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Abstract

Conformal prediction offers a distribution-free framework for constructing predic-
tion sets with coverage guarantees. In practice, multiple valid conformal prediction
sets may be available, arising from different models or methodologies. However,
selecting the most desirable set, such as the smallest, can invalidate the coverage
guarantees. To address this challenge, we propose a stability-based approach that
ensures coverage for the selected prediction set. We extend our results to the
online conformal setting, propose several refinements in settings where additional
structure is available, and demonstrate its effectiveness through experiments.

1 Introduction

Conformal Prediction (CP) provides a principled framework for uncertainty quantification by con-
structing prediction sets with guaranteed marginal coverage [1-3]. For a desired coverage level 1 — o,
a conformal predictor outputs a set that on average contains the true label with at least this probability.
The appeal of conformal prediction lies in its minimal assumptions about the data distribution and
the underlying predictive model. In practice, multiple conformal prediction algorithms may be
available for a given task, arising from variations in underlying models or data splits. This multiplicity
motivates the choice of the most desirable set, often the smallest. To illustrate, consider a prediction
problem with feature X and K sets {C%(X)}£ |, each generated by a different conformal predictor.
Suppose each C*(X) satisfies the marginal coverage guarantee P{Y € C*(X)} > 1 — «, for all
i € [K], where Y denotes the label associated to X. Although each C¢*(X) individually meets the
coverage guarantee, selecting the smallest set generally invalidates the guarantee due to dependencies
on the data introduced by the selection.

Contributions and outline. To address this issue, we first introduce a novel perspective on the
selection process based on algorithmic stability [4, 5]. The core idea is to employ a stable randomized
selection mechanism, meaning its output is robust to small input perturbations. Such stability then
allows us to transfer the marginal coverage of individual conformal predictors to the selected set.
We introduce several stable selection rules, in particular MinSE, which we prove to be optimal. We
further extend approach, by introducing an adaptive and a derandomized variant. These contributions
are given in Section 3, after recalling preliminaries on conformal prediction in Section 2.

Furthermore, we extend in Section 4 our work to the online conformal setting [6—9], where data
arrives sequentially, and predictions are made in real-time. We first demonstrate how our stability-
based approach integrates seamlessly with existing online conformal methods, particularly with the
approach of [10], to enable more adaptable selection among online predictors. Finally, in Section 5,
we explore methods to optimize the implementation of our stable selection framework in practice.
In particular, we take a closer look at the split conformal setting, where the stability-based bound
can be overly conservative, and propose a recalibration mechanism that can achieve better empirical
performance. Lastly, we validate our approaches on multiple experimental settings in Section 6.
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Related Work. The motivation to select the smallest conformal prediction set has spurred a series of
recent works introducing principled selection methods that retain coverage guarantees while favoring
smaller sets. For example, Liang et al. [11] proposes to merge multiple predictors by selecting the
one with smallest average set size on the calibration data. Moreover, [12] proposes split-conformal
methods that either inflate quantiles or use independent splits to preserve coverage after selection.
Building on this approach, for the classification setting, Luo and Zhou [13] proposes a method for
constructing the best possible conformal score, which may be expressed as a weighted average of
different scores. In contrast to such methods, our work enables pointwise selection depending on each
X while maintaining validity, i.e. our aim is not to select the predictor with best average performance,
but rather to pointwise select a predictor producing a small set for each realization of X .

In the online setting, Gasparin and Ramdas [10] proposed a method for conformal online model
aggregation, which adapts model weights over time based on past performance. Their method
combines prediction sets using a weighted majority vote with the weights learned in an online fashion.
In another recent contribution, Hajihashemi and Shen [14] handles distribution shifts but focuses on
temporal adaptation to distribution shifts, our approach addresses the distinct challenge of ensuring
valid coverage when selecting across multiple predictors in static or online settings.

Our approach builds on algorithmic stability, a concept with roots in generalization properties
of algorithms [15, 16] and differential privacy [17, 18]. Originally introduced to ensure privacy-
preserving data analysis, differential privacy has been adapted for other tasks, such as adaptive
data analysis [19], where it addresses the challenges of reusing data for multiple adaptive queries.
Zrnic and Jordan [4] applied stability-based techniques to establish statistical validity after selection
processes. Building on their work, we extend these ideas to the conformal prediction setting,
developing stability-based methods for both batch and online conformal frameworks. Within the
conformal predictions literature, different notions of algorithmic stability have been leveraged. For
example, Barber et al. [20] proved coverage properties of the Jackknife method under a notion of
stability albeit very different from the one we use.

While the aforementioned works focus on selecting conformal predictors for a single prediction
task, other research has explored related but distinct problems in the context of conformal inference.
Conformalized selection methods aim to identify a subset of data points whose unobserved labels
exceed a given threshold while controlling the False Discovery Rate (FDR) [21]. In a recent work,
Bai and Jin [22] introduced a framework that allows data reuse for both training and selection while
maintaining finite-sample FDR control. Although it addresses a different problem than ours, the
focus on managing data reuse aligns conceptually with our goal of ensuring valid coverage despite
dependencies introduced by the selection.

2 Preliminaries in Conformal Prediction

We consider CP in two key scenarios: the batch setting, which assumes i.i.d. or exchangeable samples,
and the online setting, where data arrives sequentially under minimal distributional assumptions.

Batch Setting. We consider a dataset D = {(X1,Y1),..., (Xn, Yn)} € (X x V)™, where the points
in D, along with any test sample (X,Y) € X x ), are assumed to be either i.i.d. or exchangeable.
In the i.i.d. case, we denote by P the distribution from which they are drawn, and by Px and Py
its marginals over X and Y, respectively. Without any further assumptions on the data generating
process, conformal prediction allows to construct a (random) prediction set C*(X') with the guarantee

P{Y e C*(X)} >1-a. (1)

Here, the probability is taken over (X,Y") as well as the randomness employed in the construction
of C'“. Arguably, the most common approach for batch conformal prediction is the split conformal
procedure, which first partitions the dataset D into two disjoint subsets: Dyain = {(X;, Y:) 1",
used to train the underlying predictor f, and D¢y = {(X;,Y;)},, reserved for calibration. Then,
for any nonconformity score function s, which quantifies the error between the predictor f and
the true output, it estimates the empirical [(1 — «)(m + 1)]/m-quantile, denoted ¢, of the set
{si = s(X;,Y;, f)}2,. Finally, for the test point X, the split conformal prediction set is defined as

C*X):={ye)Y: s(X,y,f) <da}, which satisfies (1) through a rank statistic argument.

Online Setting. In this setting, observations (X;, Y;) arrive sequentially for ¢t = 1,2,.... At each
time step ¢, we observe X, and aim to cover Y; using a prediction set C'(*) (X¢), which is constructed



based on a base model trained on all past data {(X1,Y7),...,(X¢—1,Y:—1)}. After making the
prediction, the true label Y; is revealed, and the process continues to the next time step. Unlike the
classical conformal prediction setting, where data is assumed to be exchangeable, the online setting
allows for the data to be non-stationary or even adversarial. As a result, classical coverage guarantees
no longer hold, and alternative notions of asymptotic coverage are required [6]. Specifically, we say
that {C'")} ;i achieves asymptotic coverage if

liminfr. £, 1{V, € CW (X))} > 1-a. )

The limit (2) ensures that, in the long run, the fraction of instances where the true label Y; falls within
the prediction set C'*) (X;) meets or exceeds the desired coverage level, even under non-stationary or
adversarial data. Stronger notions of asymptotic coverage can be considered, for example [23].

3 Smallest Confidence Set Selection

This section considers the batch setting without imposing additional restrictions, such as those in
split conformal methods. Specifically, we focus on the problem of selecting the smallest among
a collection of K conformal prediction sets {C®(X)}X . While such a selection is appealing, it
inevitably invalidates the marginal coverage guarantee (1) since the selection process depends on the
data. To address this issue, we develop a strategy based on algorithmic stability, ensuring adjusted
coverage guarantees even after the data-dependent selection process.

3.1 Valid Selection via Algorithmic Stability

We first recall the notion of algorithmic stability from [4] and extend their framework to tackle the
data-dependent selection in conformal prediction. We start by introducing indistinguishability.

