
Learning Domain Structure in HGNs for Nondeterministic planning

Morgan Fine-Morris and Héctor Muñoz-Avila
Lehigh University

Bethlehem, PA 18015
{mof217, hem4}@lehigh.edu

Abstract

This paper presents preliminary ideas of our work for auto-
mated learning of Hierarchical Goal Networks in nondeter-
ministic domains. We are currently implementing the ideas
expressed in this paper.

Introduction
Many domains are amenable to hierarchical problem-solving
representations whereby complex problems are represented
and solved at different levels of abstraction. Examples include
(1) some navigation tasks where hierarchical A* has been
shown to be a natural solution solving the navigation prob-
lem over different levels of abstraction (Holte et al. 1995;
Wang et al. 2014); (2) dividing a reinforcement learning
task into subtasks where policy control is learned for sub-
problems and combined to form a solution for the over-
all problem (Dayan and Hinton 1993; Dietterich 2000;
Diuk et al. 2013); (3) abstraction planning, where concrete
problems are transformed into abstract problem formulations,
these abstract problems are solved as abstract plans, and
in turn these abstract plans are refined into concrete solu-
tions (Knoblock 1994; Bergmann and Wilke 1995); and (4)
hierarchical task network (HTN) planning where complex
tasks are recursively decomposed into simpler tasks (Currie
and Tate 1991; Wilkins 1999; Erol, Hendler, and Nau 1994;
Nau et al. 1999). These paradigms have in common a divide-
and-conquer method to problem solving that is amenable to
stratified representation of the subproblems.

Among the various formalisms, HTN planning has been
a recurrent research focus over the years. An HTN planner
formulates a plan using actions and HTN methods. The lat-
ter describe how and when to reduce complex tasks into
simpler subtasks. HTN methods are used to recursively de-
compose tasks until so-called primitive tasks are reached
corresponding to actions that can be performed directly in the
world. The HTN planners SHOP and SHOP2 (Nau et al. 1999;
2003) have routinely demonstrated impressive gains in perfor-
mance (runtime and otherwise) over standard planners. The
primary reason for these performance gains is because of the
capability of HTN planners to exploit domain-specific knowl-
edge (Wilkins and desJardins 2001). HTNs provide a natu-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ral knowledge-modeling representation for many domains
(Nau et al. 2005), including military planning (Mitchell 1997;
Muñoz-Avila et al. 1999), strategy formulation in computer
games (Hoang, Lee-Urban, and Muńoz-Avila 2005; Gor-
niak and Davis 2007), manufacturing processes (Nau 1994;
Tao et al. 2008), project planning (Tate 1976; Ullrich 2005),
story-telling (Cavazza, Charles, and Mead 2002), web service
composition (Kuter et al. 2005), and UAV planning (Gancet
et al. 2005)

Despite these successes, HTN planning suffers from a
representational flaw centered around the notion of task. A
task is informally defined as a description of an activity to
be performed (e.g., find the location of robot r15) (e.g., the
task “dislodge red team from Magan hill” in some adversarial
game) and syntactically represented as a logical atom (e.g.,
(locate r15)). (e.g., “(dislodge redteam Magan)”). Beyond
this syntax, there is no explicit semantics of what tasks ac-
tually mean in HTN representations. HTN planners obviate
this issue by requiring that a complete collection of tasks
and methods is given, one that decomposes every complex
task in every plausible situation. However, the knowledge
engineering effort of creating a complete set of tasks and
methods can be significant (Estlin, Chien, and Wang 1997).
Furthermore, researchers have pointed out that the lack of
tasks’ semantics make using HTNs problematic for execution
monitoring problems (Dvorak, Amador, and Starbird 2008;
Dvorak et al. 2009). Unlike goals, which are conditions that
can be evaluated against the current state of the world, tasks
have no explicit semantics other than decomposing them
using methods.

For example, suppose that a team of robots is trying to
locate r15 and, using HTN planning, it generates a plan call-
ing for the different robots to ascertain r15’s location. While
executing the plan generate a complex plan in a gaming task
to dislodge red team from Magan hill, the HTN planner might
set a complex plan to cutoff access to Magan, surround it,
weaken the defenders with artillery fire and then proceed to
assault it. If sometime while executing the plan, the opponent
abandons the hill, the plan would continue to be executed
despite the fact that the task is already achieved. This is due
to the lack of task semantics, so their fulfillment cannot be
checked against the current state; instead their fulfillment is
only guaranteed when the execution of the generated plans is
completed.

Hierarchical Goal Networks (HGNs) solve these limita-
tions by representing goals (not tasks) at all echelons of the
hierarchy (Shivashankar et al. 2012). Hence, goal fulfillment
can be directly checked against the current state. In particular,
even when a goal g is decomposed into other goals (i.e., in
HGN, HGN methods decompose goals into subgoals), the
question if the goal is achieved can be answered directly by
checking if it is valid in the current state. So in the previous
example, when the opponent abandons the hill, an agent exe-
cuting the plan knows this goal has been achieved regardless
of how far it got into executing the said plan.

Another advantage of HGNs is that it relaxes the complete
domain requirement of HTN planning (Shivashankar et al.
2013); in HTN planning a complete set of HTN methods for
each task is needed to generate plans. Even if the HGN meth-
ods are incomplete, it is still possible to generate solution
plans by falling back to standard planning techniques such as
heuristic planning (Hoffmann and Nebel 2001) to achieve any
open goals. Nevertheless, having a collection of well-crafted
HGN methods can lead to significant improvement in per-
formance over standard planning techniques (Shivashankar
2015).

