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Figure 1: Different RGB-T tracking methods. (a) Non-temporal methods. (b) Temporally-sparse
methods by introducing an additional dynamic template. (c) Our proposed streaming temporal
method based on historical templates via prompt learning.

ABSTRACT

In the process of multimodal interaction, effective spatial-temporal information of
correlated targets is crucial for RGB-T tracking. However, most existing methods
only utilize spatial information for template-search matching or merely introduce
an additional dynamic template with sparse temporal perception. These approaches
overlook rich temporal cues across consecutive video frames, such as target ap-
pearance changes and motion trajectory. To establish effective spatial-temporal
associations during multimodal interaction, we propose a video-level RGB-T track-
ing paradigm via prompt learning, termed PromptTrack. It densely models the
spatial-temporal relationships of targets in multimodal contexts by incorporating
streaming spatial-temporal prompts within a continuous sequence of video frames.
Specifically, PromptTrack learns target changes and motion trajectory from histori-
cal frames through streaming temporal prompt for each modality, and then learns
multimodal spatial prompt conditioned on temporal prompt to effectively leverage
multimodal complementary information. Benefiting from the proposed spatial-
temporal prompt learning method, PromptTrack exhibits superior target location
capability and robustness in complex tracking scenarios. The novel prompt-based
tracking paradigm can also be effortlessly extended to other tracking domains
such as RGB-D and RGB-E. Extensive experiments on three prevailing benchmark
datasets demonstrate our method achieves new state-of-the-art performances. In
particular, PromptTrack achieves Precision score of 76.2% and Success score of
60.7% on LasHeR dataset while running at a real-time speed of 35 FPS. Codes and
models will be released.

1 INTRODUCTION

RGB-T tracking is a fundamental task in visual object tracking (VOT), which aims to continuously
locate a target in subsequent frames of multimodal video stream, typically given its initial bounding
box in the first frame. The superior capability of leveraging complementary information from
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visible (RGB) and infrared (TIR) images to handle more complex tracking scenarios, such as low
illumination, adverse weather conditions, and cluttered backgrounds, has attracted significant attention
from researchers. It is widely applied in various fields, including autonomous driving (Zhang et al.,
2015), video surveillance (Tian et al., 2005), and robotic vision (Itti, 2004).

The key to RGB-T tracking is how to effectively explore spatial-temporal information in a multimodal
context. The complementary spatial information from aligned multimodal data helps identify the
precise location of the target, while temporal information from the video stream provides insight into
appearance changes and motion trajectory of the target over time. According to the extent of utilizing
spatial and temporal information, existing RGB-T tracking methods can be roughly classified into
non-temporal and temporally-sparse methods, as illustrated in Figure 1 (a) and (b). Non-temporal
methods focus on utilizing complementary spatial information during template-search matching.
TBSI (Hui et al., 2023) exploits templates as the bridge to target-relevant contexts, enabling cross-
modal spatial interaction between RGB and TIR search regions. ViPT (Jiawen et al., 2023) generates
spatial prompts for RGB template and search images using an extra TIR-modality prompter. This
paradigm significantly advances the development of RGB-T tracking but may struggle with major
target appearance changes due to relying solely on the initial template. Therefore, some methods
(Figure 1 (b)) introduce an additional dynamic template to enhance tracking robustness against target
appearance changes. STMT (Sun et al., 2024) and TATrack (Wang et al., 2024) attempt to fuse initial
and dynamic multimodal templates to construct a unified target representation to adapt to certain
appearance changes. Despite achieving improvement, this temporally-sparse paradigm often fails in
situations where the target is occluded or similar distractors are present, due to its substantial reliance
on appearance information.

Drawing inspiration from the way humans perceive and track targets in complex environments—by
relying on continuous changes of the target across consecutive video frames—we aim to leverage
historical information and complementary spatial information for RGB-T tracking. To this end, we
present a novel video-level RGB-T tracking paradigm via prompt learning, termed PromptTrack,
to establish effective spatial-temporal associations during multimodal interaction. As illustrated in
Figure 1 (c), RGB and TIR prompts (green and red blocks) are introduced into the model to learn
target changes and motion trajectory from dense historical frames that are stored in the template
memory. These prompts provide prior information to guide spatial-temporal associations of targets in
multimodal contexts and are propagated within a continuous sequence of video frames over time.

To implement the above paradigm, we design a multimodal tracking framework based on spatial-
temporal prompt learning. Specifically, a distinct group of learnable tokens as temporal prompts
are incorporated into the input for RGB and TIR modalities. The historical template images and
current search images are patched into images tokens. These image tokens and prompt tokens are
concatenated and input into a multimodal encoder for feature extraction and multimodal interaction.
During the process of the multimodal encoder, the temporal information about targets is learned
during the interaction through self-attention transformer blocks (Vaswani et al., 2017) within each
modality. The complementary spatial information is effectively leveraged through multimodal
spatial prompt generation blocks, which also utilize temporal prompts. The interacted temporal
prompts are propagated for the next timestep with the video streaming. The intra-modal relationship
modeling and inter-modal interaction facilitate the thorough exploration of multimodal spatial-
temporal information. Benefiting from the proposed method, PromptTrack exhibits superior target
location capability and robustness in complex multimodal tracking scenarios, effectively mitigating
issues such as low illumination and distractors. Due to the generality of token forms, the novel
tracking framework can also be effortlessly extended to other tracking domains such as RGB-D
and RGB-E. We conduct extensive experiments to demonstrate the effectiveness and scalability of
our method. The experimental results show that our method achieves significant improvements in
tracking performance across various complex scenarios, such as +6.0% in Precision and +4.4% in
Success on the LasHeR dataset compared to the most advanced tracker TATrack (Wang et al., 2024).