Definition 1 (Indistinguishability). A random variable (r.v.) S is (n, T)-indistinguishable from a r.v.
So, denoted S =, ; So, if for all measurable sets O, it holds that P{S € O} < e"P{Sy € O} + .

This definition extends to the conditional case, denoted by S %lff Sy, if the inequality holds almost
surely with respect to the conditioning variable &, that is, P{S € O | £} < e"P{Sp € O | £} + 7.
In essence, the parameter 1 measures the degree of similarity between the distributions of .S and
So, with smaller values of 7 allowing for greater similarity. Leveraging indistinguishability, we can
define a notion of stability for randomized algorithms. For more precision, we define a randomized
algorithm as a deterministic mapping from = x £ into S, where Z is typically the data space, and £
describes the inner randomness of the algorithm. We also note that the randomness of an algorithm S
may be either implicitly or explicitly parameterized by £. Nonetheless, we keep the dependence on £
explicit in order to more precisely separate different sources of randomness in our statements.

Definition 2 (Stability). A randomized algorithm S:ExE—Sis (n, 7, v)-stable w.r.t. a measure
P on = if there exists a r.v. Sy, possibly dependent on P, such that IF’{S'(&, €) zl,,&; So} >1—v.

In words, a randomized algorithm S is stable if there exists a reference r.v. So such that, for almost
any inputs £ € = (up to a probability ~) sampled from the distribution P, the distribution of S & ¢)
resembles that of Sy. Essentially, this means that, for most inputs £, the algorithm’s output (that
randomly depends on ) behaves as if governed by a fixed distribution, independent of the specific
input. We now examine how stability can be leveraged for selection among confidence sets.

Let ¢ € Z and £ € E be two random variables with arbitrary dependence. Suppose that there exists a
set of (possibly random) confidence intervals {CI]|s € S}, each correlated with £ (for instance, &
may be a vector of size |S| containing the size of all sets CIZ), such that, for all s € S, we have

P{¢ ¢ CIJ} <a, 3)

for some o € (0,1). Moreover, let S(¢, <) define an arbitrary selection algorithm. For example,

S (£, &) might be biased towards selecting smaller size confidence sets. Without further assumptions,

individual guarantees (3) do not translate to the selected interval CI3 (€0) ie. P{¢ ¢ CIg ( .5.5)} < ais

not guaranteed to hold. Nonetheless, in the following theorem, we show that if .S is (7, 7, v/)-stability,
then an adjustment of the confidence level in (3) is sufficient to account for the effects of selection.



Theorem 1 (Valid stable selection). Assume that P{¢ ¢ CI*} < « holds for all s € S. If S :

Ex & = Sisan (n,T,v)-stable selection algorithm, then,

P{C¢CIg ) <ae+7+u )

3.2 Application to Conformal Prediction

In the context of conformal prediction, S = {1, ..., K} and {CIZ };cs are the conformal prediction
sets at X, i.e. {C%(X)}E |, where each set C%(X) is assumed to satisfy the coverage guarantee (1).
The notion of (7, 7, v)-stability enables one to tackle the challenge of favoring the smallest among
the K conformal prediction sets {C®(X)}X ;. The r.v. { represents the output Y and we define

§:=[MCT (X)), AMCRX))], Q)

where A\(C¥ (X)) represents a “size” (for example, a scaled Lebesgue’s measure, counting measure,
or more generically, any notion of set desirability) of set C*(X), for all ¢ € [K]. Now note that v
introduced in Definition 2 is a function of the distribution of . In line with conformal prediction
methods, which benefit from distribution-free guarantees, we will focus on selection algorithms for
which v = 0, and will actually obtain results that hold almost surely on £. With a slight abuse of
notation, we will call these algorithms (7, 7)-stable (or simply 7)-stable if, additionally, 7 = 0). We
are ready to specialize Theorem 1 to conformal prediction.

Corollary 1 (Smallest conformal set selection). Let S be an (n, T)-stable selection algorithm (e.g.,
for approximating arg min, ¢ g A(Cf*(X))). Then, we have

P{YGOg(gs)(X)}Zl—ae"—r. 6)

s

Note that the standard 1 — « coverage can be achieved by simply adjusting the confidence level of the
K individual sets to 1 — (o« — 7)e~". In what follows, inspired by the differential privacy literature
[18, 24], we provide several examples of easily implementable stable selection algorithms.

Lemma 1 (Stability via Laplace noise). Assume A\(C®(X)) € [0,1], for all i € [K].
If e~(Lap (1/n)®K, ¢ 1L & then the selection algorithm S such that S(£,¢) :=
arg min, ¢ g {MN(C¥(X)) + &} is n-stable.

Lemma 2 (Stability via exponential mechanism). Assume A\(C{(X)) € [0,1], for all i € [K]. Then,
the selection algorithm S with

A . _ exp(—nA(C{ (X))
P {S(E’ E> o Z|§} a ek exP(an(C?(X)))

is 2n-stable. Note that we do not need to make the distribution of € or the mapping S explicit here.

We note that the assumption that A\(C{* (X)) € [0, 1] for any ¢ € [n] was used to alleviate notations
and may be relaxed up to appropriate scaling of the mechanisms. More importantly, while the two
selection algorithms discussed above satisfy the stability requirement, they are adapted from the
literature of differential privacy, which is strictly stronger than our required notion of stability. Thus,
this additional strength can lead to overly conservative behavior when only stability is required.

To address this, we propose a new Minimum Stable Expectation (MinSE) selection mechanism,
designed to achieve stability as tightly as possible. MinSE relies on a prior b € AX~1, that encodes
prior knowledge on which interval to select, before observing the different predictive intervals at X.

Lemma 3 (Minimum stable expectation). Let 1,7 > 0, and a fixed b € AKX~ and consider the
following linear program

K
p*(b,€) = argmin > p; A (CF (X))
P i=1 (MinSE)
st. pe€ AK_17 s € Rf, pi < eb; + s, Z s <71
i€[K]

Then, the selection algorithm S(&, ) with P{S(¢,e) = i|¢} = pr (b, €) is (n, 7)-stable.



All three lemmas propose randomized selection algorithms which assign the highest probability to
the smallest set. However, different from the first two, which assign nonzero probability to all the
sets, MinSE assigns zero probability to the largest, whenever feasible.

To develop further intuition of MinSE, consider the case where b = (1/K), e[k Tepresents a uniform
prior. Then, if we set 7 = K, 7 = 0, MinSE reduces to arg min, {\ (C? (X)) ,i=1,..., K}, thus
selecting deterministically the smallest set. This is reasonable, as then, for 1 — « after selection,
the original confidence sets should have 1 — /K coverage, which corresponds to a Bonferroni
correction [25]. Now consider a less extreme example with 7 = 2,7 = 0, and b still a uniform prior.
By direct checking of the feasibility conditions, one can show that MinSE will never choose any of
the | K'/2] largest sets. In addition, it is possible to show that MinSE achieves a notion of optimality
among all stable selection mechanisms.

Proposition 1 (Optimality of MinSE). Ler A : = x £ — [K] be an (n, 7)-stable algorithm w.r.t. a
measure P on Z. Then there exists a prior vector b € AKX~ such that it holds P-almost surely that

Sis P (0, ON(CR (X)) < S0, PN (C (X)) 4
where £ = [AN(CY(X)),...,A\(C%(X))], the vector p*(b,&) = (p5(b,€),...,p5 (b)) is the
output of MinSE with parameters 1,7 > 0 and prior b, and p{(€) =P, {A (&, ¢) = i|¢}.

In words, for any (7, 7)-stable algorithm, there exists a prior vector b such that the distribution of the
output of MinSE achieves the smallest expected size.

