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ABSTRACT

A fundamental, and still largely unanswered, question in the context of Genera-
tive Adversarial Networks (GANs) is whether GANs are actually able to capture
the key characteristics of the datasets they are trained on. The current approaches
to examining this issue require significant human supervision, such as visual in-
spection of sampled images, and often offer only fairly limited scalability. In this
paper, we propose new techniques that employ classification–based perspective to
evaluate synthetic GAN distributions and their capability to accurately reflect the
essential properties of the training data. These techniques require only minimal
human supervision and can easily be scaled and adapted to evaluate a variety of
state-of-the-art GANs on large, popular datasets. They also indicate that GANs
have significant problems in reproducing the more distributional properties of the
training dataset. In particular, the diversity of such synthetic data is orders of
magnitude smaller than that of the original data.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have garnered a significant
amount of attention due to their ability to learn generative models of multiple natural image datasets
(Radford et al., 2015; Denton et al., 2015; Zhang et al., 2016; Zhu et al., 2017). Since their concep-
tion, a fundamental question regarding GANs is to what extent they truly learn the underlying data
distribution. This is a key issue for multiple reasons. From a scientific perspective, understanding
the capabilities of common GANs can shed light on what precisely the adversarial training setup
allows the GAN to learn. From an engineering standpoint, it is important to grasp the power and
limitations of the GAN framework when applying it in concrete applications. Due to the broad
potential applicability of GANs, researchers have investigated this question in a variety of ways.

When we evaluate the quality of a GAN, an obvious first check is to establish that the generated
samples lie in the support of the true distribution. In the case of images, this corresponds to checking
if the generated samples look realistic. Indeed, visual inspection of generated images is currently
the most common way of assessing the quality of a given GAN. Individual humans can performs
this task quickly and reliably, and various GANs have achieved impressive results for generating
realistic-looking images of faces and indoor scenes (Salimans et al., 2016; Denton et al., 2015).

Once we have established that GANs produce realistic-looking images, the next concern is that the
GAN might simply be memorizing the training dataset. While this hypothesis cannot be ruled out
entirely, there is evidence that GANs perform at least some non-trivial modeling of the unknown
distribution. Previous studies show that interpolations in the latent space of the generator produce
novel and meaningful image variations (Radford et al., 2015), and that there is a clear disparity
between generated samples and their nearest neighbors in the true dataset (Arora & Zhang, 2017).

Taken together, these results provide evidence that GANs could constitute successful distribution
learning algorithms, which motivates studying their distributions in more detail. The direct approach
is to compare the probability density assigned by the generator with estimates of the true distribution
(Wu et al., 2016). However, in the context of GANs and high-dimensional image distributions, this
is complicated by two factors. First, GANs do not naturally provide probability estimates for their
samples. Second, estimating the probability density of the true distribution is a challenging problem
itself (the adversarial training framework specifically avoids this issue). Hence prior work has only
investigated the probability density of GANs on simple datasets such as MNIST (Wu et al., 2016).
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Since reliably computing probability densities in high dimensions is challenging, we can instead
study the behavior of GANs in low-dimensional problems such as two-dimensional Gaussian mix-
tures. Here, a common failure of GANs is mode collapse, wherein the generator assigns a dispropor-
tionately large mass to a subset of modes from the true distribution (Goodfellow, 2016). This raises
concerns about a lack of diversity in the synthetic GAN distributions, and recent work shows that
the learned distributions of two common GANs indeed have (moderately) low support size for the
CelebA dataset (Arora & Zhang, 2017). However, the approach of Arora & Zhang (2017) heavily
relies on a human annotator in order to identify duplicates. Hence it does not easily scale to compar-
ing many variants of GANs or asking more fine-grained questions than collision statistics. Overall,
our understanding of synthetic GAN distributions remains blurry, largely due to the lack of versatile
tools for a quantitative evaluation of GANs in realistic settings. The focus of this work is precisly to
address this question:

Can we develop principled and quantitative approaches to study synthetic GAN distributions?

To this end, we propose two new evaluation techniques for synthetic GAN distributions. Our meth-
ods are inspired by the idea of comparing moments of distributions, which is at the heart of many
methods in classical statistics. Although simple moments of high-dimensional distributions are of-
ten not semantically meaningful, we can extend this idea to distributions of realistic images by
leveraging image statistics identified using convolutional neural networks. In particular, we train
image classifiers in order to construct test functions corresponding to semantically meaningful prop-
erties of the distributions. An important feature of our approach is that it requires only light human
supervision and can easily be scaled to evaluating many GANs and large synthetic datasets.

Using our new evaluation techniques, we study five state-of-the-art GANs on the CelebA and LSUN
datasets, arguably the two most common testbeds for advanced GANs. We find that most of the
GANs significantly distort the relative frequency of even basic image attributes, such as the hair
style of a person or the type of room in an indoor scene. This clearly indicates a mismatch between
the true and synthetic distributions. Moreover, we conduct experiments to explore the diversity of
GAN distributions. We use synthetic GAN data to train image classifiers and find that these have
significantly lower accuracy than classifiers trained on the true data set. This points towards a lack
of diversity in the GAN data, and again towards a discrepancy between the true and synthetic distri-
butions. In fact, our additional examinations show that the diversity in GANs is only comparable to
a subset of the true data that is 100× smaller.

