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ABSTRACT

Multi-view recognition is the task of classifying an object from multi-view image
sequences. Instead of using a single-view for classification, humans generally
navigate around a target object to learn its multi-view representation. Motivated
by this human behavior, the next best view can be learned by combining object
recognition with navigation in complex environments. Since deep reinforcement
learning has proven successful in navigation tasks, we propose a novel multi-task
reinforcement learning framework for joint multi-view recognition and navigation.
Our method uses a hierarchical action space for multi-task reinforcement learning.
The framework was evaluated with an environment created from the ModelNet40
dataset. Our results show improvements on object recognition and demonstrate
human-like behavior on navigation.

1 INTRODUCTION

Object recognition is an important task for robot navigation, object manipulation and scene under-
standing. While traditional methods use single-view images for object recognition, some recent
methods have proposed to use multi-view image sequences. We believe that the multi-view representa-
tion is more realistic than a single-view representation for object recognition. Also, we further believe
that all viewpoints are not necessary for this task because few specific viewpoints can effectively
classify the object. Therefore, the task is to find the most effective multi-view image sequence for
recognition, which comes under the umbrella of active vision (Ammirato et al., 2017) i.e. use the
current input to further improve the understanding.

Active multi-view recognition uses current information to make an approximate guess of the next best
view to better understand an object. This mimics human behavior for various recognition tasks. When
an object is occluded or unrecognizable from a viewpoint, humans hypothesize and move to next best
view for improved object recognition. Similarly, humans can rotate or move objects for a multi-view
image sequence, which results in better learning and recognition. Hence, navigation can be naturally
introduced into multi-view object recognition. We combine the tasks of object classification from
multiple views with navigation into a joint framework.

Navigation has been a challenging problem tackled by different learning frameworks. Recent works
show that navigation is deeply ingrained in the deep reinforcement learning framework (Zhu et al.,
2017). We combine the ideas of navigation, object recognition, and deep reinforcement learning
in a coherent manner to teach an agent how to navigate a scene and classify a target instance
simultaneously. With the recent success in navigation, deep reinforcement learning is a natural
solution to this classification problem augmented with navigation. Ideally, instead of an inductive
bias like image pairs (Johns et al., 2016), the agent would learn how to navigate the scene, like which
direction to move or the number of steps to take, and learn an object’s multi-view representation that
results in greatest probability of correct classification. Navigation and exploration are key traits to
learn the generalized multi-view representations, and deep reinforcement learning helps in performing
them.

Figure 1 visualizes the overall framework. In the beginning, the agent is uncertain of the object.
Consequentially, it moves in the direction that would maximize its certainty. As the agent maneuvers
the scene, it learns the multi-view representation of the object and creates hypotheses of the its
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category. The agent classifies once it becomes certain after a number of steps. In the best case
scenario, the agent can classify the object given the first image it sees, although exploration and
movement are highly desirable traits in cases of uncertainty.

Another important aspect of the framework is the memorization of previous object views. Similar to
a human’s memory of previous information, data from previous images are combined to learn better
actions and improve the prediction accuracy. The other advantage of our method is independent of
the starting point. We can start at any random point of the environment and navigate to accurately
classify the object. We propose the first framework to combine learning of navigation and object
recognition, which are widely considered as two different tasks, as a form of multi-task learning.

2 RELATED WORK

Object recognition: In the domain of computer vision and machine learning, multiple methods have
been proposed for multi-view object recognition. Most of the recent papers in this direction use
convolutional neural networks (CNN) for this task. 3D ShapeNets (Wu et al., 2015) proposes to use
3D features as input to a 3D CNN and showed state-of-the-art object recognition using 3D objects.
They further showed next best view selection for 3D object recognition as an auxilary task of their
pipeline. Multi-view CNN (Su et al., 2015)(Qi et al., 2016) have generalized multi-view recognition
by learning from images that cover the full sphere of viewpoints over an object. Multiple methods
have exploited the of multi-view recognition in 3D and 2D to improve the accuracy (Qiu & Yuille,
2016). Some recent works also proposed a reinforcement learning based method to solve the problem
of active vision by looking ahead (Jayaraman & Grauman, 2016) and have shown its applications to
object recognition. Further a pairwise decomposition method has been proposed to learn the best
pairs to recognize the object (Johns et al., 2016). Although most of the methods have addressed the
problem with different approaches, they introduce prior knowledge and bias in how to search for the
next best view to recognize an object. We believe navigation with reinforcement learning as the best
method to learn the next best view selection. There is work proposed in object detection with visual
attention (Mnih et al., 2014), which uses reinforcement learning over glimses of a image to predict
the label.