In summary, the contributions of our work are as follows: (1) A novel video-level RGB-T tracking
paradigm via prompt learning is proposed to establish multimodal spatial-temporal associations,
which can also be extended to RGB-D and RGB-E domains. (2) An effective multimodal tracking
framework is designed by utilizing streaming temporal prompt and multimodal spatial prompt for
precise target location in complex scenarios. (3) Extensive experiments demonstrate the effectiveness
of our method, achieving new state-of-the-art performance on three prevailing benchmark datasets.
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2 RELATED WORK

2.1 RGB-T TRACKING

In past years, RGB-T tracking methods have shifted from siamese-based architectures to transformer-
based architectures. Benefiting from the one-stream transformer encoder (Ye et al., 2022) for joint
feature extraction and template-search matching, researchers have tried to fuse multimodal templates
and search images to exploit complementary information from RGB and TIR modality. TBSI (Hui
et al., 2023) achieves cross-modal interaction of search images by using a fused templates as the
bridge. UnTrack (Wu et al., 2024) learns RGB and TIR common latent space through low-rank
factorization and reconstruction techniques. BAT (Cao et al., 2024) designs a bi-directional adapter
on top of ViPT (Jiawen et al., 2023) to mutually enhance cross-modal interaction. However, these
methods focus on utilizing spatial information for multimodal template-search matching, overlooking
rich temporal cues across consecutive video frames. Recent methods introduce an additional dynamic
template to strengthen the robustness against significant target appearance changes. TATrack (Wang
et al., 2024) constructs a basic template-search matching branch with the initial template and an online
branch with the dynamic template, enabling template interaction to embed with temporal information.
STMT (Sun et al., 2024) samples a dynamic template from the previous frame and enables search
regions to interact with both the initial template and the dynamic template through cross-attention
mechanism. Despite certain improvements, these temporally-sparse methods still struggle in complex
situations such as heavy occlusion, motion blur, and similar distractors. In contrast, PromptTrack
densely learns both appearance changes and motion trajectory cross consecutive frames in multimodal
contexts, serving as prior guidance for the current frame to eliminate distractors.

2.2 PROMPT LEARNING

Prompt learning has demonstrated significant potential in enhancing model understanding of tasks by
incorporating learnable prompts in computer vision. CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a) embed learnable context prompts into the input data to help the vision model better
capture contextual information. MaPLe (Khattak et al., 2023) leverages multimodal prompts to
improve the model’s generalization capability in image recognition. These methods focus on learning
fixed contextual prompts, whereas we aim to learn spatial-temporal target information by dynamic
prompts as the video stream progresses. In RGB tracking, EVPTrack (Shi et al., 2024) employs
generated tokens from the initial template to propagate information across frames. HIPTrack (Cai
et al., 2024) directly generates temporal prompts based on historical search features. These approaches
typically require complex generation and interaction modules of temporal tokens. In contrast,
our proposed temporal prompt tokens are directly inserted into the input token sequence for each
modality, obviating the need for additional modules. This streamlined design reduces our framework’s
complexity in multimodal environments, while achieving notable performance improvements.

For multimodal tracking task, ViPT (Jiawen et al., 2023) learns modality-related prompts to adapt
frozen RGB-modality models through spatial fovea operations. OneTracker (Hong et al., 2024) regard
the multimodal information as a kind of prompt and provide dominant RGB tracker with additional
modality-specific information in a prompt-tuning manner. QueryNLT (Shao et al., 2024) proposes
a visual-language tracking framework with joint appearance and language prompt modulation,
leveraging the complementarity between historical visual cues and language expressions. Similarly,
we design a multimodal spatial prompt generation module to exploit the alignment characteristics of
search images, with temporal prompts guiding the generation process. Notably, our spatial prompts
are bidirectional, fully leveraging complementary information from RGB and TIR modalities.

3 METHOD

3.1 PROBLEM FORMULATION

Given an initial bounding box B0 of the target, the initial RGB and TIR template images Z0 =
(Zv

0 , Z
i
0)

1 are cropped from the first frame of a video stream. The previous non-temporal methods
model the tracking task as T : {Z0, Xt} → Bt, where T is the learned tracker that predicts the

1Here and in the following text, the superscripts v and i denote RGB and TIR modalities, respectively.
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Figure 2: The tracking pipeline across the timeline. Streaming temporal prompts for each modality
are incorporated into the input of the current timestep (search images and historical template images)
and continuously updated for the next timestep. The detailed structure of Model is shown in Figure 3.

bounding box Bt of the target in subsequent search frames Xt = (Xv
t , X

i
t) at timestep t. In order

to capture appearance changes, some temporal-based methods introduce dynamic template images
Zd = (Zv

m, Zi
m), which are cropped from the middle frames of the video stream at timestep m

(0 < m < t) and updated based on certain criteria such as confidence score and update interval.
Accordingly, the temporal-based trackers can be formulated as T : {Z0, Zm, Xt} → Bt. However,
these above trackers primarily focus on exploring multimodal spatial fusion between RGB and TIR
images within sparse frames, overlooking rich temporal cues on successive video frames.