2 UNDERSTANDING GANS THROUGH THE LENS OF CLASSIFICATION

When comparing two distributions, a common first test is to compute low-order moments such as
the mean and the variance. If the distributions are simple enough, these quantities provide a good
understanding for how similar they are. Moreover, low-order moments have a precise definition and
are usually quick to compute. On the other hand, low-order moments can also be misleading for
more complicated, high-dimensional distributions. As a concrete example, consider a generative
model of digits (such as MNIST). If a generator produces digits that are shifted by a significant
amount yet otherwise perfect, we will probably still consider this as a good approximation of the
true distribution. However, the expectation (mean moment) of the generator distribution can be very
different from the expectation of the true data distribution. This raises the question of what other
properties of high-dimensional image distributions are easy to test yet semantically meaningful.

In the next two subsections, we describe two concrete approaches to evaluate synthetic GAN data
that are easy to compute yet capture relevant information about the distribution. The common theme
is that we employ convolutional neural networks in order to capture properties of the distributions
that are hard to describe in a mathematically precise way, but usually well-defined for a human (e.g.,
what fraction of the images shows a smiling person?). Automating the process of annotating images
with such high-level information will allow us to study various aspects of synthetic GAN data.

2.1 QUANTIFYING MODE COLLAPSE

Mode collapse refers to the tendency of the generator to concentrate a large probability mass on a
few modes of the true distribution. While there is ample evidence for the presence of mode-collapse
in GANs (Goodfellow, 2016; Arora & Zhang, 2017; Metz et al., 2016), elegant visualizations of this
phenomena are somewhat restricted to toy problems on low-dimensional distributions (Goodfellow,
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2016; Metz et al., 2016). For image datasets, it is common to rely on human annotators and derived
heuristics (see Section 2.3). While these methods have their merits, they are restrictive both in the
scale and granularity of testing. Here we propose a classification-based tool to assess how good
GANs are at assigning the right mass across broad concepts/modes. To do so, we use a trained
classifier as an expert “annotator” that labels important features in synthetic data, and then analyze
the resulting distribution. Specifically, our goal is to investigate if a GAN trained on a well-balanced
dataset (i.e., contains equal number of samples from each class) can learn to reproduce this balanced
structure. Let D = (X,Y ) = {(xi, yi)}Ni=1 represent a dataset of size N with C classes, where
(xi, yi) denote an image-label pair drawn from true data. If the dataset D is balanced, it contains
N/C images per class. The procedure for computing class distribution in synthetic data is:

1. Train an annotator (a multi-class classifier) using the dataset D.
2. Train an unconditional GAN on the images X from dataset D, without using class labels.
3. Create a synthetic dataset by sampling N images from a GAN and labeling them using the

annotator from Step 1.

The annotated data generated via the above procedure can provide insight into the GAN’s class
distribution at the scale of the entire dataset. Moreover, we can vary the granularity of mode analysis
by choosing richer classification tasks, i.e., more challenging classes or a larger number of them. In
Section 3.3, we use this technique to visualize mode collapse in several state-of-the-art GANs on the
CelebA and LSUN datasets. All the studied GANs show significant mode collapse and the effect
becomes more pronounced when the granularity of the annotator is increased (larger number of
classes). We also investigate the temporal aspect of the GAN setup and find that the dominant mode
varies widely over the course of training. Our approach also enables us to benchmark and compare
GANs on different datasets based on the extent of mode collapse in the learned distributions.

2.2 MEASURING DIVERSITY

Our above method for inspecting distribution of modes in synthetic data provides a coarse look at the
statistics of the underlying distribution. While the resulting quantities are semantically meaningful,
they capture only simple notions of diversity. To get a more holistic view on the sample diversity
in the synthetic distribution, we now describe a second classification-based approach for evaluating
GAN distributions. The main question that motivates it is: Can GANs recover the key aspects of
real data to enable training a good classifier? We believe that this is an interesting measure of sam-
ple diversity for two reasons. First, classification of high-dimensional image data is a challenging
problem, so a good training dataset will require a sufficiently diverse sample from the distribution.
Second, augmenting data for classification problems is one of the proposed use cases of GANs (e.g.,
see the recent work of Shrivastava et al. (2017)).

If GANs are truly able to capture the quality and diversity of the underlying data distribution, we
expect almost no gap between classifiers trained on true data and synthetic data from a GAN. A
generic method to produce data from GANs for classification is to train separate GANs for each
class in the dataset D.1 Samples from these class-wise GANs can then be pooled together to get a
labeled synthetic dataset. Note that the labels are trivially determined based on the class modeled
by the particular GAN from which a sample is drawn. We perform the following steps to assess the
classification performance of synthetic data vs. true data:

1. Train a classifier on the true data D (from Section 2.1) as a benchmark for comparison.
2. Train C separate unconditional GANs, one per class in dataset D.
3. Generate a balanced synthetic labeled dataset of size N by consolidating an equal number of

samples drawn from each of these C GANs. The labels obtained by aggregating samples from
per-class GANs are designated as “default” labels for the synthetic dataset. Note that by design,
both true and synthetic datasets have N samples, with N/C examples per class.

