
Under review as a conference paper at ICLR 2018

MODEL-BASED IMITATION LEARNING
FROM STATE TRAJECTORIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning from demonstrations usually relies on learning a policy from
trajectories of optimal states and actions. However, in real life expert demon-
strations, often the action information is missing and only state trajectories are
available. We present a model-based imitation learning method that can learn
environment-specific optimal actions only from expert state trajectories. Our pro-
posed method starts with a model-free reinforcement learning algorithm with a
heuristic reward signal to sample environment dynamics, which is then used to
train the state-transition probability. Subsequently, we learn the optimal actions
from expert state trajectories by supervised learning, while back-propagating the
error gradients through the modeled environment dynamics. Experimental evalua-
tions show that our proposed method successfully achieves performance similar to
(state, action) trajectory-based traditional imitation learning methods even in the
absence of action information, with much fewer iterations compared to conven-
tional model-free reinforcement learning methods. We also demonstrate that our
method can learn to act from only video demonstrations of expert agent for simple
games and can learn to achieve desired performance in less number of iterations.

1 INTRODUCTION

Reinforcement learning(RL) involves training an agent to learn a policy that accomplishes a certain
task in an environment. The objective of reinforcement learning is to maximize the expected future
reward Sutton & Barto (1998) from a guiding signal. Mnih et al. (2015) showed that neural networks
can be used to approximate state-action value functions used by an agent to perform discrete control
based on a guiding reward. This was demonstrated in Atari games where the score was used as the
reward signal. Similarly, continuous control of robotics arm was achieved by Lillicrap et al. (2016)
minimizing the distance between end-effector and target location. Following these, other methods
such as Schulman et al. (2017; 2015) were proposed to improve the sample efficiency of model-
free algorithms with theoretical guarantees of policy improvement in each step. These algorithms
assume that a guiding reward signal is available for the agent to learn optimal behavior for a certain
task. However, in most cases of natural learning, such guiding signal is not present and learning is
performed by imitating an expert behavior.

Imitation learning involves copying the behavior of an expert agent to accomplish the desired task.
In the conventional imitation learning setting, a set of expert trajectories providing states and opti-
mal actions τ = {s0,a0, s1,a1, ..., sn,an) performed by an expert agent πE are available but the
reward (or cost function), rE(s, a) used to achieve the expert behavior is not available. The goal is
to learn a new policy π, which imitates the expert behavior by maximizing the likelihood of given
demonstration trajectories.

A straightforward way for imitation learning is to direct learn the optimal action to perform given
the current state as proposed by Pomerleau (1991); Duan et al. (2017). The policy π can learn to
imitate the expert behavior by maximizing likelihood of the condition distribution of action given
states p(a|s). This can be achieved by simply training a parameterized function (neural networks
for instance) with state and action pairs from the expert trajectories. Since this involves end-to-end
supervised learning, training is much more sample-efficient compared to reinforcement learning
and overcomes inherent problems in model-free methods such as credit assignment(Sutton (1984)).
However, since behavior cloning learns optimal action from a single state value only, it is unaware

1

Under review as a conference paper at ICLR 2018

of the future state distribution the current action will produce. Thus, errors are compounded in the
future states leading to undesired agent behavior as shown by Ross et al. (2011); Ross & Bagnell
(2010). Therefore, numerous training samples are required for behavior cloning to reduce errors in
action prediction required for satisfactory imitation learning.

The second approach to imitation learning involves setting up exploration in a Markov Decision
Process(MDP) setting. The goal then is to recover a reward signal that best explains the expert
trajectories. Ng & Russell (2000) first introduced Inverse Reinforcement Learning(IRL), where the
goal is to find a reward signal r̂ from the trajectories such that the expert is uniquely optimal. After
computing this estimated reward signal, usually, a model-free reinforcement learning performed
to obtain the desired policy imitating the expert behavior by maximizing the expected discounted
reward Eπ(

∑
t γ

tr̂(st, at)). While this alleviates the problem of compounding errors as in behavior
cloning, Ziebart et al. (2008) showed that estimating a unique reward function from state and action
trajectories is an ill-posed problem.