Navigation: Navigation with reinforcement learning is an extensively addressed problem in robotics
domain. The deep Siamese actor-critic networks (Zhu et al., 2017) handles the problem of multiple
targets and scenes generalization for navigation. Also, recent literature show promising results for
visual navigation by using cognition mapping and planning (Gupta et al., 2017). They use value
iteration networks (Tamar et al., 2016) to learn the policy for navigation. In addition, there has
been motivation of navigation for object instance recognition in real-world environments (Ammirato
et al., 2017). With the introduction of deep learning to reinforcement learning, there has been a
plethora of recent advancements in understanding the how humans navigate and interact with the
environment. Recent methods in deep reinforcement learning like the Deep Q-Network algorithm
(Mnih et al., 2013) and the Asynchronous Advantage Actor Critic (Mnih et al., 2016) algorithm
showed near human level performance on multitude of tasks like Atari 2600 games (Mnih et al.,
2013). Furthermore, deep reinforcement learning showed state-of-the-art results for playing games
like Atari (Mnih et al., 2013), Go (Silver et al., 2016), and Doom (Mirowski et al., 2016). With the
advent of recent successful reinforcement learning algorithms in navigation, research has shifted
towards real world applications of navigation and scene understanding with deep reinforcement
learning.

3 METHOD

The methods proposed above learns navigation and recognition as unrelated individual tasks. Al-
though these methods show promising results in the direction of active vision, the task of end-to-end
navigation and recognition has not been explored. Hence, we propose the current model to learn
object categorization from navigation.
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Figure 1: The illustration of the current pipeline for object centric navigation. The stacked images
are passed to the network and the network has to decide whether to navigate or classify the object.
Once the classification is achieved the environment stops.

3.1 BACKGROUND

In a standard reinforcement learning setting, an agent interacts with an environment over a number
of discrete time steps. At each time step t, the agent observes a state st ∈ S and selects an action
at ∈ A where S and A are the state and action spaces, respectively. Guided by a policy π that maps
states st to actions at, the agent performs an action at and observes the next state st+1 and reward rt.

To compute the policy π, neural network function approximators can be used to calculate π(at|st; θ)
for some function parameters θ. The REINFORCE algorithms (Williams, 1992) are policy-based
model-free methods that can update θ by gradient ascent on E[Rt], where Rt =

∑∞
k=0 γ

krt+k+1 is
the accumulated discounted reward and γ ∈ (0, 1] is the discount factor.

Also with state st, a baseline value bt(st) can also be computed with neural network function
approximators for some function parameters θ. One baseline can be the state value function estimate
v(st; θ). In the actor-critic learning architecture (Sutton & Barto, 1998), the policy π and the baseline
b are the actor and critic, respectively. Then the overall loss function is:

l(θ) = lπ(θ) + lv(θ) (1)

which is the sum of the policy loss lπ(θ) and value loss lv(θ). The individual policy and value loss
functions, as shown by Equation 2 and Equation 3 respectively, are:

lπ(θ) = log(π(at|st; θ))(Rt − bt(st)) (2)

lv(θ) =
1

2
(Rt − bt(st))2 (3)

With learning rate η, differentiation of the loss function in Equation 1 with respect to the weights θ
results in a gradient descent update θi+1 ← θi − η∇θi l(θi), which is shown to update the function
approximate π(at|st; θ) towards the optimal policy π∗(at|st) (Williams, 1992).

3.2 LSD-NET: LOOK, STEP AND DETECT NETWORK

We propose a novel architecture to simultaneously learn to navigate and recognize an object. The
main contribution of this architecture is the hierarchical action space and extrapolation of the action
space to a higher dimension for multi-task learning.
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Figure 2: The proposed architecture for learning the object centric navigation. We used AlexNet and
combined it with our novel hierarchical actions to simultaneously navigate and recognize the object.

Recent multi-view recognition methods use deep neural networks, like pairwise decomposition
(Johns et al., 2016) used a VGG-M (Chatfield et al., 2014) network. Motivated from their success in
multi-view recognition, we use a network architecture similar to AlexNet (Krizhevsky et al., 2012)
which contrasts to the simple deep neural networks used by most of the deep reinforcement learning
methods. This need for deeper networks is rooted from the recent success of image classification
tasks using these networks.