When the HGN domain is complete (i.e., there is no need
to revert to standard planning techniques to solve any prob-
lem in the domain), its expressiveness is equivalent to Simple
Hierarchical Ordered Planning (Shivashankar 2015), which
is the particular variant of HTN planning used by the widely
used SHOP and SHOP2 (Nau et al. 2003) HTN planners.
SHOP requires the user to specify a total order of the tasks;
SHOP2 drops this requirement allowing partial-order be-
tween the tasks (Nau et al. 2001). Both have the same repre-
sentation capabilities although SHOP2 is usually preferred
since it doesn’t force the user to provide a total order for the
method’s subtasks (Nau et al. 2001).

In this work, we propose the automated learning of HGNs
for ND domains extending our previous work on learning
HTNs for deterministic domains (Gopalakrishnan, Muñoz-
Avila, and Kuter 2018). While work exists on learning goal hi-
erarchies (Reddy and Tadepalli 1997; Könik and Laird 2006;
Ontanón et al. 2010), these works are based on formalisms
that have more limited representations than HGNs and in fact
predate them.

Related Work
Aside from HGNs, researchers have explored other ways
to address the limitation associated with the lack of tasks’
semantics. For instance, TMKs (Task-Method-Knowledge
models) require not only the tasks and methods to be given
but also the semantics of the tasks themselves as (precondi-
tions,effects) pairs (Murdock and Goel 2001; Murdock 2001).
While this solves the issue with the lack of tasks’ semantics
it may exacerbate the knowledge engineering requirement
of HTNs: the knowledge engineer must not only encode
the methods and tasks but also must encode their semantics
and ensure that the methods are consistent with the given
tasks’ semantics. To deal with incomplete HTN domains,
researchers have proposed translating the methods into a col-
lection of actions so that standard planning techniques can

be used (Alford, Kuter, and Nau 2009). There are two lim-
itations with this approach. First, HTN planning is strictly
more expressive than standard planning (Erol, Hendler, and
Nau 1994), hence the translation will be incomplete in
many domains. Second, for domains when translating meth-
ods into actions is possible, it may result in exponentially-
many actions on the number of methods. HGNs are more
in line with efforts combining HTN and standard plan-
ning approaches (Kambhampati, Mali, and Srivastava 1998;
Estlin, Chien, and Wang 1997); the main difference is that
HGNs eliminate the use of tasks all-together while still pre-
serving the expressiveness of Simple Hierarchical Ordered
Planning (Shivashankar 2015).

The problem of learning hierarchical planning knowledge
has been a frequent research subject over the years. For exam-
ple, ICARUS (Choi and Langley 2005) learns HTN methods
by using skills (i.e., abstract definitions of semantics of com-
plex actions) represented as Horn clauses. The crucial step
is a teleoreactive process where planning is used to fill gaps
in the HTN planning knowledge. For example, if the learned
HTN knowledge is able to get a package from an starting
location to a location L1 and the HTN knowledge is also able
to get the package from a location L2 to its destination, but
there is no HTN knowledge on how to get the package from
L1 to L2, then an standard planner is used to generate a plan
to get the package from L1 to L2 and skills are used to learn
new HTN methods from the plan generated to fill the gap on
how to get from L1 to L2.

Another example is HTN-Maker (Hogg, Muñoz-Avila, and
Kuter 2008). HTN-Maker uses task semantics defined as (pre-
conditions,effects) pairs, exactly like TMKs mentioned be-
fore, to identify sequences of contiguous actions in the input
plan trace where the preconditions and effects are met. Task
hierarchies are learned when an action sequence is identified
as achieving a task and the action sequence is a sub-sequence
of another larger action sequence achieving another task. This
includes the special case when the sub-sequence and the se-
quence achieve the same task. In such a situation recursion is
learned. HTN-Maker learns incrementally after each training
case is given.

HTNLearn (Zhuo, Muñoz-Avila, and Yang 2014) trans-
forms the input traces into a constraint satisfaction problem.
Like HTN-Maker, it also assumes (preconditions,effects) as
the task semantics to be given as input. HTNLearn process
the input traces converting them into constraints. For exam-
ple, if a literal p is observed before an action a and a is a
candidate first sub-task for a method m, then a constraint
c is added indicating that p is a precondition of m. These
constrains are solved by a MAXSAT solver, which returns
the truth value for each constraint. For example, if c is true
then p is added as a precondition of m. As a result of the
MAXSAT process, HTNLearn is not able to converge to a
100% correct domain (the evaluation of HTNLearn computes
the error rates in the learned domain).

Similar to HTN planning, hierarchical decompositions
have been used in hierarchical reinforcement learning (Parr
and Russell 1998; Dietterich 2000). The hierarchical struc-
ture of the reinforcement learning problem is analogous to an
instance of the decomposition tree that an HTN planner might

generate. Given this hierarchical structure, hierarchical rein-
forcement learners perform value-function composition for a
task based on the value functions learned over its subtasks re-
cursively. However, the possible hierarchical decompositions
must be provided in advance.

