
Under review as a conference paper at ICLR 2017

OMG: ORTHOGONAL METHOD OF GROUPING
WITH APPLICATION OF K-SHOT LEARNING

Haoqi Fan Yu Zhang Kris M. Kitani
The Robotics Institute, School of Computer Science
Carnegie Mellon University
Pittsburgh, P.A., 15213

ABSTRACT

Training a classifier with only a few examples remains a significant barrier when
using neural networks with a large number of parameters. Though various spe-
cialized network architectures have been proposed for these k-shot learning tasks
to avoid overfitting, a question remains: is there a generalizable framework for
the k-shot learning problem that can leverage existing deep models as well as
avoid model overfitting? In this paper, we proposed a generalizable k-shot learn-
ing framework that can be used on any pre-trained network, by grouping network
parameters to produce a low-dimensional representation of the parameter space.
The grouping of the parameters is based on an orthogonal decomposition of the pa-
rameter space. To avoid overfitting, groups of parameters will be updated together
during the k-shot training process. Furthermore, this framework can be integrated
with any existing popular deep neural networks such as VGG, GoogleNet, ResNet,
without any changes in the original network structure or any sacrifices in perfor-
mance. We evaluate our framework on a wide range of k-shot learning tasks and
show state-of-the-art performance.

1 INTRODUCTION

As many deep learning network architectures have been proposed, several key models have emerged
as default models for many image classification tasks. In particular, deep neural network architec-
tures such as the VGG network by Karen & Zisserman (2014), Inception by Christian et al. (2015)
and ResNets by Kaiming et al. (2015), have proven their superb performance on image classification
when using datasets such as ImageNet (Alex et al. (2012)) and MS COCO (Lin et al. (2014)). With
enough data and fine tuning, these ‘go to’ models have been shown to be successful for many visual
classification tasks.

However, there is a problem when one does not have access to a large labeled training dataset to
fine-tune these models. This task of training a classifier using only a small k number of examples
is often referred to as k-shot learning and has problems when dealing with high capacity models
such as deep convolutional neural networks. The problem of training with only a small number of
training examples is that it often leads to overfitting, where the model essentially memories those
data points without gaining the ability to generalize to new instances.

Current state-of-the-art methods (Oriol et al. (2016) Adam et al. (2016)) apply deep learning tech-
niques by using specialized network architectures for k-shot learning to avoid overfitting. While this
is a reasonable strategy for proposing diverse kinds of new frameworks for k-shot learning tasks, it
is hard for different k-shot learning methods to borrow structures from each other since they are all
highly customized networks.

We propose a method called the Orthogonal Method of Grouping (OMG) to facilitate a better k-shot
learning process. OMG ensures that similar (near duplicate) features in the classifier will be grouped
and modified together during the training process. This process of grouping features naturally in-
duces dimension reduction of the parameter space and imposes a form of subspace regularization
during training. We implement OMG by adding a new loss layer that essentially clusters (groups) pa-
rameters by slighting perturbing them according to an orthogonality constraint. This para-loss layer
only augments the network and does not require any changes to the original architecture. Once the

1

Under review as a conference paper at ICLR 2017

feature has been grouped, the network can be used to learn from only a few examples and parameter
updates are propagated to parameter groups instead of individual parameter updates.

Our contribution is threefold: (1) we proposed a general k-shot learning approach which does not
rely on any task-specific prior knowledge; (2) our approach can be added to any network without
changing the original network structure; and (3) the proposed method provides an effective technique
for decomposing the parameter space for high capacity classifiers.

2 RELATED WORKS

One-shot learning is an interesting topic first presented in Li et al. (2006). The key idea of one-
shot learning is to make a prediction on a test instance by only observing a few examples of one-
shot classes before. Li et al. (2006) solved this problem by adopting Variational Bayesian approach
where object categories are represented by probabilistic models. More recently, researchers revisited
one-shot learning with highly customized models: M. et al. (2011) address one-shot learning for
character recognition with a method called Hierarchical Bayesian Program Learning (HBPL). It
modeled the process of drawing characters generatively to decompose the image into small pieces.
The goal of HBPL is to determine a structural explanation for observed pixels. However, inference
under HBPL is difficult since the joint parameter space is very large, which leads to an intractable
integration problem. Gregory (2015) also presented a strategy for performing one-shot classification
by learning deep convolutional siamese neural network for verification. Oriol et al. (2016) proposed
a Matching Nets utilizing external memory with attention kernel. Adam et al. (2016) proposed the
memory-augmented neural networks with an external content based memory. These works achieve
state-of-the-art performance on specific datasets. However, one important issue would be, works
mentioned above proposed highly customized networks, whose structures is hard to be borrowed
from other. Conversely, OMG is a general one-shot learning model can fit into any existing networks.
So its structure could borrow by any other works.