Similar to AlexNet, our architecture’s first convolutional layer filters the 224 x 224 x 3 input of stacked
frames with 64 kernels of size 11 x 11 x 3 with a stride of 4 pixels. The second convolutional layer
takes the normalized and max-pooled output of the first convolutional layer as input and filters it with
256 kernels of size 5 x 5 x 64. The third convolutional layer takes the normalized and max-pooled
outputs of the second convolutional layer as input and filters it with 384 kernels of size 3 x 3 x 256.
The fourth convolutional layer takes the outputs of the third convolutional layer as input and filters it
with 384 kernels of size 3 x 3 x 192. For the last convolutional layer, the fifth convolutional layer
takes the outputs of the fourth convolutional layer as input and filters it with 256 kernels of size 3 x 3 x
192. The first and second fully-connected layers have 4096 units each, where the first fully-connected
layer takes the outputs of the fifth convolutional layer as input and the second fully-connected layer
takes the outputs of the first fully-connected layer as input.

3.3 HIERARCHICAL ACTION SPACE AND POLICY

A single softmax layer is sufficient for simple action spaces, like movement actions of some Atari 2600
games (Mnih et al., 2013). Though in complex action spaces such as classification and navigation
tasks, a single softmax layer is biased towards tasks with larger number of actions.We propose a
hierarchical action tree based method to reduce the bias in the action space.

If there are m object categories and n movements, then let C = {a1, ..., am} be the actions that
classifies the object as one of the m categories and let N = {am+1, ..., am+n} be the actions that
navigate the scene. Then let the actions aC and aN be the meta-actions to select an action from C
and N , respectively, so let A = {aC , aN }. Therefore there would be a separate softmax layers for
actions in A, C, and N individually. For example, if an agent selects and performs action aC from A,
then the agent consequently selects and performs a classification action a ∈ C.

Regarding the policy and action selection, each action is selected with probability π(at|st; θ). Re-
garding exploration, the agent has ε probability of selecting a random action at each hierarchical level
of the action space for some given probability ε > 0. This has been incorporated into the algorithm
to encourage exploration throughout training.

4 IMPLEMENTATION DETAILS

Similar to the work of Deep Q-Networks (Mnih et al., 2013), the raw images from the environment
are first preprocessed by converting their RGB representation to gray-scale representation. These
converted images are resized to 224 x 224 pixel images. Then the pixels of the images are normalized
to floating point values in the range of [0, 1]. Finally, the images are saved in the history. The last n
frames of the history are preprocessed and stacked to be produced as input to the Q-function. These
are the states in the state space S . The stacked images has a key importance in this problem since the
state space is dependent on the n number of stacked images.
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Environment output Condition on action at Possible output value
state at ∈ N next logical state

else remain in current state
reward at ∈ N 0

at ∈ C and correct 1
at ∈ C and incorrect -1, 0

terminal at ∈ C and correct 0, 1
at ∈ C and incorrect 0, 1

t ≥ T 1

Table 1: Environment output conditioned on action at (all the possible environment output after
action at in state st)

We created a novel Gym (Brockman et al., 2016) environment from the dataset by simulating an
environment with classification and navigation actions with multiple possible configurations. When
an agent in state st takes an action at, the environment would read in the next logical image and
return the appropriate outputs. The environment outputs a state, reward, and terminal boolean which
can be varied depending on the predetermined parameters of the environment, as shown in Table 1.
Also, we have a upper bound T on the number of steps taken by the agent per episode, so if t ≥ T
then the episode is terminated.

Table 1 summarizes all possible environment configurations for the task of joint navigation and
recognition. To briefly describe the environment, if the agent performed a movement action i.e.
at ∈ N , then the environment would output the next logical state with 0 reward. In case of a
classification action i.e. at ∈ C and it classified correctly, then the environment would output the
current state with 1 reward and could either terminate or continue the episode, depending on the
environment parameters. Finally, if the action is a classification action i.e. at ∈ C and it classified
incorrectly, then the reward could be either -1 or 0 and could either terminate or continue the episode,
depending on the environment parameters. We have tested with multiple environment configurations
to determine the best configuration.

The Asynchronous Advantage Actor Critic (A3C) algorithm achieved state-of-the-art results on
reinforcement learning task like Atari 2600 games (Mnih et al., 2016). A3C outputs a softmax
layer to approximate the policy π and a linear layer to approximate the state value v. Multiple
agents share the weights of the CNN and the agents calculate individual gradients to asynchronously
update the weights. Although the CNN instance resides in the CPU for A3C, a GPU-based A3C
(GA3C) algorithm (Babaeizadeh et al., 2016) implements the CNN instance in a GPU which showed
improvements in computation speed and time over A3C. Compared to training with A3C, GA3C
allows for faster training on larger networks and datasets.