3.3 MinSE examples, tightness, and extensions

Example 1 (Worst-case Oracles). Consider K oracle confidence interval methods such that for any
X € X, anindex j € [K] is chosen uniformly at random, and oracle j outputs C';(X) = (), while all
other oracles ¢ # j output C;(X) = ). This setup provides a scenario to analyze the tightness of the
stability guarantee. For simplicity, let A())) > 0 and A(f)) = 0. For any datapoint (X, Y"), each oracle
i individually has marginal miscoverage P{Y ¢ C;(X)} = 1/K. Letexp () /K + 7 < 1, applying
MinSE with parameters (7, 7) and a uniform prior b, we examine the post-selection miscoverage
P(Y ¢ Cg). Miscoverage occurs only if the empty oracle is selected. By construction, one and
only one set miscovers and has minimal size. MinSE assigns the maximum possible probability
p; = exp () /K + 7 to the zero-size set j. Thus, the miscoverage probability is exp (1) /K + 7.
This result exactly matches the upper bound from Corollary 1, demonstrating that the stability bound
is indeed tight in worst-case scenarios. Arguably, this is a pathological setting due to the dependence
structure of the confidence sets. Nonetheless, we empirically show in the next example that the
stability coverage bound is tight, even with independent confidence sets.

Example 2 (Coin flips). Let ) = [0, 1] and each of the K sets be constructed using an independent
coin flip: for each i € [K], Cf(X) is equal to ) with probability 1 — « and to () with probability c.
In this example, we appropriately adjust the coverage of the original coin flips to achieve coverage of
1 — « after n-stable selection. Contrary to Example 1, here the different oracles are independent. As
shown in Figure 1, the n-stable selection using MinSE almost exactly achieves 1 — o coverage across
different stability levels 7, particularly as K grows. This suggests that while the stable selection
mechanism inflates the probability of yielding the full set ), selecting the set with the minimum
size effectively counterbalances this inflation. Therefore, even with oracle independence, without
additional assumptions, the inflation of the original sets is necessary.

Example 3 (Toy regression model). LetY = |X|+ N(0,0.25), with X ~ Uniform([—1, 1]), and
consider the following two predictors f;(X) = X and fo(X) = —X. This setup could arise, for
example, when the data is split during training, e.g., due to privacy or design constraints, and is meant
to be favourable for our method. Indeed, on each half-space (X > 0 or X < 0), one confidence
interval is much smaller than the other one. Numerical results, given to the right of Figure 1, show
that despite the inflation in set size, stable selection leads to an improvement in the average set
size, in comparison to relying on any individual predictor, while guaranteeing the same coverage.
Numerically, the individual sets are about 30% wider on average. This improvement highlights
the advantage of using stable selection in settings where different predictors have complementary
strengths, i.e. are accurate on different subsets of X.

Remark 1 (Adaptive version—AdaMinSE). A practical consideration when using MinSE is the
selection of the stability parameters 1 and 7. Given K conformal predictors, each achieving at
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Figure 1: (Left-example 2) Coverage of the coin flips example after selection using MinSE with
parameters 77 € {0.1,2} and 7 = 0. Before selection, the oracle returns the full set [0, 1] with
probability 1 — acexp (—n). (Right-example 3) Second and third figures reflecting adaptive conformal
intervals, with miscoverage o = 0.05, obtained using the models f(X) = X and f(X) = —X.
Fifth figure shows the stable selection applied to the conformal sets in the first two figures, adjusted
to have miscoverage o = 0.025, using MinSE with = In (2).

least 1 — o’ coverage, and a desired post-selection coverage of 1 — «, any pair (7, 7) satisfying
o/ < (a— 7)e " is theoretically valid. This presents a choice, as the trade-off between 1 and T
is not always immediately obvious. To address this, we introduce an adaptive version of MinSE,
AdaMinSE, in Appendix A.1. This method automatically optimizes the (7, 7) trade-off to achieve
the target 1 — o coverage after selection, thereby alleviating the need for manual parameter tuning.

Remark 2 (Derandomization). The randomized output of the stable selection mechanisms, such as
MinSE, may be undesirable in certain applications where deterministic prediction sets are required. To
address this limitation, it is possible to derandomize the selection process. Building upon techniques
from [26], one can construct a single, deterministic prediction set from the output probabilities of
the stable selection rule, while still preserving a (correspondingly adjusted) coverage guarantee. The
precise results are deferred to Appendix A.2.

Remark 3 (Conditional Coverage). For clarity and ease of exposition, our main analysis has focused
on marginal coverage guarantees as defined in (1). However, the stability-based selection framework
naturally extends to scenarios where the underlying conformal predictors satisfy stronger guarantees,
such as conditional coverage. We provide further details on this extension in Appendix A.3.

4 Extension to Online Conformal Prediction

Next, we show how the framework based on algorithmic stability introduced above extends naturally
to the online setting. Consider a collection of K online conformal prediction algorithms that, at each

time step ¢t € N, produce K prediction sets {C’i(t)(Xt)}lK:1 for the label Y;. As noted in Section 2,
each prediction set depends on the entire history {(X;, Y;)}!Z. Similarly to Section 3.2, we define
& = [/\(C’ft)(X,g))7 e /\(Cﬁ? (Xt))], where )\(Ci(t) (X)) denotes the size of the set C’i(t)(Xt), for
each i € [K]. The following corollary specializes Theorem 1 to this scenario, showing that an
adjusted coverage guarantee can be obtained if a stable selection is applied at each time step ¢.

Corollary 2 (Smallest online conformal set selection). At each time t € N, let S(&;, ;) be a (1, 7)-

2
satisfies the guarantee (2). Moreover, let the elements of the sequence (¢)icn be independent. Then,

stable selection algorithm (e.g., for approximating arg min, ¢ )\(C’-(t) (X4¢))). Assume each C’i(t) )

lim infT—>oc % Zthl P {)/t € Cg()ét €t)

(Xt)} >1— e — 1. )
In essence, given multiple online conformal prediction algorithms, applying a stable selection
mechanism provides a practical and systematic way to combine them. It is worth noting that while the
coverage guarantee in (7) matches the one established for the batch setting in (6), the guarantee in (7)
is achieved only in the long run. This distinction aligns with the nature of online conformal prediction,
as discussed in Section 2. Finally, we emphasize that, unlike (2), which ensures coverage for the
empirical average %~ > 7_, 1{Y; € C®) (X,)}, the guarantee in (7) is in probability. However, the

only source of randomness in this setting is the selection noise ¢, in the algorithm S (&, 1), as all
other quantities can be treated as adversarial or fixed through conditioning.



Algorithm 1 Adaptive COMA (AdaCOMA)

Input: K conformal algorithms {C’i(t)}fil, stability parameter (77, 7), initial weights w(?) =
(1/k,...,1/k)

For:t=1,2,...

Compute w® using COMA.

Compute p* ((w®), &) € AKX~ using MinSE with b = w® and parameters (7, 7)

Output: Any of the following two options:

Option 1: Combined set Cé?mb(Xt) equal to {y €| Zfil pr(w® &)1 {y € C’i(t) (Xt)} > %}
Option 2: Combined predictor leading to Cét) (Xt), with P {S'(&tﬂ) = z’|§t} = pr(w®, &)

(&¢set)

4.1 Adaptive Conformal Online Model Aggregation.

Conformal Online Model Aggregation (COMA) [10] extends online conformal prediction by address-
ing the challenge of model aggregation. It combines prediction sets from multiple algorithms through
a voting mechanism, where weights are dynamically adjusted over time based on past performance.
Formally, at each time step t, COMA assigns weights w(®) = [w%t), o ,w&?] € AKXl which
reflect the relative importance of each of the K underlying conformal predictors according to the
following rule wl@ o< exp (—y—1 Z;;i A (C’i(t) (X;))), where 7, is the adaptive learning rate from
the AdaHedge algorithm [27], an adaptive version of the Hedge algorithm [28]. COMA then outputs
the aggregated prediction set C) == {y € Y| ZZK=1 wgt)]l{y € CZ-(t) (X:)} > %}, which can be
)

P

interpreted as the aggregated set obtained by selecting the i-th conformal set with probability w

Non-adaptiveness of COMA. Crucially, at time ¢, the COMA framework assigns weights to the
K conformal algorithms using only the observations up to time ¢t — 1, without access to X, or the
prediction sets { C’i(t) (X))} . Furthermore, due to its AdaHedge formulation, COMA optimizes the
weights on average over time, without adapting to each individual X.

AdaCOMA. To achieve the best of both worlds, we incorporate COMA into our stable selection
algorithm. Specifically, at iteration ¢, we use COMA’s weights w(*) as the prior for a stable selection
mechanism, which selects after observing both X; and the sets { C’i(t) (X¢)}E . allowing for pointwise
adaptability. The combined procedure, termed AdaCOMA, is detailed in Algorithm 1.