4. Use synthetic labeled data from Step 3 to train classifier with the same architecture as Step 1.

Comparing the classifiers from Steps 1 and 4 can then shed light on the disparity between the two
distributions. Radford et al. (2015) conducted an experiment similar to Step 2 on the MNIST dataset
using a conditional GAN. They found that samples from their DCGAN performed comparably to
true data on nearest neighbor classification. We obtained similar good results on MNIST, which

1We tried the alternate approach of using class-conditional GANs to get labeled datasets. This method did
not yield good samples since most common GANs have not been designed with a conditional structure in place.

3



Under review as a conference paper at ICLR 2018

could be due to the efficacy of GANs in learning the MNIST distribution or due to the ease of
getting good accuracy on MNIST even with a small training set (Rolnick et al., 2017). To clarify
this question, we restrict our analysis to more complex datasets, specifically CelebA and LSUN.

We evaluate the two following properties in our classification task:

(i) How well can the GANs recover nuances of the decision boundary, which is reflected by how
easily the classifier can fit the training data?

(ii) How does the diversity of synthetic data compare to that of true data when measured by classi-
fication accuracy on a hold-out set of true data?

We observe that all the studied GANs have very low diversity in this metric. In particular, the
accuracy achieved by a classifier trained on GAN data is comparable only to the accuracy of a
classifier trained on a 100× (or more) subsampled version of the true dataset. Even if we draw more
samples from the GANs to produce a training set several times larger than the true dataset, there is
no improvement in performance. Looking at the classification accuracy gives us a way to compare
different models on a potential downstream application of GANs. Interestingly, we find that visual
quality of samples does not necessarily correlate with good classification performance.

2.3 RELATED WORK

In GAN literature, it is common to investigate performance using metrics that involve human super-
vision. Arora & Zhang (2017) proposed a measure based on manually counting duplicates in GAN
samples as a heuristic for the support or diversity of the learned distribution. In Wu et al. (2016),
manual classification of a small sample (100 images) of GAN generated MNIST images is used as
a test for the GAN is missing certain modes. Such annotator-based metrics have clear advantages
in identifying relevant failure-modes of synthetic samples, which explains why visual inspection
(eyeballing) is still the most popular approach to assess GAN samples.

There have also been various attempts to build good metrics for GANs that are not based on manual
heuristics. Parzen window estimation can be used to approximate the log-likelihood of the distri-
bution, though it is known to work poorly for high-dimensional data (Theis et al., 2016). Wu et al.
(2016) develop a method to get a better estimate for log-likelihood using annealed importance sam-
pling. Salimans et al. (2016) propose a metric known as Inception Score, where the entropy in the
labels predicted by a pre-trained Inception network is used to assess the diversity in GAN samples.

3 EXPERIMENTS

In the following sub-sections we describe the setup and results for our classification-based GAN
benchmarks. Additional details can be found in Section 5 in the Appendix.

3.1 DATASETS

GANs have shown promise in generating realistic samples, resulting in efforts to apply them to a
broad spectrum of datasets. However, the Large-scale CelebFaces Attributes (CelebA) (Liu et al.,
2015) and Large-Scale Scene Understanding (LSUN) (Yu et al., 2015) datasets remain the most
popular and canonical ones in developing and evaluating GAN variants. Conveniently, these datasets
also have rich annotations, making them particularly suited for our classification–based evaluations.
Details on the setup for classification tasks for these datasets are given in the Appendix (Section 5).

3.2 MODELS

Using our framework, we perform a comparative study of several popular variants of GANs:
1. Deep Convolutional GAN (DCGAN): Convolutional GAN trained using a Jensen–Shannon

divergence–based objective (Goodfellow et al., 2014; Radford et al., 2015).
2. Wasserstein GAN (WGAN): GAN that uses a Wasserstein distance–based objective (Arjovsky

et al., 2017).
3. Adversarially Learned Inference (ALI): GAN that uses joint adversarial training of generative

and inference networks (Dumoulin et al., 2017).
4. Boundary Equilibrium GAN (BEGAN): Auto-encoder style GAN trained using Wasserstein dis-

tance objective (Berthelot et al., 2017).
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CelebA: Makeup, Smiling

CelebA: Male, Mouth Open

CelebA: Bangs, Smiling

LSUN: Bedroom, Kitchen, Classroom

LSUN: Bedroom, Conference Room, Dining Room, Kitchen, Living Room

Figure 1: Visualizations of mode collapse in the synthetic, GAN-generated data produced after train-
ing on our chosen subsets of CelebA and LSUN datasets. Left panel shows the relative distribution
of classes in samples drawn from synthetic datasets extracted at the end of the training process, and
compares is to the true data distribution (leftmost plots). On the right, shown is the evolution of anal-
ogous class distribution for different GANs over the course of training. BEGAN did not converge
on the LSUN tasks and hence is excluded from the corresponding analysis.