Following the success of Generative Adversarial Networks(GANs) (Goodfellow et al. (2014)) in
various fields of machine learning, adversarial learning has also been shown incorporated in the im-
itation learning framework. The recent work on Generative Adversarial Imitation Leaning or GAIL
by Ho & Ermon (2016) showed that model-free reinforcement learning using the discriminator as a
cost function can learn to imitate the expert agent with much less number of demonstrated trajecto-
ries compared to behavior cloning. Following the success of GAIL, there have extensions by Baram
et al. (2017) to model-based generative imitation learning using a differentiable dynamics model of
the environment. Robust imitation policy strategies using a combination of variational autoencoders
(Kingma & Ba (2015); Rezende et al. (2014)) and GAIL has also been proposed by Wang et al.
(2017).

The previous works assume that the expert trajectories consist of both action and state values from
the optimal agent. However, optimal actions are usually not available in real-world imitation learn-
ing. For example, we often learn tasks like skipping, jump rope, gymnastics, etc. just by watching
other expert humans perform the task. In this case, the optimal expert trajectories only consist of
visual input, in other words, the consecutive states of the expert human with no action information.
We learn to jump rope by trying to reproduce actions that result in state trajectories similar to the
state trajectories observed from the expert. This requires exploring the environment in a structured
fashion to learn the dynamics of the rope (for jump rope) which then enables executing optimal
actions to imitate the expert behavior. The recent work of Liu et al. (2017) presents learning from
observations only with focus to transferring skills learned from source domain to an unseen target
domain, using rewards obtained by feature tracking for model-free reinforcement learning.

Inspired by the above method of learning in humans, we present a principled way of learning to
imitate an expert from state information only, with no action information available. We first learn
a distribution of the next state from the current state trajectory, used to estimate a heuristic reward
signal enabling model-free exploration. The state, action and next states information from model-
free exploration is used to learn a dynamics model of the environment. For the case of learning in
humans, this is similar to performing actions for replicating the witnessed expert state trajectories,
which in turn gives information about the dynamics of the environment. Once this forward model is
learned, we try to find the action that maximizes the likelihood of next state. Since the forward model
gives a function approximation for the environment dynamics, we can back propagate errors through
it to perform model-based policy update by end to end supervised learning. We demonstrate that our
proposed network can reach, with fewer iterations, the level close to an expert agent behavior (which
is a pre-trained actor network or manually provided by humans), and compare it with reinforcement
learning using a hand-crafted reward or a heuristics reward that is based on prediction error of next
state learned from the optimal state trajectories of the expert.

1.1 NOTATIONS

We summarize the notations used in the paper in this section. Consider a Markov Decision Pro-
cess (MDP) denoted as (S,A, P, r, ρ0, γ), where S is the finite set of states, A is the set of possible
actions, P : S × A → S is the transition probability distribution and r : S × A → R be the
reward signal from state and actions, ρ0 → R is the initial state distribution and γ ∈ (0, 1) is the
discount factor. Let π : S × A → (0, 1) be the policy that gives the conditional distribution of

2

Under review as a conference paper at ICLR 2018

actions given current state, p(a|s) and R(π) = Eπ[
∑
t γ

trt(st,at)] is the discounted reward asso-
ciated with the policy. We consider expert trajectories consisting of only optimal state distribution
without any action information, τE = {s0, s1, ..., sn}. The trajectories sampled from model-free
exploration is denoted as, τRL = {s0,a0, s1,a1, ..., sn,an}. We use the terms dynamic model,
state-transition probability and forward model interchangeably in the paper. fE(st,at) denotes the
non-differentiable forward model of the environment and f(st,at) denotes the differentiable ver-
sion which is learned during the proposed training procedure. πmf denotes the model-free policy
and πmb denotes the model-based policy network.