To fully mine temporal information, we redefine the multimodal tracking task as follows:

T : {Z0, Z1, ..., Zt−1, Xt, Pt−1} → {Bt, Pt} (1)

This formulation models the video-level tracking process across all historical frames and incorporates
streaming temporal prompts, denoted as P = (P v, P i), to provide prior information of appearance
variations and motion trends. These prompts are continuously generated and updated throughout the
video stream.

3.2 STREAMING TEMPORAL PROMPT LEARNING

Revisiting. Benefiting from the powerful capabilities of the self-attention mechanism (Vaswani
et al., 2017), most top-performing trackers employ the one-stream paradigm for feature extraction
and relationship modeling. Specifically, for each modality, both the initial template image Z0 and
search image X are initially segmented into non-overlapping patches, flattened, projected into
template tokens z0 = [z1, ..., zNz ] ∈ RNz×D and search tokens x = [x1, ..., xNx ] ∈ RNx×D,
where Nz and Nx denote the respective number of tokens for each image, and D represents the
dimension. These tokens are concatenated into a sequence of template-search tokens [z0;x] =
[z1, ..., zNz

, x1, ..., xNx
] ∈ R(Nz+Nx)×D, and then fed into an L-layer modality-shared transformer

encoder. Ultimately, the extracted search features from both modalities are passed to the head for
prediction. This process leverages the similarity of target-relevant features to perform template-search
matching solely on the spatial dimension within sparse frames, thereby highlighting a gap in video
object tracking across consecutive frames.

Evolution. We lift the sparse-frame matching paradigm to video-level relationship modeling by
utilizing historical frames and extend it with temporal prompt learning. The overall tracking pipeline
is illustrated in Figure 2. As the video stream progresses, each frame is cropped into an intermediate
template image zm (0 < m < t) according to the predicted bounding box and then stored in
the historical template memory (TM). A group of Np learnable prompt tokens p = [p1, ..., pNp ] ∈

4
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Figure 3: Model structure of PromptTrack. It employs a multimodal encoder for spatial-temporal
relationship modeling by inserting the proposed MSP block between the transformer blocks. The
extracted RGB and TIR search features from the encoder are fed into the head for target localization.
The multimodal spatial prompt (SPG) module within the MSP block is illustrated on the right.

RNp×D are incorporated into the input token sequence as [z0; ...; zt−1;xt;pt−1], which interacts with
all spatial-temporal image tokens ([z0; ...; zt−1;xt]) to learn temporal cues. During the relationship
modeling of the encoder at timestep t, prompt tokens pt−1 from the last timestep (t−1) provide prior
appearance and position information of the target for search tokens, and also aggregate appearance
variations and motion trends at the current timestep (t). These continuously updated tokens, referred
to as streaming temporal prompt, help the tracker to identify and locate the target across the
timeline. It is worth noting that due to the different appearance variations of targets within individual
RGB and TIR modalities, a distinct group of learnable tokens (pv

0 and pi
0) is designated for each

modality at the initial timestep.

Template sample. Usually, the differences between adjacent template images are minimal, leading
to significant information redundancy. Additionally, inputting all template images from TM into the
encoder would result in unsustainable computational costs. Considering these factors, we design
three different strategies to sample k template images from TM: (1) Top-k score-based sampling. (2)
Last-k sampling. (3) Uniform interval sampling.

Based on these sampling strategies, the input sequence of tokens is denoted as:

S = [zj1 ; ...; zjk ;xt;pt−1] ∈ R(Nz∗k+Nx+Np)×D, (2)

[zj1 ; ...; zjm ; ...; zjk ] = Sample([z0; ...; zt−1]), jm ∈ [0, t− 1] (3)

The details and comparative results of these sampling strategies can be seen in Section 4.4.

3.3 MULTIMODAL SPATIAL PROMPT LEARNING

Taking into account the spatial alignment characteristics of paired RGB and TIR search images at
each timestep t in the video stream, we propose a multimodal spatial prompt learning method to
effectively leverage multimodal complementary information. Our key approach involves inserting
our proposed multimodal spatial prompt (MSP) block between transformer blocks of the original
encoder. This method constructs a multimodal encoder that effectively facilitates multimodal spatial
interactions within the MSP block. The model structure of PromptTrack is illustrated in Figure 3.
During the forward propagation of the encoder, intra-modal feature extraction within the transformer
block and inter-modal interaction within the MSP block are performed iteratively. Ultimately, the
extracted RGB and TIR search features (tokens) are fed into the head to predict the bounding box of
the target, and the updated temporal prompt tokens are split for the next timestep.