Hierarchical goal networks (HGNs) (Shivashankar et al.
2012) are an alternative representation formalism to HTNs. In
HGNs, goals, instead of tasks, are decomposed at every level
of the hierarchy. HGN methods have the same fo.rm as HTN
methods but instead of decomposing a task, they decompose
a goal; analogously instead of subtasks, HGN methods have
subgoals. If the domain description is incomplete, HGNs can
fall back to STRIPS planners to fill gaps in the domain. On
the other hand, total-order HGNs are as expressive as total-
order HTNs (Shivashankar 2015) and its partial-order variant
(Shivashankar et al. 2016) is as expressive as partial-order
HTNs (Alford et al. 2016).

Inductive learning has been used to learn rules indicating
goal-subgoal relations in X-learn (Reddy and Tadepalli 1997).
This is akin to learning macro-operators (Mooney 1988;
Botea, Müller, and Schaeffer 2005); the learned rules and
macro-operators provide search control knowledge to reach
the goals more rapidly but they don’t add expressibility
to standard planning. SOAR learns goal-subgoal relations
(Könik and Laird 2006). It uses as input annotated behavior
trace structures, indicating the decisions that led to the plans;
this is used to generate a goal-subgoal relations. Another
work on learning goal-subgoal relations is reported in (On-
tanón et al. 2010). It uses case-based learning techniques to
store goal-subgoal relations, which are then reused by us-
ing similarity metrics. These works assume some form of
the input traces, unstructured in (Ontanón et al. 2010) and
structured in (Könik and Laird 2006), to be annotated with
the subgoals as they are accomplished in the traces. In our
proposed work, the input traces are not annotated and, more
importantly, we are learning HGNs.

Goal regression techniques have been used to generate a
plan starting from the goals that must be achieved (Pollock
1998; McDermott 2002). The result of goal regression can be
seen as a hierarchy recursively generated by indicating for
each goal what subgoals must be achieved. The goal-subgoal
relations resulting from goal regression are a direct conse-
quence of the domain’s operators: the goals are effects of the
operators and the preconditions are the subgoals. In contrast,
in a HGN, the hierarchies of goals represent relations between
the HGN methods and are not necessarily implied directly
from the actions. Making an analogy with HTN methods,
HGN methods capture additional domain-specific knowledge
(Nau et al. 2003) or generate plans with desirable proper-
ties (e.g., taking into account quality considerations) again
not explicitly represented in the actions (Hogg, Kuter, and
Munoz-Avila 2010).

Work on learning hierarchical plan knowledge is related
to learning of context-free grammars (CFGs), which aims
at eliciting a finite set of production rules from a finite set
of strings (Oates, Desai, and Bhat 2002; Sakakibara 1997).
The precise definition of the learning problem varies con-
straining the resulting CFG by, among others, (1) providing
a target function (e.g., obtaining a CFG with the minimum

number of production rules) or (2) assuming that negative
examples (i.e., strings that must not be generated by the CFG)
are given. To learn CFGs, algorithms search for production
rules that generate the training set (and none of the negative
examples when provided). Grammar learning is exploited by
the Greedy Structure Hypothesizer (GSH) (Li, Kambhampati,
and Yoon 2009), which uses probabilistic context-free gram-
mars learning techniques to learn a hierarchical structure of
the input plan traces. GSH doesnt learn preconditions since
its goals are not to generate the grammars for planning but
to reflect users preferences. The difference between learn-
ing CFG and learning hierarchical planning knowledge is
twofold. First, characters that form a string have no meaning.
In contrast, actions in a given plan are defined by their pre-
conditions and effects. This means that plausible strings gen-
erated by the grammars may be invalid when viewed as plans.
Second, learning HGNs requires not only learning the task
decomposition but also the preconditions. This is an impor-
tant difference: HTNs are strictly more expressive than CFGs
(Erol, Hendler, and Nau 1996). Intuitively, HTNs are akin
to context-sensitive grammars in that they constraint when a
decomposition can take place. Context-sensitive grammars
are also strictly more expressive then CFGs (Sipser 2006).

Finally, as we will see in the next the next section, our
proposed work is related to the notion of planning landmarks
(Hoffmann, Porteous, and Sebastia 2004). Given a planning
problem P , defined as a triple (s0, g,A), indicating the ini-
tial state, the goals and the actions respectively, a planning
landmark is either an action a ∈ A, or state atom p ∈ s
(s is an state, represented as a collection of atoms) that oc-
curs in any solution plan trace solving P . Given the problem
description P , planning systems can identify automatically
landmarks for P . Planning landmarks have been widely used
for automated planning resulting in planners such as LAMA
(Richter and Westphal 2010) and the HGN planner GoDel
(Shivashankar et al. 2013).

ND learning problem
We want to learn HGNs for fully observable nondetermin-
istic (FOND) planning (Fu et al. 2011; Speck, Ortlieb, and
Mattmüller 2015; Winterer, Mattmüller, and Wehrle 2015). In
such domains, actions may have multiple outcomes. For ex-
ample, in the Minecraft simulation, when a character swings
a sword to hit a monster, there are two possible outcomes:
either the sword hits the monster or the monster parries it and
the sword doesn’t hit anything.

