
Under review as a conference paper at ICLR 2019

ADAPTIVE PRUNING OF NEURAL LANGUAGE MODELS
FOR MOBILE DEVICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural language models (NLMs) exist in an accuracy–efficiency tradeoff space
where better perplexity typically comes at the cost of greater computation com-
plexity. In a software keyboard application on mobile devices, this translates into
higher power consumption and shorter battery life. This paper represents the first
attempt, to our knowledge, in exploring accuracy–efficiency tradeoffs for NLMs.
Building on quasi-recurrent neural networks (QRNNs), we apply pruning tech-
niques to provide a “knob” to select different operating points. In addition, we
propose a simple technique to recover some perplexity using a negligible amount
of memory. Our empirical evaluations consider both perplexity as well as energy
consumption on a Raspberry Pi, where we demonstrate which methods provide
the best perplexity–power consumption operating point. At one operating point,
one of the techniques is able to provide energy savings of 40% over the state of
the art with only a 17% relative increase in perplexity.

1 INTRODUCTION

An emerging application of neural language models (NLMs) is smart software keyboards on such
mobile devices as smartphones and tablets that provide next-word prediction, allowing users to
input entire words with a single tap. For example, the app SwiftKey1 advertises the use of neural
networks for predictions;2 according to Google Play Store, it has more than 100 million downloads,
demonstrating its popularity.

Based on standard metrics such as perplexity, neural techniques represent an advance in the state
of the art in language modeling (Merity et al., 2018b). Better models, however, come at a cost in
computational complexity, which translates to higher power consumption (Tang & Lin, 2018). In
the context of mobile devices, energy efficiency is, of course, an important optimization objective.
A casual web search, for example, reveals numerous complaints from users of the above apps about
battery drain, indicating that this is not a hypothetical concern.

In reality, neural language models exist in a accuracy–efficiency tradeoff space. Although this fact
has been recognized for applications such as image recognition (Canziani et al., 2016) and keyword
spotting (Tang et al., 2018), to our knowledge no one in the NLP community has explored these
tradeoffs. All previous papers on NLMs simply report single-point perplexity figures. In contrast,
the high-level goal of our work is to understand the tradeoffs between neural modeling accuracy and
real-world efficiency constraints: in addition to perplexity, NLMs should be evaluated in terms of
FLOPs,3 milliJoule per query (mJ/q), and inference latency. We conduct exactly such experiments,
using the Raspberry Pi (which shares the same architecture as most mobile devices today) as a more
convenient hardware platform.

Ideally, NLMs should provide a “knob” that allows developers to tune accuracy–efficiency tradeoffs.
In this paper, we explore pruning approaches that take a pre-trained quasi-recurrent neural network
(QRNN; Bradbury et al., 2017), representing the state of the art in NLM today, and provides exactly
such a knob. Furthermore, our techniques allow these tradeoffs to be tuned at inference time, which

1http://www.swiftkey.com/
2https://blog.swiftkey.com/swiftkey-debuts/
3Convention from literature defines number of FLOPs as the total number of additions and multiplications.
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Figure 1: An illustration of the first QRNN layer for language modeling. In this visualization, a
QRNN layer with a window size of two convolves and pools using embeddings from the input. Note
the absence of recurrent weights.

allows a mobile device to adaptively control its behavior, e.g., favor efficiency at the cost of accuracy
when the battery is low.

Thus, this paper makes the following contributions: First, to our knowledge, we are the first to
comprehensively explore accuracy–efficiency tradeoffs for NLMs with experimental evaluation of
energy consumption on a Raspberry Pi. Second, we evaluate a number of inference-time pruning
techniques that takes any pre-trained QRNN and provides a tunable accuracy–efficiency “knob”.

2 BACKGROUND AND RELATED WORK

2.1 QUASI-RECURRENT NEURAL NETWORKS

Quasi-recurrent neural networks (QRNNs; Bradbury et al., 2017) achieve highly competitive per-
plexity on word-level language modeling datasets, including state-of-the-art perplexity on WikiText-
103 (Merity et al., 2018b). Although applying such techniques as dynamic evaluation (Krause et al.,
2017), Hebbian softmax (Rae et al., 2018), and mixture of softmaxes (Yang et al., 2017) can pro-
duce lower perplexity, our focus is on the recurrent architecture. Thus, we explore the task of pruning
QRNNs without using any other extensions.