2 PROPOSED METHOD

While most previous works use trajectories containing both state and action information to infer a
policy that imitates the expert behavior, our problem statement is to imitate an expert from optimal
state trajectories only. This setting is common in many natural scenarios where only state informa-
tion is available. For example, humans learning to swim by seeing videos or observing other experts
swimmers, have access to the sensory stream of information containing states only. The optimal ac-
tions are obtained by trying to replicate the state trajectories in the real environment via exploration.
In this work, we learn a time series predictor of next state given the current state. Subsequently, we
estimate a heuristic reward signal at each step, based on the difference of predicted next state by the
time series model and the actual next state taken by the policy network to learn a model-free policy
with exploration. However, such heuristic methods suffer from the disadvantages of slow model-
free training to reach satisfactory policy and provide no guarantees on convergence. Therefore we
resort to model-based policy learning that learns a differentiable model of the environment dynam-
ics used to learn policy by directly supervised learning. The proposed algorithm alternates between
dynamic model parameters and policy parameters update using gradient propagation through the
differentiable dynamics model. We formalize this setup in the following sections.

2.1 MODEL-FREE POLICY LEARNING VIA REWARD ESTIMATION

Following the work in Inverse Reinforcement Learning(IRL), it is possible to frame the imitation
learning problem in the MDP framework. The imitation learning problem then reduces to finding
a uniquely optimal reward signal that maximizes the likelihood of the observed demonstration tra-
jectories. However, finding a uniquely optimal reward function, even with optimal trajectories con-
taining both state and action information, is an ill-posed problem. The ill-posed nature of optimal
reward estimation is further accentuated in the absence of action information in expert trajectories.
As such, many solutions for parameterized families of reward estimation models maximizing the
likelihood of only expert state trajectories might be sub-optimal to learn the desired task.

For model-free policy learning, we use a heuristic reward estimated by the error in next state pre-
diction at each step. We make an assumption that estimating a locally optimal reward maximizing
the likelihood of next step predicting, is intuitively globally optimal for learning the desired task. A
straight-forward method to obtain such heuristic reward signal from the trajectories, τs, is to learn
a time series predictive model of the next state given the current state, p(st+1|s1:t) from the expert
state trajectories using time series modeling. In our case, we use an exponential of the difference
between predicted states and actual next state associated with the action predicted by the policy
network.

rt(st,at) = k exp(−‖ŝt+1 − fE(st,at)‖2

2σ2
)

∣∣∣∣∣
ŝt+1∼p(st+1|s1:t)

(1)

where k is a constant controlling gain of the reward signal and σ controls the sensitivity of re-
ward to divergence from the predicted state. This reward can be used for guiding any stan-
dard model-free reinforcement learning techniques to maximize the expected reward, R(πmf) =
Eπmf

[
∑
t γ

trt(st,at)]. We assume on the intuition that locally optimal heuristic reward estimation
will be sufficient to ensure global optimality for learning the desired task.

3

Under review as a conference paper at ICLR 2018

Figure 1: Showing the overall architecture of the proposed method. Firstly, model-free policy is
updated using reward estimation from next state mismatch which storing the samples in replay
buffer. These are used to update the differentiable dynamics model of the environment, which
provides the error gradients for end-to-end model-based policy update from state trajectories

2.2 MODEL-BASED IMITATION LEARNING FROM STATE TRAJECTORIES

Consider there are m sets of expert trajectory episode each consisting of T states, given as τE =
{s0, s1, ..., sn}, where n = mT . We assume that the trajectories in each episode are independent
of each other. For the imitation learning problem, we wish to imitate an expert agent πE from
state trajectories τE . we formulate a maximum likelihood problem for state trajectories given a
parameterized model of the agent policy, given as