COMA does not have assumption-free coverage guarantees for a fixed target level. However, letting

m:Ehﬁ;@%{n¢@W&&} ®)
Gasparin and Ramdas [10] show that the following holds

P{vi¢Cc} <28, ©)

In the remainder of this section, we analyze the coverage guarantees of AdaCOMA in comparison
to the bound in (9) for COMA. Detailed bounds on 3; under additional assumptions, are given in
Gasparin and Ramdas [10].

Proposition 2 (Adaptive COMA). Consider Algorithm 1, and let 3; be defined as in (8). Then,

e the set CV)

comb

(X}) satisfies P {Yt € Cc(iinb(Xt)} >1—-2(Be" + 1),

* the set Cg) (Xy) satisfies P {Yt ec (Xt)} >1— [ — .

(E4.2¢) S(eg.e0)

Proposition 2 demonstrates that AdaCOMA inherits the flexibility of COMA while improving its
adaptability to current observations through the stable selection mechanism.



S Post-selection Calibration in Split Conformal Prediction

The coverage bounds derived from our stability-based approach (e.g., Corollary 1) are distribution-
free and hold under minimal assumptions, allowing them to extend to even the adversarial online case.
While potentially tight in worst-case scenarios, these bounds can be conservative when additional
structure is available, particularly in the batch setting. By leveraging the inherent rank structure
of the split conformal method, this section develops a recalibration procedure specifically for split
conformal prediction, aiming to achieve tight finite-sample coverage guarantees after selection.

We operate within the standard split conformal setup introduced in Section 2, with a calibration
dataset Dea = {(X;,Y;)}~, and a test point (X, Y"). We assume the sequence of m + 1 data points
{(X1,Y1),...,(Xim, Ym), (X, Y)} to be exchangeable. We consider K base predictors f1, ..., fx
and corresponding non-conformity score functions s1, ..., sx. For each base predictor & e [K]
and datapoint 7 € [m], denote the non-conformity scores as s, ; := sx (X, Y;, fr). We use s, () to
denote the r-th order statistic of sy, 1, ..., Sk,m. Finally, for any £ and ¢, we denote the rank of a score
Sk, as Ry ;= Z;nzl 1{sk,; < sk, }. Using these definitions, we can parameterize the conformal
prediction sets using ranks, i.e., for any rank index R € [m], we define

Co(X,R)={y eV :sx(X,y, fr) < su(mr)}

which recovers the classical set C recalled in Section 2 for R, = [(1 — «)(m + 1)], satisfying, for
any k € [K],P{Y € Cx(X,Ro)} > 1 —

Calibration After Selection using Effective Ranks. We now introduce an arbitrary (stochastic)
selection rule S. Our goal is to determine an effective rank R,, such that a similar property holds, but
for the selected interval, i.e., P{Y € CS(X,E)(Xa Ra)} > 1 — a. To that end, we use a recalibration
process after selection, that uses the effective ranks as meta-scores. For each point ¢ € [m], we apply

the selection rule using its feature vector X; and independent randomness ¢; ~ P.. We now define
the effective rank (or the meta-score) for the ¢-th point as:

R; = Rg(X, i),

that is, the rank of the ¢-th point’s score calculated using the selected predictor S (Xi,&;). Subse-
quently, we define the sequence of effective ranks R := (Rl, e ,Rm). Using uniform random
tiebreaks between equal ranks in R, for ¢ € [m], we use R4 to denote the ¢-th order statistics of R.

Theorem 2. Assume that S is independent of Deay. Let 7o, = [(1 — a)(m + 1)] < m. Then,
IP{Y € CS‘(X,E) (X,R(TQ))} >1—-a.

Theorem 2 provides a method to maintain coverage guarantees after selecting among multiple split
conformal predictors. The use of effective ranks acts as a meta-score, allowing for the calibration
of predictors even if they utilize different non-conformity score functions s (-), offering flexibility
in model-specific score design. The theorem states that by selecting the appropr1ate order statis-
tic R(TQ) of these effective ranks, derived using an independent selection rule S, the conformal set

Co(x.0) (X, R(Ta)) for the chosen predictor S(X, ¢) achieves the desired coverage.

Constructing an Independent S. Theorem 2 mandates the selection rule S to be independent
of the calibration data D.,. This independence plays a critical role in the proof as it ensures that
the effective ranks ]:21, e Rm are exchangeable with the unobserved effective rank of the test
point. Consequently, if S aims to select the smallest set, it cannot use set sizes derived from Dy -
based quantiles due to the induced dependency. To ensure independence, we employ an auxiliary
dataset Dy, disjoint from and independent of Dg,. For each predictor & € [K] and test point
X, proxy quantiles g3, computed from D,y (at a preliminary miscoverage rate &), define proxy
conformal sets C3**(X) and their corresponding sizes A(C3*™*(X)). The vector of these proxy sizes,

(X)) == [MN(C¥™(X)), ..., \(C2(X))], is then independent of D,. A selection rule S(X, ¢)
based solely on X and this £*(X) (e.g., employing stable mechanisms from Section 3.2, such as
MinSE) thus satisfies the independence condition. This allows Theorem 2 to be applied directly for
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Figure 2: Marginal coverage and average lengths, for real datasets (Bike Sharing, Abalone, California
Housing) and synthetic data; Error bars represent twice the standard error of mean estimation using
multiple seeds for real datasets and 2 s.d. for the synthetic data.

1 — « coverage, avoiding the inflation factors inherent in stability-based bounds that depend on D,;.
The practical effectiveness of such selection hinges on how accurately the proxy information from
D.ux reflects the true characteristics based on Dg,;.

6 Experiments

To illustrate our approach in practice, we present here two simple experimental setups, one on
synthetic and one on real data. We defer online experiments, additional batch experiments, and
further experimental details to Appendix C. We compare our approach to Yang and Kuchibhotla
[12] and Liang et al. [11], denoted as YK and ModSel, respectively. As Yang and Kuchibhotla
[12] proposed multiple algorithms, adopting the following naming convention from Liang et al.
[11], we compare against YK-Adjust and YK-Base. YK-Adjust adjusts the underlying conformal
predictors to ensure valid coverage after selecting the best-on-average conformal predictor on the
calibration dataset. YK-Base simply selects the best-on-average conformal predictor and does not
have coverage guarantees. We report the performance of MinSE with parameters (n = 1,7 = 0)
and AdaMinSE with ¢/ = 0.05. In addition, we report the performance of Recal, which is based
on AdaMinSE with o/ = 0.02, followed by the recalibration procedure of Section 5. For Recal, the
calibration dataset is further split into two blocks to construct D, and D, so that the selection
satisfies the independence requirement of Theorem 2. For the experiments presented here, we target
a miscoverage level of o = 0.1. Except for YK-Base, all methods guarantee miscoverage o = 0.1
after selection.

Throughout the experiments, we aim to design a scenario where the performance of individual
predictors varies across the input space. As such, using clustering, we split the feature space into
5 disjoint sets and train each predictor exclusively on a randomly selected subset. We provide
additional experiments without such data splitting in Appendix C. Moreover, the code to reproduce
the experiments is available in the supplementary material'.

Synthetic Regression. We generate n data points, {(X;,Y;)},_,, with X; ~ N(0, I;) (before
feature space splitting), and the response variable defined as Y; = sin((8, X;)) + 0.1NM(0, 1), where
3 is the vector {1/ d}ie[d]. The feature dimension is set to d = 10, and the training data is split into
two blocks. In the first block, we train K distinct regression models, f1, ..., fxk, using the Kernel
Ridge Regression model from scikit-learn [29]. For each model, we randomly sample the kernel
function (either linear or radial basis function (RBF)) and the regularization parameter (uniformly
chosen between 0.1 and 1). For each model i, we use the second block of training data to train
a random forest model g; that predicts the absolute residuals | f;(X) — Y|, enabling us to use the
nonconformity score, defined as s;(X,Y) = |f;(X) — Y|/g:(X). We use 400 datapoints for the
calibration dataset.