5. Improved GAN (ImGAN): GAN that uses semi-supervised learning (labels are part of GAN
training), with various other architectural and procedural improvements (Salimans et al., 2016).

All the aforementioned GANs are unconditional, however, ImGAN has access to class labels as a
part of the semi-supervised training process. We use standard implementations for each of these
models, details of which are provided in the Appendix (Section 5). We also used the prescribed
hyper-parameter settings for each GAN, including number of iterations we train them for. Our
analysis is based on 64× 64 samples, which is a size at which GAN generated samples tend to be of
high quality. We also use visual inspection to ascertain that the perceptual quality of GAN samples
in our experiments is comparable to those reported in previous studies. We demonstrate sample
images in Figures 2 and 3 in the Appendix. BEGAN did not converge in our experiments on the
LSUN dataset and hence is excluded from the corresponding analysis.

In our study, we use two types of classification models:
1. ResNet: 32-Layer Residual network He et al. (2016). Here, we choose a ResNet as it is a standard

classifier in vision and yields high accuracy on various datasets, making it a reliable baseline.
2. Linear Model: This is a network with one-fully connected layer between the input and output (no

hidden layers) with a softmax non-linearity. If the dimensions of input x and output ŷ, are D and
C (number of classes) respectively, then linear models implement the function ŷ = σ(WTx+b),
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where W is a D × C matrix, b is a C × 1 vector and σ(·) is the softmax function. Due to it’s
simplicity, this model will serve as a useful baseline in some of our experiments.

We always train the classifiers to convergence, with decaying learning rate and no data augmentation.

3.3 EXAMINATION OF MODE COLLAPSE

Experimental results for quantifying mode collapse through classification tasks, described in Sec-
tion 2.1, are presented below. Table 2 in the Appendix gives details on datasets (subsets of CelebA
and LSUN) used in our analysis, such as size (N ), number of classes (C), and accuracy of the
annotator, i.e., a classifier pre-trained on true data, which is then used to label the synthetic, GAN-
generated data. Figure 1 presents class distribution in synthetic data, as specified by these annotators.
The left panel compares the relative distribution of modes in true data (uniform) with that in various
GAN-generated datasets. Each of these datasets is created by drawing N samples from the GAN
after it was trained on the corresponding true dataset. The right panel illustrates the evolution of
class distributions in various GANs over the course of training2.

Results: These visualization lead to the following findings:

• All GANs seem to suffer from significant mode-collapse. This becomes more apparent when the
annotator granularity is increased, by considering a larger set of classes. For instance, one should
compare the relatively balanced class distributions in the 3-class LSUN task to the near-absence
of some modes in the 5-class task.

• Mode collapse is prevalent in GANs throughout the training process, and does not seem to recede
over time. Instead the dominant mode(s) often fluctuate wildly over the course of the training.

• For each task, often there is a common set of modes onto which the distint GANs exhibit collapse.

In addition to viewing our method as an approach to analyze the mode collapse, we can also use it as
a benchmark for GAN comparison. From this perspective, we can observe that, on CelebA, DCGAN
and ALI learn somewhat balanced distributions, while WGAN, BEGAN and Improved GAN show
prominent mode collapse. This is in contrast to the results obtained LSUN, where, for example,
WGAN exhibit relatively small mode collapse, while ALI suffers from significant mode collapse
even on the simple 3-class task. This highlights the general challenge in real world applications
of GANs: they often perform well on the datasets they were designed for (e.g. ALI on CelebA
and WGAN on LSUN), but extension to new datasets is not straightforward. Temporal analysis of
mode-collapse shows that there is wide variation in the dominant mode for WGAN and Improved
GAN, whereas for BEGAN, the same mode(s) often dominates the entire training process.

3.4 DIVERSITY EXPERIMENTS

Using the procedure outlined in Section 2.2, we perform a quantitative assessment of sample diver-
sity in GANs on the CelebA and LSUN datasets. We restrict our experiments to binary classification
as we find they have sufficient complexity to highlight the disparity between true and synthetic data.
Selected results for classification-based evaluation of GANs are presented in Table 1. A more ex-
tensive study is presented in Table 3, and Figures 4 and 5 in the Appendix (Section 5).

As a preliminary check, we inspect the quality of our labeled GAN datasets. For this, we use
high-accuracy annotators from Section 2.1 to predict labels for GAN generated data and measure
consistency between the predicted and default labels (label correctness). We also inspect confidence
scores, defined as the softmax probabilities for predicted class, of the annotator. The motivation
behind these metrics is that if the classifier can correctly and with high-confidence predict labels for
labeled GAN samples, then it is likely that they are convincing examples of that class, and hence of
good “quality”. Empirical results for label agreement and annotator confidence of GAN generated
datasets are shown in Tables 1 and 3, and Figure 4. We also report an equivalent Inception Score
(Salimans et al., 2016), similar to that described in Section 2.3. Using the Inception network to
get the label distribution may not be meaningful for face or scene images. Instead, we compute
the Inception Score using the label distribution predicted from the annotator networks. Score is
computed as exp(Ex[KL(p(y|x))||p(y)]), where y refers to label predictions from the annotators 3.