Domain Adaptation is another related topic to our work. It aims at learning from a source data
distribution a well-performing model on a different (but related) target data distribution. Many suc-
cessful works as Boqing et al. (2012) and Basura et al. (2013) seek an embedding of transformation
from the source to target point that minimizes domain shift. Daume III (Daum III (2009)) is another
simple feature replication method that augments feature vectors with a source component, a target
component, and a shared component. Then an SVM is trained on the augmented source and target
data. These methods are proven to be effective for many tasks, but none of these methods above
could feed into an end to end learning framework. One end to end learning framework would be the
supervised adaptation method proposed by Judy et al. (2013a). It trains different deep networks for
source and target domain and concatenating the high-level features as final embedding. However,
the limitation is - the high-level features trained by one domain can not borrow knowledge from the
other domain. In contrast, our method is an end-to-end method learning on target data without train-
ing additional networks. So the OMG can contain knowledge from both source and target domain,
which is to say, the source and target domain could borrow knowledge from each other.

Our OMG model could decompose existing feature to a compact feature space, which is closely
related to dimension reduction. Many cookbook works such as Aapo (1999) Jolliffe. (1986) Najim
et al. (2011) have been studied extensively in the past. However, these works can’t integrate into
any current end-to-end deep learning frameworks. As far as we know, there is limited work having
visited the topic of end-to-end dimension reduction. E. & Salakhutdinov (2006) used auto-encoder
as a dimension reduction method. Stacked restricted Boltzmann machine (RBM) is proposed to
embed images to lower dimension. However, this work is also hard to be integrated into existing
network structures or utilize pre-trained models. The reason is that it has a different architecture
than CNN networks, and it requires to train from scratch. Our OMG is an end-to-end approach that’s
able to feed into any architectures smoothly for both training and finetuning. Furthermore, OMG
could reduce the output to an arbitrary dimension without changing the architecture and sacrifice the
performance.

2

Under review as a conference paper at ICLR 2017

Figure 1: One illustration of the parameter basis in VGG net. Visualization of the first convolutional
layer from VGG Karen & Zisserman (2014) network pre-trained on ImageNet (Alex et al. (2012)).
Filters (parameter basis) with the same color of the bounding box are correlated. These filters in the
same color are functionally similar, which mean they will have similar activation given same input.

3 APPROACH

We observe the fact that the parameters of each layer of the deep network are always correlated. This
can be best illustrated by Fig. 1. The correlated parameters will result in correlated outputs with a
lower capacity. When learning new classifier on top of these correlated outputs, it is easier to get
an instance specific classifier if only small amount of data is seen. In most of the cases, an instance
specific classifier is not what we always want. If the correlation of output is removed, which output
is becoming orthogonal, then a better classifier will be fetched given a few data. So we proposed an
Orthogonal Method of Grouping (OMG) to remove the correlation of outputs by decomposing the
correlated the parameters to orthogonal parameters.

Figure 2: The initial parameters as shown in (a), where parameters are correlated. (b) is an illustra-
tion of our grouping algorithm, the algorithm assigns each different parameters to a corresponding
group with a one to one mapping. (c) illustrates our algorithm cast a constraint to force parameters
from each group orthogonal to those from other groups.

3.1 ORTHOGONAL METHOD OF GROUPING

OMG is a two-step method which can be best illustrated by looking at Figure 2. In Figure 2 (a),
each purple vector represent a parameter.

In the first step of OMG (Figure 2 (b)), it finds correlated parameters and groups them in the same
subspace. Since correlated parameters will result in correlated outputs, we can find the relation
between parameters by analysis the output (e.g., the relation between convolutional kernels could be
found by analysis the activation of the convolutional layers). In the second step of OMG (Figure 2
(c)), each parameter is slightly perturbed such that the orthogonality between each grouped subspace
is maximized. The groups are represented as an Orthogonal Group Mapping that each parameter is
mapped to the corresponding group. The mapping is learned by optimizing the orthogonal constraint
on both θw and θmap, where θw is the parameters of the neural networks, and θmap is the parameters
of the Orthogonal Group Mapping.