Since navigation plays a key role in learning multi-view representations, parameters in the learning
algorithm and the environment are set to promote movement. The agent should learn to move
efficiently instead of performing frivolous classification actions. We set the discount factor γ = 0.50
to make the agent learn to classify with lesser number of steps. In the case of a non-hierarchal
action space, the n actions have nearly equal probability to occur in the beginning of training. Hence,
the agent applies classification for most of the time, since there is a bias towards classification
actions. Clearly, the agent shows bias towards classification and results from training this network
show minimal movement actions. With the hierarchal action space, the agent has a equal chance of
navigation which results in improved movement. We found that hierarchical method gives superior
results compared to non-hierarchal action space.

5 EXPERIMENTAL EVALUATION

ModelNet40 Environment:We convert the rendered Modelnet40 dataset into a Gym environment
to evaluate the performance of our method. In each new episode of the environment, the agent
would be placed in a randomly selected view of a randomly selected object. The agent can take
one of two meta-actions aC or aN . The meta-actions aC selects one of 40 actions from C =
{aairplane, abathtub, ..., axbox} to classify each of the 40 categories and aN selects one of 2 actions
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Figure 3: Moving Average Reward vs. Iteration (left) shows the mean reward calculated over a
sliding window per iteration. Policy Entropy Loss vs. Iteration (right) shows the negative log of the
max policy value per iteration.

from N = {acw, accw} where acw move around the object in the clockwise direction and accw in
the counter-clockwise direction. The episode ends when the agent classifies correctly or reaches the
maximum number of 12 steps.

We evaluate the method on the ModelNet40 (Wu et al., 2015) dataset as a proof of concept. Model-
Net40 has 3D CAD models from 40 categories like airplanes, bathtubs, beds, benches, and more with
3143 training and 760 testing objects. For each object, we create 12 rendered views of by placing
12 cameras around the CAD models every 30 degrees. The cameras are elevated 30 degrees from
ground plane and point towards the centroid of the objects.

After training multiple different versions of the ModelNet40 environment with our method, we found
the best environment has zero reward for movement and misclassification, one reward for correct
classification, and termination after correct classification or max number of 12 steps. Figure 3 shows
reward plot of our method and the entropy loss in the policy. The moving average reward is defined
as an average reward over a sliding window of 1000 iterations during training. We observe that the
reward saturates around 1.5 million iterations. Also, the policy entropy loss is the negative log of the
max policy value from the LSD-Net. This decreases over time and converges near zero as shown in
the plots. It took nearly 2 million iterations to train the network on a NVIDIA TITAN X GPU.

THOR and Active Vision Environment: We use ModelNet40 as a proof of concept and extent the
Navigation and detection into a more realistsic environments. The THOR environment consists of
multiple rooms created in the virtual environment. While the Active vision dataset was collected from
a real world robot exploring the environment with multiple views. The agent can freely navigate the
environment simultaneously keeping objects in perspective. To show improvements in the accuracy in
object detection in these environments we model the task of object detection as the minimum number
of steps taken to recognize the object. This is specifically a challenging task as the agent needs to
simulataneouly explore and recognize the object. To train the network faster we give a bounding box
around the object to be classified as an input to the network. We observe that our method trains faster
compared to previous exploration methods as well as navigate faster to the object compared to the
previous state-of-the art results.

5.1 QUANTITATIVE EVALUATION

Table 2 shows that our network has learned to classify object with 75.4% average testing accuracy.
This was calculated by classifying each group of 12 views for each of the 760 testing objects. The
testing accuracy was computed by averaging the accuracy of 20 testing episodes since the starting
point for each object is random.

We believe that 3D ShapeNets (Wu et al., 2015) accuracy of 77.3% can be a good baseline to compare
our accuracy. Although most of the methods previously proposed show higher accuracy than our
method, none of the methods have attempted to solve the retrieval problem just using images. As
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Method Image(s) Pose Depth Accuracy
MVCNN (Su et al., 2015) X X 90.1%

LSD-NET(LSTM) X 81.4%
DeepPano (Shi et al., 2015) X X X 77.6%

3D ShapeNets (Wu et al., 2015) X X 77.3%
LSD-NET X 75.4%
Baseline X 64.3%

Table 2: Comparison with other object classification tasks on ModelNet40 with different types of
input. Image(s) means the image(s) of the 3D model vs. the full 3D model. Pose is the angle of the
object’s view. Depth is the depth images of the object.