Each word is encoded as a one-hot vector and then fed into a linear layer, which produces lower-
dimensional word embeddings for the QRNN layers. A single QRNN layer consists of two distinct
components—convolution and recurrent pooling—that alternate to imitate an LSTM (Hochreiter &
Schmidhuber, 1997). Given a stacked sequence of inputs X = x1 ⊕ · · · ⊕ xn ∈ Rk×n (e.g., word
embeddings in language modeling), the one-dimensional convolution layer is defined as

Z = tanh(Wz ·X)

F = σ(Wf ·X)

O = σ(Wo ·X)

where Wz , Wf , Wo are the weights associated with the input, forget, and output gates, respectively,
· represents a masked convolution along time, and σ denotes the sigmoid function. For W{z,f,o} ∈
Rm×(k×r),m is the number of output channels, k is the number of input channels, and r the window
size across time. Without loss of generality, we henceforth represent W{z,f,o} as two-dimensional
matrices ∈ Rm×s, where s = k × r. The outputs are fed into a recurrent pooling layer:

ct = ft � ct−1 + (1− ft)� zt

ht = ot � ct

where � denotes element-wise product. Altogether, these two layers define a single QRNN
layer (Bradbury et al., 2017; see Figure 1). Multiple layers can be stacked for greater expressiveness,
where the output h1:n of the previous layer is the input X to the current layer.

We tie the weights between the input and output layers, as used by Merity et al. (2018a) and proposed
by Inan et al. (2017). In addition to improving perplexity, weight tying reduces the number of
parameters and hence the memory footprint, which is beneficial to our task.
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2.2 PRUNING

Weight pruning is an effective strategy for reducing the computational footprint of a model. An influ-
ential pioneering work, LeCun et al. (1990) proposes to discard weights using a error-approximation
approach based on Hessian diagonals. More recent work suggests pruning weights with small mag-
nitudes (Han et al., 2016), with quantization and Huffman coding as additional steps. However,
these approaches introduce irregular sparsity to the weights, and they assume that re-training the
weights is feasible.

In this work, we take a different approach and focus on techniques that eliminate entire filters.
This is because modern implementations of feedforward evaluation (e.g., im2col and particularly
NEON instruction on ARM processors) take advantage of dense matrix multiplications. Pruning
individual weights without changing the dimensions of the weight matrices has minimal effect on
power consumption—this is confirmed by our initial exploratory studies on the Raspberry Pi. Hence,
we only examine pruning techniques that discard entire filters of the convolutional layers:

Random pruning. A simple baseline (Mittal et al., 2018) is random filter pruning, where n% of
the filters are randomly pruned, layer-by-layer. Interestingly, Mittal et al. (2018) find that random
pruning is competitive with more advanced methods.

Filter norm. Li et al. (2017) propose ranking filters by their L1-norms, and then dropping off n% of
the smallest filters on a layer-by-layer basis. Mittal et al. (2018) have previously found that L1-norm
filter pruning (Li et al., 2017) outperforms a multitude of competing approaches.

Mean activation norm. Among other approaches, Molchanov et al. (2016) suggest pruning filters
whose mean activations are small. This approach is especially effective on ReLU, which both creates
sparse activations and forces them to be non-negative.

L0 regularization. Louizos et al. (2018) apply L0 regularization to neural networks in order to learn
sparse, efficient structures. Formally, define an objective

R(θ) = L(θ) + λ‖θ‖0
θ∗ = arg min

θ
R(θ)

where L is the original loss function and θ the weights. The dependence on the hypothesis and
training examples has been omitted for brevity. The optimal solution entails a non-differentiable
objective and iteration over all 2|θ| possibilities to choose the best θ∗; hence, Louizos et al. (2018)
propose the following relaxation of the objective:

R̂(θ,φ) = Ez∼p(z|φ) [L(θ � z)] + λ

|θ|∑
i=1

(1−Q(zi ≤ 0;φi))