Multimodal encoder. Given the initial RGB input token sequence Sv
0 = [zvj1 ; ...; z

v
jk
;xv

t ;p
v
t ] and

TIR input token sequence Si
0 = [zij1 ; ...; z

i
jk
;xi

t;p
i
t], the forward process of the l-th transformer block
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is formulated as follows:

Sv
l = Fl(S

v
l−1),S

i
l = Fl(S

i
l−1), l = 1, ..., 12 (4)

where Fl represents the learnable mapping function of the l-th transformer block, which includes
self-attention and a feed-forward network (FFN). We take the inserted MSP block after the l-th
transformer block as an example to formulate the multimodal spatial prompt learning process. Firstly,
we split Sv

l and Si
l in the spatial dimension to obtain updated RGB search tokens x̃v, RGB prompt

tokens p̃v, TIR search tokens x̃i, and TIR prompt tokens p̃i. Then we utilize our designed spatial
prompt generation (SPG) module to learn multimodal spatial prompts. Next, the RGB and TIR
search features are further enhanced by the generated TIR and RGB spatial prompts, respectively.
Based on spatial prompt learning, the multimodal interaction can be formulated as follows:

x̃v
out = x̃v + SPG(x̃i, p̃v) (5)

x̃i
out = x̃i + SPG(x̃v, p̃i) (6)

Finally, the enhanced search token x̃out are re-concatenated with template tokens and temporal tokens
from the same modality for the next transformer block. We provide a comparison of model efficiency
after applying the multimodal encoder versus the original encoder in Table 6.

Spatial prompt generation. The SPG module requires two input components: search tokens from
one modality and temporal prompt tokens from the other modality. As illustrated in the right part of
Figure 3, let’s describe the generation process of TIR spatial prompt, using TIR search tokens (x̃i)
and RGB prompt tokens (p̃v) as an example. The TIR search tokens act as query, while RGB prompt
tokens serve as the key and value. The common information Iicomm from both modality is extracted
by multi-head cross-attention mechanism as follows:

Q = Linear(x̃i),K = Linear(p̃v), V = Linear(p̃v) (7)

Iicomm = Softmax(
Q ·KT

√
d

) · V (8)

where d represents the dimension of each head. Based on the argument that common information
(e.g., salient objects) can be effectively captured through joint template-search-prompt relationship
modeling within the transformer block (Cui et al., 2024), we further obtain TIR modality-specific
information Iispec by removing the common information. Subsequently, the TIR spatial prompt Iiout
is output by an MLP layer. The process can be defined as:

Iispec = Q− Iicomm (9)

Iiout = MLP (Iispec) (10)
Similarly, RGB spatial prompt Ivout is generated through the above operations to provide comple-
mentary information for TIR search tokens. Compared to static spatial prompts in ViPT (Jiawen
et al., 2023), our multimodal spatial prompts are conditioned on temporal prompts with minimal
computational overhead and are thus more effective to focus on targets in complex tracking scenarios.

3.4 HEAD AND LOSS

We adopt the same structure of the Center head as described in OSTrack (Ye et al., 2022) to predict
the bounding box, which consists of stacked Conv-BN-ReLU layers. The overall loss function is:

L = Lcls + λGIoULGIoU + λL1LL1 (11)

where Lcls represents the weighted focal loss (Law & Deng, 2018) for classification, LGIoU denotes
the generalized IoU loss (Rezatofighi et al., 2019), and LL1 corresponds to the bounding box
regression loss. Additionally, the weighted factors λGIoU and λL1 are set to 2 and 5, respectively.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We adopt the ViT-Base (Kolesnikov et al., 2021) as the original encoder, which is pretrained on
popular single object tracking datasets (SOT) (Ye et al., 2022). Our MSP block is inserted after the

6
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3-rd, 6-th, 9-th, and 12-th blocks of the encoder for multimodal interaction. The template image size
is 128×128 and the search region size is 256×256. The number of learnable temporal tokens Np for
each modality are set to 4, corresponding to the variables needed to represent a bounding box. We crop
the new template image centered on the predicted box and push it into the historical template queue.
The weights of the transformer blocks and head are initialized with the pretrained OSTrack-256
model (Ye et al., 2022). The inserted blocks and learnable temporal tokens are initialized with random
weights. The total batch size is 16. The learning rate is set to 4× 10−5 for the transformer blocks
and head, and 4× 10−6 for the remaining components. We use the AdamW optimizer (Loshchilov &
Hutter, 2017) with weight decay of 1× 10−4. Horizontal flip and brightness jittering are used for
data augmentation.

Training. The training process requires 20 epochs based on the LasHeR training set (Li et al., 2021),
with each epoch comprising 40k samples. The process is divided into two stages: the first stage
involves training for 10 epochs to learn the relationship modeling between image tokens and initial
temporal tokens, with each sample containing k template images and 1 search image. The second
stage consists of another 10 epochs, where each sample contains k template images and 2 search
images, focusing on learning temporal information propagation conditioned on the updated temporal
tokens. The sample interval is set to 400 within a single video sequence. All training stages are
performed on two NVIDIA 3090 GPUs using Python 3.9, Pytorch 2.0.0, and CUDA 11.7. The same
training configuration is employed across all experiments, including ablation studies. The inference
speed (FPS) is evaluated on one NVIDIA 3090 GPU, 12th Gen Intel(R) Core(TM) i9-12900K CPU
and 64GB of memory.