Steps Taken 1 2 3 4 5 6 7 8 9 10 11 12 Total
Correct class 118 77 84 47 37 25 19 12 6 4 7 137 573
Wrong class 76 29 25 11 10 4 2 3 3 2 2 20 187

Correct class(LSTM) 171 90 99 67 59 35 25 17 12 7 8 29 619
Wrong class(LSTM) 83 16 11 8 5 3 3 1 2 1 2 6 141

Table 3: The number of views encountered i.e. number of steps taken with the number of objects
correctly and wrongly classified

another baseline and fair comparison to our method, we trained the same method on the ModelNet
environment, but the agent was not allowed to take any movement actions. The baseline method
achieved 64.3% accuracy. As seen in Table 2, our method increased in 17.1% accuracy compared to
naive classification network.

The agent moved on an average for 619 objects per testing episode and 29 objects took the maximum
number of steps. We observe that most of the objects which were classified without movement had
rich features to discriminate them like the classes of person, chair, etc. On the contrary, objects which
took the maximum steps were symmetric objects and were less distinguishable from multiple views.
The classes, like cups and bottles, are view agnostic and took more steps to be classified. But, these
view agnostic classes have a overall high classification accuracy as they are very distinguishable from
other classes from a single view. Another important conclusion from Table 3 is that the accuracy of
classification generally increases with more movement.

We experimented with multiple configurations of the environment. One configuration has negative
reward for misclassification to discourage the agent from random classification. Another configuration
has positive reward for movement to encourage movement. Both configurations promoted the network
to learn only to move instead of classification.

5.2 QUALITATIVE EVALUATION

During training, we found that the network first learns to classify the initial images correctly. After it
exhausts the classification accuracy from single view, it learns to navigate to improve classification
accuracy with multi-view recognition. This is very intuitive and similar to human learning. Humans
try to classify the object in the first instance. If the confidence of the object recognition is not high,
then they navigate around the object to learn the distinguishable features of the object.

We show some qualitative results of our approach in Figure 4. As seen from the images, the network
has learned to move to the best view of the object to accurately recognize it. This is only observed for
views which have a bad initialization. We observe that the accuracy improves for objects which have
movement compared to objects which were classified without movement. The trend is continuously
increasing with the number of steps by the agent. This proves that the network has learned to move to
accurately classify and movement is necessary for better classification.

Most methods in Table 2 assume the complete visibility of the object i.e the image rendered from all
the views at the same instance from different poses. For example, MVCNN (Qi et al., 2016) passes in
all 12 views into a network. In addition, each image has its own convolutional network for feature
extraction so MVCNN has 12 convolutional networks. Some methods also use depth information
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Figure 4: We show a qualitative evaluation of our algorithm on 4 different instances of the environment
which took 4 steps before classifying. The first column shows the initial input images and the final
image in the sequence classify the object into its respective category.

about the object so the number of views and the number of networks are doubled like in pairwise
decomposition (Johns et al., 2016). We believe this comparison is required to show the disadvantages
of the other methods. Our method is only dependent on the input images and achieves comparable
accuracies to the other methods. Incorporating any of the other cues like pose or depth in a coherent
way should boost our accuracy.

In comparison to other methods, our method is agnostic of the starting point i.e. it can start randomly
on any image and it would get similar testing accuracies. In a real life setting, it is not necessary for
humans to have complete visibility of the object to recognize it. Instead, humans only need to learn
as many views as necessary until they are certain. In a similar sense, instead of an inductive bias of
which or how many views are passed into the network, the agent learns to navigate to as many views
as necessary and classifies the object with good accuracy. Also, our method did not include the use of
depth information about the objects, yet resulted in sufficient generalization and accuracy.

Our method performs better better than state-of-the-art in training for navigation to the object. This
can be attributed to the fact that object based navigation helps in recognizing the object simultaneously
navigate better in the environment. We observe that with oour method the number of steps taken to
reach the target has been reduced compared to random walk and object search based exploration.

6 CONCLUSION AND FUTURE WORK

We successfully implemented a reinforcement learning based object recognition algorithm that takes
classification decisions based on accumulated multi-view information from navigation. We have
created a novel environment to simulate the navigation and classification actions. With the LSD-Net
framework, we achieved comparative results to state-of-the art accuracies in object recognition with
only images as input. The network is currently integrating two tasks, but the architecture can be
extended to multi-task learning. We believe that learning in 3D can helping in inferring in 2D images
and show some tests on the THOR environment. We currently have not used the geometry of the
object from the multiple views during learning. but incorportaing such priors can boost the accuracy
of the method.
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