Real Datasets. In this experiment, we aim to model a more typical data analysis scenario. We conduct
experiments on three standard regression datasets: Abalone, California Housing, and Bike Sharing
[30, 31]. For each dataset, leveraging scikit-optimize for hyperparameter tuning [32], we used
the following scikit-learn models: AdaBoostRegressor, DecisionTreeRegressor, GradientBoost-

!Code also available at Valid-Selection-among-Conformal-Sets.
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ingRegressor, ElasticNet, RandomForestRegressor, and LinearRegression. We used 80% of the data
for training, 10% for calibration, and 10% for testing. Similar to the synthetic experiments, we used
the same adaptive score function, with RandomForestRegressor trained to predict the residuals. Then,
up to adjusting coverage to ensure post-selection coverage of o = 0.1, we used the same conformal
predictors for all selection methods. We normalized the labels across datasets to keep the size of
conformal sets comparable.

Both synthetic and real data results are reported in Figure 2. For both experiments, YK-Adjust,
MinSE, and AdaMinSE overcover, while Recal and ModSel achieve similar coverage to the target
marginal coverage of 0.9. YK-Base undercovers in the synthetic setting. Differences emerge in
the resulting average interval lengths. Our proposed Recal consistently performs the best on both
the synthetic and real data settings. On real datasets, MinSE and AdaMinSE are competitive with
baselines on Abalone and California Housing but produce larger sets on Bike Sharing. Meanwhile,
for the synthetic setting, AdaMinSE and MinSE beat the benchmarks.

7 Conclusion

In this paper, we introduced a stability-based framework for selecting among multiple conformal
predictors while preserving coverage. By casting selection as an (7, 7)-stable randomized mechanism,
we established distribution-free guarantees that transfer the validity of individual predictors to the
post-selection set, enabling pointwise (feature-dependent) selection. We instantiated this principle
with practical mechanisms and proposed the MinSE mechanism, which is optimal among stable
selectors, along with adaptive and derandomized variants. We further extended the framework to the
online setting; combined with online aggregation, this yields AdaCOMA, which uses COMA weights
as a prior for stable per-time-step selection based on the current features and sets, thereby adapting
over time and across each input. Finally, for split conformal prediction, we introduced a post-selection
recalibration via effective ranks that mitigates the conservativeness of worst-case stability bounds.
Empirically, our methods meet the target coverage and often reduce set sizes relative to existing
selection approaches across synthetic and real datasets in heterogeneous settings. Nonetheless, the
stability-based guarantees are worst-case and can be conservative in benign regimes; our recalibration
reduces this conservativeness but requires an auxiliary dataset, which is independent from calibration,
and its effectiveness depends on the quality of proxy quantiles. Moreover, randomized selection and
the choice of a stability budget introduce utility/validity trade-offs, and extending the framework by
deriving tighter instant-dependent coverage bounds under additional assumptions remains an open
direction.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the scope
and contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: While the paper does not summarize all limitations in a single section, it
discusses the limitations of the proposed methods at various points. For instance, the
potential conservativeness of the stability-based coverage guarantees (e.g., Corollary 1) is
acknowledged at the beginning of Section 5, which motivates the development of a specific
recalibration approach for split conformal prediction to achieve tighter bounds in that
setting. The inherently randomized nature of the primary stable selection mechanisms (like
MinSE) is noted as potentially undesirable in some applications (remark after Example 3),
leading to the proposal of a derandomization technique in Appendix A.2, though this comes
with a degraded coverage guarantee. Furthermore, the recalibration method presented in
Section 5 itself has the limitation of requiring the selection rule to be independent of the
main calibration data, necessitating an auxiliary dataset, and its effectiveness hinges on the
quality of this proxy data, as discussed at the end of that section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Detailed assumptions and complete proofs for all propositions, theorems, and
corollaries are provided in Appendix B. All results are properly numbered and referenced,
with assumptions clearly stated alongside the formal statements.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:  All information necessary to reproduce the main experimental re-
sults—including data generation, evaluation procedures, and implementation details—is
provided in Section 6 and Appendix C.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Datasets used are either synthetic or open-source under permissive licenses.
The code to reproduce all experiments and a guide on how to use it can be found in the
supplemental material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the details of the experimental setup in Section 6 and Ap-
pendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide error bars for all our experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources, including hardware type (CPU/GPU) and run-
time, are described in appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research adheres to the NeurIPS Code of Ethics. It does not involve
human subjects, sensitive data, or real-world deployments with potential societal impact.
All results are reproducible, and the code will be released upon acceptance.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational and does not involve specific applications or deploy-
ments. While robust prediction can support decision-making in domains such as healthcare
or autonomous systems, the paper does not target any particular use case and therefore does
not entail direct societal impacts.

Guidelines: This paper is not directly tied to a particular application.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve the release of pretrained models, large-scale
datasets, or tools that pose significant risk of misuse. The research is theoretical and
algorithmic in nature, and all released code is for reproducibility of the experiments.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external assets used in this work—including code and datasets—are

properly cited in the paper, and their licenses have been respected in accordance with the
stated terms of use (see Section 6). No proprietary or restricted-access data was used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new code for our method and experiments, which is documented,
included in the supplementary material, and will be made publicly available upon acceptance.
The code includes clear instructions for reproducing all results and is structured to facilitate
ease of use.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects or crowdsourcing and therefore
does not require IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve the use of large language models (LLMs) in
any part of the core methodology. Any LLM usage was limited to minor writing assistance
and had no impact on the scientific content or originality of the work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Outline of the Appendix

This appendix provides supplementary material to the main paper. The first part details deferred
content from Section 3 of the main paper: Appendix A.I introduces and proves the Adaptive Minimum
Stable Expectation (AdaMinSE) mechanism; Appendix A.2 presents and proves a derandomization
technique for prediction sets; and Appendix A.3 discusses and proves an extension to conditional
coverage guarantees. Appendix B provides the proofs for the theoretical results presented in Section 3
(on stable selection), Section 4 (on online conformal prediction), and Section 5 (concerning post-
selection calibration in split conformal prediction). Finally, Appendix C is dedicated to additional
experimental results. These results include further batch experiments under varied settings, online
experiments evaluating AdaCOMA, and detailed setup information for these experiments.

A Deferred Content Section 3

A.1 Adaptive Minimum Stable Expectation

One difficulty in using MinSE is tuning the stability parameters 17 and 7. For instance, assume a user
has access to K conformal predictors, each with coverage at least 1 — ', and wishes to apply MinSE
to select among them such that the coverage after selection is at least 1 — «. Then, they may choose
any values of 7 and 7 satisfying o’ < (a — 7)e~". In particular, the utility tradeoff between 7 and
is not immediately clear.

To address this, we propose AdaMinSE, an adaptive version of MinSE, which also optimizes over the
choice of 7 and 7. Similarly to MinSE, AdaMinSE also makes use of a prior b € AX~! (which can be
chosen depending on the past as in Algorithm 1). However, instead of requiring the parameters (7, 7)
as input, it simply takes the current level of miscoverage «’ and the desired miscoverage level « after
selection. The following proposition introduces AdaMinSE, together with its coverage guarantee.

Proposition 3 (Adaptive Minimum Stable Expectation). Let o, € (0,1) with o' < «, and let
b € AK~1 be fixed. Consider the following linear program

K
d*(b,&) = argmin ZdiA(Ci‘" (X))
d i=1
st. de ATl seRE, r20, (AdaMinSE)

d; < eb; + s, ZST;ST,EWO/-FTSO[
1€[K]

Let P {Y € C’f‘,(X)} > 1—d/, foralli € [K]. Moreover, consider the selection algorithm S(&,€)
with P{3(€, ) = i|€} = d* (b, ). Then, P {Y e CS(&E)(X)} >1-a

Proof. The result can be recovered as follows
K
P{Y ¢ 03 (X)} =E [Z (b, 1{Y ¢ 0?’<X>}]
B i=1
<> emp{y ¢y ()} +r < +r<a,
i=1

where the first and last inequalities follow from the two constraint d; < e"b; + s; and "0/ + 7 < «
in AdaMinSE, respectively. O

Proposition 3 ensures that AdaMinSE achieves the desired coverage. By optimizing over (7, 7), it
removes the need for manual tuning, making it a practical and reliable approach for selection.
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A.2 Derandomizing the Prediction Set

One potential limitation of the stable selection algorithms presented in Section 3.2 is that they produce
a random confidence set, which may be undesirable in certain applications. In such cases, the stable
selection process can be derandomized using techniques from [26]. This is formalized in the following
proposition.