θ∗ = argmin
θ

[
−

n∑
j=1

T∑
t=1

log p(st+1|s1:t;θ)
]
, (2)

where θ represents the parameter of the model. We assume that the random variables state(st),
action(at) and next state st+1 form a directed graphical model as shown in figure 2 (b). Following
the natural dynamics of environments in reinforcement learning setting, we assume that control
action for the agent at is conditionally independent of other state and actions in the past given the
current state. Distribution of the next state is conditionally independent of the other past states given
current state and action following the MDP setting. In this framework, we can frame the model-
based policy as an encoder network with action as the latent variable and the dynamics policy as the
decoder network predicting the next state. The log-likelihood estimation loss, in this case, can be
written as,

Lsas = −
m∑
j=1

T∑
t=1

log

∫
a

p(st+1|st,a;θd)p(a|st;θe)da, (3)

where θe, thetad are the encoder and decoder parameters respectively. Learning can be performed
using (st, st+1) pairs from the expert trajectories by minimizing the above loss, sampling action
values from the posteriori distribution p(at|st) using standard Markov Chain Monte Carlo (MCMC)
methods or variational inference methods Kingma & Ba (2015); Rezende et al. (2014). However,
the learned action from the encoder in this case will not mimic the actual control commands used to
perform the desired task in the control environment.

We propose a constrained minimization cost function which enforces the decoder network to mimic
the environment dynamics of the agent. The proposed cost function enforces that the decoders model
minimizes the loss for dynamics model prediction of next state given the current state and action,

4

Under review as a conference paper at ICLR 2018

whereas the composition of encoder over the decoder minimizes prediction loss of the next state
given the current state. This loss function is given as,

Lproposed =− E(st,st+1)∼τE

(
log

∫
a

p(st+1|st,a;θdyn)p(a|st;θmb)da
)

− E(st,at,st+1)∼τRL

(
log p(st+1|st,at;θdyn)

)
,

(4)

where we θdyn are the parameters of dynamics model and θmb are model-based policy network’s pa-
rameters. Let us denote the first term of the loss term in equation 4 as model-based policy loss, Lmb
and the second term is referred as dynamics model loss, Ldyn. As shown in figure 1, we perform
alternate minimizations on the proposed cost function and training on the encoder and decoder are
performed on two separate datasets. Firstly, the dynamics model parameters are updated from the
experience replay samples gathered during model-free exploration. Subsequently, the updated dy-
namics model is used as the decoder network in the above formulation with fixed weights while the
model-based policy parameters are updated by the gradient, ∇θmb

Lmb. This enforces the encoder
network to act as a model-based policy that learns to predict the optimal action given the current
state. During implementations, a deterministic encoder and decoder are used and a single action is
sampled from the posterior distribution during training.

2.2.1 LEARNING DYNAMICS MODEL FROM MODEL-FREE SAMPLES

Since our expert trajectories only consist of sensory streams containing state information only, learn-
ing from the heuristic reward in a MDP setting can be slow and does not guarantee that the reward is
optimal for the desired task. Thus we resort to dynamics model based learning which can propagate
error gradients with respect to action information as discussed in the above section. Consider an
analogy of a robot learning to navigate through a maze of expert state information only. It must first
learn the state transition model p(st+1|st,at) to navigate through the environment. Once dynamics
model is learned, it can obtain the best action that takes the current state in optimal state trajectories
to the next state. Solving for the desired action at each state (p(at|st)) is a maximum likelihood
problem from the expert state trajectories which can be solved by end-to-end supervised learning.

Let us assume we have a parameterized model for agent dynamics, given as st+1 = f(st,at;θdyn),
where θdyn denotes parameters of the model. During model-free learning, we store the trajectories
of (st,at, st+1) that were encountered during exploration by the agent. Let us denotes the trajecto-
ries of these triplets as τRL. For continuous state spaces, the gradient for dynamic model parameters
are given as

∇θdyn
Ldyn = ∇θdyn

E(st,at,st+1)∼τRL

[
‖f(st,at; θdyn)− st+1‖22

]
(5)

which is gradient on the mean squared error loss between model predicted and true next state. For
the discrete state space case, we can first maximize the probability of next state given the current
state and action using a categorical loss. Any standard stochastic gradient descent algorithms can
be used for the above optimizations. However, we use neural networks as function approximators
which are shown to have approximation capacity for arbitrary non-linear function, although its non-
convex nature of optimization does always guarantee a solution that is globally optimal. Recent
techniques in stochastic gradient descent (Zeiler (2012); Kingma & Ba (2014)) have alleviated this
problem to a large extent.