4.2 METRICS FOR RGB-T TRACKING

We adopt two widely used metrics, Precision rate (PR) and Success rate (SR), to evaluate tracking
performances. PR is the percentage of video frames in which the Euclidean distance between the
center coordinates of the predicted box and the ground truth (GT) within a certain threshold (typically
20 pixels). SR is the proportion of frames where the Intersection over Union (IoU) between the
predicted bounding box and the ground truth exceeds a predefined overlap threshold.

4.3 COMPARISONS WITH STATE-OF-THE-ART TRACKERS

Table 1: State-of-the-art comparison on LasHeR, RGBT210 and RGBT234 datasets. The top two
results are highlighted in bold and underline fonts. Results are reported in percentage (%).

Tracker Backbone Pretrain Temporal LasHeR RGBT210 RGBT234 FPS
PR(↑) SR(↑) PR(↑) SR(↑) PR(↑) SR(↑)

DAFNet (Gao et al., 2019) VGG-M ImageNet ✗ 44.9 31.1 - - 79.6 54.4 20.5
MANet (Long Li et al., 2019) VGG-M ImageNet ✗ 45.5 32.6 - - 77.7 53.9 2.1

CAT (Li et al., 2020) VGG-M ImageNet ✗ 45.1 31.7 79.2 53.3 80.4 56.1 20
CMPP (Wang et al., 2020) VGG-M ImageNet ✗ - - - - 82.3 57.5 1.3
MANet++ (Lu et al., 2021) VGG-M ImageNet ✗ 46.7 31.7 - - 80.0 55.4 25.4

TFNet (Zhu et al., 2022) VGG-M ImageNet ✗ - - 77.7 52.9 80.6 56.0 17
MFGNet (Wang et al., 2022) VGG-M ImageNet ✗ - - 74.9 49.4 78.3 53.5 23
APFNet (Xiao et al., 2022) VGG-M ImageNet ✗ 50.0 36.2 - - 82.7 57.9 1.9
OSTrack (Ye et al., 2022) ViT SOT ✗ 51.5 41.2 - - 72.9 54.9 45.5

QAT (Liu et al., 2023) ResNet-50 SOT ✗ 64.2 50.1 86.8 61.9 88.4 64.3 -
ViPT (Jiawen et al., 2023) ViT SOT ✗ 65.1 52.5 - - 83.5 61.7 -

TBSI (Hui et al., 2023) ViT SOT ✗ 69.2 55.6 85.3 62.5 87.1 63.7 36.2
BAT (Cao et al., 2024) ViT SOT ✗ 70.2 56.3 - - 86.8 64.1 -

TAAT (Tang et al., 2022) ResNet-50 SOT ✓ 55.9 34.4 78.6 55.5 78.5 44.1 -
DMSTM (Zhang et al., 2023) VGG-M ImageNet ✓ 55.7 40.0 - - 78.6 56.2 27.6

STMT (Sun et al., 2024) ViT SOT ✓ 67.4 53.7 83.0 59.5 86.5 63.8 39.1
TATrack (Wang et al., 2024) ViT SOT ✓ 70.2 56.3 85.3 61.8 87.2 64.4 -

PromptTrack ViT SOT ✓ 76.2 60.7 90.6 66.1 91.7 67.2 35

LasHeR (Li et al., 2021) is the most challenging dataset in the RGB-T tracking domain, including
complex scenarios such as similar distractors and long-term tracking. It consists of 1224 pairs of
visible light and thermal infrared video sequences, totaling over 730k frames. As shown in Table 1,
our PromptTrack significantly outperforms the state-of-the-art non-temporal tracker BAT (Cao et al.,
2024) by 6% in PR and 4.4% in SR. The substantial improvement in performance indicates that
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integrating temporal information during multimodal interaction enhances perception of targets in
complex tracking environments. In comparison with temporal-based methods relying solely on
dynamic templates, our approach surpasses STMT (Sun et al., 2024) and TATrack (Wang et al., 2024)
by 8.8% and 6.0% in PR, and 7.0% and 4.4% in SR, respectively. This highlights that our method
fully leverages rich and dense spatial-temporal cues to enhance target localization capabilities.

RGBT210 (Li et al., 2017) is a popular tracking benchmark with 150 short-term video sequences.
Compared to the ResNet-based (He et al., 2016) tracker QAT (Liu et al., 2023), our method surpasses
it by 3.8% in PR and 4.2% in SR respectively, without any fine-tuning.

RGBT234 (Li et al., 2019) is an extension of RGBT210 with 24 additional sequences, which provides
12 attributes for a comprehensive evaluation of trackers. From the results, it can be observed that
PromptTrack achieves the best performance, with PR and SR scores of 91.7% and 67.2% respectively.
This represents an improvement of 8.2% and 3.3% in PR, 5.5% and 2.9% in SR over ViPT (Jiawen
et al., 2023) and BAT (Cao et al., 2024), which are also based on our prompt learning paradigm. This
indicates that utilizing streaming spatial-temporal prompts across historical frames enables the model
to possess more robust capabilities compared to relying solely on spatial prompts.