Proposition 4 (Derandomized smallest conformal set). Let S(€,¢) be an (1), T)-stable selection
algorithm, and define p;(§) =P {S (&,e) =il } Then, consider the derandomized confidence set

Can(X,€) :{yey S (€)1 fy € O (X >}>;}.
i=1
IfC(:)y,...,C% (") satisfy (1), it holds that P{Y € Cq;(X, &)} > 1 —2(ce" + 7).

Proof. The proof builds upon the reasoning in [26]. Since S (£, ¢) is (1), 7)-stability, we know that

there exists a fixed point b € AK~1 such that p;(¢) < exp (1) b; + s; and Zfil s; < 7. It follows
that

[sz JL{Y ¢ (X )}] <exp(n)a+T.

Moreover, using the Markov inequality, we have that

P{Y ¢ Cu(X,€)} = P{sz OL{Y ¢ CR(X)} = ;}<2E Do p(E1{Y ¢ €T},

i=1

from which the result follows immediately. O

We highlight that while the set Cy, (-, €) is still random with respect to the randomness of {C(-)}X |,
the derandomization here refers to the fact that the stable selection process does not introduce
additional randomness due to ¢.

A.3 Conditional Coverage

A stronger guarantee than marginal coverage (1) is conditional coverage. Let G : X — G be a
function that maps an input X to a group attribute G(X) € G. A conformal predictor C'(X) is said
to satisfy (1 — «) conditional coverage with respect to G if,

P{Y € C(X)|G(X)} >1—a. (10)

This ensures that the coverage guarantee holds not just on average over all X, but also when restricted
to specific subpopulations defined by G. An example is the case where G is finite, which then
corresponds to Group-Conditional validity [33]. Such guarantees are crucial for added reliability in
many applications.

Our stability-based selection framework can be extended to preserve conditional coverage. Suppose
we have K conformal predictors {C'®(X)}X |, each satisfying (1 — ) conditional coverage with
respect to G. That is, for each i € [K],

P{Y € CHX)|G(X)} > 1 —a. (11)

We can now state the conditional coverage guarantee for the selected set.

Proposition 5 (Conditionally valid stable selection). Assume that each conformal predictor C*(X)
satisfies (1 — «) conditional coverage with respect to G, forall i € [K|. If S : Ex & — [K] is an
(n, T)-stable selection algorithm (with § = [A(C(X)), ..., AM(C%(X))]), then almost surely

P {Y €Ce (X G(X)} >1— (ae” + 7). (12)
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Proof. We want to bound the conditional miscoverage probability

Pmiscover|G(X) =P {Y ¢ Cg(g(x),s)(X) | G(X)} .

By the law of total expectation, conditioning on X we have
Pmiscover|G(X) = IEX|G(X) |:HD {Y ¢ Cg(E(X),s)(X) ‘ X7 G(X)}} :

Since G/(X) is determined by X, the inner probability is P {Y # C i) | X}. Since the

randomness ¢ in 5(£(X), €) is independent of Y given X, we have
K
P{Y ¢ C3 ) (X) | X} = D B{Y ¢ ()| X)P. {8(x),2) = 5| x}.
Using (1, 7)-stability (conditional on &(X)) property of S, we have
K K
SOP{Y ¢ C2(X) | X}P{S(E(X),2) =5 | X} <" S P{Y ¢ C2X) | X}P{Sy=s| X} +7
s=1 s=1

K
<"y P{Y ¢ CHX) [ X}P{So=s}+T
s=1
for some random .Sy variable with support [K]. It follows that

K
Pmiscover\G(X) =e' ZP{SO = ’L} EX|G'(X) [P {Y ¢ C?(X)} |X} +7
=1
<ela+rT1.

O

This result shows that if the original conformal predictors provide conditional coverage, the stable
selection mechanism allows for selecting among them while retaining a (correspondingly adjusted)
conditional coverage guarantee. The required level for the initial predictors would be 1 — (o — 7)e ™"
to achieve 1 — « conditional coverage post-selection.

B Proofs

B.1 Proofs of Section 3

The proof of Theorem 1 requires the following lemma from Zrnic and Jordan [4], which is inspired
by the approach in [34].

Lemma 4. [4, Lemma 1] Let S : 2 x £ — S be an (n, T, v)-stable selection algorithm and Sy be
the corresponding random variable. Then, (§,5(¢,€)) =y r4v (€, S0).

Proof of Theorem 1. In this proof, similar to analogous results in Zrnic and Jordan [4], a lot of
the heavy lifting is done by Lemma 4. Nonetheless, the selection dependence on the data on the
confidence sets themselves introduces some subtleties, making direct application of the steps of Zrnic
and Jordan [4] non-straightforward. Thus, we take a different starting step by defining a shadow
algorithm.

Let us define 5" : Z x Z x £ — S such that 5'(£, ¢, ) = S(, ), forall (€,¢) € E x Z. Then, if S

is (1, T, v)-stable with respect to P on =, we also have that S’ is (1, 7, v/)-stable with respect to the
product distribution P ® Q, where Q is the distribution of (. Combining this with Lemma 4, we obtain
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(¢,€,8(€,€)) ~yriv (C,€,S0). Now, defining the event O = {((, &, 5(€,6)) € ZXEXS: ¢

de "
CIS‘(g,s

)}, we have that
(6e™™) n
P{C¢ Oy D1 < eP{(C,€,50) € Os} + 7+
:e"IP’{(¢CI‘;§;TI}+T+V§e"5e_’7+7'—l—l/§5+7+1/,

where the first inequality follows from the definition of indistinguishability, and the second inequality
follows from the assumption that P {¢ ¢ CI} < a holds forall s € S. O

Proof of Corollary 1. The result follows immediately from Theorem 1 withY = (and v =0. [

Proof of Lemma 1. Let Sy = argmin;c (k) €;, with &; - Lap (1/n). Moreover, note that
S(¢,¢) = iifand only if &; < minjz; {e; + A (CF(X)) — A (CH(X))} < minjz;e; + 1, where
we used the fact that A\(C'? (X)) € [0, 1]. Finally, for all ¢ € [K]

P{S(e.e) =] otefeidivn | < P{es <mines + 1lote fes) 0}

< P {Ei < m;nfjla(é, {Ej}jgéi)}
J#i

=P {So = ilo (&, {e;}ji)}

where the second inequality uses the fact that the densities ratio p.,_1/pe, is upper bounded by e”.
The result now follows by taking expectation on both sides. O

Proof of Lemma 2. Let Sy be a uniform r.v. with P{Sy = ¢} = 1/k. Then,

P{sica=i¢) ke (A (CR(X))
P{So =i} 2 ierr] &P (=nA (CF (X))
kexp(n) _
< Foxp (=) exp 27,
where we used the fact that A(C& (X)) € [0, 1]. O

Proof of Lemma 3. The optimal solution p* (b, £) satisfies p} (b, &) < e"b; + s;, with ZzK:1 s; <,
for all ¢ € k. Therefore, letting Sy be a r.v. with P{Sy = i} = b;. Then, for all S C [K], we have

P {3(5,5) e S} < e"P{Sy € S} +,

which concludes the proof. O

Proof of Proposition 1. By the assumption that A is (), 7)-stable w.r.t. P, Definition 2 guarantees
the existence of ar.v. Sy such that A(, €) %‘,,ET So holds P-almost surely. This implies that for any
G C [K],P. {A( e) € G|¢} < e"P{Sy € G} + T holds P-almost surely.