As discussed before, HTN learners require the tasks se-
mantics to be given either as Horn clauses defining the tasks
or as (preconditions,effects) pairs. The latter is used, for ex-
ample, in the nondeterministic HTN learner ND-HTNMaker,
a state-of-the-art HTN learner, to pinpoint locations in the
traces where the various tasks are fulfilled. ND-HTNMaker
enforces a right recursive structure: exactly one primitive task
followed by none or exactly one compound task. The main
objective of enforcing this right recursive structure is to deal
with nondeterminism: if, for example, the character swings
the sword (e.g., a primitive task), the follow-up compound
task handles the nondeterminism: one method decomposing
a compound task t will simply perform the action to swing

at the monster followed by t, thereby ensuring that method
can be triggered as many times as needed until the monster is
hit (and dies). Other methods decomposing t handle the case
when the monster has been dealt with (e.g., a method han-
dling the case when “character next to a dead monster”). This
ensures that methods learned by HTN-Maker are provable
correct (Hogg, Kuter, and Muñoz-Avila 2009). Correctness
can be loosely defined as follows: any solution generated by
a sound nondeterministic HTN planner such as ND-SHOP
(Kuter and Nau 2004) using the learned methods and the
nondeterministic actions is also a solution when using the
nondeterministic actions (i.e., without the methods).

Like in the deterministic case, the inputs will be (1)
a collection of actions A and (2) a collection of traces
s0 a0 s1 a1 . . . an sn+1, where each ai ∈ A. Only this
time, any action ai ∈ A may have multiple outcomes; so
each occurrence of ai in the input traces will reflect one such
outcome.

Planning in nondeterministic domains requires to account
for all possible outcomes. As such, (Cimatti et al. 2003)
proposed a categorization of solutions for nondeterminis-
tic domains. It distinguishes between weak, strong cyclic
and strong solutions for a problem (s0, g,A). A solution
is represented as a policy π : S → A, a mapping from
the possible states in the world S to actions A, indicat-
ing for any given state s ∈ S, what action π(s) to take.
Given a policy π, an execution trace is any sequence
s0 π(s0) s1 π(s1) . . . π(sn) sn+1, where si is an state that
can be reached from state si−1 after applying action π(si−1).

A solution policy π is weak if there exists an execution
trace from s0 to a state satisfying g. Weak solutions guarantee
that a goal state can be successfully reached sometimes. For
example, in the Minecraft simulation, a policy that assumes
a computer-controlled character will always hit any monster
it encounters when swinging the sword is considered a weak
solution. In particular, this solution would not account for
the situation when the monster parries the character’s sword
attack; e.g., the monster might counter-attack and disable the
agent and the agent has not planned what to do in such a
situation. Under the fairness assumption, stating that “every
action executed infinitely often will exhibit all its effects in-
finitely often” (D’Ippolito, Rodrıguez, and Sardina 2018), a
solution π is either strong cyclic or strong if (1) every termi-
nal state entails the goals and (2) for every state s that the
agent might finds itself in after executing π from s0, there
exists an execution trace from the state s to a state satisfy-
ing g. The difference is that in strong cyclic solutions the
same state might be visited more than once whereas in strong
solutions this never happens. For example, a strong cyclic
solution might have the character swing the sword against
the monster and if the monster parries the attack, the charac-
ter takes an step back to avoid the monster’s counter-attack
and step towards the monster while taking another swing at
it; this can be repeated as many times as needed until the
monster dies. Strong solutions are ideal since they never visit
the same state but in some domains they might not exists.
For instance, there are no strong solutions in the Minecraft
simulation mentioned as the monster can repeatedly parry the
character’s attacks. The same occurs in the robot navigation

domain (Cimatti et al. 2003), created to model nondetermin-
ism. In this domain a robot is navigating between offices
and when it encounters a closed door for an office it wants
to access, the robot will open it. There is an another agent
acting in the environment that closes doors at random. So the
robot might need to repeatedly execute the action to open the
same door.

Solving nondeterministic planning problems is difficult
because of what has been dubbed the explosion of states as
a result of the nondeterminism (Fu et al. 2011). One demon-
strated way to counter this is by adding domain-specific
knowledge as described in (Kuter and Nau 2004). While the
algorithm described is generic for a variety of ways to encode
the domain-specific knowledge, it showcases hierarchical
planning techniques outperforming an state-of-the-art non-
deterministic planner in some domains including the robot
navigation domain. The results show either speedups of sev-
eral orders of magnitude or the ability to solve problems of
sizes, measured by the number of goals to achieve, previously
impossible to solve.

Relation to probabilistic domains. In this work we are
neither assuming a probability distribution over the possi-
ble actions’ outcomes to be given nor we aim to learn such
a distribution. Once an HGN domain is learned, hierarchi-
cal reinforcement learning techniques (Dietterich 2000) can
be used to learn a probability distribution over the various
possible goal decompositions and exploit the learned distri-
bution during problem solving as done in (Hogg, Kuter, and
Munoz-Avila 2010).

We propose to learn bridge atoms and their hierarchical
structure with the important constraint that the learned hier-
archical structure must encode the domain’s nondeterminism
in a sound way. For instance, the nondeterministic version
of the logistics transportation domain in (Hogg, Kuter, and
Muñoz-Avila 2009) extends the deterministic version as fol-
lows: when loading a package p into vehicle v in a location l
there are two possible outcomes: either p is inside v or p is
still at l (i.e., the load action failed). Regardless of possibly
repeating the same action multiple times, traces will bring
the package to the airport, transport it by air to the destina-
tion city, and deliver it. So the kinds of decompositions we
are aiming to learn should also work on nondeterministic
domains; on the other hand a learned hierarchy would be
unsound if, for example, it assumes that the load truck action
always succeeds and immediately proceeds to deliver the
package to an airport. This will lead to weak solutions.

