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ABSTRACT

While deep neural networks have achieved remarkable successes, they suffer the
well-known catastrophic forgetting issue when switching from existing tasks to
tackle a new one. In this paper, we study continual learning with deep neural
networks that learn from tasks arriving sequentially. We first propose an approx-
imated multi-task learning framework that unifies a family of popular regulariza-
tion based continual learning methods. We then analyze the weakness of existing
approaches, and propose a novel regularization method named “Activity Regular-
ization” (AR), which alleviates forgetting meanwhile keeping model’s plasticity
to acquire new knowledge. Extensive experiments show that our method outper-
forms state-of-the-art methods and effectively overcomes catastrophic forgetting.

1 INTRODUCTION

Human has the ability to continuously learn, accumulate knowledge in their lifetime and be able to
retrieve, consolidate previously acquired skills whenever necessary. Such kind of ability is referred
as continual learning, which is a fundamental capability contributing to the skills development and
specialization in humankind. Conventional machine learning, especially neural networks, however,
are not capable of learning continuously from solving one task to another without forgetting the
previous knowledge. This phenomenon is known as the catastrophic forgetting or catastrophic
inference which has been a long-standing challenge in machine learning and AI for years. To over-
come the catastrophic forgetting problem, a deep neural network on one hand should not be allowed
to change too drastically in order to avoid forgetting the previous knowledge; on the other hand,
the same network also should be flexible enough to learn and acquire new knowledge. Such condi-
tion is referred to as the stability-plasticity dilemma (Abraham & Robins, 2005) which has posed a
great challenge in continual learning. In literature, continual learning has been extensively studied
in many fields, ranging from robotics, machine learning, to neuroscience and cognitive science.

In this work, we investigate the problem of continual learning from machine learning perspective.
In particular, we show that catastrophic forgetting can be alleviated by optimizing the multi-task
learning objective in which popular approaches such as Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017), Synaptic Intelligence (SI) (Zenke et al., 2017) and Gradient Episodic Memory
(Lopez-Paz et al., 2017) (GEM) can be viewed as special cases. We show that by varying the losses
in the approximated multi-task learning objective, we can recover a family of regularization based
approaches for continual learning. Then, we analyze the weakness of two popular approaches, EWC
and GEM, and show that label noise or mistakes in the memory can result in dramatic changes in
the optimal decision boundary of previous tasks, leading to catastrophic forgetting.

To overcome the above problem, we propose a novel technique called “Activity Regularization”
(AR) that penalizes changes in the model’s prediction on its learned information. AR works by
utilizing a memory to store some of previous training samples; Then, when learning a new task,
AR penalizes the KL-divergence between the current model’s and the previous optimal model’s
predictions on the corresponding memory. This objective is to ensure that the new model will be
consistent with the previous optimal ones on the old tasks, thus avoiding catastrophic forgetting. We
further develop a stochastic version of AR that randomly samples a task and apply AR in each mini-
batch update. Stochastic AR allows the network to be more flexible when acquiring new knowledge
while still alleviating catastrophic forgetting. We evaluate our method on popular continual learning
benchmarks and achieve promising results compared with state-of-the-art methods.
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2 CONTINUAL LEARNING BY APPROXIMATED MULTI-TASK LEARNING

Basic notations. We first present notations used in this work. We use subscripts to denote task
index, for example, T1, D1, are the first task and first training data respectively. Superscripts de-
note sample in a data set, we omit subscripts of the samples if the task is known, for example,
Dt = {x(n), y(n)}Nn=1 means data set Dt consists of n training samples. We denote a model that
is trained on task t and the current model as θt and θ respectively. Finally, θk denotes the k–th
parameter of θ.

Consider the continual learning problem where the learner θ receives a sequence of T tasks
T = {T1, T2, . . . , TT }, each of which consists of a training data Dt. At any given time t, only
task Tt are presented to the learner θ and it has to learn to solve the current task without access to
the training data of any previous tasks. The goal of continual learning is to train the learner such that
it can solve the not only current task Tt but also all the previous tasks Tk<t.

To avoid forgetting previous knowledge, when learning task Tt, the learner θ minimize the multi-
task learning objective as

L̃t(θ) = Lt(θ,Dt) + λt−1Lt−1(θ,Dt−1) + . . .+ λ1L1(θ,D1), (1)

where the loss Li(θ,Di) is usually the negative log-likelihood −
∑
x,y∈Di

log p(y|x;θ) of the cor-
responding training data and λi regulates the importance of task Ti to all the tasks observed so far.
In continual learning, at time t, we do not have access to the data Dk<t to evaluate the loss Lk<t,
thus, we need to approximate the past losses Lk<t(θ,Dk) when minimizing Lt(θ,Dt).