We set the prior vector b € AKX~ as the distribution of Sy by choosing b; := P{Sy =1i}. Let
pA(€) = P.{A(&,e) = i|¢}. Define s;(¢) = max (O,p;“({) - e”bi). Clearly, s;(£) > 0 and
pA(&) < eMb; + s;(€) forall i. Let ST(€) = {i | pA(€) > e"b;}. Then, P-almost surely,

K
D@ = Y (6 — i) =P {A(E,e) € ST(E)|E} — P {So € ST(€)}

i=1 i€eSt(€)
< (e"P{So € ST(E)} +7) —"P{Sy e ST (&)} =T

Since p*(¢) is a probability distribution, p(¢) € AK~1. Thus, p*() satisfies the constraints of the
MinSE linear program with prior b for P-almost surely all &.
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The MinSE algorithm finds the solution p*(b,&) that minimizes the objective function
ZZK 1 DiX (Cf(X)) over the set of all feasible distributions satisfying these constraints. Since

p(€) is a feasible solution P-almost surely, its objective value must be greater than or equal to the
minimum objective value achieved by the optimal solution p* (b, ). Therefore, P-almost surely,

K K
D pIB,ON(CR (X)) <Y pMONCH(X).
i=1 i=1

This completes the proof. O
B.2 Proofs of Section 4

Proof of Corollary 2. Since S(&,&;) is (1, 7)-stability. Using the same starting derivation as the
proof of Proposition 1, we know that there exists a fixed point b € AX~1 such that p;(&;) <

exp (n) b; + s; and Zfil s; < 7. Thus,
P{vig Cf, . (X0} =E[1{vi¢ cl,  (X0}] = sz (€)1 {v ¢ o (xn}

<3 e {rig )+,

from which we have that

lim sup —Z]P’{Yt ¢ Cét()g - t)(Xt)} < lim sup —i (Ze”b 1 {Y ¢ C(t)( )} 7')

T—o0 T—o0

t=1 i=1
K 1 T ©
< b; | imsup — 11y, ¢ oV (x +
oo (s 301 et} ) o
<ela+rT,

where the second inequality follows from Fubini’s theorem, which allows us to interchange the two
sums, and the subadditivity of lim sup. This concludes the proof. O

Proof of Proposition 2. Using the definition of C’éo)mb
equality, we have that

P{wcc?mb}—P{Zp w. &)1 {mc;“(Xt)}z;}
Zp &1 {wcf”(xo}]-

Moreover, from MinSE, we know that p (w(t), &) < e"wgt) + s; and Zf{:l s; < 7. Therefore,

S w0 {ve¢cxn}

where the equality follows from (8). This concludes the proof.

in Algorithm 1, together with Markov’s in-

<2E

{Yt ¢ Ccomb} <9 (e"E

+T> :2(6775154—7'),

B.3 Proofs of Section 5
Notation reminder. Before providing the proof of Theorem 2, we introduce some additional

notation and recall some notation in the main text. We consider a calibration dataset D.,; =
{(Xi,Y3)icm) } and a test point (X,Y’). We interchangeably denote (X,Y") as (X,;,41, Yy41) and
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define D) = {(XZ, Yi)iem) } In addition, for each base predictor k¥ € [K], we compute the

non-conformity scores on the calibration data, for i € [m)],

Sk = sk(Xi, Y, fr)
and denote the score of the test point as sx m+1 = Sk (Xm+1, Ymt1, f). Let Ti = {Sk.1,- -+, Skem )
denote the set of these calibration scores for model k. We also define T,j = T3 U {Sk,m+1} We use
Sk, (r) and s;: (r 0 denote the r-th order statistic in T}, and T,:r . Furthermore, we denote the ranks of a
score sy, ; within the two sets as follows Ry, ; == Z;’;l 1{s); < sk} and R',;i = Z"H'l L{sp; <

Sk.i}. Similarly to Section 5, we parameterize the conformal prediction sets using ranks For a rank
index R € [m)], define, respectively:

Co(X,R) ={yeV:su(X,y, fr) <s

B}

k‘
GHXR) = {y eV Xy fi) < st ).

Both set families are monotonic: Cx (X, R;) C Ci(X, Rs) if Ry < Ro; similarly for C,‘:. The
relationship sy, (r) > S;(R) holds for R € [m], implying the set inclusion C; (X, R) C Ci(X, R).
To relate with the standard perspective on split conformal threshold, note that for i’ € [m]

P{R;mﬂ < i/} =P {Sz,mﬂ = SZ,(i')} < P{s;m—‘rl = Sk,(i’)} =P{Ymi1 € Cu(Xims1,1)},

where P {Rk g1 <4 } > i'/(m + 1) by exchangeability. Note that this is equivalent up to
a reparameterization to the split conformal method introduced in Section 2, by setting i/ =
[(1-a)(m+1)].

For each point ¢ € [m + 1], we apply the selection rule using its feature vector X; and independent
randomness ¢; ~ P.. Let k; .= S(X;, ;) be the index of the predictor selected for the i-th data point.
By our assumption, k; is independent of D,,;, conditionally to X;. We now define the effective rank
for the i-th point. This is the rank of the i-th point’s score calculated using the predictor k; that was
selected specifically for X;:

Pt . pt  _ pt
R =Ry, RS(X e
Similarly, for ¢ € [m], we define

Ri = ha = RS‘(X

i,€i),8"

Finally, we define the following two sequences R* == (R}, ..., R} +1)and R = (R1,...,Rm),
with Rzg) and R(,-/) denoting their i-th and 4’-th order statistics respectively, for i € [m + 1] and
i’ € [m].

Proof of Theorem 2. Notice that R™ forms an exchangeable sequence [3, Lemma 2.2]. This follows
from the exchangeability of the original data pairs {(X;, Y)};ﬂtl and the fact that the procedure to
obtain R;" is symmetric w.r.t. D7 . In addition, R C R implies that Rzrm) < R(m). As a direct
consequence, for i € [m], we get:

<IP>{R+ <R+,}<]P> + < )
m —+ 1~ mt+l = (O] - 8km+1~,(3zm+l,m+1) o Sk"’""l’(R?:r))

_ +
=F {Skm“’m“ = Skarlﬁ(R(t)) }
+

{Skm+1,m+1 = Sken(Ro >)}

Y;n-i-l € Ckm+1 (Xm+17 R(z)) } :
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Here, the first line follows from the monotonicity of the order statistics of (s: Lreves skTL )
m+1, m+1,m~+1

and the definition of R, +1- The second line is by the fact that for any k € [K],i’ € [m + 1], we

have s = sy~ The third by R?;) < Ry;y for any i € [m] and the fourth by the monotonicity

k(RS
of the split conformal set w.r.t. increasing score. Finally, choosing i = [(1 — «)(m + 1)], we get

P {Ym+1 S Cg(Xm+1)(Xm+17 R(L))} =P {Ym+1 c Ck,n+1(Xm+1, R(z))} >1—aq,

and recover the theorem. O

C Additional Experiments

C.1 Batch Experiments

In Section 6, we provided some results in the batch setting. Here, using the same selection algorithms
as in Section 6, we extend the experimental setting as detailed in the following subsections. We first
provide additional information on the batch experiments.

For the real dataset experiments (Abalone, Bike Sharing [31, CC BY 4.0], California Housing [30,
BSD License]), the hyperparameters of several base regression models were optimized prior to their
use in the main conformal prediction experiments. This tuning was performed using “BayesSearchCV”
from the scikit-optimize library [32, BSD-2 license], as mentioned in Section 6. The models
subjected to this tuning process included RandomForestRegressor, GradientBoostingRegressor,
ElasticNet, DecisionTreeRegressor, AdaBoostRegressor, and ExtraTreesRegressor. All experiments
took approximately 200 CPU hours using 16 cores of Intel Xeon CPU Gold 6230 and 32 GB of
system memory. For the implementation of ModSel and the structure of our code, we based our
implementation on the version open-sourced by Liang et al. [11]. Nonetheless, we significantly
deviated from their implementation to allow for more efficient parallel processing.

Both X and Y were standardized. The BayesSearchCV process was configured to run for 25 itera-
tions (n_iter=25) with 3-fold cross-validation (cv_folds=3) for each model and hyperparameter
setting. The nonconformity score function also utilized a RandomForestRegressor to predict residuals,
and its hyperparameters were the same as the tuned parameters for RandomForestRegressor for
prediction.

Finally, for the synthetic experiments to follow, we note that YK-Adjust produced infinitely large sets
in some runs, as such it is not plotted.

C.1.1 Homogeneous vs Heterogeneous Data Preprocessing

In Section 6, we preprocessed the dataset, both synthetic and real, by splitting them to 5 disjoint equal
subsets using constrained K-means [35, 36, Code under BSD 3-Clause License]. Here, we provide
additional results, without this splitting step. We call the setting with no splitting, homogeneous, and
the setting with splitting heterogeneous. The homogeneous setting may represent a more challenging
environment for our approach and can be more favorable to the methods of Liang et al. [11] and
Yang and Kuchibhotla [12]. In particular, in this homogeneous setting, one conformal predictor can
typically be superior to all other predictors, as such simply selecting the best-on-average predictor
can yield very competitive results, specially that the stability-based coverage guarantees can be
conservative.