2Temporal evaluation of ALI class distribution is absent in the analysis due to absence of periodic check-
pointing provisions in the code.

3Code from https://github.com/openai/improved-gan
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Task

Classification Performance

Data Source
Label Inception Score Accuracy (%)

Correctness Linear model ResNet
(%) (µ± σ) ↑1 ↑10 ↑1

Train Test Train Test Test
True

92.4 1.69 ± 0.0074

85.7 85.6 92.4
True ↓64 87.6 85.0 87.8
True ↓256 91.5 82.4 82.1
True ↓512 93.7 80.0 77.8

CelebA True ↓1024 95.0 76.2 71.2
Smiling (Y/N) DCGAN 96.1 1.67 ± 0.0028 100.0 77.1 100.0 77.1 63.3
# Images: 156160 WGAN 98.2 1.68 ± 0.0031 96.8 83.4 96.8 83.5 65.3

ALI 93.3 1.71 ± 0.0027 94.5 80.1 95.0 82.4 55.8
BEGAN 93.5 1.74 ± 0.0028 98.5 69.5 98.5 69.6 64.1
Improved GAN 98.4 1.88 ± 0.0021 100.0 70.2 100.0 70.1 61.6
True

98.2 1.94 ± 0.0217

64.7 64.1 99.1
True↓512 64.7 64.0 76.4
True ↓1024 65.2 64.0 66.9

LSUN True ↓2048 98.7 56.2 56.5
Bedroom/Kitchen True ↓4096 100.0 55.1 55.1
# Images: 200000 DCGAN 92.7 1.85 ± 0.0036 90.8 56.5 91.2 56.3 51.2

WGAN 87.8 1.70 ± 0.0023 86.2 58.2 96.3 54.1 55.7
ALI 80.4 1.62 ± 0.0026 80.7 49.7 81.7 50.8 50.5
Improved GAN 84.2 1.68 ± 0.0030 91.6 55.9 90.8 56.5 51.2

Table 1: Select results from the comparative study on classification performance of true data vs.
GANs on the CelebA and LSUN datasets. Label correctness measures the agreement between de-
fault labels for the synthetic datasets, and those predicted by the annotator, a classifier trained on
true data. Shown alongside are the equivalent inception scores computed using labels predicted by
the annotator (rather than an Inception Network). Training and test accuracies for a linear model on
the various true and synthetic datasets are reported. Also presented are the corresponding accuracies
for this classifier trained on down-sampled true data (↓M ) and oversampled synthetic data (↑L). Test
accuracy for ResNets trained on these datasets is also shown (training accuracy was always 100%),
though it is noticeable that deep networks suffer from issues when trained on synthetic datasets.

Next, we train classifiers using the true and labeled GAN-generated datasets and study their perfor-
mance in terms of accuracy on a hold-out set of true data. ResNets (and other deep variants) yield
good classification performance on true data, but suffer from severe overfitting on the synthetic data,
leading to poor test accuracy. This already indicates a possible problem with GANs and the diversity
of the data they generate. But to highlight this problem better and avoid the issues that stem from
overfitting, we also look for a classifier which does not always overfit on the synthetic data. We,
however, observed that even training simple networks, such as one fully connected layer with few
hidden units, led to overfitting on synthetic data. Hence, we resorted to a very basic linear model
described in Section 3.2. Tables 1 and 3 shows results from binary classification experiments using
linear models, with the training and test accuracies of the classifier on various datasets.

Finally, to get a better understanding of the underlying ”diversity” of synthetic datasets, we train
linear models using down-sampled versions of true data (no augmentation), and compare this to the
performance of synthetic data, as shown in Tables 1 and 3. Down-sampling the data by a factor
of M , denoted as ↓M implies selecting a random N/M subset of the data D. Visualizations of
how GAN classification performance compares with (down-sampled) true data are in Figure 5 in the
Appendix. A natural argument in the defense of GANs is that we can oversample them, i.e. generate
datasets much larger than the size of training data. Results for linear models trained using a 10-fold
oversampling of GANs (drawing 10N samples), denoted by ↑10, are show in Tables 1 and 3.

Results: The major findings from these experiments are:
• Based on Tables 1 and 3, and Figure 4, we see strong agreement between annotator labels and

true labels for synthetic data, on par with the scores for the test set of true data. It is thus apparent
that the GAN images are of high-quality, as expected based on the visual inspection. These
scores are lower for LSUN than CelebA, potentially due to lower quality of generated LSUN
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images. From these results, we can get a broad understanding of how good GANs are at producing
convincing/representative samples from different classes across datasets. This also shows that
simple classification-based benchmarks can highlight relevant properties of synthetic datasets.