If we assume the dynamics model is ideal in predicting the next state and there exists a unique action
to reach the next state from the current state, then the proposed method is identical to behavior
cloning, although true action information is not provided by the expert. Therefore, the performance
of this method is upper bounded by the performance of behavior cloning model which learns from
the true action information between states.

2.3 TRANSFORMING STATES BASED ON ACTION

In our formulation so far, the entire next state of the agent is predicted by the next state predictor.
However, we found that predicting a part of the state which is dependent on action gives better

5

Under review as a conference paper at ICLR 2018

reward structure. This is in line with the work of Pathak et al. (2017), where the authors predict
φ(st) as the latent representation of the neural network predicting the action from consecutive states,
at = g(φ(st), φ(st+1)). This transformed state value, φ(st) is also used as the input and output
for the dynamics model. This transformation is beneficial for two reasons: (i) It is difficult to
learn the dynamics model for high dimensional state information and thus first projecting onto a
low dimensional manifold to learn the dynamics model gives a more feasible learning framework.
(ii) In case of transferring the learned dynamics model between different tasks that use the same
environment, a common state input is required for the dynamics model, which can be achieved such
transformation. In case of learning from videos, we use the agent position in the image frames as
φ(st). For the case of linked arm reacher, we will use phi(st) as the joint angles and joint velocities.

2.4 ALGORITHM

We now outline the algorithm based on the above discussed model-based policy learning framework.

Algorithm 1 Model based imitation learning from state trajectories

1: Input : Given expert trajectories τE , initial parameters θ0mb, θ
0
mf and θ0dyn and the state

transformation φ(.)
2: Learn next state predictor model

θp ← argminθp −E{s1:t+1}∼τE log p(φ(st+1)|s1:t;θp)
3: for k = 1, 2, 3, ... do
4: Sample trajectory from model-free policy τk ∈ πkmf and add to the replay buffer τRL
5: Updated the dynamics model parameter using trajectories from the replay buffer

θk+1
dyn ← argminθk

dyn
−E(st,at,st+1)∼τRL

(
log p(φ(st+1)|φ(st),at;θkdyn)

)
6: Update model based parameter from expert trajectories with fixed dynamics model.

θk+1
mb ← argminθk

mb
−E(st,st+1)∼τE

(
log
∑
a p(φ(st+1)|φ(st),a;θk+1

dyn)p(a|st;θkmb)
)

7: end for

The above algorithm shows an iterative process where in each iteration we first train a model-free
algorithm using the heuristic reward function. This step is necessary because we collect a certain
amount of system dynamics data, (st, at, st+1), while training the model-free policy. Then, we train
a system dynamics model using the above collected data. The action policy is then trained using
the system dynamics model in the model-based part, which constitutes one cycle of the training.
Subsequently, we repeat this cycle again starting from the model-free part. With each iteration, we
collect additional system dynamics data, which results in a more precise dynamics model, leading
to accurate action policy parameter gradients for updating the model-based policy.

The frequency of switching between model-free replay buffer collection and model-based update
can be varied depending on the complexity of dynamics model. For state predictions from previous
states, we used Long Short-Term Memory Network, proposed by Hochreiter & Schmidhuber (1997).
For the policy and dynamics model, we use neural networks as function approximators. In this work,
we assume that the state transformation φ(.) is manually specified in each experiments, although it
is possible to learn such representation by learning a common transformation between states that
predicts the action, at = g(φ(st), φ(st+1)).