4.4 ABLATION STUDY

To verify the effectiveness of our proposed method, we investigate different designs of PromptTrack
and perform comprehensive ablation studies on LasHeR and RGBT234 datasets.

Table 2: Ablation study on different prompt settings.

# Setting LasHeR RGBT234
temporal prompt spatial prompt PR SR PR SR

① 71.9 57.6 89.5 64.6
② ✓ 74.8 59.7 91.0 66.4
③ ✓ 73.8 58.9 90.8 65.7
④ ✓ ✓ 76.2 60.7 91.7 67.2

Table 3: Comparison of different template
sampling methods on LasHeR.

Strategy PR SR

Top-k score sampling 71.9 57.6
Last-k sampling 74.2 59.3

Uniform interval sampling 76.2 60.7

Impact of different prompt settings. In Table 2, ① indicates that we only employ a modality-shared
transformer encoder to respectively extract RGB and TIR modal features without temporal and
spatial prompts for multimodal interaction. The extracted RGB and TIR search features are directly
concatenated along the channel dimension and then fed into the head. The results on LasHeR still
surpass those temporally-sparse trackers. The findings indicate that historical templates can effectively
enhance the model’s ability to discriminate targets in challenge tracking environments. Notably, while
incorporating streaming temporal prompts, the performances of the model are significantly enhanced
(①vs.②). Experimental results suggest that leveraging dense temporal associations to provide prior
information about the target is crucial for the video-level RGB-T tracking task.

Due to the absence of temporal prompts in ③, we map RGB search tokens as the key and value
in Equation (7) to generate TIR spatial prompt. The performance improvement compared to ①
demonstrates that our designed MSP block can effectively leverage complementary information
for multimodal interaction. However, the significantly larger number of search tokens compared to
temporal tokens (256vs.4) results in higher computational cost, making the use of temporal tokens
more efficient. PromptTrack (④), involving streaming spatial-temporal prompts, exhibits the most
advanced tracking performance. The multimodal spatial prompt generation conditioned on temporal
information allows the model to focus on target-related information, eliminating the interference of
background noise from search regions.

Impact of template sampling strategies. To verify the impact of different template sampling
methods on performance when inference, we compared three different sampling techniques. The
default number k of sampled templates is set to 4. As shown in Table 3, Top-k score sampling means
selecting the top k template images with the highest confidence scores from the template memory
(TM). This method causes the sampled templates to be concentrated in the initial segments of the
video and in simpler scenes, leading to much lower performance. Last-k sampling denotes selecting
the last consecutive k templates stored in the TM, which is lower than uniform interval sampling (i.e.,
sampling at equal time intervals). We choose the uniform interval sampling as the default setting,
which provides consistent historical templates in both simple and challenging scenes.
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Figure 4: Comparison of different numbers
of historical templates.

(a) RGB search (c) TIR search(b) RGB attention map (d) TIR attention map

Figure 5: Attention visualization from temporal tokens
to search tokens. The red boxes denote the GT.

Impact of historical templates. The results are shown in Figure 4. As the number of historical
templates increases, tracking performance gradually improves. In this experiment, the same number of
templates is used for both training and inference. However, due to computational resource limitations,
we set a maximum of 4 templates. Future work could explore the use of more templates, which we
speculate would further enhance performance.

Visualization. To gain deep insights into temporal tokens, we generate cross-attention maps about
the temporal tokens to the search tokens, where the temporal tokens are served as query, as illustrate in
Figure 5. The visualization results indicate that temporal tokens precisely focus on the target, even in
the presence of similar distractors. This can be attributed to temporal tokens also learning information
about motion trajectory of the target from historical templates. More attention visualization results
can be seen in Figure 7 in the appendix.

4.5 EXTENDED EXPERIMENT FOR RGB-D TRACKING.

To demonstrate the versatility of PromptTrack across different domains such as RGB-Depth (RGB-D)
Tracking, we conduct independent training and testing on the DepthTrack dataset without any model
structure adjustments. As shown in Table 4, the performance of PromptTrack (RGB-D) surpass
other top-performing trackers by a significant margin, demonstrating the excellent generality of our
framework for multimodal tracking in other domains. More extended experiments of RGB-D and
RGB-E can be seen in Table 7 and Table 8 in the appendix.

Table 4: Comparison of state-of-the-art RGB-D trackers on the DepthTrack test set.

DeT
(Yan et al., 2021)

OSTrack
(Ye et al., 2022)

SPT
(Zhu et al., 2023)

ProTrack
(Yang et al., 2022)

ViPT
(Jiawen et al., 2023)

OneTracker
(Hong et al., 2024)

PromptTrack
(RGB-D)

F-score 53.2 52.9 53.8 57.8 59.4 60.9 64.4
Re 50.6 52.2 54.9 57.3 59.6 60.4 64.3
Pr 53.6 53.6 52.7 58.3 59.2 60.7 64.5

5 CONCLUSION

In this paper, we have presented a novel video-level RGB-T tracking paradigm via prompt learning,
which learns rich temporal cues and complementary spatial information across consecutive frames.
Our PromptTrack significantly improves performance in complex tracking scenarios by incorporating
streaming temporal prompts about appearance changes and motion trajectories of targets from
historical templates. The multimodal spatial information is efficiently utilized conditioned on the
temporal information, eliminating the need for complex spatial fusion module designs. The prompt-
based framework can be also extended to other multimodal tracking domains. We hope PromptTrack
can facilitate the exploration of spatial-temporal information for multimodal tracking in the future.