A common choice is to employ Laplace propagation (Eskin et al., 2004) of the negative log posterior

− log p(θ|Di) ≈ − log p(θ∗i |Di) +
1

2
(θ − θ∗i )TFi(θ − θ∗i ), (2)

where θ∗i is a mode of the log posterior and Fi is the empirical Fisher information matrix evaluated
at θ = θ∗i . If we assume an uniform prior on θ, the posterior coined with the likelihood 1, thus by
substituting eqn. 2 to 1, the objective for training task Tt becomes

L̃t(θ) = Lt(θ,Dt) +
∑
i<t

λk(θ − θ∗i )TFi(θ − θ∗i ), (3)

where the terms − log p(θ∗i |Di) are omitted because they are constant with respect to θ. According
to eqn. 3, we can minimize the negative log-likelihood of θ on the previous tasks without explicitly
storing the training samples because the data distribution are already captured in the Fisher infor-
mation. Eqn. 3 results in a wide range of methods for continual learning, each of which proposes a
different method to approximate the Fisher information matrix. For example, Elastic Weight Con-
solidation (EWC) (Kirkpatrick et al., 2017) assumes the Fisher is diagonal and approximates it using
the identity:

Ft ≈ diag

(
N∑

n=1

(
∇θ log p(y(n)

t |x
(n)
t ;θ)

)2∣∣∣∣
θ=θ∗

t

)
(4)

Instead of using the Fisher’s identity, Synaptic Intelligence (SI) (Zenke et al., 2017) directly mea-
sures the sensitivity of a parameter θkt to the loss function at task Tt through out the whole training
trajectory. Zenke et al. (2017) also shows that this estimation is equivalent to measuring the full
Fisher matrix on whole data set under certain choices of the loss function.

Another approach to achieve the approximated multi-task learning objective in eqn. 1 is based on the
observation that at the beginning of task Tt, we initialize θ = θ∗t−1, whose value already minimized
the lost L̃t−1. From this, if we can consider eqn. 1 as minimizing the loss Lt(θ) with the constraints
that previous losses are not allowed to increase after every mini-batch update, which is the GEM
objective. In particular, GEM optimize the following problem

Minimizeθ,Dt Lt(θ)

subject to Lk(θ,Mk) ≤ Lk(θ
∗
t−1,Mk),∀k < t, (5)

1With constant prior: p(θ) = const, ∀θ, by Bayes’s rule: p(θ|Di) ∝ p(θ)p(Di|θ) ∝ p(Di|θ).
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where the loss Lk is evaluated at the memoryMk that stores some of the training samples from task
Tk. GEM further converts the constraints in eqn. 5 into the gradient constraints of the losses and
solve them using quadratic programming.

Finally, the type of losses Lk<t can be flexibly changed to other loss rather than the negative log-
likelihood. For example, Learning without Forgetting (LwF) (Li & Hoiem, 2017) proposes a form
of distillation loss by minimizing the KL-divergence of past models and current model on the newly
observed tasks. By changing the losses Lk<t, we can recover different solutions for continual learn-
ing in the literature.

3 ACTIVITY REGULARIZATION FOR CONTINUAL LEARNING

3.1 LIKELIHOOD MATCHING IN APPROXIMATED MULTI-TASK LEARNING

While EWC and GEM are two popular methods for continual learning, we argue that they are sen-
sitive to misclassified samples selected in the memory or used to estimate the Fisher information.

Let us consider a scenario of learning two tasks T1 and T2 where we store the first optimal model θ∗1
and use a sample {x1,y1} to estimate the Fisher information or storing in the memory. For EWC,
by applying eqn. 2 with this scenario, we have:

(θ − θ∗1)TF1(θ − θ∗1) ≈ log p(θ∗1 |x1)− log p(θ|x1), (6)
again we assume uniform prior on θ, thus minimizing LHS of eqn. 6 is equivalent to finding θ that
has the same log-likelihood as θ∗1 on x1. For GEM, the constraint is to penalize whenever θ that
has higher negative log-likelihood than θ∗1 on x1. Now assume y1 = [1, 0, 0] and the predictions of
the two models θ∗1 and θ are [0.1, 0.9, 0.1] and [0.1, 0.1, 0.9], that is, both models make mistakes on
x1. As a result, θ∗1 and θ have the same log-likelihood value on x1, and thus there are no penalty
on θ in both EWC and GEM. However, these two models are very different from each other since
they make different mistakes on x1. In general, if we have too many misclassified samples or label
noise, the decision boundary on the previous task might be altered despite minimizing the EWC or
GEM objective.