3 EXPERIMENTAL RESULTS

We perform experimental evaluations on three kinds of environment, (i) Robotics arm reacher in
2d, (ii) Simple 2d obstacle avoidance based reacher, (iii) Learning to play simple games from raw
video demonstrations. In each experiment, we show specific strengths of the proposed algorithm as
follows.

6

Under review as a conference paper at ICLR 2018

Figure 2: (a) Showing the toy obstacle avoidance environment used in our experiments, (b) The
directed graphical model, which shows that next is dependent on current state and action, while
current action is just dependent of the current state

3.1 ROBOTICS ARM REACHER IN 2D

We use roboschool reacher(OpenAI (2017); Brockman et al. (2016) environment to simulate two-
link robotic arm that can move in two-dimensional space. The desired task is to learn reaching a
given target from random starting configurations. The arm is controlled using angular torque values
of both joints. We use state values consisting of angular position, angular velocity, the end effector
location of the robotic link and the position of the target. The robotic arm angles and angular
velocities were used as φ(st), which is the portion of state dependent on action. In this experiment,
we assume that the true reward function is known and in addition, we have some state trajectories
from the expert policy. The goal is to leverage these existing state trajectories to learn a better
policy in less number of steps. Reward signal, consisting of distance potential, electricity cost and
the penalty for stuck joint, which is the default reward specified for the environment, was used.
Specifically, we show 500 trajectories of optimal states each with 100 steps to learn model-based
policy using the proposed method. We used neural networks with hidden layers containing (128, 64)
neurons for both model-based and model-free policies. Training was performed over 2000 episodes
using Deep Deterministic Policy Gradients(DDPG) proposed by Lillicrap et al. (2016).

Figure 3(a) shows the comparison of proposed method against the DDPG algorithm. Our method
learns the dynamics model from the model-free exploration, which quickly learns the simple envi-
ronment dynamics, in this case, thereby learning an optimal policy imitating the state trajectories
much faster than model-free training, which is shown in results. However, we found this is due to
a large number of state trajectories that are shown to the proposed method. Since our performance
is upper bounded by behavior cloning results, we share the same drawbacks of compounding errors
and data-hungry policy learning.

3.2 2D OBSTACLE AVOIDER

In this experiment, we demonstrate that proposed algorithm can be used for direct end-to-end su-
pervised imitation learning on novel tasks without resorting to model-free reinforcement learning.
We refer to this setup as one-shot imitation learning, which we demonstrate on a simple toy envi-
ronment. The environment is shown in figure 2(a). The environment consists of an agent which can
freely move in 2D space. The agent is controlled by continuous position control where the action is
the change in (x, y) agent position at each time step. The goal is to reach the target location while
avoiding the obstacle. Initially, we train our algorithm on an environment to avoid a single obstacle
while reaching the target. We use state information as the absolute position of the agent, target and
obstacle, the agent velocity and relative location of obstacle and target with respect to the agent. We
use φ(st) as the agent 2d position in the environment.

7

Under review as a conference paper at ICLR 2018

Figure 3: (a) Comparison of proposed method with model-free reinforcement learning methods,
behavior cloning and proposed model-based method for Flappy birds. The model-based method
is shown to surpass the model-free method in test reward performance with much less iterations,
although being upper bounded by behavior cloning results (b) Comparison of the proposed method
with continuous model-free methods on roboschool reacher showing better convergence perfor-
mance with less iterations

For expert demonstration, we implemented a manually engineered policy that always avoids the
obstacle. We used 1000 number of demonstrations containing only state trajectories to reach a target
while avoiding a single obstacle. Out of 1000 demonstrations, 800 are used for training and 200 for
validation. We first learn the time series prediction of the next state, used to compute the heuristic
reward based using prediction error as discussed in section 2.1. For model-based policy, we use a
MLP with (64, 64) hidden units. We use the same policy network for both model-based and model-
free policy. The dynamics model is also modeled as a neural network with a single hidden layer of
8 units for both state and action input. We used a switching frequency of 5 between the model-free
and model-based updates. Using these setting for the proposed algorithm, we get a model-based
policy and the dynamics model as output.