3

Under review as a conference paper at ICLR 2017

Figure 3: This figure illustrates the framework of the Orthogonal Method of Grouping. n1...nM
represent the M different neural units (basis vectors). The dotted arrows represent the one to one
mapping from each neural unit to their corresponding orthogonal groups. Each orthogonal group gi
is represented as a red square. In a) it illustrates a special case of Orthogonal Method of Grouping
with identity mapping. This special case can represent the connection between any normal layers.
This means every normal layer are a special case of OMG. (b) is a normal case of OMG learning the
one to one mapping from neural units to their corresponding orthogonal groups.

The Orthogonal Group Mapping is firstly introduced in Sec 3.1.1, followed with loss function and
orthogonal constraint in Sec 3.1.2. Then the optimizing algorithm is introduced in Sec 3.1.3. Finally,
the k-shot learning method learned on orthogonal grouped parameters is introduced in 3.2

3.1.1 ORTHOGONAL GROUP MAPPING

Orthogonal Group Mapping (OGM) maps neural units to the corresponding groups by a mapping.
Let neural units in a layer of the network be denoted as a set n = {n1, n2, ..., nL}, where L is
the number of neural unit in that layer. (For example, a filter of a fully convolutional layer can
represent as a unit.) The Orthogonal Group Mapping could represent as orthogonal group sets g,
where gk is the kth orthogonal group in g. Each orthogonal group gi contains the corresponding
units gi = {nj , ..., nl}. Since the OGM is a map that, one unit is only mapped to one single group.

3.1.2 PARA-LOSS

We cast constraints to force orthogonal groups orthogonal to each other. The constraint is achieve by
a loss function with two terms: intra-class loss Lintra and inter-class class Linter. Lintra minimize
the divergence in each group, and Linter force the basis in each orthogonal group orthogonal to
each other.

When a mini-batch of input data of sizeB is propagated through the network, the output (activation)
of units n over the mini-batch can be denoted as a matrix A ∈ RB×L, where each element Al ∈
R1×L denotes the output of the l-th unit over the entire mini-batch. Intuitively, if the outputs Ai and
Aj of two units ni, nj are similar, we would like to let the two units belong to the same orthogonal
group gk. Conversely if the outputs Ai and Aj of two units ni, nj are different, then they should
belong to different orthogonal groups.

We define the intra-group loss by the sum of squared distances between each orthogonal groups:

4

Under review as a conference paper at ICLR 2017

Lintra =
∑
k

∑
i,j∈gk ||Ai −Aj ||2

The time complexity is Θ(Lintra) = K × kmax × kmax, where kmax = maxi ki. This could be
efficiently computed when kmax is small, but we still want to reduce Θ(Lintra) since the computa-
tional cost of this loss can be significant when there are many units in a single layer. We can use a
lower bound to approximate the distance:

L̃intra =
∑
k

∑
i∈gk(Ai −Aanchor)2

where anchor is an index randomly selected from the k-th orthogonal group. This approximation
reduces the time complexity to Θ(Lintra) = K × kmax ≈ L, which is linear.

In addition to quantifying the intra-group similarity (tightness of each cluster), we also want to
measure the separation between each group. We can define an inter group loss in terms of an
orthogonality measure:

Linter =
∑
i,j ‖M>i Mj‖2F

Where matrix Mi ∈ RB×|gi| represents the output of all the units in orthogonal group gi over the
mini-batch, where |gi| is the number of units in the orthogonal group gi. That is to say, Mi =
[Aj , ..., Ak]T , where nj , nk ∈ gi. The ‖ · ‖2F is the squared Frobenius norm. This term is minimized
when feature vectors are exactly orthogonal.

The entire para-loss function is denoted as:

L = α
∑
k

∑
i∈gk(Ai −Aanchor)2 + β

∑
i,j ‖M>i Mj‖2F

It is easy to see theL does not contain any term of ground truth label. So the OMG is an unsupervised
method without requiring ground truth. However, this method could work smoothly with other
losses. For example, OMG could train with loss of softmax Lsoftmax simultaneously for a supervise
learning task.

3.1.3 OPTIMIZATION

We proposed optimizing method for OMG to optimize the constraint on both parameters of the
neural networks θw, and parameters of the Orthogonal Group Mapping θmap. We use a two-step
approach to optimize argminθmap,θwL by optimizing argminθwL and argminθmapL iteratively,
where θw, is the parameter of original network, and θmap is the parameter of Orthogonal Group
Mapping. For the first step, we optimize the weights of the net θw with SGD. For the second step,
we optimize the weights of mapping θmap with Algorithm 1.