To correctly handle nondeterminism, we propose forcing
a right-recursive structure on lower echelons of the learned
HGNs. This takes care of the nondeterminism and combine
well with the higher decompositions. For instance, in the
transportation domain we identified a goal gairp, for the pack-
age p reaching the airport, identified as a bridge atom, and
then have all methods achieving gairp be right recursive; e.g.,
methods of the form (: method gairp prec (g gairp) <),
where g is some intermediate goal such as loading the pack-
age into a vehicle.

Defining the Learning Problem
Our aim is the automated learning of HGN methods. This
includes learning the goals, the goal-subgoal structure of the
HGN methods and their applicability conditions. Specifically,
the learning problem can be defined as follows: given a set
of actions A and a collection of traces Π generated using
actions in A, to obtain a collection of HGN methods. A
collection of methodsM is correct if given any (initial state,
goal) pair (s0, g), and any solution plan π generated by a
sound HGN planner using M and A, π is a correct plan
solving the planning problem (s0, g,A). An HGN method m
is a construct of the form (:method head(m) preconditions(m)
subgoals(m) <(m)) corresponding to the goal decomposed
by m (called the head of m), the preconditions for applying
m and the subgoals decomposing head(m). Figure 1 shows
an example of an HGN method in the logistics transportation
domain (Veloso 1994). (the question marks indicate variables.
It recursively decomposes the goal of delivering ?pack1 into
?loc2 into three subgoals: (1) delivering ?pack1 to the airport
?airp1 in the same city as its current location ?loc1, (2)
delivering ?pack1 to the airport ?airp2 in the same city as
the destination location ?loc2, and (3) recursively achieve the
head goal):

Head: Package-delivery
Preconditions: (at ?pack ?loc1 ?city1) (airport ?airp1 ?city1)
(airport ?airp2 ?city2) (location ?loc2 ?city2) (6= ?city1
?city2)
Subgoals: g1: (package-at ?pack ?airp1) g2:(package-at
?pack1 ?airp2) g3:(package-at ?pack ?loc2 ?city2)
Constraints: g1 < g3, g2 < g3

Figure 1: Example of an HGN method in the logistics trans-
portation domain. The question marks indicate variables. The
goal achieved by the method is the last subgoal, g3. It recur-
sively decomposes the goal of delivering ?pack into ?loc2
into three subgoals: (1) delivering ?pack1 to the airport ?airp1
in the same city as its current location ?loc1, (2) delivering
?pack to the airport ?airp2 in the same city as the destination
location ?loc2, and (3) g3 is to be achieved after g1 and g2
are achieved.

HGNs planners (Shivashankar et al. 2013; 2012) main-
tain a list G = 〈g1, . . . , gn〉 of open goals (i.e., goals to
achieve). Planning follows a recursive procedure, starting
with π = 〈〉, choosing the first element, g1, in G, and either
(1) applying an HGN method m decomposing g1 into m’s
subgoals 〈g′1, . . . , g′k〉, concatenating m’s subgoals into G
(i.e, G = 〈g′1, . . . , g′k, g1, . . . , gn〉 are the new open goals),
or (2) applying an action a ∈ A achieving g, appending a to
π (i.e., π ← π · a) and removing g from G. In either case it
will check if the preconditions of m (respectively, a) are sat-
isfied in the current state. When a is applied, the current state
is transformed in the usual way (Fikes and Nilsson 1971).
When G = ∅, π is returned. HGN planners extend this basic
procedure to allow the use of standard planning techniques to
achieve open goals and to enable a partial ordering between
the methods’ subgoals. the planner picks the first goal in G
without predecessors. For example, in Figure 1, the user may

define the constraints: g1 < g3, g2 < g3, and the planner
instead of always picking the first subgoal in G, it picks the
first subgoal without predecessors. 1

Learning Hierarchical Goal Structures
We propose transforming the problem of identifying the goals
and learning their hierarchical relation into the problem of
finding relations between word embeddings extracted from
text. Specifically, we propose viewing the collection of input
traces Π as text: each plan trace π = s0 a0 s1 a1 . . . an sn+1

is viewed as a sentence w1 w2 . . . wm; each action ai and
each atom in sj is viewed as a word wk in the sentence. The
order of the plan elements in each trace is preserved (we use
the term plan element to refer to both atoms and actions):
the word wj = ai appears before the word wj′ = p, for every
p ∈ si+1. In turn, every wj′ appears before wj′′ = ai+1.

Word embeddings are vectors representing words in a
multi-dimensional vector space (Bengio et al. 2003; Ba-
roni, Dinu, and Kruszewski 2014). There are a number
of algorithms to do this translation (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014). They have in com-
mon that they represent vector similarity based on the co-
occurrence of words in the text. That is, words that tend to
occur near one another will have similar vector representa-
tions. In our preliminary work we used Word2Vec (Mikolov
et al. 2013) (i.e., Word-Neighboring Word), a widely used
algorithm for generating word embeddings. Word2Vec uses
a shallow neural network, consisting of a single hidden layer,
to compute these vector representation; it computes a context
windowW consisting of k contiguous words and trains the
network using each word w ∈ W (i.e.,W is w’s context).
The windowW is ”moved” one word at the time through the
text further training the network each time. Training is re-
peated with windows of size i = {1, 2, . . . k}. For this reason,
Word2Vec is said to use “dynamic windows”. In Word2Vec,
similarity is computed with the cosine similarity, simC , be-
cause it measures how close is the orientation of the resulting
vectors, which are distributed in such a way that words fre-
quently co-occurring in the context windows have similar
orientation whereas those that co-occur less frequently will
have a dissimilar orientation.