Using the dynamics model obtained from training with demonstrations of single obstacle avoidance,
we perform one-shot imitation learning to learn avoidance of two obstacles. The algorithm is pre-
sented 500 samples of expert state trajectories for avoiding two obstacles. The model-based policy
in the new setting is learned by step 6 of the proposed algorithm 1 using the previously learned
dynamics model. Although the state information for the policy networks might change due to an
additional obstacle, since φ(st), which is the agent 2d location, remains same in both cases, we can
perform one-shot imitation learning in this case. We compare the results with respect to the expert
policy and behavior cloning and report the average of test reward on 50 episodes. While the expert
policy achieves average test reward of 3036, and behavior cloning achieves 3939 and our imitation
learning method gave a reward of 3805. This demonstrates that our proposed algorithm can be used
for one-shot imitation in environments with same dynamics and can produce comparable results to
behavior cloning which was trained from true actions.

3.3 LEARNING POLICIES FROM RAW VIDEOS

In this experiment, we learn model-based control policies from raw pixels. We use the python
reimplementation of the game Flappy bird (Lau (2017)). In this environment, the agent has to hover
through the pipes without collision by flapping its wings. The environment has gravity and with each
flap, the agent receives an upward acceleration which sends it to an upward parabolic trajectory. We
choose this environment due to its complicated dynamics and show that our proposed method can
learn to model this dynamics. We learn action policies from raw videos of just 10 episodes each with
1000 steps. The reward is assumed to be unknown in this case and we estimate the reward by the
error in prediction of the next state as mentioned in section 2.1. The control action is a single discrete

8

Under review as a conference paper at ICLR 2018

command of whether to flap the bird’s wings or not. We denotes this action space as {+1,−1}. For
state information at each step we use 4 consecutive frames resized to (80×80×4). We also assume
that the absolute position of the bird’s location is available to us, which we use as φ(st). This can
be also computed by learning a simple object detector from image frames.

For the next state predictor, we use an LSTM predictor that outputs the next position of the agent lo-
cation given the sequence of states witnessed so far. The model-free reward prediction step receives
a reward signal based on the difference of the actual next state taken the policy, from the predicted
next state by LSTM. This reward is used to train DQN(Mnih et al. (2015)) for model-free policy
update which collects data to train the dynamics model, which in turn trains the model-based policy
network. We also train vanilla DQN using a standard reward, which in this case is 0.1 for each
time step and +1 reward if the agent can successfully pass through a pipe. To compare the various
methods, we used the reward used by vanilla DQN as a baseline for comparison.

For the model-based policy we used a convolutional neural network (CNN) with soft-max out-
put, which is essentially a binary classification task. For the DQN model-free policy, the last
layer predicts the q-values and therefore has linearly activation. In this case, we first learn dy-
namics model, which is approximated as a multi layered perceptron (MLP) with single hidden
layer of 16 units for both state and action inputs. It learns to regress the next state from the cur-
rent state and actions minimizing mean squared error loss. After this, from the expert demon-
stration of state trajectory(τE), we find the current optimal action that minimizes the next state
a∗k = argmina ‖p(st+1 − f(st,at)‖|at∈{0,1},{st+1,st}∼τE . The next step is to find the model-
based policy by behavior cloning on the states (st ∼ τE) and current optimal actions, a∗k . We found
that, the number of +1(flap) actions by the agent are far less frequent compared to the number of
-1(no flap) actions which cause an unbalance in distribution. Thus, we used class balancing tech-
niques for learning both model based policy update and direct behavior cloning from true actions
(baseline) results.