This phenomenon happens based on an assumption that we usually do not train the model to have
0 error on the training set to avoid overfitting and we only use a relatively small data portion to
estimate the Fisher or store as memory. Therefore, EWC and GEM might not correctly penalize the
current model from changing the past tasks’ optimized decision boundaries.

3.2 ACTIVITY REGULARIZATION FOR CONTINUAL LEARNING

To tackle the aforementioned problem, we propose to minimize the KL-divergence between the cur-
rent model and the previous optimal models on the corresponding tasks. This can also be interpreted
as distilling the knowledge from θ∗i to θ on the corresponding data Di.

In particular, for each task Ti, we store some of the samples xi and the prediction of the optimal
model fθ∗

i
(xi) in a memoryMi; then the Activity Regularization (AR) objective for task Tt is

L̃t(θ) = Lt(θ) +
∑
i<t

∑
x∈Mi

λiKL

(
1

τ
fθ∗

i
(x)

∥∥∥∥ 1

τ
fθ(x)

)
, (7)

where τ is the temperature used in softmax outputs. Our goal is to ensure that the new model θ
behaves similarly with θ∗t on the previous task Tt, thus we call this constraint as activity regular-
ization. Algorithm 1 gives a summary of the proposed Activity Regularization based algorithm for
continual learning. We refer to this algorithm as “Deterministic Activity Regularization” (DAR)
which imposes regularization constraints for all the previous tasks at every learning iteration.

Remark. Similar to approximated multi-task learning methods, DAR employs a regularization
constraint on every of the past tasks when learning a new one, which requires calculating the KL-
divergence resulting in an additional forward pass on the memory, and thus results in additional
computational cost when training the models. Moreover, the number of regularizers for each task
is equal to the number of previously observed tasks, which may considerably restrict the model’s
plasticity to acquire new knowledge. That is, by enforcing too many constraints on the current model
for reducing forgetting, we sacrifice its ability to learn new information.
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Algorithm 1 Deterministic Activity Regularization (DAR) algorithm for Continual Learning.

1: Initialize the model and memory: θ,M0 ← ∅, select temperature τ
2: for t = 1,. . . ,T do
3: Observe the data set Dt

4: Mt ← add random samples from Dt to the memory.
5: for k = 1,. . . ,niter do
6: Sample D = {x(n), y(n)}Nn=1 a batch from training data Dt

7: gθ ← ∇θ

 ∑
x,y∈D

Lt(θ, (x, y)) +
∑
i<t

∑
x∈Mi

λiKL

(
1

τ
fθ∗

i
(x)

∥∥∥∥ 1

τ
fθ(x)

)
8: θ ← θ − α · SGD(θ, gθ)

9: return θ

3.3 STOCHASTIC ACTIVITY REGULARIZATION

To address the weaknesses of DAR, we propose the Stochastic Activity Regularization (SAR), which
randomly samples a past task and apply activity regularization on each gradient update when learn-
ing a new task. Algorithm 1 summarizes the proposed SAR algorithm for continual learning.

For each task, we randomly sample its training data to add to the memoryMt. Then, when learning
a new task, for each mini batch to update θ, we apply AR on all of the previous memory. For SAR,
we instead randomly sample an index i of the previous tasks and apply the AR only on that memory,
As a result, SAR is much more robust as it improves the model’s plasticity, alleviates catastrophic
forgetting and has greater scalability. For DAR, we omit the sampling index i in step 7 and calculate
the KL divergence on all the memory as in eqn. 7.

The memory Mi is used to store some training samples of the previous tasks which is used to
regularize the current model when learning new tasks. Using a memory for continual learning has
been explored by previous works Nguyen et al. (2018) and Lopez-Paz et al. (2017). Although more
sophisticated methods such as the greedy K-center algorithm can be used to select data points that
spread through out the input space (Nguyen et al., 2018), in this work, even random sampling works
well with our methods and can achieve state-of-the-art results.

Algorithm 2 Stochastic Activity Regularization (SAR) algorithm for Continual Learning.