Limitations. One limitation of our method is the requirement for substantial storage resources to
retain all historical templates, as well as significant computational resources to perform interactions
between all input images. It would be interesting to explore the use of extracted target tokens for
storage and computation.
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APPENDIX

A INFERENCE DETAILS

The template memory (TM) size is not fixed during inference and can theoretically grow without
bounds. At timestep t, it stores all templates from timestep 0 to t − 1. After tracking the target at
timestep t, a new template is cropped based on the predicted bounding box and subsequently stored
in the TM. For uniform interval sampling at timestep t, all templates from TM are divided into k
segments of equal length lseg, and we sample the middle frame from each segment. According to
Equation (3), the sampled indices are denoted as jm, with the calculation formulas as follows:

lseg =

⌊
t

k

⌋
(12)

jm = (m− 1) · lseg +

⌊
lseg

2

⌋
, m = 2, 3, . . . , k, where t ≥ k (13)

To ensure that the supervision information from the initial frame is preserved, the sampled k templates
will always include the first frame template, i.e., j1 = 0. When t < k, all templates in the TM are
used. In Figure 8 (c), we present a visualization of the sampled templates with frame id indicated,
using the uniform interval sampling strategy. The overall effect shows that this strategy samples
templates over a longer time span, thereby optimizing performance on long-term sequences.

B COMPARISON OF MODALITY-SPECIFIC AND COMMON INFORMATION

Compared to the traditional cross-attention operation, we utilize Equation (9) to obtain modality-
specific information Iispec when generating TIR spatial prompts, rather than information common
Iicomm between two modalities. To demonstrate the advantage of this approach, we conduct com-
parative experiments, as shown in Table 5. Our method achieves a performance improvement, with
increases of 0.9% in PR and 0.4% in SR on LasHeR, which indicates that modality-specific infor-
mation is more important for spatially aligned RGB and TIR images. We hope this idea will also
provide researchers with new insights into studies of multimodal complementary information.

Table 5: Modality-specific and common information study.

Setting LasHeR RGBT234
PR SR PR SR

w/ common information 75.3 60.3 91.1 66.8
w/ specific information 76.2 60.7 91.7 67.2

C COMPARISON OF MODEL PERFORMANCE AND EFFICIENCY

We conduct a comparative analysis of model performance and efficiency on the LasHeR dataset. The
results are shown in Table 6. OSTrack (RGB-T) denotes our baseline model, derived by extending the
encoder of the OSTrack (RGB) tracking model into a modality-shared encoder to separately process
inputs from RGB and TIR modalities. The increase in the number of parameters (+56.7M) comes
from the inserted four MSP blocks and temporal tokens. The increase in Multiply–Accumulate
Operations (MACs) arises from the spatial-temporal interactions with k historical templates and
multimodal spatial prompt generation modules. Due to the need to store all historical template images
of 128× 128 size, memory consumption varies with different sequence lengths. For instance, the
longest sequence blkboyshead from the LasHeR test set, which consists of 12862 frames, requires
12GB of memory and 1587MB of GPU memory. Despite the higher computational overhead,
PromptTrack significantly outperforms the baseline model in terms of PR and SR on LasHeR while
still runing at a real-time speed of 35 FPS.
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Table 6: Comparison of model performance and efficiency on LasHeR.

Tracker Performance Efficiency
PR SR Params MACs FPS

OSTrack (RGB) - - 92.1M 29.0G 130
OSTrack (RGB-T) 51.5 41.2 102.7M 59.8G 69

PromptTrack (RGB-T) 76.2 60.7 159.4M 104.8G 35

D ATTRIBUTE-BASED PERFORMANCE ANALYSIS

To evaluate the performance of PromptTrack in various scenarios, we compare it with the current
state-of-the-art methods based on 12 challenge attributes from the RGBT234 dataset, including No
Occlusion, Partial Occlusion, Heavy Occlusion, Low Illumination, Low Resolution, Thermal Cross,
Object Deformation, Fast Motion, Scale Variation, Motion Blur, Camera Motion, and Background
Clutter. As shown in Figure 6, PromptTrack achieves the best performance across all challenge
attributes, especially on Scale Variation, Fast Motion, and Motion Blur attributes. This indicates
the strong robustness of PromptTrack against many complex challenges, as it can densely model
spatial-temporal associations of targets across consecutive frames.

No Occlusion
(98.4,76.4)

Partial Occlusion
(93.9,70.5)

Heavy Occlusion
(85.9,62.1)

Low Illumination
(92.9,67.6)

Low Resolution
(92.3,65.0)

   Thermal Crossover
(92.9,69.6)

Object Deformation
(89.1,67.4)

Fast Motion
(92.9,64.9)

Scale Variation
(92.3,70.2)

Motion Blur
(94.4,72.5)

Camera Movement
(92.0,68.7)

Background Clutter
(91.7,61.4)

PromptTrack DMCNet APFNet CMPP TBSI STMT

Figure 6: Attribute-based Performance of PR/SR scores on RGBT234.