Figure 3(b) shows the comparison of proposed model-based method with estimated reward
(mb reward pred), behavior cloning (bc), model-free RL using DQN with standard known reward
(dqn reward) and with estimated reward (dqn reward pred). It is to be noted that although original
reward just provides a constant reward (of 0.1 and +1 bonus) without constant guidance at each
step value, estimated reward provides a dense guidance signal which leads to faster convergence as
shown in the comparison results. We take desired samples from the model-free training, based on
prioritized sampling technique with regards to the estimated reward signal, to perform model-based
policy update. We found that prioritized sampling was essential to learn a good dynamics model
of the environment. The results show that the model-based policy learns behavior close to optimal
in much fewer steps compared to the model-free counterparts. However, its performance in upper
bounded by the behavior cloning method which achieves an average test reward (over 20 iterations)
of 49.62. The expert score is 60.9. Since DQN with estimated reward signal learns via exploration
in a MDP setting, it can surpass the performance of behavior cloning since the number of expert
demonstrations is limited in this case.

4 CONCLUSION

We presented a model-based imitation learning method that can learn to act from expert state trajec-
tories in the absence of action information. Our method uses trajectories sampled from the model-
free policy exploration to train a dynamics model of the environment. As model-free policy is
enriched through time, the forward model can better approximate the actual environment dynamics,
which leads to improved gradient flow, leading to better model-based policy update which is trained
in a supervised fashion from expert state trajectories. In the ideal case, when dynamics model per-
fectly approximates the environment, our proposed method is equivalent to behavior cloning, even
in the absence of action information. We demonstrate that the proposed method learns the desired
policy in less number of iterations compared conventional model-free methods. We also show that
once the dynamics model is trained it can be used to transfer learning for other tasks in a similar
environment in an end-to-end supervised manner. Future work includes tighter integration of the
model-based learning and the model-free learning for higher data efficiency by sharing information
(1) between the model-free policy πmf and the model-based policy πmb and (2) between the next
state predictor p(st+1|st) and the dynamics model p(st+1|st,at) and (3) improving the limitations

9

Under review as a conference paper at ICLR 2018

of compounding errors and requirement of large number of demonstration, by adversarial training
which can maximize likelihood of future state distributions as well.

REFERENCES

Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-end differentiable adversarial imi-
tation learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
390–399, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/baram17a.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL http://gym.openai.com/.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. arXiv preprint
arXiv:1703.07326, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pp. 4565–4573, 2016.

Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/
neco.1997.9.8.1735.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In The Inter-
national Conference on Learning Representations (ICLR), volume abs/1412.6980, USA, 2015.
URL http://arxiv.org/abs/1412.6980.

Ben Lau. Keras-flappybird. https://github.com/yanpanlau/Keras-FlappyBird,
2017.

Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In The Inter-
national Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2016. URL
http://arxiv.org/abs/1509.02971.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learn-
ing to imitate behaviors from raw video via context translation. arXiv preprint arXiv:1707.03374,
2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, Feb 2015. ISSN 0028-0836.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 663–670, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2. URL
http://dl.acm.org/citation.cfm?id=645529.657801.

OpenAI. Roboschool. https://github.com/openai/roboschool, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), 2017.

10

http://proceedings.mlr.press/v70/baram17a.html
http://gym.openai.com/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
https://github.com/yanpanlau/Keras-FlappyBird
http://arxiv.org/abs/1509.02971
http://dl.acm.org/citation.cfm?id=645529.657801
https://github.com/openai/roboschool

Under review as a conference paper at ICLR 2018

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral Computation, 3(1):88–97, 1991.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pp. 1278–1286, 2014.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668, 2010.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In International Conference on Artificial Intelligence
and Statistics, pp. 627–635, 2011.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. 1984.

Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess. Robust
imitation of diverse behaviors. arXiv preprint arXiv:1707.02747, 2017.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

11

	Introduction
	Notations

	Proposed method
	Model-free policy learning via reward estimation
	Model-based imitation learning from state trajectories
	Learning dynamics model from model-free samples

	Transforming states based on action
	Algorithm

	Experimental results
	Robotics arm reacher in 2D
	2D Obstacle avoider
	Learning policies from raw videos

	CONCLUSION

