
. (44)

Several recent papers (Mahsereci & Hennig, 2015; Balles et al., 2017b; Mahsereci et al., 2017) have
used this variance estimate for other aspects of stochastic optimizers. In contrast to vt−m2

t , this is an
unbiased estimate of the local gradient variance. The (non-trivial) implementation of this estimator
for neural networks is described in Balles et al. (2017a).

C.3 RELATIVE VARIANCE OF A MOMENTUM TERM (DERIVATION OF EQ. 19)

When estimating the variance with moving averages, we assume that E[gt] = mt and var[gt] =
vt −m2

t . Plugging this into Eq. (18) we can approximate the mean and variance of the momentum
term by

E[rt]
2 ≈

(
t∑

s=0

µsmt−s

)2

, var[rt] ≈
t∑

s=0

µ2s(vt−s −m2
t−s). (45)

Computing these two expressions would require two more moving averages in addition tomt and vt.
However, mt and vt will change slowly over time and, by using vt−m2

t as the variance estimate for

15

Under review as a conference paper at ICLR 2018

gt, we anyways make the assumption that all gradients in the effective time horizon of the moving
average have the same mean and variance. We thus further approximate by replacing mt−s with mt

and get

E[rt]
2 ≈ m2

t

(
t∑

s=0

µs

)2

= m2
t

(
1− µt
1− µ

)2

, (46)

var[rt] ≈ (vt −m2
t)

t∑
s=0

µ2s = (vt −m2
t)

1− µ2t

1− µ2
. (47)

The two scalar factors lead to the correction term κ(µ, t) in Eq. (19).

When estimating the gradient variance from the mini-batch (Eq. 44), we can obtain an unbiased
estimate of var[rt] in Eq. (18) via

s̄t = µ2s̄t−1 + ŝt, (48)

where ŝt is given by Eq. (44).

D VARIATIONS OF VARIANCE-ADAPTED METHODS

Based on the considerations in Section 3, we examined three more variance-adapted methods. The
first is a variation of M-SVAG which estimates stochastic gradient variances locally within the mini-
batch, as explained in §C.2. Pseudo-code can be found in Alg. 5. Furthermore, we tested a variant of
ADAM that applies the correction factor from Eq. (19) to the estimate of the relative variance of the
momentum term. We refer to this method as ADAM*. Two variants of ADAM* with the two variance
estimates can be found in Algorithms 4 and 5.

Algorithm 3 M-SVAG-mb (with mini-batch variance estimates)
Require: initial value θ0, step size α, momentum parameter µ ∈ [0, 1], number of steps T

1: Initialize m = 0, s̄ = 0
2: for t = 1, . . . , T do
3: Compute stochastic gradient g(θ) and variance estimate ŝ(θ) . Eq. (44)
4: Update aggregators m← µm+ g(θ), s̄← µ2s̄+ ŝ(θ)
5: Compute relative variance estimate η2 = s̄/m2

6: Compute variance adaptation factors γ = (1 + η2)−1

7: Update θ ← θ − α(γ �m)
8: end for

Algorithm 4 ADAM* (with exp. moving average variance estimates)
Require: initial value θ0, step size α, momentum/averaging constant µ ∈ [0, 1], number of steps T

1: Initialize m = 0, v = 0
2: for t = 1, . . . , T do
3: Compute stochastic gradient g = g(θ)
4: Update moving averages m← µm+ (1− µ)g, v ← µv + (1− µ)g2

5: Bias-correct m = (1− µt)−1m̃, v = (1− µt)−1ṽ
6: Compute relative variance estimate η2 = κ(µ, t) v−m

2

m2 . Eq. (19)
7: Compute variance adaptation factors γ = (1 + η2)−1/2

8: Update θ ← θ − α(γ � sign(m))
9: end for

This is ADAM (β1 = β2 = µ, ε = 0), expect for the correction factor κ(µ, t) for the relative variance.

16

Under review as a conference paper at ICLR 2018

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

lo
ss

CIFAR-10

ADAM

ADAM*
ADAM*-mb

0 5 10 15 20 25
Steps (·10−3)

0.6

0.8

1.0

1.2

1.4

Te
st

lo
ss

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

lo
ss

CIFAR-100

0 10 20 30 40 50 60
Steps (·10−3)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

lo
ss

Figure 6: Comparison of the original ADAM algorithm to the variants in Algs. 4 and 5. Set-up of the
plots as in Fig. 3. All three algorithms exhibit very similar performance on both problems.

Algorithm 5 ADAM*-mb (with mini-batch variance estimates)
Require: initial value θ0, step size α, momentum/averaging constant µ ∈ [0, 1], number of steps T

1: Initialize m = 0, s̄ = 0
2: for t = 1, . . . , T do
3: Compute stochastic gradient g(θ) and variance estimate ŝ(θ) . Eq. (44)
4: Update aggregators m← µm+ g(θ), s̄← µ2s̄+ ŝ(θ)
5: Compute relative variance estimate η2 = s̄/m2

6: Compute variance adaptation factors γ = (1 + η2)−1/2

7: Update θ ← θ − α(γ � sign(m))
8: end for

D.1 EXPERIMENTAL RESULTS

We evaluated the variants on the two CIFAR test problems. Figure 6 shows a comparison of the two
ADAM* variants with the original ADAM. Figure 7 compares the mini-batch variant of M-SVAG to
the one with exponential moving averages.

17

Under review as a conference paper at ICLR 2018

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

lo
ss

CIFAR-10

M-SVAG

M-SVAG-mb

0 5 10 15 20 25
Steps (·10−3)

0.6

0.8

1.0

1.2

1.4

Te
st

lo
ss

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

lo
ss

CIFAR-100

0 10 20 30 40 50 60
Steps (·10−3)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

lo
ss

Figure 7: Comparison of the two variants of the M-SVAG algorithm. Set-up of the plots as in Fig. 3.
Both variants exhibit very similar performance on both problems.

18

	Introduction
	A Closer Look at Adam
	Overview
	Related Work
	The Sign of a Stochastic Gradient

	Why the Sign?
	Theoretical Comparison
	Experimental Evaluation

	Variance-Based Element-Wise Step Size Adaptation
	Variance Adaptation for the Sign of a Stochastic Gradient
	Stochastic Variance-Adapted Gradient (svag)
	Estimating Gradient Variance
	Incorporating Momentum

	Experiments
	Experimental Set-Up
	Results

	Discussion and Conclusion
	Description of Experiments
	Network Architectures
	Learning Rate Tuning

	Mathematical Details
	Details of the Analysis on Stochastic QPs
	Success Probabilities of the Sign of a Stochastic Gradient
	Details on Variance Adaptation Factors
	Convergence of Idealized Stochastic Variance-Adapted Gradient

	More on Gradient Variance Estimation
	Estimates from Moving Averages
	Mini-Batch Estimates
	Relative Variance of a Momentum Term (Derivation of Eq. 19)

	Variations of Variance-Adapted Methods
	Experimental Results