First step: We use the standard SGD to optimize argminθwL:

θw := θw − η∇(θw) = θw − η
∑
i Li(θw)

Where η is the step size, and Li(θw) is the value of the loss function at ith iteration.

Second step: We propose Algorithm 1 to optimize argminθmap
L:

Algorithm 1 Optimization Algorithm
Initialization
Random Initialize Mapping θmap
Given a batch of training set
for each iteration do

for each group gi, i ∈ [1,K] do
Find the max violated unit nl in gi that l ∈ gi by:
l = argmaxl

∑
m∈gi(Al −Am)2

Reassign the unit nl from gi to new group gk where:
k = argmink

∑
m∈gk(Al −Am)2

end
end

5

Under review as a conference paper at ICLR 2017

It is easy to see that, optimizing argminθmap
L will not change any parameter of the original deep

network θw. That is to say, given any pre-train network, we could switch the network to an orthog-
onal grouping network without changing its original parameters.

3.2 DIMENSION REDUCTION AND k-SHOT LEARNING

Given an Orthogonal Method of Grouping with corresponding θw and θmap, we could assign L
outputs to K groups. The outputs in each group is correlated. we assign an additional weights
wadd ∈ RK and bias badd ∈ RK corresponding to each group. We omit the bias for simplicity. For
each group gi it shares the same weight waddi . While doing k-shot learning on a few samples, the
original weights θw are fixed, and only the wadd is update. In another view, we could regard this
as an end-to-end dimension reduction method. It could reduce the original output dimension L to
arbitrary dimension K. Each dimension in the K is largely orthogonal to each other.

4 DATASET

The Orthogonal Method of Grouping is evaluated on three standard datasets: ImageNet, MNIST and
Office Dataset. ImageNet (Alex et al. (2012)) is the largest publicly available dataset with image
category labels. The MNIST (LeCun et al. (1998)) dataset of handwritten digits contains a training
set of 60K examples and a test set of 10K examples. The Office (Saenko et al. (2010)) dataset is
a collection of images from three distinct domains: Amazon, DSLR, and Webcam. The dataset
contains objects of 31 categories commonly spotted in office, such as keyboards, file cabinets, and
laptops. Among the 31 categories, there are 16 overlaps with the categories present in the 1000-
category ImageNet classification task. This dataset is first used by Judy et al. (2013c) for k-shot
adaptation task and we follow the same data split of their work.

5 EVALUATION

We evaluate the OMG from three different tasks: training from scratch, finetuning and k-shot learn-
ing. We report the performance for training from scratch on MNIST to show that OMG could help
to improve the performance by cast orthogonal constraint. Then we smoothly integrated OMG into
standard pre-trained networks to show OMG can successfully enhance the orthogonality among
groups of parameters on arbitrary neural networks, and results in more discriminative parameters.
For k-shot learning tasks, we report our k-shot learning results on MNIST and Office Datasets
(Saenko et al. (2010)). Experiments show our learned compact orthogonal parameters could facili-
tate learning classifier on limited data.

In the following sections, Experiments for training from scratch are reported in 5.1, Experiments for
finetuning are reported in 5.2 and the k-shot learning experiments are reported in Sec. 5.3.

5.1 TRAINING FROM SCRATCH

We show that our OMG facilitates the performance of neural network during the training. We trained
a standard Convolutional Neural Networks (Y. et al. (2003), which reported achieving 1.19% error
rates) on MNIST dataset as a baseline. For OMG model, we report the difference of accuracies
with different α, β, and group size. The difference of accuracy here denotes the difference between
baseline’s accuracy and the proposed model’s accuracy. For example, if the proposed model has
98% of accuracy and the baseline is 97%, then the difference of accuracy is 1. OMG is used to train
every convolutional and fully connected layer in the baseline convolutional network rather than one
specific layer.