There are two particularities of the change of represen-
tation from plan elements to word embeddings that is par-
ticularly suitable for our purposes: first the procedure is un-
supervised. This means in our case that we do not have to
annotate the traces with additional information such as where
the goals are been achieved in the traces. Second, vector rep-
resentations are generated based on the context in which they
occur (e.g., the dynamic windowW in Word2Vec). In our
case, the vector representations of the plan elements will be
generated based on their proximity to other plan elements in
the traces. These vectors can be clustered together into plan
elements that are close to one another.

1Actions are (preconditions,effects) pairs, where the effects con-
sist of the add- and the delete-lists of atoms. If the preconditions are
satisfied in the current state, the state is transformed as indicated by
the effects: atoms in the delete-list are removed and atoms in the
add-list are added.

Our working hypothesis, supported by previous work
(Gopalakrishnan, Muñoz-Avila, and Kuter 2018), is that what
we call bridge atoms, are ideal candidates for goals. Given
two clusters of plan element embeddings, A and B, a bridge
atom, bridgeAB , is an atom in either A or B that is most
similar to the plan elements in the other set.

Establishing a bridge atom hierarchy is a recursive process
that first requires calculating the bridge atom of a corpus,
splitting each text around the bridge atom so that each text
in the corpus becomes two new texts, before and after the
bridge atom, and then repeating the procedure on the resulting
sub-corpora.

The procedure for find a bridge atom for a corpora is as
follows. We train a Word2Vec model on the corpus to deter-
mine the word vectors and cluster them with Hierarchical
Agglomerative Clustering. Currently we limit the number of
clusters to two, although later research may explore how to
determine the number of clusters from the structure of the
traces. We determine the cosine distance of each atom in a
cluster to each atom in the other and average them together
for each atom, selecting the word with the shortest average
distance,2

bridgeAB = argmina∈A,b∈B(
1

|B|
Σb∈BdistC(a, b),

1

|A|
Σb∈BdistC(a, b)),

(1)

where distC is the cosine distance between the vector repre-
sentations of two atoms. If an action is selected as the bridge
atom, we instead use in its place the atom describing one of
its goals.

As previously stated, by splitting each trace around the
bridge atom, we can form two new sub-corpora, one from the
section of each trace before the bridge atom and one from the
section after the bridge atom. Then we recursively perform
the procedure for bridge atom selection on each new corpora,
keeping track of the hierarchical relationship of each sub-
corpora to the other corpora. If during the division process, a
section of a trace becomes shorter than some threshold, we
discard it from the sub-corpora. Progress along any branch
of recursion halts once there are insufficient traces in a sub-
corpus for training.

We use the hierarchy of bridge atoms as a guide for build-
ing a set of hierarchical methods. At the lowest level of
division are single-action or short multi-action sections of the
traces. Each of these sections will become a method with a
single goal (an effect of an action) or a method with multiple
goals (one for each of the actions). Each of these methods
have two subgoals: one for the subsection of trace before a
bridge atom and another one for the trace after that bridge
atom.

Each action is annotated with its preconditions. The pre-
conditions of a method can be extrapolated from the pre-
conditions of the actions into which it decomposes by re-
gressing over the actions of that section of the plan trace in

2This is different from the formula we used in (Gopalakrishnan,
Muñoz-Avila, and Kuter 2018), which computed the maximum
similarity.

reverse, collecting the action preconditions and removing
from the preconditions any atom which is in the effects of
chronologically-preceding action.

Current Status
We are using a variant of the Pyhop HTN planner (https:
//bitbucket.org/dananau/pyhop). Our variant in-
troduces nondeterminism in the actions and generates solu-
tion policies as described in (Kuter and Nau 2004).

Our experiments use a nondeterministic variant of the lo-
gistics domain (Veloso 1992). In the domain, packages must
be relocated from one location to another. Trucks transport
packages within cities, and airplanes transport packages be-
tween cities via airports. Nondeterminism is introduced via
the load and unload operators, which have two outcomes,
success (the package is loaded onto/unload from the speci-
fied vehicle) or failure (the package does not move from its
original location). We have also added rockets that transport
packages between cities on different planets via launchpads.
All traces demonstrate a plan for achieving the same goal,
the relocation of a package from a location in one city on the
starting planet to a location in a city on the destination planet.

To ensure that Word2Vec can identify common bridge
atoms across the corpus, the package and each location must
have the same name in all traces. Although Word2Vec typi-
cally works best on a corpus of thousands of texts or more, we
are able to learn reasonable bridge atoms from hundreds of
texts by increasing the number of epochs and lowering learn-
ing rate. For our problem design, a reasonable first bridge
atom is one that involves the package and a rocket or launch-
pad, as transporting the package from the start planet to the
destination planet marks the halfway point in the traces. From
a corpus of 700 traces, with 1000 epochs and a learning rate
of 0.00025, our first bridge atom is the action unload(package,
rocket).