θ∗,φ∗ = arg min
θ,φ

R̂(θ,φ)

where z ∼ p(z|φ) is a binary discrete random mask parameterized by φ, and Q is the CDF. Intu-
itively, for some choice of φ, the number of active parameters (on average) is penalized. Inspired by
the Concrete distribution (Maddison et al., 2016), Louizos et al. (2018) propose the hard concrete
distribution for z, further relaxing the discrete random mask into a continuous one:

s = σ ((logu− log(1− u) + logα)/β)

z = min(1,max(0, (ζ − γ)s + γ))

where u ∈ R|θ| is a continuous random vector such that ui ∼ Uniform [0, 1], φ = logα are the
mask parameters, and γ = −0.1, ζ = 1.1, β = 2/3 are scaling hyperparameters. Note that β can
also be included as part of the mask parameters φ; we follow Louizos et al. (2018) and fix β = 2/3.
Louizos et al. (2018) then apply the reparameterization trick (Kingma & Welling, 2014; Rezende
et al., 2014) and make a Monte Carlo approximation to the objective:

R̂(θ,φ) =
1

N

N∑
i=1

(
L(θ � z(i))

)
+ λ

|θ|∑
i=1

(1−Q(zi ≤ 0;φi))
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A closed form expression is derived for the penalty, (1 −Q(zi ≤ 0;φi)) = σ(logαi − β log −γζ ).
At test time, the following estimator is used:

z = min(1,max(0, σ(logα)(ζ − γ) + γ)

3 INFERENCE-TIME PRUNING

In this section, we explain how the various techniques in Section 2.2 can be adapted to QRNNs.
For the following methods, we assume that a pre-trained model is provided. We denote the weights
at QRNN layer l as W(l). In all methods, we tie the indices across Wz,Wf ,Wo. For example,
if filter i is selected for pruning at layer l, then W

(l)
{z,f,o} := W

(l)
{z,f,o}[−i, :], where −i denotes

exclusion of index i. This allows the removal of the column [:,−i] in the next layer as well.

Random pruning. We apply random pruning to Wz , Wf , and Wo. That is, we randomly prune
filters associated with the same indices across the three weights.

Filter norm. We apply filter norm pruning (Li et al., 2017), with the filter norms of Wz acting as
the criteria. We find Wz most helpful, since small filter norms should result in small hidden outputs,
which is not necessarily the case for Wf and Wo.

Mean activation norm. The hidden output H = h1 ⊕ · · · ⊕ hn is a natural candidate for col-
lecting mean activation statistics. Intuitively, if ‖H:,i‖1 is small on average, then the ith filters for
Wz,Wf ,Wo are less important. Statistics are collected using a single pass of the entire training
set. For inference-time pruning, we store the collected statistics.

L0 regularization. Since we are given a pre-trained model and are prohibited from altering the
weights, we learn the mask parameters only: φ∗ = arg minφ R̂(θ,φ). We also enforce the sparsity
on entire rows of Wz , which corresponds to “group sparsity” in Louizos et al. (2018). Specifically,
we formulate the regularization on a feature map level instead, with Z as the target:

Z(l) :=
(

diag(z(l))W(l)
z

)
·X = Z(l) � z(l)

Z is chosen for the property that the ith feature map for h is zero if Zi is zero for c0 = 0.

This approach entails training and storing extra mask parameters for each operating point. However,
we find this to be a non-issue for our task, since there are few operating points—three or four at
most, out of which we use two for L0 regularization—so the extra storage is negligible.

3.1 WITH SINGLE-RANK UPDATE

At specific operating points (e.g., 40% and 80% FLOPs), pre-trained weight updates can be stored
and applied at inference-time to recover some perplexity. Suppose W ∈ Rm×n is a weight matrix
in a neural network, and W∗ ∈ Rm×n is some known set of weights that results in a lower loss.
Clearly, ∆W := W∗ −W can be stored and added at inference-time to obtain a better neural net-
work. However, it is obvious that this scheme is wasteful, since W∗ could have directly substituted
W in the first place.