We train OMG from scratch with the different set of α and β. We set α or β to 0, 1e−6, 1e−5, 1e−4,
1e−3, 1e−2, 1e−1 separately, and keep the other hyperparameter to 0. The group size is set to half
of the neural unit’s size when evaluating the effectiveness of α and β. We report the difference of
accuracy in Table. 1 and Fig. 4. It is easy to see that when α and β ∈ (0, 1e−3), the OMG can
boost the performance of the convolutional neural network. We find when the value of hyperparam-
eters is around 1e−3, the generated gradient from L is about 1 - 5% of the gradient from Lsigmoid,
which is a reasonable ratio (hyperparameter of L2 normalization is around 1 - 5%). In Fig. 4, it

6

Under review as a conference paper at ICLR 2017

shows when the hyperparameters are extremely small, the OMG will not change the performance
of the network. When the hyperparameters are too large, the constraint will be too strong to learn
the parameters properly. When the hyperparameters are in ideal range, then the OMG is casting
the orthogonal constraint on the network and force the network to learn more discriminative param-
eters. This shows the OMG is working smoothly with normal neural networks and able boosting
its performance. For the following experiments, we set the α to 5e−5 and β to 1e−4 if we do not
specific mentioned. Theoretically, the Lintra would force the filters in each group to be similar, so
intuitively, it would jeopardize the performance of the original network. However, as we find in Fig.
4, Lintra can actually boost the performance. This is because practically the Lintra is being used as
a regularization term.

We report the effect of group size as shown in Fig. 5. In Fig. 5 when the group size is set as the same
as the neural unit size, the OMG is not really grouped. But the network still has a better performance
since the OMG enforces the network to learn more discriminative parameters. The best performance
is achieved when the group size is around half of the neural unit size. If the group size is too small, it
will force all the neural units to learn the same parameters, which would jeopardize the performance
of the network. When the group is 1/64 of the neural unit size, it achieves the worst performance.
For the following experiments, if we do not mention specifically, we set the group size as half of the
neural unit size.

Figure 4: The difference of accuracy between proposed model and baseline as functions of α and
β. The dashed line in each charts is the baseline performance. As we can see from the charts,
when alpha and beta are in the range of [1e−6, 1e−4] and [1e−6, 1e−3], the performance of OMG
outperforms the baseline.

Figure 5: The difference of accuracy between our proposed model and the baseline as functions of a
ratio between group size and neural unit size. From the chart, when the number of groups is around
[1, 4], the proposed model outperforms the baseline.

Although the OMG can work smoothly with different types of layers as convolutional layer, fully
connected layer, and etc, we only visualize the orthogonal groups of first convolutional layer in Fig.
6 since it is the easiest to observe. It is hard to visualize the rest of convolutional layers since the
filter size is smaller. And it is also hard to visualize the fully connect layer since we can not observe

7

Under review as a conference paper at ICLR 2017

Figure 6: The Visualization of the orthogonal grouped filter maps in the first convolutional layer. The
filters in each blue block belong to the same group. It is easy to see that filters in each group share
the similar appearance, and the filters from different groups are different in terms of appearance.

clear pattern directly. For a better visualization, we choose the convolutional neural network with
11 × 11 kernels. Filters in the same blue bounding boxes belong to the same group. We can see
filters in each different groups are highly correlated to each other, and the filters in the different
group are visually very different.

Difference of Accuracy 0 1e−6 1e−5 1e−4 1e−3 1e−2 1e−1

α 0 0.01 0.12 -0.12 -1.74 -1.95 -2.06
β 0 0.01 0.07 0.23 -0.22 -0.68 -0.9

Table 1: The effect of different hyperparameters α and β

5.2 FINETUNING

In this section, we prove that OMG forces deep neural network learn more discriminative features,
and the OMG works smoothly with pre-train neural networks. We finetune existing pre-trained
networks on ImageNet with the help of OMG. The original network is fully trained on ImageNet
dataset, so directly finetune on the same dataset should not change any thing significantly. Even
finetune on different datasets, empirically the parameters in the very first layers are not going to
change. However, we observe the significant changing after finetuning on the same dataset for only
5 epoches.

We choose to visualize VGG-F (Chatfield et al. (2014)) net since it has the largest kernel size among
the VGG zoo (11 × 11 rather than 7 × 7). We visualize the grouped filters in the first convolution
layer in Fig. 7. It is bacause the same reason, we only visualize the first convoutional layer The
kernels in the same vertical line belong to the same group. We have 20 groups and each group has
the number of kernels from 1 to 6. It is easy to see that the filters within each group share similar
appearance (highly correlated), and the filters from different groups have divergent appearances. For
example, the second and the 8th − 13th, they are all white and black edges with the same direction.
the kernels in the 6th group are all like gaussian kernels with a little jitter in location.