• The equivalent inception score is not very informative and is similar for the true (hold-out set) and
synthetic datasets. This is not surprising given the simple nature of our binary classification task
and the fact that the true and synthetic datasets have almost a uniform distribution over labels.

• It is evident from Table 1 that there is a large performance gap between true and synthetic data on
classification tasks. Inspection of training accuracies shows that linear models are able to nearly fit
the synthetic datasets, but are grossly underfitting on true data. Given the high scores of synthetic
data on the previous experiments to assess dataset ‘quality’ (Tables 1 and 3, and Figure 4), it is
likely that the poor classification performance is more indicative of lack of ‘diversity’.

• Comparing GAN performance to that of down-sampled true data reveals that the learned distri-
bution, which was trained on datasets that have around hundred thousand data points exhibits
diversity that is on par with what only mere couple of hundreds of true data samples constitute!
This shows that, at least from the point of view of classification, the diversity of the GAN gener-
ated data is severely lacking.

• Oversampling GANs by 10-fold to produce larger datasets does not improve classification perfor-
mance. The disparity between true and synthetic data remains nearly unchanged even after this
significant oversampling, further highlighting the lack of diversity in GANs.

In terms of the conclusions of relative performance of various GANs, we observe that WGAN and
ALI (on CelebA) perform better than the other GANs. While BEGAN samples have good perceptual
quality (see Figure 2), they consistently perform badly on our classification tasks. On the other
hand, WGAN samples have relatively poor visual quality but seem to outperform other GANs in
classification tasks. This is a strong indicator of the need to consider other metrics, such as the ones
proposed in this paper, in addition to visual inspection to study GANs. For LSUN, the gap between
true and synthetic data is much larger, with the classifiers getting near random performance on all the
synthetic datasets. Note that these classifiers get poor test accuracy on LSUN but are not overfitting
on the training data. In this case, we speculate the lower performance could be due to both lower
quality and diversity of LSUN samples.

In summary, our key experimental finding is that even simple classification–based tests can hold
tremendous potential to shed insight on the learned distribution in GANs. This not only helps us
to get a deeper understanding of many of the underlying issues, but also provides with a more
quantitative and rigorous platform on which to compare different GANs. Our techniques could,
in principle, be also applied to assess other generative models such as Variational Auto-Encoders
(VAEs) Kingma & Welling (2014). However, VAEs have significant problems in generating realistic
samples on the datasets used in our analysis in the first place – see Arora & Zhang (2017).

4 CONCLUSIONS

In this paper, we put forth techniques for examining the ability of GANs to capture key character-
istics of the training data, through the lens of classification. Our tools are scalable, quantitative and
automatic (no need for visual inspection of images). They thus are capable of studying state-of-
the-art GANs on realistic, large-scale image datasets. Further, they serve as a mean to perform a
nuanced comparison of GANs and to identify their relative merits, including properties that cannot
be discerned from mere visual inspection.

We then use the developed techniques to perform empirical studies on popular GANs on the CelebA
and LSUN datasets. Our examination shows that mode collapse is indeed a prevalent issue for
GANs. Also, we observe that synthetic GAN-generated datasets have significantly reduced diversity,
at least when examined from a classification perspective. In fact, the diversity of such synthetic data
is often few orders of magnitude smaller than that of the true data. Furthermore, this gap in diversity
does not seem to be bridged by simply producing much larger datasets by oversampling GANs.
Finally, we also notice that good perceptual quality of samples does not necessarily correlate – and
might sometime even anti-correlate – with distribution diversity. These findings suggest that we
need to go beyond the visual inspection–based evaluations and look for more quantitative tools for
assessing quality of GANs, such as the ones presented in this paper.
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5 APPENDIX

5.1 EXPERIMENTAL SETUP

5.1.1 DATASETS FOR CLASSIFICATION TASKS

To assess GAN performance from the perspective of classification, we construct a set of classifica-
tion tasks on the CelebA and LSUN datasets. In the case of the LSUN dataset, images are annotated
with scene category labels, which makes it straightforward to use this data for binary and multi-
class classification. On the other hand, each image in the CelebA dataset is labeled with 40 binary
attributes. As a result, a single image has multiple associated attribute labels. Here, we construct
classification tasks can by considering binary combinations of an attribute(s) (examples are shown in
Figure 2). Attributes used in our experiments were chosen such that the resulting dataset was large,
and classifiers trained on true data got high-accuracy so as to be good annotators for the synthetic
data. Details on datasets used in our classification tasks, such as training set size (N ), number of
classes (C), and accuracy of the annotator, i.e., a classifier pre-trained on true data which is used to
label the synthetic GAN-generated data, are provided in Table 2.