Sacrificing a negligible amount of storage to recover some perplexity, we propose learning a single-
rank weight matrix update

∆W := uvᵀ,u ∈ Rm,v ∈ Rn

to each weight in the convolution layers. Specifically, the process is as follows, beginning with a
pre-trained model:

1. Prune a pre-determined set of filters for some operating point (e.g., 40% FLOPs).

2. Initialize the weight updates ∆Wl = u(l)v(l)ᵀ,u
(l)
i ,v

(l)
i ∼ p(ε) for each convolution

layer l, in our case Normal(0, 0.1).
3. Fixing the existing weights Wl for each convolution layer, train a single-rank update such

that W∗
l := Wl + ∆Wl, where W∗

l is used as the new weight.
4. Store ∆Wl for use at inference time on the same operating point.
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4 EXPERIMENTAL SETUP

We evaluate the aforementioned pruning techniques for word-level language modeling on Penn
Treebank (PTB) (Marcus et al., 1993; as preprocessed by Mikolov et al., 2010) and WikiText-103
(WT-103) (Merity et al., 2017). We denote the models for PTB and WT-103 as ptb-qrnn and
wt103-qrnn, respectively.

4.1 DATASETS AND TASKS

For each model, we report word-level perplexity and recall-at-three (R@3), defined as the percentage
of top three token–logit outputs that contain the true next token—this was chosen due to most mobile
keyboards providing three predictions. For example, if {“cat”, “dog”, “baby”} are the top three
predicted tokens for, “I adopted a ,” with “dog” being the ground truth, then the prediction is
correct, regardless of the rank of “dog”.

Penn Treebank. Built from Wall Street Journal articles, Penn Treebank (PTB) is a small yet popular
word-level dataset for language modeling. In the standard pre-processed version (Mikolov et al.,
2010), the dataset contains roughly 887K, 70K, and 78K training, validation, and testing tokens,
respectively. The number of unique tokens is capped at 10,000, yielding a relatively large 4.8%
out-of-vocabulary (OOV) rate.

WikiText-103. Merity et al. (2017) introduce WikiText-2 and WikiText-103, datasets based on
freely available Wikipedia articles. We use only WikiText-103, since WikiText-2 was designed to be
similar to Penn Treebank. With 103 million training tokens, WikiText-103 is 103 times as large as
PTB. WikiText-103 contains around 217K tokens for validation, and 245K for testing. The number
of unique tokens is 267K, resulting in a 0.4% OOV rate, significantly lower than that of PTB.

4.2 HYPERPARAMETERS AND TRAINING

In all of the models, we chose the hyperparameters as suggested in Merity et al.’s codebase.4
For ptb-qrnn, we used a four-layer QRNN with 1550 hidden units for each layer and a 400-
dimensional embedding. For wt103-qrnn, we used a four-layer QRNN with 2500 hidden units
and 400-dimensional embeddings, along with a tied adaptive softmax (Merity et al., 2018b). In both
models, the first layer uses a window size of two, while the rest use a windows size of one.

Following Merity et al. (2018a), we also adopted the regularization techniques randomized back-
propagation through time, embedding dropout, temporal activation regularization (TAR), activation
regularization (AR), and variational dropout. We followed the same training process as well, with
non-monotonically triggered ASGD (NT-ASGD) as the optimizer. We use the same hyperparame-
ters as Merity et al. (2018a) and Merity et al. (2018b) for each model–dataset pair.

During the training of wt103-qrnn, we follow Merity et al. (2018b), using a tied adaptive soft-
max (Grave et al., 2017; Merity et al., 2018b) layer. At inference time, we use a regular softmax
instead, since we require R@3.

Pruning. We selected a number of distinct operating points that represent discrete points in the
accuracy–efficiency tradeoff space. Based on previous work (Tang et al., 2018), floating-point op-
erations (FLOPs) is a good proxy of both energy usage and latency, and so we use FLOPs as a way
of selecting our operating points. In L0 regularization, the λ decay strength was selected so that the
resulting model corresponds to roughly the FLOPs targets: To achieve 80% and 60% FLOPs for the
model on PTB, we used λ = 5.5 × 10−4, 8.5 × 10−4, respectively. To achieve about 70% FLOPs
on WT-103, we chose λ = 6× 10−4.

We trained the hard concrete mask parameters for roughly 5000 steps using Adam with a learning
rate of 5× 10−3. Since the weight decay penalty is incompatible with the objective, we removed it
while training the mask.