1: Initialize the model and memory: θ,M0 ← ∅, select temperature τ
2: for t = 1,. . . ,T do
3: Observe the data set Dt

4: Mt ← add random samples from Dt to the memory.
5: for k = 1,. . . ,niter do
6: Sample D = {x(n), y(n)}Nn=1 a batch from training data Dt

7: Sample an index i from [0, . . . , t− 1]

8: gθ ← ∇θ

 ∑
x,y∈D

Lt(θ, (x, y)) +
∑
x∈Mi

λiKL

(
1

τ
fθ∗

i
(x)

∥∥∥∥ 1

τ
fθ(x)

)
9: θ ← θ − α · SGD(θ, gθ)

10: return θ

4 RELATED WORK

Continual learning has been studied in different fields of AI such as robotics (Thrun & Mitchell,
1995), computer vision (Li & Hoiem, 2017) and machine learning (Kirkpatrick et al., 2017). In this
work, we focus to study continual learning mainly from the machine learning perspective.

The goal of continual learning is to build a learner that can continuously learn from a stream of tasks
while still maintain its previously acquired knowledge. Prior works can be broadly categorized into
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4 main approaches: (1) structural regularization, (2) functional regularization, (3) Bayesian learning
and (4) ensemble learning.

Structural regularization approaches employ penalties on the network’s parameters, encourage the
important parameters of previous tasks to not change when learning the new task. The parameter
importance can be estimated by calculating the Fisher information as in EWC (Kirkpatrick et al.,
2017) or directly measure how changes in each parameter will affect the change in the loss function
as proposed in SI (Zenke et al., 2017). Exact estimation of the full Fisher is intractable. Therefore,
both EWC and SI estimates only its diagonal, namely, how much each parameter contribute to the
total loss assuming that the parameters are independent from each other.

Functional regularization methods employ the regularizer on the model’s output rather than its pa-
rameters. Different from structural regularization, functional regularization aims to preserve the
learned input-output mapping function of the network. Learning without Forgetting (LwF) (Li
& Hoiem, 2017) proposes to minimize the difference in KL-divergence of the current and previ-
ous models on the new tasks, which is a form of knowledge distillation penalty. Similarly, Less-
forgetting learning (LF) (Jung et al.) proposes to minimize the `2 norm of the two prediction in
stead of KL-divergence as LwF. Motivated from Hebbian learning (Hebbs, 1949), MAS (Aljundi
et al., 2018a) proposes to penalize the `2 norm of the model’s prediction. Selfless sequential learning
(SNI) (Aljundi et al., 2018b) improves MAS by combining with it sparsity in each layer’s activation.
Different from LwF that distills previous models on the current data, which contradicts the goal of
knowledge distillation since past models are not trained on the new data, they provide noise to the
current model. Our approaches, DAR and SAR, distills past models on their correctly trained data,
thus maintaining the past knowledge for new models.

Bayesian learning can be considered as a natural way of solving continual learning. Nguyen et al.
(2018) proposes Variational Continual Learning (VCL) that using the posterior of all observed tasks
as a prior to combine with the current log-likelihood to yield the new posterior, from which point can
recurse. Huszár (2018) shows that from Bayesian learning, we can derive and simplify the objective
of EWC into a single constraint. While there are some overlapping between Bayesian learning and
our approximated multi-task learning framework, the main difference is that our objective allows
us to actively control the contribution of previous tasks by setting the importance value λi for each
loss Li. In Bayesian learning, tasks importance are naturally assigned by the Bayes’ formula, thus,
further tasks might receive less importance compare to recently observed ones.

Finally, ensemble learning techniques addresses catastrophic forgetting by having a dedicated sub-
network for each task. The learning of sub-networks can either be explicit or implicit. In explicit
ensemble learning, each sub-network is either newly initialized whenever a new tasks arrives as
in Progressive Neural Network (Rusu et al., 2016) or searched from a big network as proposed
in Pathnet (Fernando et al., 2017). After training a task, the corresponding sub-network is frozen
and will not allowed to change, thus completely immune to catastrophic forgetting. In contrast,
implicit ensemble learning can be considered as a hybrid method of explicit ensemble with other
types of regularization. Dynamically expandable networks (Yoon et al., 2018) proposes to learn
sub-networks in a pre-intialized network through sparsity, adding new neurons whenever needed.
Catastrophic forgetting is avoided by using a form of structural regularizer. Ensemble learning
approaches are usually resistant to catastrophic forgetting as the cost of either unbounded growth of
model’s size or cannot be applied to different network architectures.