Using the same synthetic data setting as in Section 6, we report the homogeneous results in Figure 3.
In addition, we report the homogeneous results on the real data experiments in Figure 4. For real data
experiments, Recal stays competitive with baselines. Nonetheless, for the synthetic experiments, our
approach performs worse than baselines.

C.1.2 Varying Data Generation in Synthetic Experiments

To further compare with baselines, we adjust the data generation procedure in the synthetic experiment
to match one of the settings in [11]. In particular, we repeat exactly the same steps as the synthetic
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Figure 3: Homogeneous synthetic results. Each plot shows coverage (left) and interval length (right)
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Figure 4: Comparison of UCI dataset results under homogeneous data processing.

experiments of Section 6, but replace the data generation procedure step by

X ~N(0,1;), =~N(0,1)
0; =1{i mod 20 =0}
Y = X709+,

where d = 300. This matches the sparse normal setting with Gaussian noise in Liang et al. [11].
Given the linear dependency, this setting behaves more similarly to the homogeneous experiments;
thus the globally optimal predictor may be inferred by predictors learning on any subset of the data.
We report the results in Figure 5. We observe that Recal achieves very similar results to ModSel.
YK-Base produces smaller conformal sets at the cost of higher miscoverage.
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Figure 5: Comparison with baselines in the sparse linear setting with Gaussian noise
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C.1.3 Comparison against Average Model Baseline

Furthermore, we repeat the experiments of synthetic experiments of Section 6, but add an additional
baseline. In particular, we consider the average model baseline, which averages all predictors trained
on the data and conformalizes the average predictor. This baseline may be interpreted as a simple
model averaging approach. We report the results in Figure 6, denoting this additional baseline as
AvgSplit. We observe that Recal, AdaMinSE, and MinSE perform better than the average model
baseline.
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Figure 6: Comparison with average model as a baseline

C.1.4 Effect of the Number of Calibration Points

In addition, we repeat the experiments on synthetic data, while varying the number datapoints in the
calibration dataset. This mainly affects the results of YK-Adjust as its performance improves with
larger calibration datasets. We report the corresponding results in Figure 7 and Figure 8.

C.1.5 Additional Classification Experiments

We complement our regression studies with a compact ImageNet-1k classification [37, Non-
Commercial Use] experiment intended to emulate a heterogeneous setting. Concretely, we construct
two ViT-Base models from the same pretrained model: one kept clean, and one degraded by randomly
shuffling the top-k logits on a fraction of examples (we use a moderate corruption fraction of 10%
and k = 20). Then, each of the two models is used to construct a conformal predictor. For the models,
we used the pretrained timm checkpoints [38].

Then, we construct 10 conformal predictors by mixing the two base conformal models in different
ways, i.e. each model outputs the predictions of the clean for 50% samples and degraded for the
remaining. We use this structure to where different predictors perform better/worst on different
samples.

Using this construction, we compare YK-Base, MinSE, and AdaMinSE, which operate purely at the
set level — inspecting only the resulting conformal sets without requiring access to the underlying
scores or split-conformal internals. We also evaluate a score-averaging baseline of Luo and Zhou
[13] that linearly combines per-class scores via simplex weights learned on held-out indices. Because
this baseline requires score access, we perform the mixing at the logit/score level rather than at the
set level. We report the results in Figure 9. We note that this setting is one where the performance of
the different predictors varies across the input space, which is precisely where our approach is most
beneficial.

C.2 Online Experiments:

Online Setting Experiments: we tested our online algorithm, AdaCOMA, by constructing an online
analogue of our heterogeneous batch setting, where the performance of different predictors vary
across time. The key advantage of AdaCOMA lies in its ability to condition selection on the current
features X, via the observed interval sizes &; used in the stable selection mechanism. In contrast,
COMA relies solely on historical performance in determining its weights w(®) (Algorithm 1).

To evaluate this, we designed an environment in which both COMA and AdaCOMA track and
assign weights to K = 10 distinct forecasters. These forecasters are not fixed models; instead,
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Figure 7: Homogeneous synthetic results. Each plot shows coverage (left) and interval length (right)
for a different number of calibration examples (V).

they dynamically generate prediction intervals by drawing from a smaller pool of M = 6 diverse
base online conformal algorithms. Each base algorithm is an instance of Adaptive Conformal
Inference (ACI) [6] applied to an online learning model. For each of the K forecasters, we simulate a
heterogeneous environment where the optimal conformal predictor varies over time by partitioning the
input data stream conceptually as follows: at the start of the experiment, each of the K forecaster pick
one model from the smaller subset of A/ models. Then each 7 = 50 timesteps, the forecasters pick a
different models, and so on. This setup, where forecasters change their models each 7 timesteps, aims
to simulate an environment, which requires the selection algorithm choosing among the forecasters to
be strongly adaptive.

Base Online Conformal Algorithms. The M = 6 base algorithms were instances of Adaptive
Conformal Inference (ACI) [6]. Default ACI parameters were: initialization period of 100 timesteps,
we used an adaptive ACI stepsize adapted from the original code of [10]. The underlying online
learning models were:

* Two SGD regressors: one with L1 penalty (Lasso, g = 0.001, penalty o = 0.1) and one
with L2 penalty (Ridge, 19 = 0.001, penalty oo = 0.1).

» Two SGD regressors (no penalty) with learning rates 7o € {0.001, 0.005}.

* Two Rolling Linear Regression models with window sizes of 50 (retrain frequency 12) and
100 (retrain frequency 25).
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Figure 8: Heterogeneous synthetic results. Each plot shows coverage (left) and interval length (right)

for a different number of calibration examples (V).
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Figure 9: ImageNet classification results
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We conducted experiments on two datasets, used for evaluation in Gasparin and Ramdas [10], ELEC
[39, CC-BY 4.0] and a synthetic data generate according to the ARMA(1,1) model [40, Chapter
2]. For the precise data generation procedure for ARMA(1,1) model, refer to [10, Page 18.]. For
both, AdlaCOMA and COMA, we used two algorithms for the weights w(*) (Algorithm 1) over the
forecasters: AdaHedge and Hedge with learning rate = 0.1. We repeated the experiment for 50
seeds. For ARMA(1,1) dataset, 4 runs experienced numerical instability producing interval length
multiple orders of magnitude above the rest for both COMA and AdaCOMA. We excluded those
runs in calculating the reported results. The results are presented in Table 1. For COMA, we ran
the underlying predictors using ACI with nominal miscoverage rate 0.1. For AdaCOMA, we ran
ACI with nominal miscoverage rate of 0.09 and used AdaMinSE for the selection. For AdaMinSE
selection, we tuned the selection such that COMA and AdaCOMA achieve similar coverage. The
results are reported in Table 1. For ELEC dataset, AdaCOMA significantly outperformed COMA.
For ARMAC(1,1), both methods performed similarly with a small advantage to AdaCOMA.

Table 1: Comparison of COMA and AdaCOMA with different underlying aggregation algorithms
(AdaHedge, Hedge) on ELEC and ARMA(1,1) datasets. Values are mean + standard deviation
(divide by the root of the number of seeds (1/+/50) for the standard error). The target miscoverage is
a=0.1.

Dataset Method Avg. Miscoverage Avg. Length
COMA (AdaHedge) 0.0942 £ 0.002 0.69 £ 0.06

ELEC AdaCOMA (AdaHedge)  0.0959 £ 0.001 0.32 £0.09
COMA (Hedge) 0.0942 4+ 0.002 0.69 £ 0.06

AdaCOMA (Hedge) 0.0963 £ 0.001 0.31£0.01

COMA (AdaHedge) 0.102 £ 0.001 4.40+0.91

ARMA(L,1) AdaCOMA (AdaHedge) 0.101 £ 0.001 4.23 £0.65
’ COMA (Hedge) 0.102 £ 0.001 4.40 +0.92
AdaCOMA (Hedge) 0.101 £ 0.001 4.31 +1.06
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