For mean activation pruning, which requires some training examples to collect statistics, we used
the entire training set for ptb-qrnn. Since WikiText-103 is large, we used roughly 10% of the first
training examples for collecting statistics on wt103-qrnn.

4https://github.com/salesforce/awd-lstm-lm
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Single-rank update (SRU). For the PTB model, the single-rank update was trained for 10 epochs
using NT-ASGD (Merity et al., 2018a) with a non-monotonic interval of three. For WikiText-103,
the update was trained for 2000 steps using Adam with a learning rate of 5 × 10−3. All other
hyperparameters were the same as those used during the training stage.

4.3 INFRASTRUCTURE DETAILS

We trained all of our models on a commodity machine with a Titan V GPU, i7-4790k CPU, and 16
GB of RAM. We used PyTorch 0.4.0 (commit 1807bac) for developing and running our models.
We deployed our models on a Raspberry Pi (RPi) 3 Model B (ARM Cortex-A53) running Raspbian
Stretch (4.9.41-v7+). Specifically, we copied the trained models over to the RPi, and ran them at the
same operating points accordingly.

We plugged the RPi into a Watts Up Pro meter, a wattmeter that reports power usage at the rate of
1 Hz via a USB cable, which is connected back to the RPi. Evaluating on the test set, we collected
power draw statistics on 350 next-word predictions, which were averaged to produce a millijoule
per query (mJ/q) estimate. We obtained latency estimates in a similar manner by averaging the
milliseconds per query (ms/q). Finally, we subtracted off the idle power usage of the RPi to obtain a
better estimate of the actual power for each query.

Although our final application is NLMs running on mobile devices such as smartphones and tablets,
there are many challenges to directly evaluating on such hardware, not to mention great variability
between different smartphones. The Raspberry Pi is a standard, convenient stand-in since it uses
exactly the same ARM processor architecture as nearly all mobile devices today, while being easy
to develop on for practitioners. Evaluation on the RPi is widely adopted for research on efficient
NNs today (Amato et al., 2017; Tang et al., 2018).

5 RESULTS AND DISCUSSION

In our results for PTB and WT-103, we compare to state-of-the-art results in the past. In general, we
find that QRNNs are strong competitors to LSTM approaches, and achieve state-of-the-art perplexity
on WikiText-103 (Merity et al., 2018b).

# Method
Model Quality Footprint w/SRU

Val. Test R@3 % FLOPs ms/q mJ/q Test R@3

1 Skip LSTM 60.9 58.3 – – – – – –
2 AWD-LSTM 60.0 57.3 – – 223 295 – –
3 Orig. 59.0 56.8 44.7% 100% 224 296 – –
4 Orig. scratch 61.5 59.3 44.0% 80% 182 238 – –

5 L0 reg. 63.0 60.7 43.6% 80% 185 227 59.3 44.1%
6 L0 reg. 69.2 66.8 42.1% 60% 142 183 64.0 42.7%

7 Random 68.2 66.0 42.9% 80% 182 238 61.1 43.8%
8 Filter norm 76.1 72.7 42.4% 80% 182 238 66.1 43.1%
9 Mean activation 68.3 66.1 42.6% 80% 182 238 61.0 43.5%

Table 1: Select pruning results on Penn Treebank using a 4-layer QRNN, along with past results
drawn from the original papers. Skip LSTM refers to the four-layer skip LSTM from Melis et al.
(2018), and AWD-LSTM is from Merity et al. (2018a). The four-layer QRNN (Merity et al., 2018b)
is the same model that we use, but we achieve better perplexity following the same methodology.
The best results of each category are bolded. “w/SRU” denotes the results after applying an SRU.