Dataset N C Annotator’s Accuracy (%)
CelebA: Makeup, Smiling 102,436 4 90.9, 92.4
CelebA: Male, Mouth Open 115,660 4 97.9, 93.5
CelebA: Bangs, Smiling 45,196 4 93.9, 92.4
LSUN: Bedroom, Kitchen, Classroom 150,000 3 98.7
LSUN: Bedroom, Conference Room, Dining Room,
Kitchen, Living Room

250,000 5 93.7

Table 2: Details of CelebA and LSUN subsets used for the studies in Section 3.3. Here, we use a
classifier trained on true data as an annotator that let’s us infer label distribution for the synthetic,
GAN-generated data. N is the size of the training set and C is the number of classes in the true and
synthetic datasets. Annotator’s accuracy refers to the accuracy of the classifier on a test set of true
data. For CelebA, we use a combination of attribute-wise binary classifiers as annotators due their
higher accuracy compared to a single classifier trained jointly on all the four classes.

5.1.2 MODELS

Benchmarks were performed on standard implementations -

• DCGAN: https://github.com/carpedm20/DCGAN-tensorflow
• WGAN: https://github.com/martinarjovsky/WassersteinGAN
• ALI: https://github.com/IshmaelBelghazi/ALI
• BEGAN :https://github.com/carpedm20/BEGAN-tensorflow
• Improved GAN: https://github.com/openai/improved-gan
• ResNet Classifier: Variation of the standard TensorFlow ResNet https://github.com/
tensorflow/models/blob/master/research/resnet/resnet_model.py

5.2 ADDITION EXPERIMENTAL RESULTS

5.2.1 SAMPLE QUALITY

For each of our benchmark experiments, we ascertain that the visual quality of samples produced
by the GANs is comparable to that reported in prior work. Examples of random samples drawn for
multi-class datasets from both true and synthetic data are shown in Figure 2 for the CelebA dataset,
and in Figure!3 for the LSUN dataset.

5.2.2 MODE COLLAPSE EXPERIMENTS

In the studies to observe mode collapse in GANs described in Sections 2.1 and 3.3, we use a pre-
trained classifier as an annotator to obtain the class distribution for datasets generated from un-
conditional GANs. Figure 4 shows histograms of annotator confidence for the datasets used for
benchmarking listed in Table 2. As can be seen in these figures, the annotator confidence for the
synthetic data is comparable to that on the hold-out set of true data. Thus, it seems likely that the
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   Makeup 
         +
    Smiling

   Makeup 
        +
Not Smiling

 No Makeup
         +
    Smiling

  No Makeup
        +
 Not Smiling

True Data DCGAN WGAN Improved GANBEGANALI

(a) 4-class dataset from CelebA for attributes Makeup, Smiling.

     Male 
         +
Mouth Open

     Male 
        +
Mouth Closed

    Female 
        +
Mouth Open

    Female
        +
Mouth Closed

True Data DCGAN WGAN Improved GANBEGANALI

(b) 4-class dataset from CelebA for attributes Male, Mouth Open.

   Bangs
        +
   Smiling

   Bangs
        +
 Not Smiling

  No Bangs
         +
    Smiling

  No Bangs
        +
 Not Smiling

True Data DCGAN WGAN Improved GANBEGANALI

(c) 4-class dataset from CelebA for attributes Bangs, Smiling.

Figure 2: Illustration of datasets from CelebA used in proposed classification-based benchmarks to
evaluate GANs. Shown alongside are images sampled from various unconditional GANs trained on
this dataset. Labels for the GAN samples are obtained using a pre-trained classifier as an annotator.

GAN generated samples are of good quality and are truly representative examples of their respective
classes, as expected based on visual inspection.

5.2.3 DIVERSITY EXPERIMENTS

Table 3 presents an extension of the comparative study of classification performance of true and
GAN generated data provided in Table 1. Visualizations of how test accuracies of a linear model
classifier trained on GAN data compares with one trained on true data is shown in Figure 5. For
each task, the bold curve shows test accuracy of a classifier trained on true data as a function of true
dataset size. A down-sampling factor of M corresponds to training the classifier on a random N/M
subset of true data. The dashed curves show test accuracy of classifiers trained on GAN datasets,
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Classroom

  Kitchen

 Bedroom

True Data DCGAN WGAN Improved GANALI

(a) 3-class dataset from LSUN for Bedroom, Classroom, Kitchen.

Conference 
Room

Dining 
Room

 Bedroom

True Data DCGAN WGAN Improved GANALI

Kitchen

Living 
Room

(b) 5-class dataset from LSUN for Bedroom, Conference Room, Dining Room, Kitchen, Living Room.

Figure 3: Illustration of datasets from LSUN used in proposed classification-based benchmarks to
evaluate GANs. Shown alongside are images sampled from various unconditional GANs trained on
this dataset. Labels for the GAN samples are obtained using a pre-trained classifier as an annotator.

Figure 4: Histograms of annotator confidence (softmax probability) during label prediction on true
data (test set) and synthetic data for tasks on the CelebA and LSUN datasets (see Section 3.4).
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obtained by drawing N samples from GANs at the culmination of the training process. Based on
these visualizations, it is apparent that GANs have comparable classification performance to a subset
of training data that is more than a 100x smaller. Thus, from the perspective of classification, GANs
have diversity on par with a few hundred true data samples.