In this work, we propose an approximated multi-task learning framework to unify both structural
and functional regularization, in which our proposed activity regularization is a special case.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

We evaluate the performance of DAR, SAR on three common benchmarks of continual learning:
permuted MNIST, split notMNIST and split CIFAR-100. The baseline models are EWC (Kirk-
patrick et al., 2017), SI (Zenke et al., 2017), GEM (Lopez-Paz et al., 2017) and VCL (Nguyen et al.,
2018) (except CIFAR-100). Standard setting such as model architecture and data splits are used
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Table 1: Average test accuracy of different methods at the end of training on 10 permuted MNIST.
Asterisk denotes result is collected from the author’s paper. Hyphen denotes default setting.

Method Memory type Memory Size Setting Accuracy

EWC model 1.8m λ = 100, N = 200 0.795
SI model 0.2m c = 0.5 0.860

GEM sample 1.5m - 0.918
VCL* none 0 - 0.900

VCL + Coreset* sample 1.5m - 0.930
DAR sample 1.5m λ = 10, τ = 5 0.949
SAR sample 1.5m λ = 100, τ = 5 0.948

whenever possible. For DAR and SAR, we report the results with temperature τ = 5 as we found it
worked consistently good in all experiments.

Since the methods used in the experiments utilize different type of memory units: EWC and SI
require storing the previous models and the parameter’s importance estimation while GEM, VCL
and our approaches use memory to store the training samples. We quantize the memory size used in
each method by the number of floating point numbers used. For example, one MNIST image of size
28× 28 requires 784 floating point numbers and a 100× 10 matrix requires 1,000 float numbers.

5.2 PERMUTED MNIST BENCHMARK

Permuted MNIST is a popular benchmark for continual learning (Goodfellow et al., 2013; Kirk-
patrick et al., 2017; Zenke et al., 2017). Here we use a series of 10 tasks each of which is generated
by first randomly generate a permutation and then apply it to every image in the data set. The net-
work architecture used in all experiments is a single-headed MLP with two hidden layers containing
100 neurons [784-100-100-10] with ReLU activation. The final layer is a single-head classifier with
softmax outputs, that is, we only use one classifier for all 10 tasks.

For EWC, at the end of training, we randomly sample N = 200 samples to estimate the diagonal
Fisher matrix and store the optimal model θ∗i for each task. For sample based memory approaches,
we use random sampling to select m = 200 samples from each tasks and store them in the memory.

We perform hyper-parameters tuning on all approaches where we assume all previous tasks are
equally important so that all λi in eqn. 1 are equal. We experiment with c ∈ {0.5, 1} for SI and
λ ∈ {1, 10, 100, 300} for other methods; we report the results according to the best value of these
hyper-parameters. All models are optimized by SGD with learning rate of 0.05 over 10 epochs for
each task; momentum and other forms of regularization are not used.

Table 1 reports the averaged test accuracies on all 10 tasks at the end of training. From the results,
EWC perform the worst although requiring the most “memory unit”. SI performs better than EWC
thanks to its Fisher approximation strategy on the whole data. GEM attains 91.8% accuracy, higher
than both EWC, SI and VCL due the its strong constraints. Combining VCL with coreset (analogy
to our memory) improves its accuracy to 93%. Both DAR and SAR outperforms the baselines by
large margins, achieving accuracy of 94.9% and 94.8% respectively.

We also investigate the scalability of our methods when more samples are available in the memory.
In fig. 1, we plot the test accuracies after seeing 10 tasks of DAR, SAR and GEM. Both DAR and
SAR are consistently better than GEM at all memory size. Only at 2500 samples, GEM performs
better than our methods at 200 samples. At 2500 samples, both DAR and SAR achieves over 96%
accuracy, showing great scalability. Across all methods, performance consistently improves when
the memory size increases. When only a small amount of samples are available in the memory, e.g.
200 and 500, GEM may overfit to these samples, leading to the performance degrade on the whole
past data sets. As more samples are stored, the memory can better represent the past tasks, results
in performance improvement. In both cases, our methods show advantage over GEM, maintaining
performance on previous task by enforcing model’s consistency.

6



Under review as a conference paper at ICLR 2019

1 2 3 4 5 6 7 8 9 10

# tasks

0.94

0.95

0.96

0.97

A
cc

ur
ac

y

DAR(m=200)
DAR(m=500)
DAR(m=1000)
DAR(m=2500)
SAR(m=200)
SAR(m=500)
SAR(m=1000)
SAR(m=2500)
GEM(m=200)
GEM(m=500)
GEM(m=1000)
GEM(m=2500)

Figure 1: Comparison of different memory size on the permuted MNIST experiments.