In order to prove that the OMG can help to learn the more discriminative parameters, we visualize
the filters after finetuning in Fig. 8. The filters on the left have strong pattern before finetune, and
they do not change much after finetuning. For the filters on the right, the filters do not have the strong
patterns, but after finetuning with OMG, the pattern of the filters become more distinct with strongly
colorful textures. Our interpretation is, our OMG assigns additional orthogonal constraint to all the
filters, force them to learn more discriminative parameters. The filters with strong patterns are not
changed too much because they are originally orthogonal to other filters. But for the filters without
strong patterns, the orthogonal constraint are highly effective. As a result, the OMG helps the VGG
network pretrained on ImageNet to learn the new discriminative paramters during finetuning on the
same dataset.

5.3 K-SHOT LEARNING

The performance for k-shot learning is evaluated on two different task: MNIST k-shot learning and
Office k-shot learning tasks.

8

Under review as a conference paper at ICLR 2017

Figure 7: Visualization of the orthogonal grouped filter maps in the first convolutional layer. Filters
in each row belong to the same group. It is easy to see that filters in each group share the similar
appearance, and the filters from different groups are different in terms of appearance.

Figure 8: Visualization of the filter maps from the first convolutional layer. 10 filters are selected
from the original filter map to show what have the OMG learned. The first column shows the
filters from the original VGG-F. The second column is the corresponding filters after finetune with
OMG. The filters on the left originally have the strong patterns, and they are mainly unchanged
after finetuning. The right ones do not have strong pattern originally, and the pattern becomes
more distinct after finetune with OMG. All the filters are normalized to the same magnitude before
visualization.

5.3.1 K-SHOT ON MNIST

We perform k-shot learning on MNIST dataset. The performances are evaluated on a 10-way classi-
fication where each class is provided with 1, 5 training examples. For the MNIST one shot learning
task, we split the data to pre-knowledge set, and one shot learning set with a ratio of 1:9. The
models we compared with are k-Nearest Neighbors(K-NN), Support Vector Machines(SVM), Tra-
ditional Convolution Neural Networks, and Deep Boltzmann Machines (DBM), and compositional
patch model (CPM). The CPM (Alex & Yuille (2015)) is a model designed for learning a compact
dictionary of image patches representing meaningful components of an object. The performances
were evaluated on a 10-way classification where each class is provided with 1 and 5 training ex-
amples to show the growth in accuracy. For a given run, each model is given a set of hand-written
digits picked at random from each class from the one-shot learning set. For CNN, we used a struc-
ture with four convolutional layers and two pooling layers. For DBM, it contains two hidden layers
with 1000 units each. For the OMG model, it learns the grouping information on pre-knowledge
set without using ground truth. Then it is trained on the samples from one shot learning set, where
the group sizes are set by grid search. The performance is reported in Table. 2. The performance
of OMG is better than the baselines, especially better than the previous CNN method. It is because
the huge parameter space of original CNN is hard to optimized by only a few samples. But with the
help of OMG, the parameter space is significant reduced. The OMG can learn the group of filters
representing the shared common parts as each part holds immense amounts of information on how
a visual concept is constructed. And using these patches as features to learn a better classifier with
limited data.

9

Under review as a conference paper at ICLR 2017

Methods Sample n = 1 Sample n = 5
DBM 24.37 41.76
CNN 28.01 39.8
K-NN 42.08 64.26
SVM 2.78 10.08
CPM 68.86 83.79
OMG 70.17 84.35

Table 2: Comparison of accuracy with other models on k-shot learning tasks. The proposed OMG
achieves better performance on both one-shot learning and 5-shot learning case.

5.3.2 K-SHOT ON OFFICE DATASET

In this section, we conduct the experiment on k-Shot learning task on Amazon Office Dataset
(Saenko et al. (2010)). We followed the work described in Judy et al. (2013c), conduct k-shot
learning on the 16 categories of Office dataset (approximately 1,200 examples per category or 20K
images total). We evaluated our method across 20 random train/ test splits, and each test split has
160 examples. Then the averages error are reported. For each random train/ test split we choose
one example for training and 10 other examples for testing. Following the previous work, we use
pre-trained DECAF from ImageNet. The model is additionally trained with Orthogonal Method of
Grouping on the last 3 convolutional and fully connect layers, where the group sizes are set by grid
search. The group size of each layer is always around half of the neural unit size of the layer. Then
we perform k-shot learning on the Office dataset with the reduced dimension. The accuracy is re-
ported in Table. 3. The models we compared with are SVM, PMG, Daume III and Late fusion. Late
fusion (Judy et al. (2013b)) is a simple approach to independently train a source and target classifier
and combine the scores of the two to create a final scoring function.