For PTB and WT-103, to demonstrate that the original model is well-parameterized, we train models
with less parameters from scratch; see Tables 1 and 2, row 4—the smaller models achieve higher
perplexity and lower R@3 than the originals do. We note that a 20-point increase in perplexity
may only correspond to a few points decrease in R@3, showing that perplexity changes on a much
different scale than accuracy does (see Table 1, rows 3 and 8). Furthermore, lower perplexity does
not necessarily imply higher accuracy (see rows 6 and 8), confirming that perplexity alone cannot
completely determine the recall. In Table 1, we chose 75 as the cutoff-point for perplexity—further
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# Method
Model Quality Footprint w/SRU

Val. Test R@3 % FLOPs sec/q J/q Test R@3

1 Rae-LSTM 36.0 36.4 – – – – – –
2 4-layer QRNN 32.0 33.0 – – 1.24 1.48 – –
3 Orig. 31.9 32.8 51.5% 100% 1.24 1.48 – –
4 Orig. scratch 38.0 38.8 51.3% 70% 0.942 1.10 – –

5 L0 reg. 65.8 65.4 43.1% 69% 0.912 1.06 56.9 44.7%
6 Mean activation 89.8 92.9 38.9% 70% 0.942 1.10 55.7 46.0%
7 Filter norm 85.9 88.2 41.7% 70% 0.942 1.10 59.2 45.4%
8 Random 80.9 81.4 42.9% 70% 0.942 1.10 54.2 46.1%

Table 2: Select pruning results on WikiText-103 using a 4-layer QRNN, along with past results,
drawn directly from the original papers. Note that Rae et al. (2018) primarily explore Hebbian
softmax; Rae-LSTM refers to their LSTM model without any extensions. Bolded are the best results
for each category.

results are illustrated in Figure 2. For WT-103, we observe trends similar to those of PTB; A large
drop in perplexity corresponds to a much smaller decrease in R@3 (see Table 2, rows 3 and 5).

5.1 ACCURACY–EFFICIENCY TRADEOFFS

We illustrate the accuracy–efficiency tradeoff space of the PTB and WT-103 models in Figure 2. For
each model, we tabulate the results at fixed intervals according to the approximated percentage of
FLOPs, relative to that of the unpruned model. We omit results that exceed 100 in test perplexity,
since they are insufficient for language modeling in practice.
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Figure 2: Full experimental results on Penn Treebank and WikiText-103. We illustrate the
perplexity–efficiency tradeoff space on the test set obtained before applying the single-rank update.

Surprisingly, random filter pruning is a strong baseline, which supports the findings from Mittal
et al. (2018). Random pruning not only outperforms filter norm and mean activation pruning, but
also regains perplexity more easily with a single-rank update. From Table 1 (rows 7–9) and Table 2
(rows 6–8), we see that random pruning displays equivalent or superior performance to filter norm
and mean activation pruning. Interestingly, random pruning achieves the lowest perplexity with a
single-rank update (Table 2, rows 5–8), out of all the baseline approaches on WT-103.

On the other hand, filter norm pruning is relatively weak, doing worse than random pruning in all
cases—with or without a single-rank update—suggesting that filter norm pruning has no practical
benefit over random pruning. L0 regularization (Louizos et al., 2018) works best, as shown in rows
5–6 in Table 1 and row 5 in Table 2.

In general, testing on Penn Treebank and WikiText-103—two very different datasets—gives us con-
sistent results, thus demonstrating the robustness of L0 regularization (Louizos et al., 2018), com-
pared to the other pruning approaches.
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Figure 3: Illustration depicting pruning on a truncated subset of the first layer’s weights from the
PTB model, where each row corresponds to a different technique, and each column a different
operating point. From left to right, the operating points are 100%, 80%, 70%, 60%, and 50% FLOPs.
For each of the subfigures, we concatenate from top to bottom the first 25 filters of W{z,f,o}, and
from left to right the first 75 elements in each filter, yielding square visualizations. All the pruning
techniques appear to be dropping weights differently—we note that, for L0 regularization (row 4),
the dropped weights remain largely constant throughout.

5.2 POWER USAGE AND LATENCY

On the Raspberry Pi, the PTB models are relatively fast, while the WT-103 models are high latency,
taking over one second (Table 2, rows 2–3 and 8) for the full models. For type-ahead prediction
on a mobile device, the WT-103 models are unsuitable as-is; further steps (e.g., more pruning then
re-training, vocabulary reduction, quantization) would be required to deploy the models for prac-
tical use. Supporting the findings from Tang et al. (2018), the number of FLOPs scales linearly
with latency and power: Full experimental results from Figure 2 yield Pearson’s r2 = 0.98 for
both latency– and power–FLOPs measurements, suggesting a strong linear relationship between the
number of FLOPs and both latency and power.