CelebA: Male/Female CelebA: Smiling/Not Smiling

CelebA: Black Hair/Not Black Hair LSUN: Bedroom/Kitchen

Figure 5: Illustration of the classification performance of true data compared with GAN-generated
synthetic datasets based on experiments described in Section 3.4. Classification is performed using
a basic linear model, described in Section 3.2, and performance is reported in terms of accuracy on
a hold-out set of true data. In the plots, the bold curve captures the classification performance of
models trained on true data vs the size of the true dataset (maximum size is N ). Dashed lines rep-
resent performance of classifiers trained on various GAN-generated datasets of size N . These plots
indicate that GAN samples have ”diversity” comparable to a small subset (few hundred samples) of
true data. Here the notion of diversity is one that is relevant for classification tasks.
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Task

Classification Performance

Data Source
Label Inception Score Accuracy (%)

Correctness Linear model ResNet
(%) (µ± σ) ↑1 ↑10 ↑1

Train Test Train Test Test
True

97.9 1.98 ± 0.0033

88.1 88.8 97.9
True ↓64 89.6 88.7 92.9
True ↓256 91.6 86.9 89.8
True ↓512 96.3 83.8 82.6

CelebA True ↓1024 100.0 83.1 81.4
Male (Y/N) DCGAN 98.2 1.97 ± 0.0013 100.0 79.2 100.0 79.6 56.4
# Images: 136522 WGAN 98.3 1.97 ± 0.0013 96.7 84.0 96.7 83.9 50.0

ALI 99.2 1.99 ± 0.0008 95.8 86.7 95.8 86.7 58.9
BEGAN 99.3 1.99 ± 0.0006 97.9 78.0 98.0 78.2 55.4
Improved GAN 99.8 1.99 ± 0.0004 100.0 75.6 100.0 71.0 71.7
True

92.4 1.69 ± 0.0074

85.7 85.6 92.4
True ↓64 87.6 85.0 87.8
True ↓256 91.5 82.4 82.1
True ↓512 93.7 80.0 77.8

CelebA True ↓1024 95.0 76.2 71.2
Smiling (Y/N) DCGAN 96.1 1.67 ± 0.0028 100.0 77.1 100.0 77.1 63.3
# Images: 156160 WGAN 98.2 1.68 ± 0.0031 96.8 83.4 96.8 83.5 65.3

ALI 93.3 1.71 ± 0.0027 94.5 80.1 95.0 82.4 55.8
BEGAN 93.5 1.74 ± 0.0028 98.5 69.5 98.5 69.6 64.1
Improved GAN 98.4 1.88 ± 0.0021 100.0 70.2 100.0 70.1 61.6
True

84.5 1.68 ± 0.0112

76.4 76.5 84.5
True ↓64 79.7 75.4 80.0
True ↓256 86.3 72.6 75.8

CelebA True ↓512 89 68.7 73.9
Black Hair (Y/N) True ↓1024 100.0 65.4 72.7
# Images: 77812 DCGAN 86.7 1.68 ± 0.0040 100.0 70.9 100.0 70.5 53.4

WGAN 76.0 1.60 ± 0.0055 94.4 73.7 94.3 73.4 58.5
ALI 79.4 1.63 ± 0.0028 94.9 71.0 94.9 70.2 55.7
BEGAN 87.6 1.74 ± 0.0028 94.1 67.6 94.1 67.7 67.2
Improved GAN 86.7 1.64 ± 0.0045 100.0 70.3 100.0 69.1 70.2
True

98.2 1.94 ± 0.0217

64.7 64.1 99.1
True↓512 64.7 64.0 76.4
True ↓1024 65.2 64.0 66.9

LSUN True ↓2048 98.7 56.2 56.5
Bedroom/Kitchen True ↓4096 100.0 55.1 55.1
# Images: 200000 DCGAN 92.7 1.85 ± 0.0036 90.8 56.5 91.2 56.3 51.2

WGAN 87.8 1.70 ± 0.0023 86.2 58.2 96.3 54.1 55.7
ALI 80.4 1.62 ± 0.0026 80.7 49.7 81.7 50.8 50.5
Improved GAN 84.2 1.68 ± 0.0030 91.6 55.9 90.8 56.5 51.2

Table 3: Detailed version of the comparative study of the classification performance of true data
and GANs on the CelebA and LSUN datasets shown in Table 1, based on experiments described
in Section 3.4. Label correctness measures the agreement between default labels for the synthetic
datasets, and those predicted by the annotator, a classifier trained on the true data. Shown alongside
are the equivalent inception scores computed using labels predicted by the annotator (instead of the
Inception Network). Training and test accuracies for a linear model classifier on the various true and
synthetic datasets are reported. Also presented are the corresponding accuracies for a linear model
trained on down-sampled true data (↓M ) and oversampled synthetic data (↑L). Test accuracy for
ResNets trained on these datasets is also shown (training accuracy was always 100%), though it is
noticeable that deep networks suffer from issues when trained on synthetic datasets.
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