Methods Accuracy
SVM 62.91

Late Fusion (Max) 59.59
Late Fusion (Lin. Int. Avg) 60.64
Late Fusion (Lin. Int. Avg) 71.10

PMT 64.84
Daume III 68.89

OMG 71.97

Table 3: One shot learning result on Office dataset, the numbers of baseline are borrow from Judy
et al. (2013b).

We achieve the best performance comparing to previous state-of-the-art method Judy et al. (2013c).
With the help of OMG, the dimension reduced network achieve a better performance when training
on limited data. The main reason is because, the original feature space on DeCaf is large and
redundant. By grouping the feature space, the dimension is largely reduced and the network is still
representative enough for the Office Dataset. Then a better performance is achieved on Amazon one
shot learning task with OMG.

6 CONCLUSION

We proposed a generalizable k-shot learning framework that can be easily integrated into any ex-
isting deep net architectures. By grouping parameters together and forcing orthogonality among
groups, the method is able to reduce parameter space dimensionality for avoiding overfitting. Ex-
periments on k-shot learning tasks have proven that OMG is able to have a good performance on
k-shot class and easily to be adopted to the current existing deep net framework like VGG, ResNet
and so on.

REFERENCES

Hyvrinen Aapo. Survey on independent component analysis. 1999.

10

Under review as a conference paper at ICLR 2017

Santoro Adam, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. One-
shot Learning with Memory-Augmented Neural Networks. arXiv preprint, pp. 1605.06065, 2016.

Krizhevsky Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. pp. 1097–
1105, 2012.

Wong Alex and Alan L. Yuille. One Shot Learning via Compositions of Meaningful Patches. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1197–1205, 2015.

Fernando Basura, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual do-
main adaptation using subspace alignment. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2960–2967, 2013.

Gong Boqing, Yuan Shi, Fei Sha, , and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In Computer Vision and Pattern Recognition, pp. 2066–2073, 2012.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the Devil in the Details:
Delving Deep into Convolutional Nets. British Machine Vision Conference, 2014.

Szegedy Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. pp. 1–9,
2015.

Hal Daum III. Frustratingly easy domain adaptation. arXiv, pp. 0907.1815, 2009.

Hinton Geoffrey E. and Ruslan R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, pp. 504–507, 2006.

Koch Gregory. Siamese neural networks for one-shot image recognition. 32nd International Con-
ference on Machine Learning, pp. 2252–2259, 2015.

I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

Hoffman Judy, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, and Trevor Darrell. One-shot
adaptation of supervised deep convolutional models. arXiv, pp. 1312.6204, 2013a.

Hoffman Judy, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, and Trevor Darrell. One-shot
adaptation of supervised deep convolutional models. arXiv preprint, pp. 1312.6204, 2013b.

Hoffman Judy, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, and Trevor Darrell. One-shot
adaptation of supervised deep convolutional models. arXiv preprint, pp. 1312.6204, 2013c.

He Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Simonyan Karen and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint, pp. 1409.1556, 2014.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition, 1998.

Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object categories, 2006.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollr, , and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
VisionECCV, pp. pp. 740–755, 2014.

Lake Brenden M., Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot learning
of simple visual concepts, 2011.

Dehak Najim, Patrick J. Kenny, Rda Dehak, Pierre Dumouchel, and Pierre Ouellet. Front-end factor
analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing,
pp. 788–798, 2011.

11

Under review as a conference paper at ICLR 2017

Vinyals Oriol, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing Networks for One Shot Learning. arXiv preprint, pp. 1606.04080, 2016.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In
Proc. ECCV, 2010.

Simard Patrice Y., David Steinkraus, and John C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. ICDAR, pp. 958–962, 2003.

12

	Introduction
	Related Works
	Approach
	Orthogonal Method of Grouping
	Orthogonal Group Mapping
	Para-loss
	Optimization

	Dimension Reduction and k-Shot Learning

	Dataset
	Evaluation
	Training From Scratch
	Finetuning
	K-shot Learning
	K-Shot on MNIST
	K-shot on Office Dataset

	conclusion