Table 2: Average test accuracy on the split notMNIST benchmark.

Method EWC GEM SI VCL* VCL+Coreset* DAR SAR
Accuracy 0.710 0.810 0.940 0.920 0.960 0.976 0.977

5.3 SPLIT NOTMNIST BENCHMARK

This experiment considers notMNIST2, a more challenging version of MNIST. The notMNIST data
set consists of over 500,000 images of characters A to J written in different fonts and has about
6.5% label error rate. Following Nguyen et al. (2018), we use the same data splits and consider
five tasks: classifying the characters A/F, B/G, C/H and E/J. The training data consists of 400,000
images sampled from the original noisy 500,000 training data and the testing data is 18,000 cleaned
images. We also use the same network architecture: a MLP with four hidden layers , each has 150
neurons [784-150-150-150-150-5×2]. The final layer is a multi-head classifier, that is, each task
has a separated output. The other settings such as memory size, temperature are the same as the
permuted MNIST experiment.

Table 2 reports the final averaged accuracy after learning five tasks. Compare to SI, EWC and
GEM perform considerably worse due the presence of label noise. This result is consistent with our
analysis in section 3.1: noisy memory can easily cause catastrophic forgetting in EWC and GEM
while SI is more resistant to noise since it approximates the Fisher on all observed samples of past
tasks. As a result, SI performs significantly better than both EWC, SI and VCL alone, achieving
94% accuracy. When combined with a coreset VCL further improves the performance to 96%.
Finally, both DAR and VAR consistently perform better than the baselines, achieving 97.6% and
97.7% accuracy respectively.

5.4 SPLIT CIFAR-100 BENCHMARK

We consider the split CIFAR-100 benchmark (Zenke et al., 2017; Lopez-Paz et al., 2017), in which
we split data CIFAR-100 data set into a series of 10-classes classification tasks. For this task, we use
a CNN used in (Zenke et al., 2017), having 4 layers of convolutions, 2 fully connected layers with
dropout in between. We compare DAR, SAR with EWC, SI and GEM and a finetuning model, VCL
is not considered since it was not developed for convolutional layers. We use SGD optimizer with
learning rate 0.05 over 30 epochs for all methods. The finetuning baseline is included in this experi-
ments to measure how well we can learn without worrying about catastrophic forgetting. In previous
experiments, the tasks are quite simple thus the network can easily achieve good performance.

2 http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html.
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(a) Averaged accuracy on the split CIFAR-100.
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Figure 2: Performance results on the split CIFAR-100 benchmark.

Fig. 2 shows the overall results of this experiments. We report the averaged accuracy after 10
tasks in fig. 2a, where EWC and SI are not as effective as alleviating forgetting as in previous
experiments because this benchmark is more challenging. DAR and SAR achieve slightly higher
averaged accuracy compare to GEM.

We also report individual task accuracy of DAR and SAR compare to the finetuning model in fig. 2.
As expected, the finetuning model achieves relatively high performance on individual tasks because
its goal is only to learn the current task by leveraging knowledge of previous tasks. Except the first
task where all models are the same, SAR achieves slightly higher accuracy than DAR on 6 out of
9 remaining tasks. Overall SAR performs better than DAR by a small margin, showing that it can
achieve similar results compare to DAR and has more scalability.

6 CONCLUSION

We propose an approximated multi-task learning framework that can alleviate catastrophic forget-
ting, an important challenge in continual learning and show that several previous solutions in the
literature are special cases of this framework. We further analyze the weakness of two popular
methods: EWC and GEM, showing that they are sensitive to mistakes and noise in the Fisher or
memory. To overcome this problem, we propose the deterministic activity regularization for contin-
ual learning, DAR, that enforces the new model’s behaviour to be consistent with the optimal models
on each of the previous tasks. As the result, DAR is much more resistant to noise in the memory
since its goal is to maintain the previously optimized decision boundary. We further improve DAR
with a stochastic sampling regularizer (SAR), which balances the model’s stability and plasticity,
allowing the model to acquire new knowledge, alleviate forgetting and has greater scalability.

Through extensive experiments on popular continual learning benchmarks, we show that DAR and
SAR consistently outperforms state-of-the-art methods. We demonstrate that label noise data such
as notMNIST can be extremely destructive for EWC and GEM in the continual learning setting
while our methods can still maintain good performance. Finally, we show that DAR and SAR can
be applied on both MLP and CNN, effectively alleviate catastrophic forgetting.
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