Because word embeddings are sensitive to word con-
text, the trace structure influences the bridge atom hierarchy.
Which atoms are included in the trace and where they are in-
cluded is important. We are experimenting with two different
variants of state expression within traces. In one variant, we
list each action preceded by its deletelist and followed by its
addlist. If an atom occurs in the addlist of one action and the
deletelist of the subsequent action, that atom will only appear
in the addlist of the first action. In another variant, we list
actions preceded by their preconditions and followed by their
effects. In both variants, atoms are listed alphabetically.

Acknowledgements. This research was supported by
ONR under grants N00014-18-1-2009 and N68335-18-C-
4027.

References
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical planning: Relating task and
goal decomposition with task sharing. In International Joint
Conference on Artificial Intelligence (IJCAI), 3022–3029.
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A small amount of domain knowledge can
go a long way. In International Joint Conference on Artificial
Intelligence (IJCAI).

Baroni, M.; Dinu, G.; and Kruszewski, G. 2014. Don’t
count, predict! a systematic comparison of context-counting
vs. context-predicting semantic vectors. In ACL (1), 238–247.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. Journal of machine
learning research 3(Feb):1137–1155.
Bergmann, R., and Wilke, W. 1995. Building and refining
abstract planning cases by change of representation language.
Journal of Artificial Intelligence Research (JAIR) 3:53–118.
Botea, A.; Müller, M.; and Schaeffer, J. 2005. Learning
partial-order macros from solutions. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
231–240.
Cavazza, M.; Charles, F.; and Mead, S. J. 2002. Interacting
with virtual characters in interactive storytelling. In Proceed-
ings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, 318–325. ACM.
Choi, D., and Langley, P. 2005. Learning teleoreactive logic
programs from problem solving. In International Conference
on Inductive Logic Programming, 51–68.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic model
checking. Artificial Intelligence 147(1-2):35–84.
Currie, K., and Tate, A. 1991. O-Plan: The open planning
architecture. Artificial Intelligence 52(1):49–86.
Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement
learning. In Advances in neural information processing sys-
tems, 271–278.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research (JAIR) 13:227–303.
D’Ippolito, N.; Rodrıguez, N.; and Sardina, S. 2018. Fully
observable non-deterministic planning as assumption-based
reactive synthesis. Journal of Artificial Intelligence Research
61:593–621.
Diuk, C.; Schapiro, A.; Córdova, N.; Ribas-Fernandes, J.; Niv,
Y.; and Botvinick, M. 2013. Divide and conquer: hierarchical
reinforcement learning and task decomposition in humans.
In Computational and robotic models of the hierarchical
organization of behavior. Springer. 271–291.
Dvorak, D. L.; Amador, A. V.; and Starbird, T. W. 2008.
Comparison of goal-based operations and command sequenc-
ing. In Proceedings of the 10th International Conference on
Space Operations.
Dvorak, D. D.; Ingham, M. D.; Morris, J. R.; and Gersh, J.
2009. Goal-based operations: An overview. JACIC 6(3):123–
141.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In National Conference on
Artificial Intelligence (AAAI), 1123–1128.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning. Annals of
Mathematics and Artificial Intelligence (AMAI) 18:69–93.
Estlin, T. A.; Chien, S.; and Wang, X. 1997. An argument

for a hybrid HTN/operator-based approach to planning. In
European Conference on Planning (ECP), 184–196.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fu, J.; Ng, V.; Bastani, F. B.; Yen, I.-L.; et al. 2011. Sim-
ple and fast strong cyclic planning for fully-observable non-
deterministic planning problems. In IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, vol-
ume 22, 1949.
Gancet, J.; Hattenberger, G.; Alami, R.; and Lacroix, S. 2005.
Task planning and control for a multi-uav system: archi-
tecture and algorithms. In Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Conference
on, 1017–1022. IEEE.
Gopalakrishnan, S.; Muñoz-Avila, H.; and Kuter, U. 2018.
Learning task hierarchies using statistical semantics and goal
reasoning. AI Communications 31(2):167–180.
Gorniak, P., and Davis, I. 2007. Squadsmart: Hierarchi-
cal planning and coordinated plan execution for squads of
characters. In AIIDE, 14–19.
Hoang, H.; Lee-Urban, S.; and Muńoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
AI. In Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE).
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence
Research 22:215–278.
Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2009. Learning
hierarchical task networks for nondeterministic planning do-
mains. In Twenty-First International Joint Conference on
Artificial Intelligence.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
methods to generate good plans: Integrating htn learning and
reinforcement learning. In Twenty-Fourth AAAI Conference
on Artificial Intelligence.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with minimal additional knowl-
edge engineering required. In Conference on Artificial Intel-
ligence (AAAI), 950–956. AAAI Press.
Holte, R. C.; Perez, M.; Zimmer, R.; and MacDonald, A.
1995. Hierarchical a*. In Symposium on Abstraction, Refor-
mulation, and Approximation.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In National
Conference on Artificial Intelligence (AAAI), 882–888.
Knoblock, C. A. 1994. Automatically generating abstractions
for planning. Artificial intelligence 68(2):243–302.
Könik, T., and Laird, J. E. 2006. Learning goal hierarchies
from structured observations and expert annotations. Ma-
chine Learning 64(1-3):263–287.