In terms of extra parameters, a single-rank update costs less than 74 KB for ptb-qrnn, and less
than 120 KB for wt103-qrnn. Mean activation statistics requires 20 KB for ptb-qrnn, and 30
KB for wt103-qrnn. Mask parameters for L0 regularization cost about 20 KB on each power
level for ptb-qrnn, and 30 KB for wt103-qrnn. Filter norm pruning and random pruning do
not require any extra storage.

5.3 EFFECTS OF PRUNING ON INDIVIDUAL WORD-LEVEL RECALL

According to Zipf’s law, a small set of common words disproportionately outnumbers a much larger
set of rare words, suggesting that rare words require more capacity to model. Since pruning reduces
model expressiveness by removing parameters, we hypothesize that rare words are more affected
than common words are. To validate this hypothesis, we compare the recall of each individual word
between our original and pruned models. Specifically, we collect the test set R@3 statistics of each
present word in the vocabulary, order the words by rank, and then remove all words with zero R@3
in the original model. The last step is done to limit our attention to successfully modeled words, and

8



Under review as a conference paper at ICLR 2019

1 500 1000 1500
Rank of word by frequency

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Sm
oo

th
ed

 ra
tio

 to
 o

rig
in

al
 R

@
3

Per-word Effects of Pruning on PTB

L_0
FN
MA
Rand.

1 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Rank of word by frequency

0.3

0.4

0.5

0.6

Sm
oo

th
ed

 ra
tio

 to
 o

rig
in

al
 R

@
3

Per-word Effects of Pruning on WT-103
L_0
FN
MA
Rand.

Figure 4: Visualization of the relative changes in per-word R@3 on the test set in the pruned models.
We present results for 80% and 70% FLOPs pruning on the PTB and WT-103 models, respectively.

to avoid division-by-zero. Next, to determine the relative difference in R@3 between the models,
we compute the per-word R@3 ratio between the pruned and original models. Finally, we apply
valid convolution of a fixed-window, uniform averaging filter across the x-axis to construct a less
noisy visualization.

As shown in Figure 4, filter norm and random pruning yield models with worse R@3 on rare words
than common words (see top 100 words on both datasets). Mean activation pruning is similar to
filter norm and random pruning on PTB; however, on WT-103, words with frequency ranks roughly
between 500 and 3000 are penalized less than the most common 200 words are. The best method,
L0 regularization, surprisingly improves R@3 for many words on PTB. On WT-103, however, it
yields curves similar to those from filter norm pruning. Overall, the graphs support the hypothesis
that rare words are more difficult to model.

5.4 STUDY LIMITATIONS

We use the official PyTorch QRNN implementation,5 which provides a fused pooling kernel for
CUDA-enabled GPUs but lacks one for CPUs; such a kernel would provide further performance
gains on a CPU. Since we perform our evaluation with a non-fused kernel, our latency results could
be improved further in practice. Nevertheless, we successfully capture the general trend in accuracy–
efficiency tradeoffs for NLMs, and we demonstrate the impact of inference-time pruning methods.

6 CONCLUSION AND FUTURE WORK

Motivated by the mass adoption of smart software keyboards on mobile devices, we explore the
task of inference-time pruning on QRNNs, state-of-the-art neural language models. Starting with
existing training-time pruning methods, we extend their usability to QRNNs at run-time, obtaining
multiple operating points in the accuracy–efficiency tradeoff space. To recover some perplexity
using a negligible amount of memory, we propose to train and store single-rank weight updates at
desired operating points.

In this paper, we limit our inference-time power usage and latency evaluation to the RPi, a convenient
surrogate for smartphones. A potential extension is to conduct a similar study on NLMs running on
GPUs—in practice, this has applications in large-scale vocabulary speech recognition (Cho & Ku-
mar, 2018). Clearly, the GPU architecture differs greatly from the RPi, favoring high concurrency
and minimal host–device data transfer. Other extensions include evaluating other compression tech-
niques on NLMs, such as knowledge distillation (Hinton et al., 2015) and vector quantization (Han
et al., 2016).

5https://github.com/salesforce/pytorch-qrnn/
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