E EXTENDED STUDIES ON RGB-D AND RGB-E TRACKING DOMAINS

To further demonstrate the generality of PromptTrack in different domains such as RGB-D and
RGB-Event (RGB-E), we conduct additional experimental exploration on VOT-RGBD2022 (Kristan
et al., 2022) and VisEvent (Wang et al., 2023) without any model structure modification. For RGB-D
tracking, we train the model on the DepthTrack training set and test it on the DepthTrack test set and
VOT-RGBD2022 dataset. For RGB-E tracking, we train the model on the VisEvent training set and
test it on the VisEvent test set.

DepthTrack (Yan et al., 2021) is a large-scale long-term RGB-D tracking dataset consisting of
150 training videos and 50 testing videos, with an average of 1473 frames per video. The results
in the RGB-D tracking domain are shown in Table 4, PromptTrack (RGB-D) outperforms recent
state-of-the-art methods ViPT and OneTracker by 5% and 3.5% in terms of F-score.

VOT-RGBD2022 (Kristan et al., 2022) is the latest RGB-D benchmark dataset, comprising 127
sequences designed for leveraging depth information in RGB-D tracking. The dataset adopts an
anchor-based short-term evaluation protocol, which requires trackers to initiate from various initial-
ization points for multiple starts. The expected average overlap (EAO) is the overall performance
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metric. As shown in Table 7, our PromptTrack (RGB-D) outperforms previous RGB-D methods,
achieving an EAO of 77.6%, which is a 4.9% improvement in EAO compared to the OneTracker.

VisEvent (Wang et al., 2023) is currently the first large-scale benchmark dataset for RGB-E tracking
collected from the real world. As shown in Table 8, PromptTrack (RGB-E) achieves 76.5% in PR
and 62.6% in SR, surpassing other state-of-the-art RGB-E trackers.

The superior performances across different multimodal tracking domains demonstrate the effec-
tiveness and generality of PromptTrack, indicating its capability to learn effective spatial-temporal
prompts for guiding the localization of multimodal targets.

Table 7: Comparison of state-of-the-art RGB-D trackers on VOT-RGBD2022.

DeT
(Yan et al., 2021)

OSTrack
(Ye et al., 2022)

SPT
(Zhu et al., 2023)

ProTrack
(Yang et al., 2022)

ViPT
(Jiawen et al., 2023)

OneTracker
(Hong et al., 2024)

PromptTrack
(RGB-D)

EAO 65.7 67.6 65.1 65.1 72.1 72.7 77.6
Accuracy 80.3 80.3 79.8 80.1 81.5 81.9 81.7

Robustness 83.3 83.3 85.1 80.2 87.1 87.2 94.2

Table 8: Comparison of state-of-the-art RGB-E trackers on the VisEvent test set.

ProTrack
(Yang et al., 2022)

TransT
(Chen et al., 2021)

LTMU
(Dai et al., 2020)

OSTrack
(Ye et al., 2022)

ViPT
(Jiawen et al., 2023)

OneTracker
(Hong et al., 2024)

PromptTrack
(RGB-E)

PR 63.2 65.0 65.5 69.5 75.8 76.7 76.5
SR 47.1 47.4 45.9 53.4 59.2 60.8 62.6

F MORE ATTENTION VISUALIZATION

We provide additional visualization results of attention maps from temporal tokens to search tokens
for two representative video sequences selected from the LasHeR dataset, as shown in Figure 7. In
the moto sequence, it can be seen that even in cases of target occlusion and TIR target blurring,
the temporal tokens are able to effectively focus on the target, benefiting from the learned motion
trajectory of the target across consecutive frames. In the 11leftboy sequence, the temporal tokens also
provide consistent attention despite appearance changes of the target. This visualization results fully
demonstrate our streaming temporal prompts can learn information about the target’s appearance
changes and trajectory.
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Figure 7: Attention visualization across different timesteps. The red boxes denote the GT. (a)-(c):
RGB and TIR search images and corresponding attention maps of the moto sequence. (d)-(f): RGB
and TIR search images and corresponding attention maps of the 11leftboy sequence.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

G QUALITATIVE EVALUATION

To intuitively demonstrate the effectiveness of our method, we compare PromptTrack with some
state-of-the-art methods and visualize tracking results in various challenging scenarios. We select
some representative sequences from RGBT234, involving occlusion, low illumination, similar
distractors, and long-term tracking. As shown in Figure 8, our PromptTrack exhibits excellcent
tracking precision and robustness. For instance, in scenarios (a) and (d), where the target is occluded
or undergoes deformation due to long-term tracking, PromptTrack can still accurately locate the
target by leveraging the temporal information provided by temporal prompts. In the scenario (b),
under low illumination conditions, PromptTrack utilizes the complementary spatial information
through generating multimodal spatial prompts to stably track multimodal targets. These results
indicate that our proposed method effectively addresses many challenge challenges, enhancing the
tracker’s discriminative power.
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Figure 8: Qualitative comparison results of our tracker with other SOTA trackers on four representative
sequences from the RGBT234 dataset. (a): Sampled historical template images with frame id from
TM. (b)-(d): Tracking results at different timesteps.
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