Kuter, U., and Nau, D. S. 2004. Forward-chaining planning
in nondeterministic domains. In National Conference on
Artificial Intelligence (AAAI), 513–518.
Kuter, U.; Sirin, E.; Nau, D. S.; Parsia, B.; and Hendler, J.
2005. Information gathering during planning for web service
composition. Journal of Web Semantics (JWS) 3(2-3):183–
205.
Li, N.; Kambhampati, S.; and Yoon, S. W. 2009. Learn-
ing probabilistic hierarchical task networks to capture user
preferences. In IJCAI, 1754–1759.
McDermott, D. V. 2002. Estimated-regression planning for
interactions with web services. In AIPS, volume 2, 204–211.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Mitchell, S. 1997. A hybrid architecture for real-time mixed-
initiative planning and control. In Innovative Applications of
Artificial Intelligence Conference (IAAI), 1032–1037.
Mooney, R. J. 1988. Generalizing the order of operators in
macro-operators. In Machine Learning, 270–283.
Muñoz-Avila, H.; McFarlane, D.; Aha, D. W.; Ballas, J.;
Breslow, L.; and Nau, D. S. 1999. Using guidelines to con-
strain interactive case-based HTN planning. In International
Conference on Case-Based Reasoning (ICCBR), 288–302.
Murdock, J. W., and Goel, A. K. 2001. Meta-case-based rea-
soning: Using functional models to adapt case-based agents.
In Aha, D. W.; Watson, I.; and Yang, Q., eds., Fourth Inter-
national Conference on Case-Based Reasoning.
Murdock, J. W. 2001. Self-improvement through self-
understanding: Model-based reflection for agent adaptation.
Ph.D. Dissertation, Georgia Institute of Technology.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Dean, T.,
ed., International Joint Conference on Artificial Intelligence
(IJCAI), 968–973. Morgan Kaufmann.
Nau, D. S.; Muñoz-Avila, H.; Cao, Y.; Lotem, A.; and
Mitchell, S. 2001. Total-order planning with partially ordered
subtasks. In International Joint Conference on Artificial In-
telligence (IJCAI).
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research (JAIR)
20:379–404.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Muñoz-Avila,
H.; Murdock, J. W.; Wu, D.; and Yaman, F. 2005. Ap-
plications of SHOP and SHOP2. IEEE Intelligent Systems
20(2):34–41.
Nau, D. S. 1994. Manufacturing-operation planning vs AI
planning. In Third International Conference on Information
and Knowledge Management.
Oates, T.; Desai, D.; and Bhat, V. 2002. Learning k-reversible
context-free grammars from positive structural examples. In
International Conference on Machine Learning (ICML), 459–
465.

Ontanón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.
Parr, R. E., and Russell, S. 1998. Hierarchical control
and learning for Markov decision processes. University of
California, Berkeley Berkeley, CA.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language
processing (EMNLP), 1532–1543.
Pollock, J. L. 1998. The logical foundations of goal-
regression planning in autonomous agents. Artificial Intelli-
gence 106(2):267–334.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In International Con-
ference on Machine Learning (ICML), 843–851.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Sakakibara, Y. 1997. Recent advances of grammatical infer-
ence. Theoretical Computer Science 185(1):15–45.
Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012.
A hierarchical goal-based formalism and algorithm for
single-agent planning. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 981–988. International Foundation for
Autonomous Agents and Multiagent Systems.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The godel planning system: a more perfect union of domain-
independent and hierarchical planning. In Proceedings of
the Twenty-Third international joint conference on Artificial
Intelligence, 2380–2386. AAAI Press.
Shivashankar, V.; Alford, R.; Roberts, M.; and Aha, D. W.
2016. Cost-optimal algorithms for hierarchical goal network
planning: A preliminary report. In ICAPS Workshop on
Heuristics and Search for Domain-Independent Planning
(HSDIP).
Shivashankar, V. 2015. Hierarchical Goal Network Plan-
ning: Formalisms and Algorithms for Planning and Acting.
Ph.D. Dissertation, Dept. of Computer Science, University
of Maryland.
Sipser, M. 2006. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston.
Speck, D.; Ortlieb, M.; and Mattmüller, R. 2015. Nec-
essary observations in nondeterministic planning. In
Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), 181–193. Springer.
Tao, F.; Zhao, D.; Hu, Y.; and Zhou, Z. 2008. Resource
service composition and its optimal-selection based on parti-
cle swarm optimization in manufacturing grid system. IEEE
Transactions on industrial informatics 4(4):315–327.
Tate, A. 1976. Project planning using a hierarchic non-
linear planner. Technical Report 25, Department of Artificial
Intelligence, University of Edinburgh.
Ullrich, C. 2005. Course generation based on htn planning.
In LWA, 74–79.

Veloso, M. M. 1992. Learning by analogical reasoning
in general problem solving. PhD thesis CMU-CS-92-174,
School of Computer Science, Carnegie Mellon University.
Veloso, M. M. 1994. Planning and learning by analogical
reasoning. Springer-Verlag.
Wang, H.; Zhou, J.; Zheng, G.; and Liang, Y. 2014. Has:
Hierarchical a-star algorithm for big map navigation in spe-
cial areas. In Digital Home (ICDH), 2014 5th International
Conference on, 222–225. IEEE.
Wilkins, D., and desJardins, M. 2001. A call for knowledge-
based planning. AI Magazine 22(1):99–115.
Wilkins, D. E. 1999. Using the sipe-2 planning system.
Artificial Intelligence Center, SRI International, Menlo Park,
CA.
Winterer, D.; Mattmüller, R.; and Wehrle, M. 2015. Stubborn
sets for fully observable nondeterministic planning. In ICAPS.
AAAI Press.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial intelligence 212:134–157.

